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Abstract

ZHAOWEI HUA: Bayesian Analysis of Varying Coefficient Models and
Applications.

(Under the direction of Hongtu Zhu and David B. Dunson.)

The varying coefficient models have been very important analytic tools to study the

dynamic pattern in biomedicine fields. Since nonparametric varying coefficient models

make few assumptions on the specification of the model, the ‘curse of dimensionality’

is an very important issue. Nonparametric Bayesian methods combat the curse of

dimensionality through specifying a sparseness-favoring structure. This is accomplished

through the Bayesian penalty for model complexity (Jeffreys and Berger, 1992) and

is aided through centering on a base Bayesian parametric model. This dissertation

presents three novel semiparametric Bayesian methods for the analysis of longitudinal

data, diffusion tensor imaging data, and longitudinal circumplex data.

In longitudinal data analysis, we propose a semiparametric Bayes approach to allow

the impact of the predictors to vary across subjects, which allows flexibly local bor-

rowing of information across subjects. Local hypothesis testing and confidence bands

are developed for the identification of time windows for significant predictor impact,

adjusting for multiple comparisons. The methods are assessed using simulation studies

and applied to a yeast cell-cycle gene expression data set.

In analyzing diffusion tensor imaging data, we propose a semiparametric Bayesian

local functional model to connect multiple diffusion properties along white matter fiber

bundles with a set of covariates of interest. An LPP2 prior facilitates global and local

borrowing of information among subjects, while an infinite factor model flexibly rep-

resents low-dimensional structure. Local hypothesis testing and confidence bands are
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developed to identify fiber segments for significant association of covariates with mul-

tiple diffusion properties, controlling for multiple comparisons. The method is assessed

by a simulation study and illustrated via two fiber tract data sets for neurodevelopment.

In analyzing longitudinal circumplex data, we propose a semiparametric Bayesian

infinite state-space circumplex model to capture the dynamic transition pattern of

affective experience, where affects are characterized as an ordering on the circumference

of a circle. A sticky infinite state hidden Markov model via hierarchical Dirichlet proces

is used to address the time related state-switching structure and the self-transition

feature. The method is assessed by a simulation study and an emotion data set for the

dynamics of emotion regulation.
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Chapter 1

Introduction

Varying coefficient models are a class of widely developed models. It was initially

introduced by Cleveland et al. (1991) to extend the applications of local regression

techniques from one-dimensional to multidimensional setting. Local regression models

were further extended by Hastie and Tibshirani (1993) to be formulated as varying

coefficient models, which also tied generalized additive models and dynamic general-

ized linear model into one framework. Semivarying coefficient models (Zhang et al.,

2002), mix-effect varying coefficient models (Liang et al., 2003), and random varying-

coefficient models (Wu and Liang, 2004) were later developed to address different sit-

uations. Semivarying coefficient models allow the linear effects of some predictors on

the outcomes. Random varying-coefficient models assumes the subject-specific varying

coefficient effects, while mix-effect varying coefficient models allow both fixed varying

coefficient effects and random varying coefficient effects.

Varying coefficient models arise from various statistical contexts. The vast volume

of literature includes, among many others, Nicholls and Quinn (1982), Chen and Tsay

(1993) and Cai et al. (2000b) on non-linear time series, Hoover et al. (1998), Wu et al.

(1998) and Fan and Zhang (2000a) on longitudinal data analysis, Ramsay and Silverman

(1997) on functional data analysis, Gelfand and Vounatsou (2003), Baladandayuthapani



et al. (2008) on spatial data analysis, Lu et al. (2009) and Brezger et al. (2007a) on

varying coefficient spatiotemporal model, Cleveland et al. (1991), Hastie and Tibshirani

(1993), Carroll et al. (1998), Kauermann and Tutz (1999), Xia and Li (1999), Zhang

and Lee (2000) and Fan and Zhang (1999, 2000b) on local multidimensional regression,

and Cai et al. (2000a) on generalized linear models with varying coefficients.

In this dissertation, we first review the existing literature in the rest of this chapter.

In Chapter 2, we propose semiparametric Bayes local additive models for the analysis

of longitudinal data. In Chapter 3, we develop a multivariate semiparametric Bayesian

local factor functional regression framework to analyze fiber tract data. In Chapter 4,

a semiparametric Bayesian state-space time-varying circumplex model is introduced to

analyze longitudinal circumplex data.

1.1 Frequentist Analysis of Varying Coefficient Models

There are currently two major approaches to estimate the varying coefficients, which are

kernel-local polynomial smoothing (Wu et al., 1998; Hoover et al., 1998; Fan and Zhang,

1999; Kauermann and Tutz, 1999), and spline smoothing (Hastie and Tibshirani, 1993;

Hoover et al., 1998; Chiang et al., 2001; Huang et al., 2002, 2004; Huang and Shen,

2004). We are going to outline these two approaches in the following subsections.

1.1.1 Kernel-local Polynomial Smoothing

Kernel local polynomial smoothing is a richly developed methodology associated with

a large amount of contributing literature; see for example Fan and Gijbels (1992, 1995,

1996), Fan (1993), Ruppert and Wand (1994), Fan et al. (1995), and Ruppert (1997).

Its main idea is based on Taylor expansion to locally approximate a smooth function

by a polynomial of some degree. Assume f(t) is a smooth function with a (p + 1)-st

continuous derivative for some positive integer p at an arbitrary fixed point t0. The
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f(t) can be locally approximated by a polynomial of degree p around a neighborhood

of t0, as in the form of Taylor expansion:

f(t) ≈ f(t0) + (t− t0)f (1)(t0) + · · ·+ (t− t0)pf (p)(t0)/p!,

where f (r)(t0) is the r-th derivative of f(t) at t0.

Suppose that we have a set of data {Ui, XT
i , yi : i = 1, . . . , n} sampled from

(U,XT , y), we fit a varying-coefficient model of the form

y = XTa(U) + ε,

where E(ε) = 0, and V ar(ε) = σ2(U). The kernel local polynomial estimator â(U) of

a(U) is obtained by minimizing

L(a, b) =
n∑
i=1

{yi −XT
i a−XT

i b1(Ui − u)− · · · −XT
i bp(Ui − u)}2Kh(Ui − u),

where Kh(t) = K(t/h)/h, K(t) is a kernel function, such as Epanechnikov kernel

K(t) = 0.75(1− t2)+ and h is bandwidth.

Denote X = (X1, . . . , Xn)T , Uu = (U1−u, . . . , Un−u), Γu = (X,UuX, . . . ,U p
uX),

Y = (y1, . . . , yn)T , and Wu = diag(Kh(U1 − u), . . . , Kh(Un − u)). The one-stage kernel

local polynomial estimator â(U) is given by

â(U) = (1Tp ⊗ Iq,0q)(ΓTuWuΓu)
−1ΓTuWuY.

Under some conditions, â(U) is asymptotically normally distributed:

cov−1/2(â(u)){â(u)− a(u)− bias(â(u))} D→ N(0, Iq),
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where bias(â(u)) = 2−1µ2a
(2)(u)h2, cov(â(u)) = {nhf(u)E(XXT |U = u)}−1ν0σ

2(u),

and
D→ denotes convergence in distribution. The bias of â(U) comes from the approxi-

mation error of the linear approximation of a(u). In the asymptotic covariance matrix

of â(U), the 2hf(u) is approximately the probability of U falling into the neighbour-

hood of u with radius h, and 2nhf(u) is approximately the expected number of Ui in

the neighbourhood of u.

Bandwidth selection is an important issue in kernel smoothing. Larger bandwidth

may gain on variance side, but loses on bias side. Smaller bandwidth may gain on bias

side, but loses on variance side. The basic idea of a data driven bandwidth selection

procedure is to find an estimator of mean squared error (MSE) of â(U) first, and

then minimizes MSE with respect to bandwidth. The optimal bandwidth is the one

minimizing the MSE. Wu et al. (1998) and Hoover et al. (1998) proposed to use cross-

validation to select the bandwidth. Zhang and Lee (2000) systematically investigated

both variable bandwidth and constant bandwidth selection. For longitudinal data, it is

better to delete a whole subject rather than just a single observation when estimating

MSE(h).

1.1.2 Spline Smoothing

Three types of spline approaches have been developed for varying coefficient models.

Such approaches include regression spline (Shi et al., 1996; Rice and Wu, 2001; Wu and

Zhang, 2002; Liang et al., 2003), penalized spline (Eilers and Marx, 1996; Kauermann,

2005) and smoothing spline (Hoover et al., 1998; Brumback and Rice, 1998; Chiang

et al., 2001; Eubank et al., 2004). The key idea of these approaches is to express varying

coefficient functional effect as a linear combination of some spline bases. However, they

differ from each other in the number of knots and penalization. Regression spline

methods and penalized spline methods usually use fewer knots than smoothing spline
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methods. The smoothness of regression spline methods is controlled by the number

of the associated basis functions. When the number of pre-specified basis functions is

large, it is very challenging to fit the regression spline models due to high-dimensionality

and roughness. The penalized spline method uses two truncated power bases and

penalizes the high order derivative of the associated regression splines. In contrast, the

smoothing spline method penalizes the roughness of the resultant functions. For the

sake of space, we are going to briefly review the smoothing spline method as follows.

Suppose that we have a set of longitudinal sample (yij, xij, zij, tij), for i = 1, . . . , n,

and j = 1, ..., ni, where xi(tij) = (xij0, . . . , xijK)T , zi(tij) = (zij0, . . . , zijM)T and

(yij, xij, zij, tij) denote the jth outcome, two set of covariates and time design points,

respectively, of the ith subject. We fit a nonparametric mixed effects time-varying

coefficient model:

yij = xi(tij)
Tβ(tij) + zi(tij)

Tvi(tij) + εi(tij), (1.1)

where β(t) = (β0(t), . . . , βK(t))T are smooth fixed effects of interest, vi(t) = (vi0(t), . . . , viM(t))T

are random effects sampled from a Gaussian process with zero mean and Γ covariance

function, εi(t) is a zero-mean stochastic process, and vi(t) and εi(t) are independent.

We use the cubic smoothing spline method to estimate the fixed effects and the random

effects:

βk(tij) = hTijβk, k = 0, 1, . . . , K,

vim(tij) = hTijvim, m = 0, 1, . . . ,M,

where βk = (βk(τ1), . . . , βk(τL))T denotes the values of βk(t) at a set of design knots

τ1, . . . , τL, vim = (vim(τ1), . . . ,vim(τL))T denotes the values of vim(t) at τ1, . . . , τL, and

hij denote a L-dimensional unit vector whose l-th entry is 1 if tij = τl and 0 otherwise.
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Let β = (βT0 , . . . , β
T
K)T , vi = (vTi0, . . . ,v

T
iM)T , xij = xi(tij)⊗ hij, zij = zi(tij)⊗ hij,

Xi = (xi1, . . . ,xini)
T , Zi = (zi1, . . . , zini)

T , yi = (yi1, . . . , yini)
T , and εi = (εi1, . . . , εini)

T .

Then the nonparametric mixed effect time-varying coefficient model (1.1) can be ex-

pressed as

yi = Xiβ + Zivi + εi, εi ∼ Nni(0,Ri), vi ∼ N(M+1)L(0,D).

If the components of β(t) and vi(t)s are twice continuously differentiable and their

second derivatives are square integrable, the cubic spline smoothing estimator β̂k(t) of

βk(t) is the least square minimizer of the following penalized generalized log-likelihood:

J(β, {vi}ni=1, λ) =
n∑
i=1

(yi −Xiβ − Zivi)
TR−1

i (yi −Xiβ − Zivi)

+
n∑
i=1

M∑
m=0

λim

∫ b

a

[v
′′

im(t)]2dt+
K∑
k=0

λk

∫ b

a

[β
′′

k (t)]2dt,

where λk, k = 0, . . . , K, λim, i = 1, . . . , n, m = 0, . . . ,M , are the positive smoothing

parameters. The first summation term being proportional to the twice negative loga-

rithm of the generalized likelihood represents the goodness of fit. The second term is

the weighted sum of the roughness of all the random-effect coefficient functions, and the

third term is the weighted sum of the roughness of all the fix-effect coefficient functions.

The smoothing parameters λk, k = 0, . . . , K, and λim, i = 1, . . . , n, m = 0, . . . ,M , are

used to trade off the goodness of fit with the roughness of the smoothing spline esti-

mators.

A major problem of smoothing spline technique is the choice of the optimal smooth-

ing parameters to achieve the best performance of the resulting estimators. The “leave-

one-subject-out” cross-validation (SCV) rule (Rice and Silverman, 1991; Hoover et al.,

1998) is the most popular smoothing parameter selector. The idea is to minimize the
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weighted sum of mean square errors associated with deletion of each subject, called

SCV rule, with respect to the smoothing parameters. The advantages of SCV include:

(i) deletion of the entire data for one subject at a time preserves the within-subject

correlation of the data; (ii) SCV does not require to specify the within-subject corre-

lation structure. However, it is challenging to minimize SCV rule when the number of

smoothing parameters is large. Alternatively, the “leave-one-point-out” cross-validation

(PCV) rule is used in Wang and Taylor (1995) and Eubank et al. (2004) among many

others. The key advantage of PCV is less computationally intensive with no need to

repeatedly compute the estimators. The drawback of PCV is the lack of accounting for

the within-subject correlation.

1.2 Bayesian Analysis of Varying Coefficient Models

There are two major approaches to model varying coefficients from nonparametric

Bayesian perspective, which are basis expansion methods (Rajan and Rayner, 1996;

Lee and Shaddick, 2007; Brezger et al., 2007b; Huang et al., 2008; Malloy et al., 2010)

and stochastic process mothods (Marina et al., 2008; He et al., 2010; Berrocal et al.,

2010; Reich et al., 2010). Bayesian basis expansion methods approximately express

any function g as g(·) =
∑

h bhfh(·) by some chose basis f = {f1, f2, f3, . . .}, such as

spline, wavelet and Fourier bases. The random function g can thus be parametrized

by the basis coefficient vector b = (b1, b2, . . .). Specifying a prior probability model on

b implicitly induces a prior probability model on the random function. Alternatively,

stochastic process priors have been proposed as nonparametric prior distributions to

model varying coefficient functions, including Gaussian process and random walk. In

the following subsections, we are going to focus on reviewing Bayesian spline models

and random effects models with Dirichlet Process (DP).
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1.2.1 Bayesian Spline Models

Bayesian spline models have been studied in the literature for Bayesian regression

splines and Bayesian penalized splines. For the literature of Bayesian regression splines,

please refer to Denison et al. (1998b) and Hastie and Tibshirani (2000) among many

others. For the work related to Bayesian penalized splines, see Biller and Fahrmeir

(1997), Fahrmeir and Lang (2001), Brezger and Lang (2006), and Fahrmeir et al. (2004)

for a brief view.

To estimate βk(t) in the model (1.1), a common cubic regression splines is to express

βk(t) as

βk(t) =
∑

bhfh(t),

where f(t) = (1, x, x2, x3, (t − ξ1)3
+, . . . , (t − ξT )3

+) is the set of basis functions with

(x)+ = max(x, 0) and ξ = (ξ1, . . . , ξT ) is a set of knots . The Bayesian specification is

completed by placing a prior p(ξ, b, σ) on the sets of knots and basis function coefficients.

Relevant work can be found at Smith and Kohn (1996), Denison et al. (1998b) and

Dimatteo et al. (2001). The strategy is to factor the prior p(ξ, b, σ) = p(ξ)p(σ)p(b|σ).

Zellner g-prior (Zellner, 1986) is used by Smith and Kohn (1996) for p(b). Assuming

a conjugate normal prior b ∼ N(0, cσ(BTB)−1) with B is the design matrix in the

sampled data set, the condition posterior mean E(b|ξ, σ) is the linear shrinkage of the

least square estimator b̂. Dimatteo et al. (2001) chose a scalar c such that the prior

variance in the Zellner g-prior equals to the information from one observation. Denison

et al. (1998b) uses least square estimates of b conditioning on y and other parameters,

which is equivalent to assigning a ridge prior b ∼ N(0, V ) with V = diag(∞, v, . . . , v).

Posterior computation typically proceeds via reversible jump MCMC (Green, 1995).

Denison et al. (1998a) use ”birth,” ”death” and ”move” decisions to add, delete and
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change knots in each iteration. It is important in updating ξ posteriori to marginalize

ξ with respect to the coefficients b. With the conjugate normal prior for b, the marginal

posterior p(ξ|σ, y) can be evaluate analytically. Smith and Kohn (1998) proposed an

interesting alternative, called focused sampling, for posterior computation.

1.2.2 Random Effects Models with Dirichlet Process

To estimate the random effects vim(t) in model (1.1), a popular option is to use ba-

sis expansion to express vim(t) as a linear combination of a set of pre-specified basis

functions:

vim(t) =

p∑
h=1

θihfh(t),

where θi = (θi1, . . . , θip)
T are basis coefficients specific to the ith subject, and f(t) =

{f1(t), . . . , fp(t)} is a set of basis functions. Similar to the previous subsection, we

specify a set of cubic spline basis functions for f = (1, x, x2, x3, (t− ξ1)3
+, . . . , (t− ξT )3

+),

in which ξ = (ξ1, . . . , ξT ) is a set of knots and (x)+ returns 0 for negative x and x for

positive x.

A Bayesian nonparametric specification is completed by placing a DP prior for

the distribution of the random basis coefficients vector θi. Assume θi ∼ Q with Q

unknown, DP(αQ0) models Q as infinite mixtures of point masses through a stick-

breaking representation:

Q =
∞∑
h=1

whδθh(·), θh
i.i.d∼ Q0,

wh = Uh
∏
j<h

(1− Uj), Uh
i.i.d∼ Beta(1, α),

where wh is a probability weight formulated from a stick-breaking procedure, δθ(·)
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denotes a point mass at θ which is sampled from Q0, Q0 is a p-dimensional central

probability measure as a prior guess, and α is a precision parameter expressing confi-

dence in the prior guess. Under this formulation, the probability of θi allocated to δθ(·)

is equivalent to wh.

An important property of DP prior for Q is the discrete nature of Q. This specifi-

cation creates ties among θis, i = 1, . . . , n, such that each subject is allocated into one

of k ≤ n clusters. Subjects allocated to the same cluster have the same random effects

value. Denote Si = j for the ith subject assigned to cluster j. All subjects having

Si = j have θi = θ∗h, where θ∗h denotes the value taken by the random basis coefficients

vector of all subjects in cluster j. Hence, all subject in the same cluster have identical

random effects vim(t) which equals to f(t)θ∗h.

The standard approach for posterior computation is based on Markov chain Monte

Carlo (MCMC) algorithms. Three major types of MCMC algorithms have been pro-

posed, which are collapsed Gibbs sampler (Maceachern, 1994), the blocked Gibbs sam-

pler (Ishwaran and James, 2001), and reversible jump-type approaches (Jain and Neal,

2004; Dahl, 2007). The collapsed Gibbs sampler avoids updating the infinitely many

parameters through marginalizing out Q, which is based on the Pólya urn scheme of

Blackwell and MacQueen (1973). The blocked Gibbs sampler uses truncation of the

stick-breaking procedure to approximate Q. To avoid truncation, Walker (2007) pro-

posed a slice sampling approach and Papaspiliopoulos and Roberts (2008) proposed a

retrospective MCMC algorithm. Further, Papaspiliopoulos (2008) proposed an efficient

exact block Gibbs sampler which combines the advantages of the retrospective MCMC

method and the slice sampling method.
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1.3 Applications

The evolution of the varying coefficient models is deeply rooted in applications and

reflects the increasingly large and complex problems that are arising in science and

industry. They have been successfully applied to many scientific areas, including eco-

nomics, finance, politics, epidemiology, medical science, ecology and so on. This pro-

posal focuses on the applications of the varying coefficient models in biomedicine and

epidemiology areas. They arise from different statistical contexts, such as the analysis

of longitudinal data, survival data, spatial data, functional data, genetics data and

imaging data. We are going to briefly review the time-varying coefficient models in the

analysis of longitudinal data and survival data in the following subsections.

1.3.1 Analysis of Longitudinal Data with Time-Varying

Coefficient Models

In the analysis of longitudinal data from biomedicine and epidemiology studies, it

is of highly interest to study the patterns of time-varying variables, such as disease

progression or trends of health status. Longitudinal data usually consist of repeatedly

measured outcomes and covariates from a random sample of subjects measured over

time. One statistical focus in analyzing longitudinal data is to assess the time-varying

impacts of covariates on outcome trajectories, where the covariates might or might not

be time dependent. Thus nonparametric varying-coefficient models become particularly

useful in longitudinal analyses.

A longitudinal sample is typically denoted by (yij, xij, zij, tij), for i = 1, . . . , n,

and j = 1, ..., ni, where xi(tij) = (xij0, . . . , xijK)T , zi(tij) = (zij0, . . . , zijM)T and

(yij, xij, zij, tij) denote the jth outcome, two set of covariates and time design points,

respectively, of the ith subject. To examine whether the associations of covariates with
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outcomes change over time, we can fit a fixed-effect varying coefficient model (Brum-

back and Rice, 1998; Hoover et al., 1998), or a mix-effect varying coefficient model

(Liang et al., 2003) as the above model (1.1), or a random varying-coeffcient model

(Wu and Liang, 2004). The time-varying coefficients can be estimated by the kernel,

polynomial and smoothing spline methods.

The issue of incorporating the within subject correlation structure into the esti-

mation procedure is important in longitudinal data analysis. Lin and Carroll (2001)

addressed this situation in the nonparametric fixed effects time-varying coefficient mod-

els. The studies of the estimation of the within subject correlation structure were

systematically considered by Fan et al. (2007) and Sun et al. (2007).

Missing data has been an important topic in long term longitudinal studies. Hogan

et al. (2004) studied the mixtures of varying coefficient models for longitudinal data

having discrete or continuous nonignorable dropout.

1.3.2 Analysis of Survival Data with Time-Varying Coefficient

Models

Survival analysis concerns the failure time to some event, such as failure of a machine

component, death of a patient, or recurrence of prostate cancer of a male patient.

The Cox proportional hazard (PH) model (Cox, 1972) is the most popular model in

the analysis of survival data. However, it doesn’t address any potential possible dy-

namic feature in the data set. Varying coefficient proportional hazard function models

first introduced by Hastie and Tibshirani (1993) can be used to address any dynamic

structure.

Suppose that we have a survival sample (Ui, X
T
i , yi, δi), i = 1, . . . , n, where yi =

min(Ti, Ci), δi = I(Ti > Ci), Ti and Ci are respectively the survival time and censoring
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time of the ith subject, and Ui is a scalar covariate. We assume a noninformative

censoring mechanism. The distinct failure times are denoted by t(1) < . . . < t(L), with

dl individuals failing at t(l) for l = 1, . . . , L. We fit a varying coefficient proportional

hazard function model (Zhang and Steele, 2004) as follows:

h(t|X,U) = h0(t) exp{XTa(U)}.

For any give u, the local partial likelihood estimator (Fan et al., 2006) of a(u) is

obtained by maximizing the following local partial log-likelihood function

L∑
l=1

(∑
j∈Dl

Kh(Uj − u)

[
XT
j {a+ b(Uj − u)} − log

(∑
k∈Rl

exp[XT
k {a+ b(Uj − u)}]Kh(Uk − u)

)])
,

where Rl is the set of indices for the individuals at risk up to time t(l), and Dl is the

set of indices for the events at t(l).

For independent data, kernel estimation of the semiparametric varying-coefficient

proportional hazard function models have been studied by Cai and Sun (2003), Tian

et al. (2005), and Fan et al. (2006), and spline estimation was studied by Ahmad et al.

(2005). Other related works include Zucker and Karr (1990), and Winnett and Sasieni

(2003). There are several nonparametric regression models for clustered failure time

data. Under the assumption of independence, Cai et al. (2007) investigated kernel

smoothing properties for varying coefficient models for multivariate survival data with

stratified baseline hazards. Yu and Lin (2008) studied weighted local polynomial kernel

estimating equations for clustered failure time data. They concluded the most efficient

local polynomial kernel estimator can be attained by silencing the within-cluster cor-

relation. Yu and Lin (2010) studied the performance of profile-kernel estimators of the

nonparametric time-varying coefficients in a semiparametric time-varying coefficient

model for clustered survival data under working independence, and showed that they
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are semiparametric efficient for independent data.
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Chapter 2

Semiparametric Bayes local additive

models for longitudinal data

2.1 Introduction

Longitudinal data arise frequently in biomedical fields when subjects are repeatedly

measured over time. To study the time pattern of covariate effects on an outcome

variable, time-varying coefficient models are commonly used since their formal intro-

duction to the statistical literature by Hastie and Tibshirani (1993). Nonparametric

regression methods to estimate time-varying coefficient functions have been developed

by Hoover et al. (1998), and Lin and Ying (2001) among many others. Please re-

fer to Wu and Zhang (2006) and Fan and Zhang (2008) for comprehensive reviews of

statistical procedures for varying coefficient models.

We focus on a random time-varying coefficient model:

Yij = βi0(tij) +X ′iβi(tij) + εi(tij), i = 1, . . . , n, j = 1, . . . ,mi, tij ∈ [0, T ], (2.1)

where Yij is the observed response variable, Xi is a K × 1 covariate vector for the i-th

subject, βi0(tij) is a subject-specific baseline and βi(tij) = (βi1(tij), . . . , βiK(tij))
′ is a



K × 1 covariate effect vector for the i-th subject at time tij. To estimate the unknown

functions βi0(t) and βi(t) in model (2.1), a common approach is to express them as

linear combinations of some pre-specified basis functions. Heterogeneity in the curves

is then controlled by the variation of their basis coefficients which are usually treated as

random effects and follow a specific random effects distribution. A concern rises about

the sensitivity of associated inferences to the choice of the random effects distribution

on the basis coefficients.

There is a rich Bayesian nonparametric literature associated with modelling ran-

dom effects. It has now become routine to use Dirichlet process (DP) priors (Fer-

guson, 1973, 1974) and DP mixtures (DPM) (LO, 1984; Escobar and West, 1995)

for random effects distributions in Bayesian hierarchical models. For important early

references, refer to Bush and MacEachern (1996), Müller and Rosner (1997) and Klein-

man and Ibrahim (1998). Cruz-Meśıa et al. (2007) adopted an analysis-of-variance

dependent DP (De Iorio et al., 2004) for the problem of sequential classification anal-

ysis. Ohlssen et al. (2007) provide a review and tutorial on the practical use of such

approaches, and the DPpackage in R is now available for routine use (http://cran.r-

project.org/web/packages/DPpackage/index.html).

It is important to capture the local structure of similarity and deviation among sub-

jects in detecting the signals for model (2.1). The DP prior assumes the random effects

distribution P ∼ DP(αP0), where P0 is the base distribution and α is a concentration

parameter. Subjects are partitioned into clusters with the number of sample clusters

being proportional to α log n. Small α favors few clusters to be occupied leading to

substantial borrowing of information across subjects within a cluster in estimating the

basis coefficients. A drawback of the DP prior is the assumption of global clustering.

Two subjects are either allocated to a common cluster or two different clusters. It is

common in reality that two subjects have similar trajectories in certain time periods
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while having local deviations. In such situations, DP priors either inappropriately allo-

cate two subjects to a common cluster, obscuring the local differences or assigns them

to two separate clusters. Dunson (2009) proposed a local partition process (LPP) prior

on random effects, which allows both global and local clustering. The LPP prior leads

to borrowing of information in estimating the basis coefficients and can accommodate

basis selection to address the curse of dimensionality.

Characterizing local features has been an important focus in functional data anal-

ysis. Representative Bayesian semiparametric approaches include Bayesian wavelet-

based functional mixed modeling (Morris and Carroll, 2006), random effects models

relying on adaptive basis function representations (Thompson and Rosen, 2008; Botts

and Daniels, 2008) and hierarchical Gaussian processes (Behseta et al., 2005). A hybrid

Dirichlet mixture model (Petrone et al., 2009) was proposed to distinguish functional

local features by characterizing individual functions as a patchwork of segments which

are locally drawn from a collection of global GP realizations. We propose to capture

the local features through assigning an LPP prior on the random effects distribution

of the basis function coefficients, where a pre-specified set of basis functions are as-

sumed to linearly span the unknown time-varying coefficient functions βi0(t) and βik(t),

k = 1, . . . , K.

The motivating application for this chapter is a yeast cell-cycle gene expression data

set. The expression profiles of 297 genes identified as cell cycle-regulated genes in the

genome of Saccharomyces cerevisiae were measured over 2 cell cycles. Since transcrip-

tion factors (TFs) are key elements controlling the movement of genetic information

from DNA to mRNA at cell-cycle level transcription, it is important to capture the dy-

namic behavior of gene expression regulated by TFs. In addition, cell cycle-regulated

genes are involved in different processes such as DNA synthesis, budding, and cytoki-

nesis (Spellman et al., 1998) in each cell cycle, implying different expression behaviors
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of different genes. Typical analyses assume a common time-varying behavior for all the

genes (Wang et al., 2007, 2008). We propose to use our random time-varying coeffi-

cient model with LPP prior to determine the gene-specific time-varying TF regulating

course.

Considering TFs regulating cell cycle-regulated genes which are active at different

biological processes, it is important to develop a local inference approach to determine

TFs-regulated time windows. Current Bayesian varying-coefficient models allow regres-

sion coefficient to vary with time and/or spatial location (refer to Lee and Shaddick

(2007) for a recent reference). Such approaches can be used to obtain a posterior mean

estimate of the varying coefficient curve, as well as pointwise 95% credible intervals.

However, formal Bayesian hypothesis testing of local significance of a predictor within

a given time window is not considered. Although one can potentially identify time

regions across which the pointwise credible bands do not include zero as potentially

significant, this may lead to an inflated type I error rate.

The goals of this chapter cover three aspects. The first applies the LPP prior to

the random effects distributions in the random time-varying coefficient model (2.1)

to facilitate global and local borrowing of information among subjects. The second

constructs a Bayesian confidence band for the mean time-varying effect of the predictor.

The third develops a Bayesian local hypothesis testing approach to examine if and where

the predictor has significant impact on an outcome trajectory. Multiplicity issues arising

from pointwise inference is accounted for by controlling false discovery rate (FDR).

In this chapter, section 2.2 introduces the model and associated inferences motivated

by the above considerations. Section 2.3 introduces an MCMC algorithm for posterior

computation. Subsection 2.4 is for an illustrative simulation. Section 2.5 applies the

model to a yeast cell-cycle gene data set data set. Section 2.6 makes some further

discussion.
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2.2 Semiparametric Bayes Local Additive Model

2.2.1 LPP2 prior

Dunson (2009) proposed a class of local partition process priors (LPP) for unknown

random effects distributions to facilitate both global and local clustering of random

effects, providing a generalization of the widely-used Dirichlet process prior that avoids

the global clustering assumption. Our focus is on the simpler LPP2 prior, which is

reviewed below.

Sample two collections of independent and identically distributed p-dimensional

random elements Θgh = (Θg,h,1, . . . ,Θg,h,p)
′, g = 0, 1, h = 1, . . . ,∞, from a base dis-

tribution P0. Denote Ξ0 = {Θ0h}∞h=1 for the global family of coefficient vectors and

Ξ1 = {Θ1h}∞h=1 for the local family. Introduce a p-dimensional indices vector z =

(z1, . . . , zp)
′ for the allocation to global clustering or local clustering, with zj ∼ Ber(νj)

(Ber: Bernoulli) independently, taking the value of 1 for global clustering and 0 for local

clustering, j = 1, . . . , p. Define a p × 2 local cluster indices matrix ψ = (ψ′1, . . . , ψ
′
p)
′,

with ψj = (1− zj, φj) and φj ∈ {1, . . . ,∞}, j = 1, . . . , p. A corresponding hybrid atom

Θψ = (Θψ1,1, . . . ,Θψp,p)
′ is obtained by setting the jth element of Θψ equal to Θψj ,j.

Considering n vectors of p-dimensional random effects for n subjects, θi = (θi1, . . . , θip)
′ ∼

P with P unknown, i = 1, . . . , n, LPP2 prior models P as a hybrid mixture distribution:

P =
1∑

z1=0

(1−z1,∞)∑
ψ1=(1−z1,1)

· · ·
1∑

zp=0

(1−zp,∞)∑
ψp=(1−zp,1)

πψ1,...,ψpδΘψ , (2.2)

where δx denotes a degenerate distribution with all its mass at x, πψ1,...,ψp is the prob-

ability of θi = Θψ that πψ1,...,ψp ≥ 0 and
1∑

z1=0

(1−z1,∞)∑
ψ1=(1−z1,1)

· · ·
1∑

zp=0

(1−zp,∞)∑
ψp=(1−zp,1)

πψ1,...,ψp = 1.

Let πh denote Pr(θij = Θg,h,j), g = 0, 1, h = 1, . . . ,∞, j = 1, . . . , p. Those random

effects having zj = 1 are specified to be allocated together to a component in the
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global family Ξ0, while others having zj = 0 are specified to be allocated to their own

component in the local family Ξ1. Let J0 = {j : zj = 1} and J1 = {j : zj = 0}.

Conditional on the values of z,

Pr(ψj = (0, h), j ∈ J0|z1, . . . , zp) = πh, h = 1, . . . ,∞,

Pr(ψj = (1, hj), j ∈ J1|z1, . . . , zp) =
∏
j∈J1

πhj , hj = 1, . . . ,∞.

The allocation probability of θi = Θψ in (3.8) is then simply

πψ1,...,ψp = Pr(ψ1 = (1− z1, h1), . . . , ψp = (1− zp, hp)) = πh

{∏
j∈J1

πhj

}{ p∏
j=1

ν
zj
j (1− νj)1−zj

}
.

The specification is completed by choosing the hyperpriors

νj ∼ Beta(1, γ), j = 1, . . . , p,

πh = π∗h
∏
l<h

(1− π∗l ), π∗h ∼ Beta(1, α), h = 1, . . . ,∞, j = 0, 1, . . . , p,

where γ controls the overall weight on the local family, and α controls the overall

number of clusters. As shorthand the LPP prior is denoted P ∼ LPP2(α, γ, P0).

The LPP2 prior specification (3.8) can also be viewed as a hybrid mixture model of

infinitely many components drawn from P0 via 2-stage clustering. Stage 1 determines

the membership of global or local clustering for each of the p components. Those

components allocated to the global clustering membership will be clustered together

to an atom in the global family at stage 2, while those allocated to the local family

will be allocated individually to their own clusters. The joint cluster membership

probability at stage 1 corresponds to Pr(z1, . . . , zp) =
∏p

j=1 ν
zj
j (1− νj)1−zj . The joint

cluster allocation weight at stage 2 conditional on stage 1 corresponds to Pr(ψ1 =

(1− z1, h1), . . . , ψp = (1− zp, hp)|z1, . . . , zp). The overall joint cluster allocation weight
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corresponds to πψ1,...,ψp .

2.2.2 The Model

We propose a semiparametric Bayesian local additive model for the analysis of repeated

measurements. Considering a functional response Yi(t) for the ith subject i = 1, . . . , n,

we rewrite model (2.1) as

Yi(t) = βi0(t) +
K∑
k=1

βik(t)xik + εi(t), εi(t) ∼ N(0, τ−1), (2.3)

where βi0(t) is the ith subject’s baseline curve, βik(t) is the ith subject’s time-varying

coefficient for the kth predictor xik, xik is normalized, and the measurement error pro-

cess εi(t) is a realization of an uncorrelated zero-mean Gaussian process with variance

τ−1.

Similar to Huang et al. (2002), we consider basis expansion to estimate the time-

varying coefficient regression functions. Assume that {βik(t)}Kk=0 can be expressed as a

linear combination of basis functions as follows:

βik(t) =

pk∑
l=1

θiklbkl(t) = bik(t)
′θik, (2.4)

where θik = (θik1, . . . , θikpk)
′ and the basis functions bk(t) = (bk1(t), . . . , bkpk(t))

′. Var-

ious basis systems can be applied, including Fourier bases, polynomial bases, Wavelet

bases, and B-spline bases such as cubic B-spline bases. For computational convenience,

we let the basis function bk(t) ≡ b(t) = (b1(t), · · · , bp(t))′ and pk ≡ p for all k. We

specify Gaussian kernel as the basis functions b1(t) = 1, bj+1(t) = exp(−ζ||t − ηj||2),

j = 1, . . . , p− 1, where η1, . . . , ηp−1 are equally spaced kernel locations and ζ = 25. Let
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θi = (θ′i1, · · · , θ′iK)′ and Bi(t) = (b(t)′xi1, · · · , b(t)′xiK)′, model (2.3) can be written as

Yi(t) = b(t)′θi0 +Bi(t)
′θi + εi(t). (2.5)

A Bayesian specification of our model is completed with LPP2 priors for the distri-

butions of the random effects, {θik}Kk=0. Assuming θi0 ∼ P and θi ∼ P̃ with P and P̃

unknown and independent, we let:

P ∼ LPP2(α0, γ0, P0)

P̃ ∼ LPP2(α1, γ1,⊗{P0k}Kk=1), P0k = P0, (2.6)

where the prior guess is around a p-dimensional parametric base distribution P0, and

(α0, α1) and (γ0, γ1) are hyperparameters, with (α0, α1) characterizing concentration

around the prior guess and (γ0, γ1) determining the overall allocation weight on the

local family. These hyperparameters impact the induced global and local clustering

structure, and by choosing hyperpriors we allow a high degree of data adaptivity.

Considering the potentially varied shapes of the time-varying functions, we devise to

automatically select among a large number of pre-specified potential basis functions and

accommodate uncertainty in basis function selection by choosing a shrinkage prior for

the basis coefficients. To achieve the shrinkage property, we specify the base distribution

P0 as:

P0 : θik ∼ Np(0p×1,Λ
−1), i = 1, . . . , n, k = 0, 1, . . . , K. (2.7)

Λ = diag(λ1, · · · , λp) with λl ∼ G(0.5, 0.5). To allow borrowing information across co-

efficients over the degree of shrinkage, we prefer λl = λ, a common λ across coefficients.

This specification leads to light-tails feature of P0 a priori and approximately Gaussian

feature a posteriori. The coefficients for unnecessary basis functions are shrunk to zero
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a posteriori, while the coefficients for significant basis functions fall in the tails. If

too many unnecessary basis functions are included, Λ will be over-estimated and the

coefficients for important basis functions will be heavily shrunk.

2.2.3 Induced Properties

The LPP2(α, γ, P0) prior on the random effects distribution constructs a nonparametric

prior for the time-varying coefficient functions in the model specified through (2.3) −

(2.7). Considering a generic unknown function

f(t) =

p∑
j=1

ϑjbj(t) = B(t)′ϑ,

with t ∈ [0,T], ϑ = (ϑ1, . . . , ϑp)
′ and assuming ϑ ∼ P, P ∼ LPP2(α, γ, P0), with P0

defined as in (2.7), the induced prior presents the following properties.

Proposition 2.2.1. Conditional on Λ−1 = diag{λ−1
1 , . . . , λ−1

p },

(f(t1), f(t2), . . . , f(tL))′|Λ−1 ∼ NL(0L×1,ΣL×L)

with ΣL×L = [σij], i = 1, . . . , L, j = 1, . . . , L, and σij = B(ti)
′Λ−1B(tj).

Further,

Corr(f(t1), f(t2)|Λ−1) =
B(t1)′Λ−1B(t2)

(B(t1)′Λ−1B(t1))1/2(B(t2)′Λ−1B(t2))1/2
.

According to the Cauchy-Schwarz inequality, the correlation is bounded above by 1

and converges to 1 as t1 → t2. An appealing property of the induced prior is, when

λ1 = . . . = λp = λ,

Corr(f(t1), f(t2)|λ) =
B(t1)′B(t2)

(B(t1)′B(t1))1/2(B(t2)′B(t2))1/2
,
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which depends only on the set of basis functions and not the base measure P0. When a

local basis is chosen, such as B-splines or Gaussian kernels, a local dependence structure

will result with the correlation between f(t1) and f(t2) decaying to close to zero as t1

and t2 move further apart. We can extend this correlation structure for long-range

dependencies by accommodating non-diagonal Λ or choosing Fourier bases.

From the above, it follows directly that the LPP2(α, γ, P0) prior on the distribution

of the basis coefficients leads to baseline and time-varying coefficient functions that are

assigned Gaussian process priors marginally. In particular, the curves for individual

subjects are drawn from a Gaussian process with mean function m(t) = 0 and covari-

ance function c(t1, t2) = B(t1)′Λ−1B(t2). By specifying hyperpriors on the parameters

in Λ, the data inform about the parameters in the covariance function. Although the

marginal prior for the individual curves is a Gaussian process, the marginal distribution

across subjects is nonparametric and highly flexible, so the variation among subjects is

not restricted to be Gaussian.

2.2.4 Hypothesis Formulation & Testing

We are interested in testing the null hypotheses that a predictor has no effect at a

particular time or interval of times, and that there are time intervals across which the

predictor has no effect. We provide a local interval null hypothesis testing approach

to make pointwise inference for the predictor effects over time. The local null and

alternative hypotheses for the kth predictor effect specific to a time point t ∈ [0, T ] are

formulated as:

H0k(t) :
∣∣βk(t)∣∣ ≤ ε, versus H1k(t) :

∣∣βk(t)∣∣ > ε,
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where βk(t) represents the mean of the subject-specific time-varying coefficients for the

kth predictor at time t. To test whether the average time-varying coefficient curve for

the kth predictor deviates from a small neighborhood of zero anywhere in time interval

[0, T ], the global null and alternative hypotheses are formulated as

H0k :
∣∣βk(t)∣∣ ≤ ε, for all t ∈ [0, T ]

H1k :
∣∣βk(t)∣∣ > ε, for any t ∈ [0, T ].

The global null hypothesis is the intersection of all the local null hypotheses. Any

rejection of a local null hypothesis leads to the rejection of the global null hypothesis.

We choose a suitable small value 0.05 for ε as our default, noting again that the data

have been normalized.

To conduct local hypotheses testing, we use the Bayesian decision rule for multiple

testing proposed by Müller et al (2004). Following the implementation in Wang &

Dunson (2010), our strategy is to reject H0k(t) if the posterior alternative hypothesis

probability υkt = Pr(H1k(t)|Data) ≥ r for any t ∈ [0, T ], with r as a common threshold

for all the local hypotheses. r is chosen to minimize the posterior expected false negative

rate (FNR) under the constraint of the posterior expected false discovery rate (FDR)

being no greater than αT , where αT is pre-specified (we focus on a value of 0.05).

Denote dkt = 1(υkt ≥ r), an indicator of rejecting H0k(t). The posterior expected FNR

and FDR are calculated as:

FNR =

∑K
k=1

∫ T
0

(1− dkt)υktdt
K
∫ T

0
dt−

∑K
k=1

∫ T
0
dktdt+ κ0

≈
∑K

k=1

∑tm
t=t1

(1− dkt)υktT/m
KT −

∑K
k=1

∑tm
t=t1

dktT/m+ κ0

,

FDR =

∑K
k=1

∫ T
0
dkt(1− υkt)dt∑K

k=1

∫ T
0
dktdt+ κ0

≈
∑K

k=1

∑tm
t=t1

dkt(1− υkt)T/m∑K
k=1

∑tm
t=t1

dktT/m+ κ0

,

where t1, . . . , tm is a fine grid of times equally spaced along [0, T ] and κ0 is a small
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positive constant to avoid a zero denominator. In summary, our decision rule is to

determine the optimal threshold r∗ by r∗ = argminFNR{r ∈ [0, 1], FDR ≤ αT}.

For each combination of k and t ∈ {t1, . . . , tm}, we reject H0k(t) if υkt ≥ r∗. For a

sufficiently fine grid of m ≥ 10, the results are robust to m, with the optimal threshold

appropriately adapting to the chosen m.

2.2.5 Bayesian Confidence Band

We focus on constructing a Bayesian simultaneous confidence band for the mean coeffi-

cient curve βk(t), k = 1, . . . , K, from its posterior MCMC samples. Assuming there is

a collection of posterior sampled curves βsk = (βsk(t1), . . . , βsk(tL))′, s = 1, . . . , S index-

ing posterior iterations after burn-in, our goal is to compute a simultaneous confidence

band for βk(t). The principle in constructing a Bayesian confidence band is to search

for a region Rα = {Rα(t), t ∈ [0, T ]} such that Pr{βk(t) ∈ Rα(t), t ∈ [0, T ]} = 1 − α a

posteriori.

The most commonly-used method is to compute a confidence band based on point-

wise confidence intervals, which we denote as CR. The constructed confidence band is

obtained as [βLk (tl), β
U
k (tl)], l = 1, . . . , L, where βLk (tl) is the α/2 empirical percentile

of the posterior samples and βUk (tl) is the 1− α/2 percentile. However, such pointwise

confidence bands are not interpretable as joint confidence bands. A method proposed

by Crainiceanu et al.(2007) assumes approximate posterior normality and derives the

1− α sample percentile c1−α of

max
l=1,...,L

∣∣∣∣βsk(tl)− β̂k(tl)√
v̂ar(β̂k(tl))

∣∣∣∣, s = 1, . . . , S,

where β̂k(tl) is the posterior mean at time tl and

√
v̂ar(β̂k(tl)) is its posterior standard
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deviation. A simultaneous confidence region is given by the hyperrectangular

[β̂k(tl)− c1−α

√
v̂ar(β̂k(tl)), β̂k(tl) + c1−α

√
v̂ar(β̂k(tl))], l = 1, . . . , L.

In our implementation, we replace c1−α by cb which is calculated by cb = max(|cα/2|, |c1−α/2|)

to account for skewness. We denote this method as Pnorm.

Alternatively, we propose two new approaches that avoid the posterior normal-

ity assumption. The strategy remains based on pointwise measures of uncertainty.

The first method Mdev computes the posterior sample average curve β̂k(tl) and the

pointwise α/2 percentile sα/2(tl) and 1 − α/2 percentile s1−α/2(tl), l = 1, . . . , L. By

deriving the maximal deviations sα/2 = maxl=1,...,L (β̂k(tl) − sα/2(tl)) and s1−α/2 =

maxl=1,...,L (s1−α/2(tl)− β̂k(tl)) for the lower and upper α/2 percentiles away from the

posterior mean estimator β̂k(tl), we obtain the confidence band

[β̂k(t)− sα/2, β̂k(t) + s1−α/2].

This interval is potentially conservative. The second method Mdiff searches the qbα

sample percentile of

max
l=1,...,L

∣∣∣∣βsk(tl)− β̂k(tl)∣∣∣∣ s = 1, . . . , S,

such that 1− (bα)L = α. The confidence band is calculated by

[β̂k(t)− qbα , β̂k(t) + qbα ].

2.3 Posterior Computation

We develop a Markov chain Monte Carlo (MCMC) algorithm for posterior computa-

tion by adapting an efficient exact block Gibbs sampler (Papaspiliopoulos, 2008) for
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Dirichlet mixture models. The exact block Gibbs sampler combines the advantages of

the retrospective MCMC method of Papaspiliopoulos & Roberts (2008) and the slice

sampling method of Walker (2007). Allowing data to inform information about the hy-

perparameters involved in the model through (2.3)− (2.7), we specify α0 ∼ Ga(aα, bα),

γ0 ∼ Ga(aγ, bγ), α1 ∼ Ga(aα, bα), γ1 ∼ Ga(aγ, bγ), τ ∼ Ga(aτ , bτ ). Introducing aux-

iliary variables {uikl} to avoid truncated approximations, k = 0, . . . , K, l = 0, . . . , p,

i = 1, . . . , n, the complete data joint likelihood of y, u, and z is:

n∏
i=1

{g(yi; Θ0ψi0 ,Θψi1,...,ψiK , τ)1(ui00 < π0φi00)

p∏
l=1

1(ui0l < π0φi0l)ν
zi0l
0l (1− ν0l)

(1−zi0l)

K∏
k=1

1(uik0 < πφik0)

p∏
l=1

1(uikl < πφikl)ν
zikl
kl (1− νkl)(1−zikl)},

where yi is a mi × 1 outcome vector for the i-th subject, g(·) is the density function

of the outcome vector yi, i = 1, . . . , n, and the {uikl}s are constrained to the interval

(0, 1).

Please refer to the appendix B for the sampling algorithm in details.

This algorithm is straightforward to implement and exhibits good performance

in convergence and mixing. To perform hypothesis testing, we estimate the poste-

rior hypothesis probability from the MCMC posterior samples. For any t ∈ [0, T ],

Pr(H1k(t)|Data) is estimated as the proportion of iterations after burn-in satisfying

1/n
∑n

i=1 β̂ik(t) /∈ [−ε, ε].

2.4 Simulation Study

We conducted a simulation study to assess the finite sample performance of our ap-

proach. In each simulation, we generate a sample of 100 curves from the following
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model:

Yi(t) = βi0(t) + βi1(t)xi + εi(t), εi(t) ∼ N(0, τ−1), i = 1, . . . , 100, t ∈ [0, 1].

Each curve has 40 observations equally spaced along the time interval [0, 1] and we

set τ = 1. The covariate xi’s are sampled from Unif(0, 1) and then standardized to

have mean 0 and standard deviation 1. The baseline βi0(t) for t ∈ [0, 1], i = 1, . . . , 100

is generated from a Gaussian process with mean curve mi0(t) = ai0 + bi0 sin(πt/60)

and covariance function c0(t, t′) = σ2
0ρ
|t−t′|, where ai0 ∼ N(5, 1), bi0 ∼ N(20, 1),

σ0 = 0.224 and ρ = 0.5. The covariate effect βi1(t) is considered for three cases:

(1) global null case: βi1(t) ∼ GP(0, c1(t, t′)), (2) local alternative case: βi1(t) ∼

GP((ai1 + bi1 cos(π(t − 20)/20))1(t > 0.4), c1(t, t′)), and (3) global alternative case:

βi1(t) ∼ GP(ai1 + bi1 cos(π(t− 20)/20), c1(t, t′)). The random coefficients ai1 ∼ N(3, 1)

and bi1 ∼ N(2, 1). The covariance function c1(t, t′) is set equivalent to c0(t, t′).

We analyze each simulated scenario using 100 repeated simulations by our method.

We set Ga(1, 1) hyperpriors for α0, γ0, α1, and γ1, and a Ga(0.1, 0.1) hyperprior for

τ . The exact block Gibbs sampler is run 25,000 iterations, with the first 2500 samples

discarded as burn-in. Every 20th sample is collected to thin the chain. For each

case, our Gibbs sampler converges rapidly and exhibits efficient mixing based on the

examination of the trace plots of α0, β0, α1, β1, τ , the elements of estimated functions,

and the performance of hypothesis testing as scaling up the simulation iterations. It

is not reliable to assess convergence and mixing based on the elements of the posterior

sampled atoms Θh or Θjh due to label switching issues.

We compare the LPP2 prior, the standard DP prior and a fixed effects model with

P0 as prior in terms of posterior estimation and posterior hypothesis testing. Mean

square error (MSE) is used to assess the accuracy of posterior estimation. Table 2.1

shows the LPP2 prior having smaller average mean square error than the DP prior
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and the fixed effects model under each of the three cases. In performing the global

hypothesis testing, we propose to reject the global null if any local null hypothesis is

rejected. Table 2.2 summarizes type I error rates in the global null case and powers in

the global and local alternative cases. LPP2 prior is shown to have a type I error closer

to the significance level 0.05 in the null case (0.05 vs 0.19) and larger power in the local

alternative case (0.72 vs 0.63) than DP prior. To perform the time-wise local inference,

the proposed approach rejects the local null hypotheses if Pr(H1k(t)|Data) ≥ r, where

r is optimized to minimize FNR under the constraint of FDR ≤ 0.05. The averages of

the observed FDRs and powers from 100 repeated data sets are calculated to evaluate

the local hypothesis test approach. As seen in table 2.3, LPP2 prior has FDRs closer

to 0.05 in the global null case (0.042 vs 0.034) and the local alternative case (0.032 vs

0.028), and larger power in the local alternative case (0.367 vs 0.332) and the global

alternative case (0.998 vs 0.973).

We employ 4 approaches: Mdiff, Mdev, Pnorm and CR to construct simultaneous

95% confidence bands. The comparison results of the 95% confidence band coverage

rates are listed in Table 2.4. As seen in Table 2.4, our proposed approach Mdiff gives

the 95% confidence band coverage rate around 95% in the global null case, the local

alternative case and the global alternative case. The proposed Mdev performs similarly

to Pnorm in all the cases, while the CR has poor performance.

2.5 Yeast Cell-Cycle Gene Expression Application

2.5.1 Background and Motivation

The cell cycle is a regulated life process leading to the division and replication of a cell.

In cells with a nucleus, it consists of four sequential phases: GAP 1 (G1) for cell size

growth and preparation for DNA replication, Synthesis (S) for DNA replication, GAP 2
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(G2) for continual cell growth and preparation for mitosis, and Mitosis (M) for division

of chromosomes and cytoplasm into two daughter cells. Since 1985 (Nasmyth), there has

been collective evidence that transcription factors (TFs) regulate the expression of the

cell-cycle-regulated genes at different stages of cell cycle. As reported in the literature

for yeast (Simon et al., 2001), MBF and SBF function in the G1/S transition, Mcm1p

regulates actively in early G1, M and the M/G1 boundary, and Swi5p and Ace2p takes

account of many gene expressions in M and M/G1. However, the function of these TFs

over the full cell cycle remains unknown. Other potential active TFs are also waiting

to be discovered to function in the cell cycle to regulate the gene expression.

We apply our approach to a yeast cell cycle gene expression data set, appended

with a derivative ChIP binding data set. The yeast cell cycle gene expression data

set, collected over 2 cell cycles for 297 genes, is a subset of the data set collected

by Spellman et al. (1998) to identify a catalog of protein-encoding transcripts in the

genome of Saccharomyces cerevisiae. 6,178 yeast ORFs were examined simultaneously

for their expression at mRNA levels, which were synchronized by α pheromone for

G1 arrest, cdc15 for mitosis, and so on. Genes captured by α pheromone over two

cell cycle periods were measured at 18 time points, for every 7 minutes within a total

of 119 minutes. 297 genes were identified as cell-cycle-regulated by a model-based

approach (Luan and Li, 2003). The derivative ChIP binding data set contains the

binding probabilities of 96 TFs to these 297 cell-cycle-regulated genes, where each TF

has at least 1 non-zero binding probability. These binding probabilities were obtained

by applying the mixture model approach (Chen, Jensen, and Stoeckert 2007; Wang,

Chen, and Li 2007) to the ChIP data of Lee et al. (2002).

Our first analysis goal is to apply the random effects time-varying coefficient model

(2.3)-(2.7) to connect the log gene expression measures with a set of TFs. Let yi(t)

denote the log-expression level of the i-th gene at time point t, and xik denote the
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binding probability of the k-th TF to the i-th gene, for k = 1, . . . , 96 and i = 1, . . . , 297.

Wang et al. (2008) linked the binding probabilities to the gene expression levels using

a fixed effect nonparametric time-varying coefficient model:

yi(t) = β0(t) +
96∑
k=1

βk(t)xik + εi(t), (2.8)

where βk(t) is the population mean transcription effect of the k-th TF on the log expres-

sion level of the i-th gene at time point t, and εi(t)’s were assumed to be independent

within and across genes. However, considering that different cell-cycle-regulated genes

function in different processes such as DNA synthesis, budding, and cytokinesis (Spell-

man et al., 1998), one needs to account for the differential behaviors of the TFs in

regulating different genes in the network of transcript regulations. To address the issue

of differential transcription behaviors, we fit our random effects time-varying coefficient

model :

yi(t) = βi0(t) +
96∑
k=1

βik(t)xik + εi(t).

where we assume the gene-specific time-varying regulating course βik(t) for the k-th

TF on the i-th gene expression. We additionally construct Bayesian 95% confidence

bands for the overall mean time-varying coefficient curves for each TF to explain the

uncertainty in estimation.

Our second analysis goal is to identify the key TFs in cell-cycle regulated gene

expression network and profile their active/inactive phases. Wang et al. (2008) iden-

tified the significant TFs through zeroing small regression coefficients using the SCAD

penalty. However, they didn’t incorporate the statistical inference error from the prob-

ability perspective. We apply the point-wise Bayesian local null hypothesis testing

procedure to assess if a TF plays a significant role in regulating gene expression while
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identifying the active and inactive phases of TF regulation across cell cycles. We limit

type I errors by controlling expected FDR to be no more than 0.05.

In analyzing the data, we assume that between-gene expression levels are indepen-

dent. For a specific gene i, within-gene expression levels are assumed to be independent

given its baseline effect βi0(t) and transcription effects {βik(t)}96
k=1. We place Dirichlet

process and LPP2 priors on the distributions of the basis coefficients. Given that many

of the log gene expression trajectories have similar shapes with only local deviation, we

expect that the LPP2 prior will produce a more parsimonious representation of the log

gene expression trajectories.

2.5.2 Analysis and Results

We focus initially on reanalyzing the yeast cell cycle gene data with the proposed ap-

proach. We assign Ga(1, 1) hyper priors for the hyperparameters α0, γ0, α1, and γ1,

and a Ga(0.1, 0.1) prior for the precision parameter τ . We recommend these priors as

default values in other analyses of standardized data, because these priors are weakly

informative across a wide range of plausible values for general longitudinal data, allow-

ing the data to inform strongly. Gaussian kernels as proposed in the model of Section

(2.2.2) are used as basis functions. We summarize the 1125 posterior samples from the

MCMC output with thinning of 20 iterations after the burn-in of 2500 iterations. Using

multiple chains with widely-distributed points, the proposed exact block Gibbs sampler

exhibits good rates of convergence and mixing. This formulation took 113 seconds per

iteration in Matlab 2010b on a Lenovo X61 laptop. We repeated the analysis for a

variety of hyperparameters values. We multiplied the mean and variance of α0, γ0, α1,

and γ1 by 2 and 0.5, and multiplied the variance of P0 by 2 and 0.5. There were no

noticeable differences in the results.

Our approach has the inherent ability to identify latent clusters in the data, which
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is not available in the model of (2.8). The estimated values of the hyperparameters

α0 and α1 were α̂0 = 0.15 and α̂1 = 0.18, with 95% credible intervals of [0.01, 0.53]

and [0.01, 0.55]. These values suggest few global and local clusters are present in the

data, which means that a sparse representation of the data is obtained. The posterior

probability of φ∗0 = 1 was 0.96, suggesting that subjects are allocated to 1 global

cluster for the baseline effects. The number of local clusters tended to be small, with

the estimated averages of 1.07 and 2.34 for the baseline effect and the covariate effects.

The estimated values of the hyperparameters γ0 and γ1 were 6.23 and 54.46, with 95%

credible intervals of [2.48, 11.12] and [40.96, 88.53]. Since the values of γ0 and γ1 close

to zeros favors pure global clustering, while large values favor pure local clustering,

there is clear evidence in the data favoring our approach over the Dirichlet process.

Wang et al. (2008) used the estimated time-varying effect curve and the confidence

band to visualize peak effects. We conducted a formal Bayesian local hypothesis test-

ing procedure to characterize the activation/deactivation phase of TFs in regulating

the expression of cell cycle-regulated genes. The proposed Bayesian multiple hypoth-

esis testing procedure gives the optimal rejection threshold r∗ = 0.886 by controlling

FDR ≤ 0.05. The decision rule rejects H0k, k = 1, . . . , 96 if any υkt ≥ 0.886. Figure 2.4

presents the posterior probability curves in favor of time-wise local alternative hypothe-

ses for eight experimentally verified TFs to regulate gene expression during cell cycle.

Our procedure found some interesting features not discovered in Wang et al. (2008).

For example, Wang et al. (2008) didn’t identify the fact that FKH2 is associated with

genes expressed in G1 and S (Simon et al., 2001), while our procedure showed FKH2

to be active during G1/S phase. MBP1, SWI4 and SWI6 work as a complex to bind

predominantly to promoter regions of G1 genes (Simon et al., 2001). Although Wang

et al. (2008) found approximately similar peak effect time points for SWI4 and SWI6,

Figure 2.4 clearly displays that they have similar active time windows.
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We use our proposed Mdiff method to construct the 95% Bayesian confidence bands

for the time-varying transcription effects. As presented in Figure 2.2, MBP1, SWI4,

SWI6, MCM1, NDD1, FKH2, ACE2, and SWI5 were shown to have periodic tran-

scriptional effect patterns over the collected two cell cycles, while Wang et al. (2008)

only showed certain periodic patterns for SWI4 and FKH2. Since the Mdiff method

considers the multiplicity issue in a conservative way similar to the Bonferroni method,

the constructed confidence bands are wide. Methodology for improved construction of

simultaneous confidence bands is an important area for future research.

We repeated the analysis using DP priors for P ∼ DP (α0P0) and P̃ ∼ DP (α1P0).

The posterior means of α0 and α1 were 2.43 and 0.58, with 95% credible intervals of

[1.26, 3.99] and [0.14, 1.42]. The posterior means of the number of clusters were 14

for the baseline effect and 3.99 for the transcription factor effects, reflecting a larger

number of clusters than in the local partition process. In addition, the point-wise

local hypothesis testing procedure didn’t profile the active phases of the verified TFs in

the literature, as illustrated in the Appendix Figure 2 in the supplementary material.

This is likely due to the tendency of the Dirichlet process to overly favor clustering of

subjects. In the situation of sparse basis coefficients, we recommend the local partition

process for gains in inference.

2.6 Discussion

This chapter has proposed a nonparametric Bayesian model for longitudinal data anal-

ysis, which allows a flexible time-varying baseline and covariate effects for each subject,

while characterizing variability among subjects using a local partition process prior.

Posterior computation under the proposed Bayesian model is straightforward to im-

plement efficiently, with the steps involved consisting of sampling sequentially from

standard distributions. We have proposed novel methods for hypothesis testing and
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estimation of simultaneous confidence bounds on the mean time-varying coefficients

curves, with preliminary simulation studies showing excellent frequentist operating

characteristics for these methods. A standard Bayesian nonparametric formulation

based on Dirichlet process priors for the random effects has substantially worse perfor-

mance in all cases we have considered. We hope that this illustration of the potential of

nonparametric Bayes methods for longitudinal data analysis stimulates more work on

developing novel nonparametric methods motivated by biomedical applications. In such

settings, it is often the case that “off the shelf” priors, such as Dirichlet and Gaussian

processes, can be substantially improved upon, with the applied context motivating

modifications having more biologically realistic properties.
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Table 2.1: Comparison of the LLP2 prior, the DP prior and the fixed effects model:
mean square errors obtained from the 3 simulation cases: (i) global null case, (ii)
local alternative case, and (iii) global alternative case.

LPP2 DP Fixed Effects

βi0(t) βi1(t) βi0(t) βi1(t) βi0(t) βi1(t)
Global Null 0.536 0.969 0.561 9.571 0.989 1.047
Local Alternative 0.560 0.836 0.588 19.561 1.148 1.191
Global Alternative 1.300 2.673 1.365 16.741 1.580 1.719

Table 2.2: Type I error rates and powers of the global
hypothesis tests under both LPP2 prior and DP prior
obtained from 100 repeated data sets for the 3 simula-
tion cases: (i) global null case, (ii) local alternative case,
and (iii) global alternative case.

LPP2 DP
Global Null 0.05 0.19
Local Alternative 0.72 0.63
Global Alternative 0.92 0.92

Table 2.3: The average of observed FDRs and powers for multiple hypothesis testing
procedure under the LPP2 prior and the DP prior obtain from 100 simulated data
sets for the 3 simulation cases: (i) global null case, (ii) local alternative case, and
(iii) global alternative case.

LPP2 DP

FDR Power FDR Power
Global Null 0.042 - 0.034 -
Local Alternative 0.032 0.367 0.028 0.332
Global Alternative - 0.998 - 0.973

Table 2.4: The coverage rates of 95% confidence band for 4 methods: Mdiff, Mdev,
Pnorm, CR under the LPP2 prior for the 3 simulation cases: (i) global null case,
(ii) local alternative case, and (iii) global alternative case.

Mdiff Mdev Pnorm CR
Global Null 0.987 0.733 0.880 0
Local Alternative 0.967 0.680 0.847 0
Global Alternative 0.950 0.645 0.774 0
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Fig. 2.1: Posterior probabilities of time-wise local alternative hypothesis for analyzing
the yeast cell-cycle gene expression data using LPP2 prior. The dashed line corresponds
to the optimal rejecting threshold r∗ = 0.886. G1: TFs reported to regulate gene
expression at the G1 phase; G2: TFs reported to regulate gene expression at the G2
phase; M: TFs reported to regulate gene expression at the M phase. A: active phase
above the threshold level; D: deactive phase below the threshold level.
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Fig. 2.2: Posterior estimated mean time-varying coefficients (solid line: —) and point-
wise 95% confidence bands (dashed lines: - - -) for analyzing the yeast cell-cycle gene
expression data. G1: TFs reported to regulate gene expression at the G1 phase; G2:
TFs reported to regulate gene expression at the G2 phase; M: TFs reported to regulate
gene expression at the M phase.
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2.7 Appendix

2.7.1 Appendix A: Proof of Proposition 1

From the realization of the LPP2 prior through sticking-breaking process, regardless of

which component a basis coefficient ϑj comes from, ϑj is drawn from the base Cauchy

measure P0. Then by the property of the linear combination of normal distributions

remaining a normal distribution, conditional on Λ−1 = diag{λ−1
1 , . . . , λ−1

p }, the condi-

tional distribution

f(t)|Λ−1 ∼ N(0, B(t)′Λ−1B(t)).

Furthermore, the covariance between f(t1) and f(t2) conditional on Λ−1 is easily derived

as

Cov(f(t1), f(t2)|Λ−1) = B(t1)′Λ−1B(t2).

Then for a vector of such functions indexed by a finite time set, it follows that

[f(t1), f(t2), . . . , f(tL)]′|Λ−1 ∼ NL(0L×1,ΣL×L)

with ΣL×L = [σij], i = 1, . . . , L, j = 1, . . . , L, and σij = B(ti)
′λ−1

1 B(tj).

2.7.2 Appendix B: the MCMC Posterior Computation Algo-

rithm

We define the following notations for convenient use in the description of the sampler:

• W0 = (w′01, . . . ,w
′
0n)′, with w0i = (b(t1), . . . , b(tmi))

′, i = 1, . . . , n,

• Z0 = diag(1(z101 = 1 − j), . . . , 1(z10p = 1 − j), . . . , 1(zn01 = 1 − j), . . . , 1(zn0p =

1− j)),
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• Φ0 = diag(1(φ101 = h), . . . , 1(φ10p = h), . . . , 1(φn01 = h), . . . , 1(φn0p = h)),

• R0 = (r′0, . . . , r
′
0)′np×p with r0 = diag(1, . . . , 1)p×p,

• Y = (y′1, . . . , y
′
n)′,

• Z0Y = diag(1(
∑p

l=1 1(z10l = 1− j) ≥ 1), . . . , 1(
∑p

l=1 1(zn0l = 1− j) ≥ 1))n×n,

• Φ0Y = diag(1(
∑p

l=1 1(φ10l = h) ≥ 1), . . . , 1(
∑p

l=1 1(φn0l = h) ≥ 1))n×n.

• W = (w′1, . . . ,w
′
n)′, with wi = (Bi(t1), . . . , Bi(tmi))

′ for i = 1, . . . , n,

• Z = diag(1(z111 = 1 − j), . . . , 1(z11p = 1 − j), . . . , 1(z1K1 = 1 − j), . . . , 1(z1Kp =

1− j), . . . , 1(zn11 = 1− j), . . . , 1(zn1p = 1− j), . . . , 1(znK1 = 1− j), . . . , 1(znKp =

1− j)),

• Φ = diag(1(φ111 = h), . . . , 1(φ11p = h), . . . , 1(φ1K1 = h), . . . , 1(φ1Kp = h), . . . , 1(φn11 =

h), . . . , 1(φn1p = h), . . . , 1(φnK1 = h), . . . , 1(φnKp = h)),

• R = (r′, . . . , r′)′npK×pK with r = diag(1, . . . , 1)pK×pK ,

• Y = (y′1, . . . , y
′
n)′,

• ZY = diag(1(
∑K

k=1

∑p
l=1 1(z1kl = 1− j) ≥ 1), . . . , 1(

∑K
k=1

∑p
l=1 1(znkl = 1− j) ≥

1))n×n,

• ΦY = diag(1(
∑K

k=1

∑p
l=1 1(φ1kl = h) ≥ 1), . . . , 1(

∑K
k=1

∑p
l=1 1(φnkl = h) ≥

1))n×n,

Our sampling algorithm proceeds as follows:

Step 1. Update the subject-specific baseline βi0(t) part

1. Update the latent ui0l from its conditional distribution Unif(0, π0φi0l) for

l = 0, 1, . . . , p.

41



2. Update the latent zi0l from its conditional distribution Ber(pi0l), with

pi0l =
ν0lN(yi; θi0(zi0l=1), θi, τ)

ν0lN(yi; θi0(zi0l=1), θi, τ) + (1− ν0l)N(yi; θi0(zi0l=0), θi, τ)
,

where θi0(zi0l=j) refers to the current value of θi0 with inserting Θ00φi0ll to the

lth component for j = 1, and Θ01φi0ll for j = 0.

3. Update the stick-breaking variable π∗0h with its conditional distribution

Beta(

p∑
l=0

n∑
i=1

1(φi0l = h) + 1,

p∑
l=0

n∑
i=1

1(φi0l > h) + α)

for h ≤ φ∗0, with φ∗0 = max{φi0l, i = 1, . . . , n, l = 0, 1, . . . , p}; for h > φ∗0,

sample it from Beta(1, α0).

4. Update φi0l with its conditional probability Pr(φi0l = h) ∝ 1(h ∈ Ai0l)N(yi; θi0(φi0l=h), θi, τ),

where Ai0l = {h : π0h > ui0l} ⊂ {1, 2, . . . ,∞}, which is obtained by sampling

π∗0h for h = 1, . . . , φ̃0 with φ̃0 the smallest value satisfying

φ̃0∑
h=1

π∗0h
∏
l<h

(1− π∗0l) ≥ 1− u∗0,

where u∗0 = min{ui0l, i = 1, . . . , n, l = 0, 1, . . . , p}.

5. Update Θ0jh from its conditional distribution Np(µ0jh,Σ0jh), where

Σ0jh = [diag(λ0jh, . . . , λ0jh)p×p + τW ′
0jhW0jh]

−1 and µ0jh = τΣ0jhW
′
0jhY0jh,

in which Y0jh refers to the contribution for Θ0jh from subjects with zi0l =

1 − j and φi0l = h. In addition, W0jh = diag(w01, . . . ,w0n)Z0Φ0R0, and

Y0jh = diag(y1, . . . , yn)Z0Y Φ0Y 1n, where 1n is a n× 1 vector of entries of 1.

6. Update λ0jh from its conditional distribution Ga(0.5+p/2, 0.5+Θ′0jhΘ0jh/2).
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7. Update ν0l from its conditional distribution Beta(1+
∑

i zi0l, γ0+
∑

i(1−zi0l)).

8. Update the hyperparameter γ0 from its conditional distribution Ga(aγ +

p, bγ −
∑p

l=1 log(1− ν0l)).

9. Update the hyperparameter α0 from its conditional distribution Ga(aα +

φ∗0, bα −
∑φ∗0

h=1 log(1− π∗0h)).

Step 2. Sample the coefficient regression functions {βik(t)}Kk=1 part in a manner similar

to Step 1.

1. Update the latent uikl from its conditional distribution Unif(0, πφikl) for k =

1, . . . , K, l = 0, 1, . . . , p.

2. Update the latent zikl from its conditional distribution Ber(pikl), with

pikl =
νklN(yi; θi0, θi(zikl=1), τ)

νklN(yi; θi0, θi(zikl=1), τ) + (1− νkl)N(yi; θi0, θi(zikl=0), τ)
,

where θi(zikl=j) refers to the current value of θi with inserting Θ0φikll to the

lth component for j = 1, and Θ1φikll for j = 0.

3. Update the stick-breaking variable π∗h with its conditional distribution

Beta(

p∑
l=0

K∑
k=1

n∑
i=1

1(φikl = h) + 1,

p∑
l=0

K∑
k=1

n∑
i=1

1(φikl > h) + α)

for h ≤ φ∗, with φ∗ = max{φikl, i = 1, . . . , n, k = 1, . . . , K, l = 0, 1, . . . , p};

for h > φ∗, sample it from Beta(1, α1).

4. Update φikl with its conditional probability Pr(φikl = h) ∝ 1(h ∈ Aikl)N(yi; θi0, θi(φikl=h), τ),

where Aikl = {h : πh > uikl} ⊂ {1, 2, . . . ,∞}, which is obtained by sampling
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π∗h for h = 1, . . . , φ̃ with φ̃ the smallest value satisfying

φ̃∑
h=1

π∗h
∏
l<h

(1− π∗l ) ≥ 1− u∗,

where u∗ = min{uikl, i = 1, . . . , n, k = 1, . . . , K, l = 0, 1, . . . , p}.

5. Update Θjh = (Θjh1, . . . ,ΘjhK) and λjhk, j = 0, 1:

a. Update Θjh from its conditional distribution Np(µjh,Σjh), where

Σjh = [diag(λjh11p, . . . , λjhK1p)pK×pK+τW ′
jhWjh]

−1 and µjh = τΣjhW
′
jhYjh,

with Yjh referring to the contribution for Θjh from subjects with zikl =

1 − j and φikl = h, so as to Wjh, for l = 1, . . . , p. Specifically, Wjh =

diag(w1, . . . ,wn)ZΦR, and Yjh = diag(y1, . . . , yn)ZY ΦY 1n, where 1n is

a n× 1 vector of entries of 1.

b. Update λjhk from its conditional distribution Ga(0.5+p/2, 0.5+Θ′jhkΘjhk/2).

6. Update νkl from its conditional distribution Beta(1 +
∑

i zikl, γ1 +
∑

i(1 −

zikl)).

7. Update the hyperparameter γ1 from its conditional distribution Ga(aγ +

pK, bγ −
∑K

k=1

∑p
l=1 log(1− νkl)).

8. Update the hyperparameter α1 from its conditional distribution Ga(aα +

φ∗, bα −
∑φ∗

h=1 log(1− π∗h)).

Step 3. Update the precision parameter τ with its conditional distribution Ga(aτ+
∑

i ni/2, bτ+∑
i{yi − βi0(t)−

∑K
k=1 βik(t)xik}′{yi − βi0(t)−

∑K
k=1 βik(t)xik}/2).
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Appendix Figure 1

Fig. 2.3: Boxplots showing the number of global and local clusters for baseline effects
and TFs effects
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Appendix Figure 2

Fig. 2.4: Posterior probabilities of time-wise local alternative hypothesis for analyzing
the yeast cell-cycle gene expression data using DP prior. The dashed line corresponds
to the optimal rejecting threshold r∗ = 0.683. G1: TFs reported to regulate gene
expression at the G1 phase; G2: TFs reported to regulate gene expression at the G2
phase; M: TFs reported to regulate gene expression at the M phase. A: active phase
above the threshold level; D: deactive phase below the threshold level.
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Chapter 3

Semiparametric Bayesian Local

Functional Models

for Diffusion Tensor Tract

Statistics

3.1 Introduction

Diffusion tensor imaging (DTI) is an magnetic resonance imaging (MRI) technique

that measures the diffusion orientation of water molecules in tissue. The mobility of

water molecules is affected by the tissue properties of white matter fiber tracts, such

as the density of the fibers, the average fiber diameter, and the directionality of the

fibers. In turn, the information collected on the diffusion properties of water molecules

provides the structural organization of the white matter fiber tracts (Kubicki et al.,

2007). The water diffusion directions and magnitudes at each voxel in the brain can be

described by a 3× 3 symmetric positive matrix, called a diffusion tensor (DT) (Basser

et al., 1994a,b). The degree of diffusivity can be quantified by the three eigenvalue-

eigenvector pairs of DT, and its related parameters, such as fractional anisotropy (FA)



(Pierpaoli and Basser, 1996; Hasan et al., 2001; Hasan and Narayana, 2003; Zhu et al.,

2006). A rich literature in neuroimaging has been developed to analyze white matter

fiber tract maturation and integrity via a set of water diffusion parameters such as

FA, mean diffusivity (MD) and so on, used as markers (Moseley, 2002; Mukherjee and

McKinstry, 2006; Cascio et al., 2007; Rollins, 2007).

Three major analytic approaches for grouping analysis of DTI data set have been

explored including analyses based on region-of-interest (ROI), voxels, and fiber tracts

(Smith et al., 2006; O’Donnell et al., 2009; Snook et al., 2007). The region-of-interest

(ROI) method (Bonekam et al., 2008; Gilmore et al., 2008) suffers from difficulties in

identifying meaningful ROIs, particularly the long curved structures common in fiber

tracts, instability of statistical results, and the partial volume effect in relatively large

ROIs (Snook et al., 2007). Voxel based analysis (Chen et al., 2009; Focke et al., 2008;

Camara et al., 2007; Snook et al., 2005) suffers from issues of alignment quality and

the arbitrary choice of smoothing extent (Hecke et al., 2009; Ashburner and Friston,

2000; Smith et al., 2006; Jones et al., 2005).

There is an extensive interest in the DTI literature in developing fiber tract based

analysis of diffusion properties (Smith et al., 2006; O’Donnell et al., 2009; Yushkevich

et al., 2008; Goodlett et al., 2009; Zhu et al., 2010, 2011; Goldsmith et al., 2011). Such

analyses usually consist of DTI atlas building and a follow-up statistical analysis (Smith

et al., 2006; Goodlett et al., 2009; Zhu et al., 2010). DTI atlas building is primarily to

establish DTI correspondence across all DTI datasets from different subjects and to ex-

tract a set of individual DTI tracts (or skeleton) with the same corresponding geometry

but varying DTs and diffusion properties. For instance, Smith et al. (2006) developed a

tract-based spatial statistics framework to construct local diffusion properties along the

white matter skeleton, fitted pointwise linear regression models, and performed point-

wise hypothesis tests on the skeleton. This method essentially ignores the functional
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nature of diffusion properties along the white matter skeleton, and thus suffers from low

statistical power in detecting interesting features and exploring variability in functional

data. Goodlett et al. (2009) used functional principal component analysis (fPCA) cou-

pled with the Hotelling T 2 statistic to compare a univariate diffusion property, such as

fractional anisotropy, across two (or more) populations for a single hypothesis test per

tract. Zhu and his coauthors (Zhu et al., 2010, 2011) proposed a multivariate vary-

ing coefficient model based on fPCA for the analysis of fiber bundle multiple diffusion

properties and their association with a set of covariates of interest such as age. Greven

et al. (2010) developed a functional mixed effects model as a generalization of mixed

effects models and fPCA for the analysis of longitudinal DTI fiber tract data. So far,

frequentist inference is the primary approach for making statistical inferences in these

statistical models for fiber tract based analysis of diffusion properties.

In this chapter, we propose a new semiparametric Bayes approach to model the as-

sociation between multiple fiber bundle diffusion properties and covariates of interest.

A multivariate random coefficient model is developed to characterize heterogeneity in

the shape of the fiber bundle diffusion properties among subjects, while allowing the im-

pact of covariates to vary across subjects. We assume a nonparametric Bayesian LPP2

prior (Dunson, 2009) on the distribution of the random coefficients to facilitate global

and local borrowing of information among subjects. We consider a sparse latent factor

model to more flexibly capture the within-subject correlation structure and assume a

multiplicative gamma process shrinkage prior on the factor loadings which allows in-

troduction of infinitely many factors (Bhattacharya and Dunson, 2011). We propose

Bayesian local hypothesis testing to identify fiber segments, where multiple diffusion

properties are significantly associated with covariates of interest, while controlling for

multiple comparisons. We propose a Bayesian confidence band for the average effect

of each covariate. Finally, we use the nonparametric LPP2 prior to randomly cluster
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subjects via global and local clustering. Posterior computation proceeds via an efficient

Markov chain Monte Carlo (MCMC) algorithm using the exact block Gibbs sampler.

3.2 Methodologies

This chapter focuses on developing a semiparametric Bayesian multivariate functional

regression analysis pipeline, named as SBLFM, to assess the association between fiber

bundle diffusion properties and a set of covariates of interest (e.g., age). Before SBLFM,

we use DTI atlas building followed by atlas fiber tractography and fiber parametriza-

tion as described in Goodlett et al. (2009) to extract DTI fibers and establish DTI fiber

correspondence across all DTI datasets from different subjects. We skip its description

here for the sake of simplicity (Goodlett et al., 2009; Zhu et al., 2010). After performing

the DTI atlas building step, we obtain a set of individual fiber tracts (or skeleton) with

the same corresponding geometry but varying DTs and diffusion properties. Subse-

quently, we run the analysis pipeline SBLFM including a multivariate random varying

coefficient model, a semiparametric Bayesian estimation method, a Bayesian approach

to construct confidence bands, a Bayesian local hypothesis testing procedure, and a

Bayesian posterior cluster analysis procedure (Fig. 3.1). The computational algorithm

for SBLFM is developed by using Matlab.

3.2.1 Multivariate Random Coefficient Model

Assume n subjects are measured along a fiber bundle over a grid of T points for M

diffusion properties (e.g. FA), denoted by {Yi(dt) : i = 1, . . . , n, t = 1, . . . , T}, where

Yi(dt) = (Y
(1)
i (dt), . . . , Y

(M)
i (dt))

′ is an M × 1 vector of diffusion properties for the i-th

subject, dt ∈ [0, L] is the arc length of point t relative to a fixed end point of the fiber

bundle, and L is arc length of this fiber bundle. For the i-th subject, we relate the

m-th functional diffusion response Y
(m)
i (dt) to a set of K covariates via a multivariate
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random coefficient model given by

Y
(m)
i (dt) = β

(m)
i (dt)

′Xi + ε
(m)
i (dt), ε

(m)
i (dt) ∼ N(0, σ2

m,t), (3.1)

where Xi = (1,x′i)
′ is the design vector for the i-th subject with xi = (xi1, · · · , xiK)′

being a K × 1 vector of covariates of interest, and β
(m)
i (dt) = (β

(m)
i,0 (dt), . . . , β

(m)
i,K (dt)

′

is a (K + 1) × 1 vector of random coefficients for the m-th diffusion property. The

measurement error ε
(m)
i (dt) is assumed to be drawn from a normal distribution with

mean zero and standard deviation σm,t.

We model the random coefficient function β
(m)
i,k (dt) by using a linear combination of

cubic B-spline basis functions bl(dt)s as follows:

β
(m)
i,k (dt) =

p∑
l=1

η
(m)
ikl bl(dt) = b(dt)

′η
(m)
ik , (3.2)

where b(dt) = (b1(dt), . . . , bp(dt))
′ is a p × 1 vector for B-spline basis functions and

η
(m)
ik = (η

(m)
ik1 , . . . , η

(m)
ikp )′ is a p× 1 vector of random coefficients. Thus, the model (3.1)

can be written as

Y
(m)
i (dt) = Bi(dt)

′η
(m)
i + ε

(m)
i (dt) for m = 1, . . . ,M, (3.3)

where η
(m)
i = (η

(m)
i0

′
, . . . ,η

(m)
iK

′
)′ and Bi(dt) = Xi ⊗ b(dt) are (K + 1)p × 1 vectors.

Heterogeneity in the fiber bundle diffusion properties is then controlled by the variation

of η
(m)
i , which are usually treated as random effects and follow a specific parametric

distribution. There is a serious concern about the sensitivity of associated inferences

to the choice of the random effects distribution on the basis coefficients.

Let ηi = (η
(1)
i

′
, . . . ,η

(M)
i

′
)′ be an M(K + 1)p× 1 vector, Bi = (Bi(d1), . . . , Bi(dT ))′

be a T × (K + 1)p matrix, and Yi = (Y
(1)
i

′
, . . . , Y

(M)
i

′
)′ be an MT × 1 vector, where

51



Y
(m)
i = (Y

(m)
i (d1), . . . , Y

(m)
i (dT ))′ is a T×1 vector form = 1, . . . ,M . The concantenated

representation of model (3.3) is given by

Yi = (IM ⊗Bi)ηi + εi, εi ∼ NMT (0,Σ), (3.4)

where NMT (0,Σ) is an MT ×1 Gaussian random vector with mean zero and covariance

matrix Σ = diag(σ2
1,1, . . . , σ

2
M,T ).

3.2.2 Infinite Latent Factor Model

Given the massive dimensionality of the random effect vector ηi, it is important to favor

lower dimensional representations of the dependence structure to address the curse of

dimensionality. Instead of prespecifying a restrictive dependence structure, we follow

the approach of using a Bayesian factor model, which relates the random effects ηi to

latent factors θi through the following characterization

ηi = Aθi, (3.5)

where A is a (K + 1)pM × ∞ factor loadings matrix and θi ∼ N∞(0, I∞). For di-

mensionality reduction, one would typically restrict the dimension of the latent factor

vector θi to be orders of magnitude less than that of ηi. However, following the moti-

vation of Bhattacharya and Dunson (2011), we bypass the challenging issue of selecting

the number of factors by incorporating infinitely many factors, while choosing a prior

that favors the elements of A to be shrunk to zero increasingly as the column index

increases.

We obtain the within-subject correlation structure through projecting Yi as a linear

combination of the underlying ∞-dimensional latent random vector θi after denoising,
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via

Yi = (IM ⊗Bi)Aθi + εi, εi ∼ NMT (0,Σ), (3.6)

where Bi(dt) = Xi ⊗ b(dt) and Bi = (Bi(d1), . . . , Bi(dT ))T . The common factors θi

explain the within-subject dependence structure among the MT variables for each Yi.

Let Yif and σ2
f be, respectively, the f -th component of Yi and the f -th diagonal

element of Σ. Conditional on θi, Yif1 and Yif2 are uncorrelated for all f1 and f2

∈ {1, . . . ,MT}. Marginalizing over the distribution of θi, the covariance structure Ω

of the data distribution Yi ∼ NMT (0,Σ) is induced as

Ω = Var(Yi|A,Σ) = (IM ⊗Bi)AA
T (IM ⊗Bi)

T + Σ.

Specifically, conditional on A and Σ, we have:

Var(Yif1|θi, A,Σ) = σ2
f1
,

Cov(Yif1 , Yif2|θi, A,Σ) = 0,

Var(Yif1 |A,Σ) = (IM ⊗BiA)f1(IM ⊗BiA)Tf1 + σ2
f1
,

Cov(Yif1 , Yif2 |A,Σ) = (IM ⊗BiA)f1(IM ⊗BiA)Tf2 ,

where (IM ⊗BiA)f1 is the f1th row of (IM ⊗BiA).

A constraint is usually specified on A to define a unique model free from identifica-

tion problems, since Ω is invariant under the transformations A∗ = AP for any semi-

orthogonal matrix P (PP T = I). The traditional full rank lower triangular constraint

for identifiability implicity specifies order dependence among the responses (Geweke and

Zhou, 1996). The choice of ordering of the response variables is a modeling decision

(Carvalho et al., 2008). From the Baysian perspective, we don’t require identifiability
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of the loading elements in A for a wide class of applications such as covariance matrix

estimation. In our case, we specify the multiplicative gamma process shrinkage prior,

which will be given in (3.7), on a parameter expanded loadings matrix with redundant

parameters. The induced prior on the covariance matrix is invariant to ordering of the

data. This shrinkage prior adaptively selects a truncation of the infinite loadings to

one having finite columns, which facilitates the posterior computation and provides an

accurate approximation to the infinite factor model.

Although FRATS (Zhu et al., 2010) and FADTTS (Zhu et al., 2011) have been

proposed to analyze the DTI fiber bundle data sets of multiple diffusion measures with

a set of covariates such as gender and gestational age, they assume identical effects

of the covariates on the diffusion properties for all subjects. Our SBLFM developed

here relaxes the assumption to allow the subject specific functional covariate effects on

the multiple diffusion outcome functions. In addition, FRATS and FADTTS assume a

covariate-free correlation structure among the multiple diffusion properties. We intro-

duce the random factors underlying the subject specific covariate effects to allow the

correlation structure among the multiple diffusion measures to vary with the levels of

the covariates along the fiber tracts. Moreover, we specify a LPP2 prior on the distri-

butions of the subject specific random factors to produce a global and local clustering

structure of the multiple diffusion trajectories across the subjects.

3.2.3 Priors

We choose independent priors for A, θi, and Σ and develop an efficient Markov chain

Monte Carlo (MCMC) algorithm given in the Appendix for posterior computation.

To remove the redundant factors, we place the multiplicative gamma process shrink-

age prior (Bhattacharya and Dunson, 2011) on the loadings matrix A to increasingly

shrink the loadings toward zero with the column index. This specification avoids the
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traditional drawback of order dependence from the lower triangular constraint for iden-

tifiability. We use the inverse gamma priors on the diagonal elements of Σ. To allow

the latent clustering structure among subjects, we specify a LPP2 prior (Dunson, 2009)

on the prior distribution P of θi. Let Ga(a, b) be a gamma distribution with scale a

and shape b. Specifically, these priors in details are given as follows:

A = {Agh}, g = 1, . . . , (K + 1)pM ;h = 1, . . . ,∞,

Agh|φgh, τh ∼ N(0, φ−1
gh τ

−1
h ), φgh ∼ Ga(v/2, v/2), τh =

h∏
l=1

δl,

δ1 ∼ Ga(a1, 1), δl ∼ Ga(a2, 1), l ≥ 2,

σ−2
f ∼ Ga(aσ, bσ), f = 1, . . . ,MT, (3.7)

θi ∼ P, P ∼ LPP2(α, γ, P0), P0 : θi ∼ N∞(0, ζI∞), ζ ∼ Ga(0.5, 0.5),

where δl, l = 1, . . . ,∞, are independent, τh is a global shrinkage parameter for the

hth column, and the φghs are local shrinkage parameters for the elements in the hth

column. When a2 > 1, the τhs increase stochastically as the column index h increases,

which means more shrinkage favored over the columns of higher indexes. The loading

component specific prior precision φ−1
gh τ

−1
h allows shrinking the coefficients of the B-

spline basis functions. The LPP2 prior assumption specifies an ∞-dimensional central

probability measure P0 as a prior guess, a precision parameter α expressing confidence

in the prior guess, and a hyperparameter γ determining the overall allocation weight

on the local family.

3.2.4 LPP2 prior

In modelling the multiple trajectories of diffusion measures over subjects, we are in-

terested in identifying the latent cluster structure of Yis among subjects, which can

be induced by specifying a nonparametric prior on the unknown distribution of the
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random factors θi. Dirichlet process prior (Ferguson, 1973, 1974) is the routine ap-

proach to induce a sparse representation of subjects. However, it has the drawback of

global clustering, in which two subjects are either allocated to an identical cluster or

two different clusters. In DTI imaging data analysis, it is common that two subjects

have similar diffusion trajectories over the major region of fiber bundles while having

local deviations. Under the Dirichlet process, either such subjects are inappropriately

clustered together, obscuring local differences, or allocated to separate clusters causing

unnecessary computational burden. We used the LPP2 prior (Dunson, 2009) to model

the unknown random effects distributions to facilitate both global and local clustering

of random effects. It relaxes the global clustering assumption of the widely-used Dirich-

let process prior, while accomplishing sparseness for substantial gains in computational

efficiency.

After truncating the loadings matrix A to h∗ � (K + 1)pM columns, we assume

the resulting h∗-dimensional random effects θi = (θi1, . . . , θih∗)
T ∼ P with P unknown,

i = 1, . . . , n. The LPP2 prior models P as a hybrid mixture distribution:

P =
1∑

z1=0

(1−z1,∞)∑
ψ1=(1−z1,1)

· · ·
1∑

z∗h=0

(1−zh∗ ,∞)∑
ψh∗=(1−z∗h,1)

πψ1,...,ψh∗δΘψ , (3.8)

where δx denotes a degenerate distribution with all its mass at x, πψ1,...,ψh∗ is the

probability of θi = Θψ having the property that πψ1,...,ψh∗ ≥ 0 and

1∑
z1=0

(1−z1,∞)∑
ψ1=(1−z1,1)

· · ·
1∑

zh∗=0

(1−zh∗ ,∞)∑
ψh∗=(1−zh∗ ,1)

πψ1,...,ψh∗ = 1.

The indicator zj ∼ Ber(νj), j = 1, . . . , h∗, denotes the allocation to global clustering or

local clustering, taking the value of 1 for global clustering and 0 for local clustering. The

hybrid atom Θψ = (Θψ1,1, . . . ,Θψh∗ ,h∗)
T is obtained by setting the jth element of Θψ
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equal to Θψj ,j with ψj = (1− zj, φj) and Θψj ∼ P0 for φj ∈ {1, . . . ,∞}, j = 1, . . . , h∗,

where P0 is a base distribution.

Let πh denote Pr(θij = Θghj), g = 0, 1, h = 1, . . . ,∞, j = 1, . . . , h∗. Those

random effects having zj = 1 are assigned together to a component in the global family

Ξ0 = {Θ0h}∞h=1, while others having zj = 0 are assigned to their own component in the

local family Ξ1 = {Θ1h}∞h=1. Let J0 = {j : zj = 1} and J1 = {j : zj = 0}. Conditional

on the values of z, we have

Pr(ψj = (0, h), j ∈ J0|z1, . . . , zh∗) = πh, h = 1, . . . ,∞,

Pr(ψj = (1, hj), j ∈ J1|z1, . . . , zh∗) =
∏
j∈J1

πhj , hj = 1, . . . ,∞.

The allocation probability of θi = Θψ in (3.8) is then simply

πψ1,...,ψh∗ = Pr(ψ1 = (1− z1, h1), . . . , ψh∗ = (1− zh∗ , hh∗)) = πh

{∏
j∈J1

πhj

}{ h∗∏
j=1

ν
zj
j (1− νj)1−zj

}
.

The specification is completed by choosing the hyperpriors

νj ∼ Beta(1, γ), j = 1, . . . , h∗,

πh = π∗h
∏
l<h

(1− π∗l ), π∗h ∼ Beta(1, α), h = 1, . . . ,∞,

where γ controls the overall weight on the local family, and α controls the overall

number of clusters. As short hand, the LPP2 prior on the random effects distribution

P is denoted by P ∼ LPP2(α, γ, P0).

The LPP2 prior specification (3.8) can also be viewed as a hybrid mixture model of

infinitely many components drawn from P0 via 2-stage clustering. Stage 1 determines

the membership of global or local clustering for each of the h∗ components. Those

components allocated to the global clustering membership will be clustered together
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to an atom in the global family at stage 2, while those allocated to the local family

will be allocated individually to their own clusters. The joint cluster membership

probability at stage 1 corresponds to Pr(z1, . . . , zh∗) =
∏h∗

j=1 ν
zj
j (1− νj)1−zj . The joint

cluster allocation weight at stage 2 conditional on stage 1 corresponds to Pr(ψ1 =

(1 − z1, h1), . . . , ψh∗ = (1 − zh∗ , hh∗)|z1, . . . , zh∗). The overall joint cluster allocation

weight corresponds to πψ1,...,ψh∗ .

3.2.5 Hypothesis Formulation & Testing

We are interested in making pointwise inference for the covariate effects along a fiber

bundle. The local null and alternative hypotheses for the kth covariate effect on the

mth diffusion property specific to a location dt ∈ [0, L] are formulated as:

H
(m)
0k (dt) :

∣∣β(m)

k (dt)
∣∣ ≤ ε versus H

(m)
1k (dt) :

∣∣β(m)

k (dt)
∣∣ > ε,

where β
(m)

k (dt) represents the mean of the subject-specific random coefficients for the

kth predictor on the mth diffusion property at location dt. The zero-neighborhood size

ε is chosen as being proportional to the maximum posterior standard deviation of the

posterior samples of β
(m)
i,k (dt) multiplied by ε∗. It is important to be aware that the

data have been normalized prior to analysis.

To conduct local hypotheses testing, we use the Bayesian decision rule for multiple

testing proposed by Müller et al. (2004). Following the implementation in Wang and

Dunson (2010), our strategy is to reject H
(m)
0k (t) if the posterior alternative hypothesis

probability υ
(m)
kt = Pr(H

(m)
1k (t)|Data) ≥ r for any t ∈ [0, T ], with r as a common

threshold for all the local hypotheses. r is chosen to minimize the posterior expected

false negative rate (FNR) under the constraint of the posterior expected false discovery

rate (FDR) being no greater than αT , where αT is pre-specified (we focus on a value
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of 0.05). Denote d
(m)
kt = 1(υ

(m)
kt ≥ r), an indicator of rejecting H

(m)
0k (t). The posterior

expected FNR and FDR are calculated as:

FNR =

∑M
m=1

∫ T
0

(1− d(m)
kt )υ

(m)
kt dt

M
∫ T

0
dt−

∑M
m=1

∫ T
0
d

(m)
kt dt+ κ0

≈
∑M

m=1

∑tW
t=t1

(1− d(m)
kt )υ

(m)
kt T/W

KT −
∑M

m=1

∑tW
t=t1

d
(m)
kt T/W + κ0

,

FDR =

∑M
m=1

∫ T
0
d

(m)
kt (1− υ(m)

kt )dt∑M
m=1

∫ T
0
d

(m)
kt dt+ κ0

≈
∑M

m=1

∑tW
t=t1

d
(m)
kt (1− υ(m)

kt )T/W∑M
m=1

∑tW
t=t1

d
(m)
kt T/W + κ0

,

where t1, . . . , tW is a fine grid of points equally spaced along [0, T ] and κ0 is a small

positive constant to avoid a zero denominator. In summary, our decision rule is to

determine the optimal threshold r∗ by r∗ = argminFNR{r ∈ [0, 1], FDR ≤ αT}. For

each combination of m and t ∈ {t1, . . . , tW}, we reject H
(m)
0k (t) if υ

(m)
kt ≥ r∗. For a suffi-

ciently fine grid, the results are robust to w, with the optimal threshold appropriately

adapting to the chosen w.

3.2.6 Bayesian Confidence Bands

We construct a Bayesian simultaneous confidence (credible) band for the mean coeffi-

cient curve β
(m)

k (t), k = 1, . . . , K, m = 1, . . . ,M , from its posterior MCMC samples.

Assuming there is a collection of posterior sampled curves β
(m),s
k = (β

(m),s
k (t1), . . . , β

(m),s
k (tL))T ,

s = 1, . . . , S indexing posterior iterations after burn-in, our goal is to compute a simulta-

neous confidence band for β
(m)

k (t). The principle in constructing a Bayesian confidence

band is to search for a region Rα = {Rα(t), t ∈ [0, T ]} such that

Pr{β(m)

k (t) ∈ Rα(t), t ∈ [0, T ]} = 1− α,

where α is a pre-specified significance level.

The strategy is based on pointwise measures of uncertainty. We used the method
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proposed by Crainiceanu et al. (2007) which assumes approximate posterior normality

at each grid point and derives the 1− α sample percentile c1−α of

max
l=1,...,L

∣∣∣∣β(m),s
k (tl)− β̂(m)

k (tl)√
v̂ar(β̂

(m)
k (tl))

∣∣∣∣, s = 1, . . . , S,

where β̂
(m)
k (tl) is the posterior mean at time tl and

√
v̂ar(β̂

(m)
k (tl)) is its posterior

standard deviation. A simultaneous confidence region is given by the hyperrectangular

[β̂
(m)
k (tl)− c1−α

√
v̂ar(β̂

(m)
k (tl)), β̂

(m)
k (tl) + c1−α

√
v̂ar(β̂

(m)
k (tl))], l = 1, . . . , L.

In our implementation, we replaced c1−α by cb which is calculated by cb = max(|cα/2|, |c1−α/2|)

to account for skewness.

3.2.7 Bayesian Cluster Analysis

We propose a Bayesian clustering approach to identify the number of clusters and to

probabilistically assign each individual to the identified clusters. The nonparametric

LPP2(α, γ, P0) prior has the feature of randomly clustering subjects via global and

local clustering. Given a truncated h∗-dimensional random effects vector θi for the i-th

subject, the LPP2 prior assigns those elements having zij = 1 for j = 1, . . . , h∗ together

to a global cluster, while assigning the remaining elements having zij = 0 to their own

clusters. If subjects i and i′ are in the same cluster for the j-th random effect, such that

θij = θi′j, the LPP2 prior will propagate such clustering information to other random

effects, increasing the probability of θij′ = θi′j′ , j
′ 6= j.
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The set of probability weights assignment for both global clustering and local clus-

tering are formulated by a sticking-breaking process:

φij =
∞∑
h=1

πhδh, πh = π∗h
∏
l<h

(1− π∗l ), π∗h ∼ Beta(1, α), j = 0, 1, . . . , h∗,

where φij indexes the assigned cluster for θij, with j = 0 for global clustering and

j = 1, . . . , h∗ for each element’s own clustering, and πh is the weight for a set of the

elements (global clustering) or an element (local clustering) to be assigned to the h-th

cluster. Small α favors the assigned clusters to be concentrated on the first few ones

to achieve sparseness for posterior computation efficiency.

In practical posterior computation, we developed a posterior cluster analysis proce-

dure on the clustering of the subject specific latent random factors {θi : i = 1, . . . , n}.

We specified a LPP2 prior on the unknown distributions of the subject specific latent

factors θi. Denote obg,θ for the number of global clusters among {θi : i = 1, . . . , n}

at the b-th iteration in the Gibbs sampler, and similarly denote obl,θ for the number

of local clusters. We obtained the posterior samples of {obg,θ : b = 1, . . . , B} and

{obl,θ : b = 1, . . . , B}. The overall weight allocated to the local cluster family equals a

priori to 1/(1 + γ) according to the specification of LPP2(α, γ, P0) in Dunson (2009).

Given the posterior sample average γ̂, the proportion of local clustering a posteriori for

θi is estimated by 1/(1 + γ̂).

3.3 Monte Carlo Simulations

We conducted a set of Monte Carlo simulations to evaluate the false discovery rate

(FDR) and the power of the local hypothesis testing approach. We simulated the two

diffusion measures FA and MD along the right internal capsule tract obtained in the
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clinical study from the following model:

(FAi(dt),MDi(dt))
T = (xTi B

(1)
i (dt),x

T
i B

(2)
i (dt))

T + εi(dt),

xTi B
(m)
i (dt) = (β

(m)
0i (dt), β

(m)
1i (dt), β

(m)
2i (dt))xi, m = 1, 2, (3.9)

where dt ∈ [0, L], xi = (1, Gi, Ai) with Gi and Ai referring to the gender and gestational

age of the i-th subject, B
(m)
i (dt) = (β

(m)
0i (dt), β

(m)
1i (dt), β

(m)
2i (dt)) is a 3 × 1 coefficient

vector with its component β
(m)
ki (dt), k = 0, 1, 2, to be drawn from a Gaussian process

GP(β
(m)
k (dt), σ

2
0ρ

dt−d′t), and the measurement error εi(dt) is a 2 × 1 vector of Gaus-

sian random variables with mean zero and covariance matrix Σ(dt). To mimic the

realistic clinic imaging data, we obtain the estimates β̂
(m)
k (dt) of β

(m)
k (dt) and Σ̂(dt) of

Σ(dt) by analyzing the FA and MD measures along the right internal capsule using

the methodology proposed by Zhu et al. (2011). We set σ2
0 = 0.004 and ρ = 0.5.

Further, fixing (β
(m)
0i (dt), β

(m)
1i (dt)) for all m and dt at their obtained estimates from

the clinic data, we let (β
(1)
2 (dt), β

(2)
2 (dt)) = c(dt)(β̂

(1)
2 (dt), β̂

(2)
2 (dt)) and consider five

scenarios for (β
(1)
2 (dt), β

(2)
2 (dt)): null case of c(dt) = 0 and local alternative cases for

c(dt) = 0.2, 0.4, 0.6, and 0.8.

We analyzed each simulated scenario using 100 repeated simulations. We set n =

32, 64. We randomly chose 16 males and 16 females for n = 32 (32 males and 32 females

for n = 64) from our clinical data and used their values of gender and gestational age to

simulate the values of FA and MD along the right internal capsule tract. We assigned

Ga(1, 1) hyper priors for the hyperparameters α and γ, and Ga(2, 1) priors on a1 and a2.

We specified ν = 3 and chose 5 log((K + 1)pM) as the starting number of factors. The

exact block Gibbs sampler ran 10,000 iterations, with the first 5000 samples discarded

as burn-in. Every 5th sample was collected to thin the chain. For each case, our Gibbs

sampler converges rapidly and exhibits efficient mixing.
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We conducted the local hypothesis testing of H
(m)
0 (dt) :

∣∣β(m)
2 (dt)

∣∣ ≤ ε for a point dt

along the right internal capsule tract and the m-th diffusion property against H
(m)
1 (dt) :∣∣β(m)

2 (dt)
∣∣ > ε. We specified ε = 0.1, 0.15, and 0.2. We evaluated FDR for the

local hypothesis testing procedure at the null case c(dt) = 0 and the local alterna-

tive cases c(dt) = 0.2, 0.4, 0.6, and 0.8, and its powers at the local alternative case

c(dt) = 0.2, 0.4, 0.6, and 0.8. For each simulation, the significant levels for the local

hypothesis testing procedure were set at α = 0.01, and 100 replications were used to

estimate the FDR and powers. For a fixed α at the alternative cases, if FDR is smaller

than α, the testing procedure is conservative, whereas if it is observed to be greater

than α, the testing procedure is liberal. At the null case, FDR equals to 1 based on its

definition. Table 4.1 displays that the FDR is accurate for the sample sizes of 32 and

64. Consistent with our expectations, the statistical power for rejecting the local null

hypotheses increases with the sample size and decreases with the zero neighborhood

size ε.

3.4 Clinical DTI Fiber Tract Data

3.4.1 Background and Analysis

The DTI fiber tract data comes from a clinical study approved by the Institute Review

Board of the University of North Carolina at Chapel Hill. This larger study was de-

signed to investigate early brain development. Healthy infants less than 1-year old were

recruited with written informed consents obtained from their patients before imaging

acquisition. In our study, a total of 128 healthy full-term infants (75 males and 53

females) are included, whose mean gestational age at MR scanning is 298±17.6 days

(range: 262 to 433 days). All infants were placed with efforts such that they slept

comfortably inside the MR scanner and none of them was sedated during the imaging
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procedure. They were fed and calmed to sleep on a warm blanket with suitable ear

protection.

The device used to acquire all images is a 3T Allegra head only MR system (Siemens

Medical Inc., Erlangen, Germany), featuring in 40 mT/m for the maximal gradient

strength and 400 mT/(m.msec) for the maximal slew rate. Every subject was scanned

for contiguous slices with slice thickness of 2mm to cover the whole brain. Each slice

was repeated 5 times such that an average was obtained to improve the signal-to-noise

ratio. These acquired DTI images are obtained via a single shot EPI DTI sequence

(TR/TE=5400/73 msec) with eddy current compensation. Diffusion gradients were

collected at six non-collinear directions:(1,0,1), (-1,0,1), (0,1,1), (0,1,-1), (1,1,0), and

(-1,1,0), at the b-value level of 1000 s/mm2. The reference scan at the b-value of 0 was

implemented to construct diffusion tensor matrices. The voxel resolution was set at

isotropic 2mm, and the in-place field of view was set at 256mm in both directions.

The diffusion tensors were constructed using a weighted least square estimation

method (Zhu et al., 2007; Basser et al., 1994b). We then processed all 128 DTI data

sets using the image processing steps in the DTI atlas building and compute diffusion

properties along all fiber tracts of interest. We focused on analyzing two tracts of

interest including the splenium of the corpus callosum tract and the right internal

capsule tract (Fig. 3.2(a) and Fig. 3.7(a)). We computed fractional anistropy (FA),

mean diffusivity (MD), and the three eigenvalues of the diffusion tensors, denoted by,

λ1 ≥ λ2 ≥ λ3, at each grid point on both tracts for each of the 128 subjects. FA denotes

the inhomogeneous extent of local barriers to water diffusion, and MD measures the

averaged magnitude of local water diffusion. The three eigenvalues of diffusion tensor

reflect the magnitude of water diffusivity along and perpendicular to the long axis of

white matter fibers (Song et al., 2003).
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We focused on addressing four goals in the analysis of the multiple diffusion prop-

erties along the right internal capsule tract and the splenium tract. Our first goal was

to determine if there is a difference in the multiple diffusion properties along the fiber

bundles between male and female infants. Our secondary goal was to investigate the

development of the diffusion properties along the fiber bundles vs gestational age. Our

third goal was to accomplish a parsimonious representation of the multiple diffusion

trajectories across subjects. Our fourth goal was to examine the covariate-dependent

correlation pattern among the multiple diffusion properties along the fiber bundles.

We applied SBLFM (3.9) to model the smoothed FA and MD functions (M=2) along

the right internal capsule and the splenium capsule with xi = (Gi, Ai)
T , where Gi and

Ai refer to the gender (1 for female and 0 for male) and the gestational age of the ith

infant. We estimated the ith subject specific functional regression coefficients βmi (dt) for

the mth functional diffusion measure. We then estimated the mean coefficient curve

β
(m)

k (dt) a posteriori and constructed their 95% Bayesian confidence bands from the

posterior MCMC samples. We also performed local hypothesis testing procedures to

determine if and where gender and gestational age are significant in the development

of the diffusion trajectories along both of these two fiber tracts. The posterior cluster

analysis is conducted to describe how many clusters exist among the 128 infants in

terms of the water diffusion properties FA and MD. The correlation analysis is then

implemented to illustrate the development of the correlation pattern between FA and

MD along both fiber tracts for male infants of average gestational age of 298 days, as

well as the pattern between the gestational age effects on FA and MD. Finally, based

on the significant results for MD, we analyzed the three eigenvalues of diffusion tensors

with FA along the two fiber tracts.

We assigned Ga(1, 1) hyper priors for the hyperparameters α and γ, a Ga(0.1, 0.1)

prior for the precision parameters σ−2
f , and Ga(2, 1) priors on a1 and a2. We specified
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ν = 3 and a default choice of 5 log((K + 1)pM) as the initialized number of factors.

We recommend these settings as default values in other analyses of DTI fiber tract

data. We summarized the 1000 posterior samples from the MCMC output with thin-

ning of 5 iterations after the burn-in of 5000 iterations. Using multiple chains with

widely-distributed points, the proposed exact block Gibbs sampler exhibits good rates

of convergence and mixing. This formulation took 519 seconds per 100 iterations in

Matlab 2010b on a Lenovo X61 laptop. We repeated the analysis for a variety of hy-

perparameter values. We multiplied the mean and variance of α and γ by 2 and 0.5,

and multiplied the variance of P0 by 2 and 0.5. We used ν = 3.5, 4, 5 and varied bσ

between 0.1 and 0.5. We also used different starting number of factors between 3 and

10. The results are robust with no conclusions changed.

3.4.2 Results: Right Internal Capsule Tract

We initially focused on analyzing the smoothed FA and MD curves (Fig. 3.2(b) and

(c)) of the 128 infants, which were obtained from the adaptive local polynomial kernel

smoothing technique. Our primary interest lies in investigating if and where gender

and gestational age are significant in the development of FA and MD along the right

internal capsule tract. We conducted Bayesian local hypothesis testing procedures at

each grid point along the tract to examine the effects of gender and gestation age on FA

and MD values. Fig. 3.3(c) showed that the degrees of both fractional anisotropy and

mean diffusivity vary significantly between males and females along partial regions of

the right internal capsule tract. The posterior mean effect curves of gender on FA and

MD and their 95% confidence bands (Fig. 3.3(a) and (b)) provided more evidence that

females have less fractional anisotropy than males in a major region of the right internal

capsule tract, and females have stronger mean diffusivity than males in half of the tract

with weaker differences in the other half. The difference in mean diffusivity between
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males and females are also observed in the sample average MD values (Fig. 3.3(d)).

Such sophisticated differences between males and females were not discovered by the

previous FRADS and FADTTS methods. Similar to FRADS and FADTTS, Fig. 3.4(b)

found uniformly significant effects of gestational age on the FA and MD trajectories.

Additional supportive evidence were observed that FA increases with gestational age

(Fig. 3.4(a) and (c)), while MD decreases with gestational age (Fig. 3.4(d)).

We performed posterior cluster analysis to examine latent clusters in the FA and MD

trajectories along the right internal capsule tract across the 128 infants. The estimated

value of the hyperparameter γ, controlling allocation weight on the local family, equals

0.51 with 95% credible interval of [0.12, 1.20]. This implies that the posterior proportion

of local clustering is 1/3, indicating that the data favors global clustering of the FA and

MD trajectories across infants. The estimated value of the hyperparameter α = 5.34,

with 95% credible interval of [2.59, 9.65]. These values suggest that few clusters are

present in the data and a sparse representation of the data is obtained. This conclusion

is further supported by the estimated values of 4.45, 3.94, and 4.42 for the number of

overall clusters, global clusters, and local clusters respectively (Fig. 3.2(d)).

Along the right internal capsule tract, we further computed the posterior mean

curves of FA and MD (Fig. 3.5(a)) for males of average gestational age, and estimated

the posterior covariance matrix (Fig. 3.5(b) and (c)). Then we obtained correlation

coefficient between FA and MD at each grid point for males of average gestation age. We

observed negative correlations at around 60% of grid points and positive correlation at

the other around 40% of grid points (Fig. 3.5(d)). Moreover, we computed the posterior

covariance matrix for the gestational age effects on FA and MD values (Fig. 3.5(f) and

(g)) and derived the grid pointwise correlation between the gestational age effects on

FA and MD. Fig. 3.5(h) displayed negative correlations at most grid points.
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In the analysis of the three eigenvalues with FA, we focused on the association be-

tween gender and gestation age with the three eigenvalues and the correlation among the

three eigenvalues along the right internal capsule tract. We examined the association

between both covariates of interest and all eigenvalues along the tract by performing

local hypothesis testing at each grid point. A similar locally significant pattern of gen-

der effect was found for all three eigenvalues (Fig. 3.6(b)). Gestational age effect was

found uniformly significant for λ2 and λ3, while locally head-and-tail significant for λ1

(Fig. 3.6(c)). We observed positive correlation between λ2 and λ3 for both males and

females of mean gestational age (Fig. 3.6(d) and (e)), and positive correlation between

the gestational age effects on λ2 and λ3 (Fig. 3.6(f)). Overall, these correlations are

stronger than those between λ1 and λ3 or λ1 and λ2. This agrees with the small dif-

ferences between λ2 and λ3, while the relatively large differences between λ1 and λ3 or

λ1 and λ2 in the middle of the right internal capsule tract (Fig. 3.2(e), (f) and (g)).

Finally, we performed a cluster analysis among the three eigenvalues and obtained a

sparse representation of the three eigenvalue functions along the right internal capsule

tract (Fig. 3.2(h)).

3.4.3 Results: Splenium Tract

We applied SBLFM (3.9) to analyze the FA and MD trajectories along the splenium

tract from 128 infants. We started with the Bayesian local hypothesis testing procedure

to identify the region in which gender or gestational age is significantly associated with

FA and MD. Fig. 3.8 (c) shows that gender is only slightly significant in the head

region for MD development in the splenium tract. The posterior estimation for the

mean effects of gender and the corresponding 95% confidence bands agrees with the

testing results. Fig. 3.8(d)-(e) display the uniformly increasing effects of gestational age

on FA development and decreasing effects on MD development at a major region. The
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local hypothesis testing results (Fig. 3.8(f)) support that gestational age is uniformly

significant along the splenium tract for the developmental change of the degree of

fractional anisotropy, while locally significant for that of the degree of mean diffusivity.

The posterior sampling distribution of the number of clusters among the 128 infants

is given in Fig. 3.7 (d). The posterior mean estimates of the number of overall clusters,

global clusters, and local clusters are 3.42, 3.07, and 3.40 respectively, indicating that

the 128 infants concentrate on a few clusters. The weight parameter γ for allocation

on the local family was estimated to be 0.38 with 95% credible interval of [0.08, 0.98].

The estimated posterior mean of the proportion of local clustering is 0.28, which means

a favoring of global clustering on infants. The estimated posterior mean of α equals

to 6.46, with 95% credible interval of [2.94, 11.80]. This result agrees with the sparse

clusters identified in the data.

The posterior estimation of the mean curves of FA and MD for males of average

gestational age and the posterior estimates of their covariance matrices is given in Fig.

3.9 (a)-(c). Fig. 3.9 (d) displays that males of average gestational age have positive

correlations between FA and MD at a major region of the splenium tract. Furthermore,

Fig. 3.9 (e)-(g) displays the estimated gestational age functional effect curves and their

corresponding covariance matrices. We observed that the gestational age effects on FA

and MD are negatively correlated almost over the whole splenium tract (Fig. 3.9 (h)),

which is consistent with the opposite trend of gestational age on FA and MD (Fig. 3.9

(e)).

We additionally found that both gender and gestational age are locally significantly

associated with the developmental pattern of the three eigenvalues along the splenium

tract (Fig. 3.10 (b) and (c)). We further observed large correlation between λ2 and λ3

and relatively weak correlation between λ1 and λ2 or λ1 and λ3 for both male and female

of average gestational age. This agrees with the small difference between λ2 and λ3
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while relatively large difference between λ1 and λ3 in the first half of the splenium tract

(Fig. 3.7(e), (f) and (g)). We didn’t observe noticeable difference among the pairwise

correlations of the gestational age effects on the three eigenvalues (Fig. 3.10(h)).

3.5 Discussion

The contributions of our work are twofold. From the statistical perspective, we have

developed a new Bayesian functional analysis pipeline SBLFM for delineating the struc-

ture of the variability of multiple diffusion properties along major white matter fiber

bundles and their association with a set of covariates of interest. The SBLFM pipeline

integrates five advanced Bayesian statistical tools from the statistical literature. Com-

pared with the existing literation (Zhu et al., 2010, 2011), our SBLFM explicitly model

the subject-specific functional covariate effects on the multiple diffusion outcome func-

tions and the covariate-specific correlation structure among the multiple diffusion mea-

sures. From the application perspective, we have demonstrated SBLFM in a clinical

study of neurodevelopment. Our results have revealed the complex inhomogeneous

spatiotemporal maturation patterns of fiber bundle diffusion properties.

Several limitations need to be addressed in future research. First, since the existing

fiber tract based methods including SBLFM requires DTI fiber correspondence across

subjects, SBLFM cannot be used to investigate some scenarios in practice. For in-

stance, it is possible that the centroid of the localization of white matter lesion may

vary across time and subjects. In this case, one cannot use both ROI-based methods

and tract based methods. Secondly, although we have used the B-spline basis functions

in SBLFM, it is interesting to consider other basis functions, such as wavelet. Thirdly,

SBLFM is limited to diffusion properties along fiber bundle, but it is interesting to

consider full DTs and other representations based on high angular resolution diffusion

image (HARDI) (Lenglet et al., 2009; Tuch et al., 2002; Schwartzman, 2006; Lepore
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et al., 2008; Schwartzman et al., 2005; Zhu et al., 2009; Whitcher et al., 2007). Fourthly,

SBLFM can be readily extended to more complex brain structures, such as the medial

manifolds of fiber tracts (Yushkevich et al., 2008), functional neuroimaging data (Bow-

man et al., 2008; Woolrich et al., 2004; Lei et al., 2009; Gössl et al., 2001), and group

analysis of neuroimaging data (Rosa et al., 2010; Penny et al., 2007).

3.6 Appendix: Posterior Computation

We develop an efficient Markov chain Monte Carlo (MCMC) algorithm for posterior

computation. After truncating the loadings matrix A to h∗ � (K + 1)pM columns,

we adapt an efficient exact block Gibbs sampler (Papaspiliopoulos, 2008) for Dirichlet

mixture models. This exact block Gibbs sampler combines the advantages of the retro-

spective MCMC method (Papaspiliopoulos and Roberts, 2008) and the slice sampling

method (Walker, 2007). It introduces auxiliary variables to avoid truncated approxima-

tions. This algorithm is straightforward to implement and exhibits good performance

in convergence and mixing. We will describe the adaptation strategy on the truncated

level h∗ after introducing the Gibbs sampler.

Allowing data to inform information about the hyperparameters involved in the

model through (3.1)−(3.7), we specify α ∼ Ga(aα, bα) and γ ∼ Ga(aγ, bγ). Introducing

auxiliary variables u = {uih : i = 1, . . . , n; h = 0, 1, . . . , h∗} to avoid truncated

approximations, the complete data joint likelihood of y, u and z is:

n∏
i=1

g(Yi;A, θψi ,Σ)1(ui0 < πψi0)
h∗∏
h=1

1(uih < πψih)νzihh (1− νh)1−zih ,

where Yi is a
∑M

m=1 nmi × 1 outcome vector for the M measures of the i-th subject, g(·)

is the density function of the outcome vector Yi, i = 1, . . . , n, and the elements in u are

constrained to the interval (0, 1).
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Starting from the initiation step, the Gibbs sampler at the truncated level h∗ pro-

ceeds as follows:

1. Update the hth column of the factor loadings matrix Ah∗ , denoted by Ah, from

its conditional distribution

p(Ah|−) ∼ N((CT
h Σ−1

N Ch + Σ−1
Ah

)−1CT
h Σ−1

N Yh, (C
T
h Σ−1

N Ch + Σ−1
Ah

)−1),

where Yh = (Y T
1h, . . . , Y

T
nh)

T with Yih = Yi−
∑

j 6=h IM⊗BiAjθψij , Ch =


θψ1h

(IM ⊗B1)

...

θψnh(IM ⊗Bn)

,

ΣN = In ⊗ Σ, ΣAh = diag(φ−1
1,hτ

−1
h , . . . , φ−1

(K+1)pM,hτ
−1
h ), for h = 1, . . . , h∗.

2. Update φgh from its conditional distribution

p(φgh|−) ∼ Ga(
v + 1

2
,
v + A2

ghτh

2
).

3. Update δ1 from its conditional distribution

p(δ1|−) ∼ Ga(a1 +
1

2
(K + 1)pMh∗, 1 +

1

2

h∗∑
h=1

τ
(1)
h

(K+1)pM∑
g=1

φghA
2
gh),

and update δl, l ≥ 2 from its conditional distribution

p(δl|−) ∼ Ga(a2 +
1

2
(K + 1)pM(h∗ − l + 1), 1 +

1

2

h∗∑
h=l

τ
(l)
h

(K+1)pM∑
g=1

φghA
2
gh),

where τ
(l)
h =

∏h
t=1,h6=l δt, l = 1, . . . , h∗.
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4. Update σ−2
f , f = 1, . . . ,MT , from its conditional distribution

p(σ−2
f |−) ∼ Ga(aσ +

n

2
, bσ +

1

2

n∑
i=1

(yif − (IM ⊗Bi)fAθψi)
2),

where (IM ⊗Bi)f denotes the fth row of (IM ⊗Bi).

5. Update uih from its conditional distribution

p(uih|−) ∼ Unif(0, πψih).

6. Update the latent zih from its conditional distribution

p(zih|−) ∼ Ber(
νhN(yi;A, θi(zih=1),Σ)

νhN(yi;A, θi(zih=1),Σ) + (1− νh)N(yi;A, θi(zih=0),Σ)
),

where θi(zih=j) refers to the current value of θi with inserting θ0φi0h to the hth

component for j = 1, and θ1φihh for j = 0.

7. Update the stick-breaking weights π∗q from its conditional distribution

p(π∗q |−) ∼ Beta(
h∗∑
h=0

n∑
i=1

1(ψih = q) + 1,
h∗∑
h=0

n∑
i=1

1(ψih > q) + α),

for q ≤ ψ∗ with ψ∗ = max{ψih : i = 1, . . . , n, h = 0, 1, . . . , h∗}, for q > ψ∗, sample

π∗q from p(π∗q |−) ∼ Beta(1, α).

8. Update the allocation index ψih from its conditional distribution

P (ψih = q|−) ∝ 1(q ∈ Cπ(uih))N(yi;A, θψih=q,Σ),

where Cπ(uih) = {q : πq > uih} ⊂ {1, 2, . . . ,∞}, and π∗q is sampled for q =
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1, . . . , ψ̃ such that
ψ̃∑
q=1

π∗q
∏
l≤q

(1− π∗l ) ≥ 1− u∗,

where u∗ = min{uih : i = 1, . . . , n, h = 0, 1, . . . , h∗}.

9. Update θjq from its conditional distribution

p(θjq|−) ∼ Nh∗([diag(1h∗ζjq)+W
′
jqΣ
−1
N Wjq]

−1W ′
jqΣ
−1
N Yjq, [diag(1h∗ζjq)+W

′
jqΣ
−1
N Wjq]

−1),

in which Yjq refers to the contribution for θjq from subjects with zih = 1− j and

φih = q. In addition, Wjq = diag(w1, . . . ,wn)ZΦR, and Yjq = diag(y1, . . . , yn)ZY ΦY 1n,

where

• wi = IM ⊗BiA,

• Z = Blkdiag(Z1, . . . , Zn) with Zi = diag(1(zi1 = 1− j), . . . , 1(zih∗ = 1− j)),

• Φ = Blkdiag(Φ1, . . . ,Φn) with Φi = diag(1(ψi1 = q), . . . , 1(ψih∗ = q)),

• R = 1n ⊗ Ih∗ ,

• ZY = Blkdiag(ZY1 , . . . , ZYn) with ZYi = 1(
∑h∗

h=1 1(zih = 1− j) ≥ 1),

• ΦY = Blkdiag(ΦY1 , . . . ,ΦYn) with ΦYi = 1(
∑h∗

h=1 1(ψih = q) ≥ 1),

• and 1n is a n× 1 vector of entries of 1.

10. Update ζjq from its conditional distribution Ga(0.5 + h∗/2, 0.5 + θ′jqθjq/2).

11. Update the hyperparameter γ from its conditional distribution Ga(aγ + h∗, bγ −∑h∗

h=1 log(1− νh)).

12. Update the hyperparameter α from its conditional distribution Ga(aα + ψ∗, bα −∑ψ∗

q=1 log(1− π∗q )).
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To choose the effective number of factors, we use an adaptation approach (Bhat-

tacharya and Dunson, 2011) to update the truncated number of factors h∗ across

iterations. Starting with a conservative guess h̃∗ of h∗, we adapt with probability

p(t) = exp(α0 + α1t) at the tth iteration. We specify α0 and α1 such that the chain

comes with adaptation around every 10 iterations at the beginning and exponentially

fast decreasing in adaptation frequency. In detail, at the tth iteration, we monitor

the columns in the factor loadings by comparing ut with p(t), where ut is a sequence

randomly generated from Unif(0, 1). If ut ≤ p(t), we remove the columns having all

elements within some pre-specified small zero neighborhood, called redundant columns,

and retain non-redundant columns for other parameters. If no such redundant column

is detected, we add a new column to the loadings, and sample other parameters from

their prior distributions to fill in the additional columns.
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Table 3.1: Simulation study: FDR and power of the local hypothesis tests for the
effects of gestational age on FA and MD along the right internal capsule tract,
evaluated at five different values of c and three different values of ε for sample sizes
of 32 and 64 subjects.

ε = 0.1 ε = 0.15 ε = 0.2
n c FDR Power FDR Power FDR Power
32 0 1.00 - 1.00 - 1.00 -

0.2 0.01 0.52 0.01 0.45 0.01 0.40
0.4 0.01 0.88 0.01 0.84 0.01 0.80
0.6 0.01 0.98 0.01 0.96 0.01 0.95
0.8 0.01 0.99 0.01 0.99 0.01 0.99

64 0 1.00 - 1.00 - 1.00 -
0.2 0.01 0.74 0.01 0.68 0.01 0.64
0.4 0.01 0.98 0.01 0.96 0.01 0.95
0.6 0.01 0.99 0.01 0.99 0.01 0.99
0.8 0.01 1.00 0.01 1.00 0.01 1.00
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Fig. 3.1: A schematic overview of SBLFM: a multivariate semiparametric varying-
coefficient model for multiple diffusion properties, a MCMC posterior estimation
method for estimating the coefficient functions, a construction of Bayesian confidence
bands of the mean covariate effect curves, a Bayesian local hypothesis testing procedure,
and a posterior cluster analysis procedure.
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Fig. 3.2: Right internal capsule tract description: (a) the right internal capsule tract
extracted from the tensor atlas with color presenting mean FA value; diffusion proper-
ties of FA in panel (b), MD in panel (c), λ1 in panel (e), λ2 in panel (f), λ3 in panel
(g); the number of clusters posteriori in FA and MD trajectories in panel (d) and the
number of clusters posteriori in λ1, λ2 and λ3 trajectories in panel (h).
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Fig. 3.3: Results of the gender effects on FA and MD along the right internal capsule
tract: the estimated coefficient curves (–) and the corresponding 95% confidence bands
(- -) for FA in panel (a) and MD in panel (b); (c) the posterior probability curves in
favor of the grid point-wise alternative hypotheses; (d) the estimated mean FA and
MD.
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Fig. 3.4: Results of the gestational age effects on FA and MD along the right internal
capsule tract: (a) 3D surf plot of FA along the right internal capsule tract for visualizing
the gestational age effects ; (b) the posterior probability curves in favor of the grid point-
wise alternative hypotheses; the estimated coefficient curves (–) and the corresponding
95% confidence bands (- -) for FA in panel (c) and MD in panel (d).
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Fig. 3.5: Results from the analysis of FA and MD along the right internal capsule tract:
(a) the posterior estimated curves of FA and MD for males of average gestational age;
the estimated covariance matrices for FA in panel (b) and MD in panel (c) for males
of average gestational age; (d) the estimated correlations between FA and MD for
males of average gestational age; (e) the posterior estimated gestational age effects; the
estimated covariance matrices for the gestational age effects on FA in panel (f) and MD
in panel (g); (h) the estimated correlations between the gestational age effects on FA
and MD.
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Fig. 3.6: Results from the analysis of the three eigenvalues of diffusion tensor on the
right internal capsule tract: (a) the estimated mean functions for λ1 (blue), λ2 (red) and
λ3 (green); the posterior probability curves in favor of the grid point-wise alternative
hypotheses for the gender effects in panel (b) and the gestational age effects in panel
(c); the estimated correlations among λ1, λ2 and λ3 for males of mean gestational age in
panel (d) and females of mean gestational age in panel (e), and among the gestational
age effects on λ1, λ2 and λ3 in panel (f).
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Fig. 3.7: Splenium tract description: (a) the splenium capsule tract extracted from the
tensor atlas with color presenting mean FA value; diffusion properties of FA in panel
(b), MD in panel (c), λ1 in panel (e), λ2 in panel (f), λ3 in panel (g); the number of
clusters posteriori in FA and MD trajectories in panel (d) and the number of clusters
posteriori in λ1, λ2 and λ3 trajectories in panel (h).
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Fig. 3.8: Results from the analysis of FA and MD along the splenium tract: the esti-
mated coefficient curves (–) and the corresponding 95% confidence bands (- -) for the
gender effects (panel (a) for FA and panel (b) for MD) and the gestational age effects
(panel (d) for FA and panel (e) for MD); the posterior probability curves in favor of
the grid point-wise alternative hypotheses for the gender effects (panel (c)) and the
gestational age effects (panel (f)).
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Fig. 3.9: Results from the analysis of FA and MD along the splenium tract: (a) the
posterior estimated curves of FA and MD for males of average gestational age; the
estimated covariance matrices for FA in panel (b) and MD in panel (c) for males
of average gestational age; (d) the estimated correlations between FA and MD for
males of average gestational age; (e) the posterior estimated gestational age effects; the
estimated covariance matrices for the gestational age effects on FA in panel (f) and MD
in panel (g); (h) the estimated correlations between the gestational age effects on FA
and MD.
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Fig. 3.10: Results from the analysis of the three eigenvalues of diffusion tensor on the
splenium tract: (a) the estimated mean functions for λ1 (blue), λ2 (red) and λ3 (green);
the posterior probability curves in favor of the grid point-wise alternative hypotheses
for the gender effects in panel (b) and the gestational age effects in panel (c); the
estimated correlations among λ1, λ2 and λ3 for males of mean gestational age in panel
(d) and females of mean gestational age in panel (e), and among the gestational age
effects on λ1, λ2 and λ3 in panel (f).
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Chapter 4

Bayesian Sticky HDP Infinite

Hidden Markov Circumplex Model

4.1 Introduction

The circumplex model is useful in the study of affects, which refer to the experience of

feeling or emotion (Huitt, 2003). Affective states are depicted by a circular structure

based on the dimensions of valence and arousal (Russell and Carroll, 1999), as shown

in Fig (4.1), where valence refers to the intrinsic attractiveness (positive valence) or

aversiveness (negative valence) (Frijda, 1986), and arousal refers to being awake or

reactive to stimuli (Csikszentmihalyi, 1998; Mirr, 2001). Each emotion arises as a linear

combination of these two dimensions, or as varying degrees of both valence and arousal.

For example, Joy is conceptualized as an affect produced by strong activation in the

neural systems associated with positive valence or pleasure and moderate activation in

the neural systems associated with arousal. Similarly, other affects are the products of

the activities of these two neurophysiological systems in which the degrees of activation

differ. Hence, specific emotions arise from cognitive interpretations and labeling of

these activation patterns of these two neurophysiological systems.



Within this circumplex model, affects having the same valence tend to have substan-

tial positive correlation, while affects of the opposite valence tend to have weak negative

correlation. This phenomenon is referred to as “two fundamental psychometric prin-

ciples” in Watson and Clark (1997). These two principles underlie their conceptual

theory of the independence between “Positive Affect” and “Negative Affect” (Watson

and Tellegen, 1985) and have been tested in the scales of Positive and Negative Affect

Schedule (PANAS) for the assessment of affects (Watson et al., 1988). The correlation

between two affects is modeled as a function of the angle between them in the circular

ordering.

Circumplex model has been studied in the literature to model the correlation struc-

ture among affects. Correlations between adjacent scales with the circular ordering

are the highest. As circular separation increases, correlations decrease. Hence, the

corresponding correlation matrix has a circumplex structure, such that correlations

decrease first and then increase when one moves away from the main diagonal. Un-

der the constraint of the circumplex structure, Guttman (1954) and Anderson (1960)

proposed stochastic processes on the circumference of the circle which produce positive

correlations with moving average and Markov properties respectively. Methods allowing

negative correlations are developed in Cudeck (1986) and Wiggins et al. (1981). Browne

(1992) extended the model of Anderson (1960) to allow for negative correlations. Lenk

et al. (2006) extended the work of Browne (1992) from Bayesian perspective and accom-

modated subject-specific random effects to account for personal response scale usage

and subject-specific factors.

Circumplex model is a type of multidimensional scaling (MDS) methods, which is

a family of models that map a group of objects into a low dimensional space where

points representing the objects and the distances between the points corresponding to

the similarity/dissimlarity measure among the objects. It aims to seek a configuration
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of points such that the distances “match” the similarities as well as possible. MDS

methods have been applied into a wide variety of disciplines, including behavior science,

social science, political science, marketing research, biomedical science, and so on. It

sprung from psychometric analysis to evaluate the similarity of people’s judgements over

a set of objects with the first appearance (Torgerson, 1952). During the recent decade of

the bursting of high-dimensional large data sets, MDS was applied to gene analysis like

revealing the relational pattern of gene-expressions (Taguchi and Oono, 2005). In the

frontier of the biotechnological field, MDS was applied for protein structure prediction

(Mooney et al., 2006) and the quality assessment of mass spectrometry data (Harezlak

et al., 2007).

This chapter is motivated by a data set from a clinical study which is designed to

understand the mechanism of emotion regulation based on empirical measurements.

Participants were measured on a 17-scale PANAS measures in a daily diary study

for a total of 7 days. Each subject reports their affect scales 5 times each day, with

4 times at day and 1 time at night. The resultant data structure corresponds to

the traditional cross-sectional circumplex data while measured repeatedly over time.

Hence, we call such kind of data as longitudinal circumplex data. A major interest

to analyze this data set is to discover the latent emotion states hidden in the emotion

items of the PANAS ratings. An appropriate circumplex model for the analysis of

such longitudinal circumplex data has not been developed in the literature. We are

motivated to bridge the gap between the statistical methods of emotion regulation and

the existing longitudinal circumplex data.

The analysis of the longitudinal circumplex data should consider the temporal struc-

ture of emotions. In the past few decades, researchers tended to conceptualize emotion

as a process. Emotion is regarded as versatile, ”dynamic”, and often shows persistent

patterns of self-regularity (Carver and Scheier, 1982; Chow et al., 2004; Larsen, 2000).
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In this chapter, we target to extend the work of Lenk et al. (2006) to a semiparamet-

ric Bayesian state-space circumplex model for the analysis of longitudinal circumplex

data. Assuming an infinite many collection of emotion states hidden in the population,

a hierarchical Dirichlet proces (Teh et al., 2006) is used to facilitate the discovery of

the time related state-switching structure. In addition, a sticky component (Fox et al.,

2008) is added to address the phenomenon of emotion persistence.

Section 4.2 introduces the model and associated inferences motivated by the above

considerations. Section 4.3 introduces an MCMC algorithm for posterior computation.

Section 4.4 is for an illustrative simulation. Section 4.5 applies the model to an emotion

data set. Section 4.6 makes some further discussion.

4.2 Bayesian Sticky HDP-iHMM Circumplex Model

4.2.1 Circumplex Model

Circumplex model is a useful tool to quantify the correlation structure among affective

states where the underlying structure of affective states can be characterized on the

circumference of a circle. Consider a latent response score Yi,j of the ith subject to the

jth item representing an affective state, i = 1, . . . , n, j = 1, . . . , J . Lenk et al. (2006)

proposed a random effects circumplex model for the latent response variable Yi,j:

Yi,j = Uj + Hi + Ai sin θj + Bi cos θj + εi,j, θ1 = 0, θj ∈ [0, 2π], (4.1)

where Uj is a scalar for the mean latent response for the jth item, Hi is a scalar for the

ith subject specific random effect to capture scale-usage effects, Ai and Bi are scalars

specifying the random factor scores for the ith subject, and sin θj and cos θj are the

jth item specific loadings, which are constrained to the unit circle. The error term εi,j,

i = 1, . . . , n, j = 1, . . . , J are independently and normally distributed with mean 0 and
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variance σ2
j specific to the jth item.

The subject by item interaction term Ai sin θj+Bi cos θj characterizes the circumplex

correlation. Specifying Hi ∼ N(0, λ2), Ai ∼ N(0, τa), Bi ∼ N(0, τb), and letting τa =

τb = τ makes the inter-item correlations to have a circumplex structure, after adjusting

for the scale-usage effects. Conditional on the angles, the variance of Yi,j and the

covariance between Yi,j and Yi,k are given by

Var(Yi,j|θj) = λ2 + τ 2 + σ2

Cov(Yi,j,Yi,k|θj, θk) = λ2 + τ 2 cos(θj − θk).

4.2.2 Sticky HDP-iHMM State-space Circumplex Model

Considering our motivated data, suppose i = 1, . . . , n subjects respond to j = 1, . . . , J

items on a rating scale with G ordinal categories over t = 1, . . . , T time points. Let

Wi,j,t denote the rating of the ith subject toward the jth item at time t. We introduce

a set of the ith subject specific ordered latent cut points {ci,g}: ci,0 = −∞, ci,1 =

−1 < ci,2 < . . . < ci,G−2 < ci,G−1 = 1, ci,G = ∞. We assume that the observed ordinal

response Wi,j,t is associated with a latent response variable Yi,j,t falling between two

latent cutpoints:

Wi,j,t = g, iff ci,g−1 ≤ Yi,j,t < ci,g, for g = 1, . . . , G.

We extend model (4.1) to accommodate the dynamics of the latent response over time

by modeling the latent responses Yi,j,t:

Yi,j,t = Uj + Hi,t + Ai,t sin θj + Bi,t cos θj + εi,j,t, θ1 = 0, θj ∈ [0, 2π]. (4.2)
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where Uj is the mean latent response of the jth item, Hi,t, Ai,t and Bi,t are the ith

subject specific latent random effects vector at time t, and sin θj and cos θj are the jth

item specific loadings. The error terms εi,j,t are assumed to be independently drawn

from N(0, σ2
j ).

We introduce the sticky infinite state hidden Markov model via hierarchical Dirichlet

proces (HDP-iHMM) (Fox et al., 2008) for the subject specific latent random factor

scores φi,t = (Hi,t,Ai,t,Bi,t)
T :

φi,t|si,t, {φ∗k}∞k=1 = φ∗si,t

{φ∗k}∞k=1|P0 ∼ P0, P0 : φ∗k ∼ N(0, diag(λ2, τ 212))

si,t|si,t−1, {ωe}∞e=1 ∼ Mult(ωsi,t−1
)

{ωe}∞e=1|α, κ,β ∼ DP(α + κ,
αβ + κδe
α + κ

)

β|γ ∼ Stick(γ), (4.3)

where si,t denotes the state of the ith subject at time t, the infinite collection of state

specific parameters {φ∗k}∞k=1 are drawn from a 3-dimensional normal base measure P0,

ωe corresponds to the state e specific transition distribution, κ > 0 is the self-transition

parameter for the current state e, β is the average transition distribution. The average

transition distribution β is formulated by a stick-breaking process of parameter γ.

The state specific transition distribution ωe is generated from the Dirichlet process

with central transition distribution β as the base measure and a precision parameter

α controlling the degree of deviation. The current state si,t depends on the previous

state si,t−1 via the multinomial distribution of transition parameters ωsi,t−1
.

The Bayesian specification is completed by assigning priors on other parameters in

the model (4.2). We place the multivariate normal prior on the item mean responses

vector U = (U1, . . . ,UJ)T , the conditionally uniform prior on the latent cutpoints ci,
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the gamma priors on σ−2
j , λ−2, and τ−2, and the extended Von Mises priors on the

angles θj:

U ∼ N(µ0,Σ0),

ci ∼ X (−1 < ci,2 < . . . < ci,G−2 < 1),

ci,g|ci,g−1, ci,g+1 ∼ Unif(ci,g−1, ci,g+1), g = 2, . . . , G− 2,

σ−2
j ∼ Ga(r0, s0), λ−2 ∼ Ga(u0,1, v0,1), τ−2 ∼ Ga(u0,2, v0,2),

θj ∼

 VM(d0, Q0, [0, π]), for j = 2,

VM(d0, Q0, [0, 2π]), for j > 2.
(4.4)

where d0 = (0, 1)T , Q0 = 0.2I2. This Von Mises distribution is fairly flat on [0, 2π].

The probability density function of the extended Von Mises distribution VM(d,Q, C)

is given by p(θ|d,Q, C) ∝ exp{−0.5(ξ(θ) − d))TQ(ξ(θ) − d)}X (θ ∈ C), where ξ(θ) =

(sin(θ), cos(θ))T , d is a two-dimensional vector, Q is a 2×2 matrix, X (·) is the indicator

function, and C is a subset of [0, 2π].

4.2.3 Background: Dirichlet Processes

Dirichlet Process

A Dirichlet process (DP) (Ferguson, 1973, 1974) defines a distribution for a random

density function G(φ) on a parameter space Φ, denoted by G(φ) ∼ DP(γ, P0). The

stick-breaking representation (Sethuraman, 1994) expresses G(φ) as

G(φ) =
∞∑
k=1

βkδφ∗k(·), φ∗k
i.i.d∼ P0

βk = β∗k
∏
l<k

(1− β∗l ), β∗k
i.i.d∼ Beta(1, γ), k = 1, . . . ,∞, (4.5)
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where βk is a probability weight formulated from a stick-breaking procedure, δφ∗(·)

denotes a point mass at φ∗ which is sampled from P0, P0 is a central probability

measure as a prior guess, and γ is a precision parameter expressing confidence in the

prior guess. Under this formulation, the probability of φ allocated to δφ∗k(·) is equivalent

to βk. We denote the distribution on the set of weights β = {βk}∞k=1 by β ∼ Stick(γ).

The discreteness of G implied from the definition of the DP process generates a

clustering structure in the samples drawn from G. Suppose φi ∼ G, i = 1, . . . , n.

Integrating over G, the predictive distribution of φn+1 is obtained from the Pólya urn

representation (Blackwel and Macqueen, 1973)

φn+1|φn, γ, P0 ∼
K∑
k=1

nk
γ + n

δφ∗k +
γ

γ + n
P0, (4.6)

where {φ∗k}Kk=1 denote the distinct values (clusters) taken by the set {φi}ni=1, nk is the

number of φi’s taking the value of φ∗k, and the hyperparameter γ determines the weight

for a new cluster to be created.

The above Pólya urn sampling scheme is closely related to the Chinese restaurant

process. Let φi as a customer entering a restaurant with infinitely many tables, and

each table serving a unique dish φ∗k. Every arriving customer chooses a already occupied

table with a probability in proportion to the number of customers currenly sitting at

this table, and a new table with a probability in proportion to γ. It is implied that

small γ favors fewer tables to be selected.

The DP is commonly used as a nonparametric prior for the distribution of the

parameters in a mixture model of unknown complexity. Assume we have an observation

yi ∼ F (φi) with φi ∼ G(φ). The above sample scheme generates an indication variable

zi to denote the mixture component for the observation yi ∼ F (φ∗zi). Unlike standard

mixture models having fixed number of mixture components, the DP prior allows an
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infinite number of mixture components and lets the data inform the actual number of

components.

Hierarchical Dirichlet Process

Teh et al. (2006) extends the DP to the hierarchical Dirichlet Process (HDP) for cases

where groups of mixture model generative data are related but with an unknown shar-

ing structure. Assume J groups of data yji ∼ F (φji). The HDP generates a global

probability measure G0 ∼ DP(γ, P0) on the parameter space Φ and then draws the

group specific distribution Gj ∼ DP(α,G0). The global measure G0 acts as a central

distribution for Gj, with α controlling the degree of variability. The stick-breaking

representation expresses G0 and Gj as:

G0 =
∞∑
k=1

βkδφ∗k(·), β = {βk}∞k=1 ∼ Stick(γ)

Gj =
∞∑
k=1

ωjkδφ∗k(·), ωj = {ωjk}∞k=1 ∼ DP(α,β), (4.7)

where φ∗k
i.i.d∼ P0. Since G0 is discrete, each Gj shares the same set of global parameters

but with different sets of weights. An indicator variable zji ∼ Mult(ωj) (multinomial

distribution) is generated to link an observation yji to the unique global parameter φ∗zji .

Multiple φji’s might take identical values of some global parameter φ∗k.

An equivalent representation of the HDP mixture model is given via the following

conditional distributions:

yji|zji, {φ∗k}∞k=1 ∼ F (φ∗zji), φ∗k ∼ P0,

zji ∼ Mult(ωj), ωj|α,β ∼ DP(α,β),

β ∼ Stick(γ). (4.8)
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The underlying process generating the HDP mixture model can be described using

the metaphor of a Chinese restaurant franchise (CRF) (Teh et al., 2006). There are

J restaurants (groups) sharing a global menu G0. Each jth restaurant has infinitely

many tables (clusters) serving dishes (parameters) for customers (observations), and its

own menu Gj defining the customer sitting structure. Integrating out the jth restau-

rant specific menu Gj, customer yji sits at already occupied table tji with probability

proportional to the number of currently seated customers or selects a new table with

probability proportional to α. The conditional distribution of dish φji for customer yji

is given by

φji|φ−ij , α,G0 ∼
Tj∑
t=1

njt
α +Nj − 1

δφ∗jt +
α

α +Nj − 1
G0, (4.9)

where njt is the number of customers in the jth restaurant sitting at table t and sharing

dish (parameter) φ∗jt, and φ−ij = {φj1, . . . , φji−1, φji+1, . . . , φjNj}. Integrating out G0,

each table serves a dish (parameter) φ∗jt = φ∗kjt with probability proportional to the

number of other tables serving that dish in the franchise, or chooses a new dish with

probability proportional to γ. The conditional distribution of the dish φ∗jt is written as

φ∗jt|Φ∗1, . . . ,Φ∗j−1,Φ
∗(−t)
j , γ, P0 ∼

M∑
k=1

mk

γ +
∑

kmk

δφ∗k +
γ

γ +
∑

kmk

P0, (4.10)

where Φ∗r = {φ∗r1, . . . , φ∗rTr} includes all the dishes in the rth restaurant, Φ
∗(−t)
j includes

all the dishes in the jth restaurant except the dish φ∗jt, mk is the number of tables in

all restaurants serving the dish φ∗k, and M denotes the number of global dishes already

served in the franchise. Observation yji is then drawn from the generating distribution

F (φ∗zji) with the parameter φ∗zji = φ∗jtji = φ∗kjtji
.

The HDP mixture model can be derived as the limit of a sequence of finite hi-

erarchical mixture model (Ishwaran and Zarepour, 2002; Teh et al., 2006; Fox et al.,
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2008):

β ∼ Dir(γ/L, . . . , γ/L)

ωj ∼ Dir(αβ1, . . . , αβL), (4.11)

where the number of mixture components L → ∞. This weak limit approximation is

useful to develop efficient blocked posterior sampling algorithm.

4.2.4 The Sticky HDP-iHMM Model

To model the situations where a system changes over time in a discontinuous fashion,

regime-switching state-space models is a good choice. Regimes refer to discrete stages

between which certain parameters or characteristics of the system switch. The dynamics

of emotions experienced by each subject can be regarded as two discrete “regimes” along

the valence dimension, positive and negative emotion phases, and unknown, potentially

infinitely many “regimes” along the arousal dimension. The emotion switching system

has the feature of state persistence, where a currently experienced emotion state is

reluctant to move to another state. Hence, we use the sticky HDP-iHMM model (Teh

et al., 2006; Ni et al., 2007; Fox et al., 2008) to address the time related state-switching

structure and the self-transition feature in the time-dependent latent emotion factor

φi,t in model (4.3).

Assume the subject specific time-dependent parameters φi,t = (Hi,t,Ai,t,Bi,t)
T switch-

ing among an infinite collection of emotion and arousal regimes. Let each HDP group-

specific set of weights, ωj act as a state-specific transition distribution in the infinite

state space (infinitely many groups). Denote zit for the current emotion state of the

Markov chain for the ith subject at time t. The current state zit is generated from the
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multinomial distribution of transition parameters ωzit−1
,

zit ∼ Mult(ωzit−1
), (4.12)

where zit−1 indexes the group to which yit is assigned. The current state zit links

the parameter φ∗zit to φi,t. To incorporate the self-transition feature, the state-specific

transition distribution ωj is specified as,

ωj ∼ DP(α + κ,
αβ + κδj
α + κ

), (4.13)

where κ > 0 is the self-transition sticky parameter for the current state j, and δj denotes

a point mass at the current state j. The original HDP-iHMM model is retrieved when

κ = 0.

The Chinese restaurant metaphor of the sticky HDP-iHMM model now has a special

family of loyal customers to the franchise. Denote zt−1 as the grandparent,zt as the

parent, and zt+1 as the child. The parent enters a restaurant j which its parent chose

zt−1 = j, and chooses a table tji ∼ ωj which serves dish kjtji . It is implied that

zt = zji = kjtji . The increased family favor will likely to drive the child to choose

the same dish as its parent, and in turn, develops a loyal family to the franchise over

generations. On the other side, it is also possible that the child turns away from its

parent’s occasional un-popular choice to the most popular dish served in this franchise.

Hence, such sticky (loyalty) feature can be observed in the increased popularity of a

table dish randomly chosen by

kjt ∼ Mult(
αβ + κδj
α + κ

). (4.14)

A set of auxiliary random variables k̄jt and qjt is introduced to facilitate the inference
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algorithm:

k̄jt ∼ β,

qjt ∼ Ber(
κ

α + κ
),

kjt =

 k̄jt, qjt = 0;

j, qjt = 1,
(4.15)

where qjt is an indicator variable with the value of 1 to override the current state as

the previous state, and 0 to move to any state randomly silencing the sticky tendency.

4.3 Posterior Computation

In this section we develop a block z Gibbs sampler to implement the sticky HDP-iHMM

circumplex model. We incorporate the block z sampler of Fox et al. (2008) to sample

the parameters φi,t = (Hi,t,Ai,t,Bi,t)
T , where a variant of the HMM forward-backward

procedure is used to harness the Markov structure and jointly sample the state sequence

z1:T . A set of auxiliary variables mjk, m̄jk, and qjt is added to facilitate the block z

sampling. We place the block constraints (Lenk et al., 2006) to sample the item angles

θj.

We define the following notations for convenient use in the description of the sam-

pler:

• Y = (Y·,1, . . . ,Y·,J), where Y·,j = (YT
1,j, . . . ,Y

T
n,j)

T , and Yi,j = (Yi,j,1, . . . ,Yi,j,T )T ,

for i = 1, . . . , n, j = 1, . . . , J ,

• Σ = diag(σ2
1, . . . , σ

2
J),

• θ = (θ1, . . . , θJ)T ,

• X = (XsXc), whereXs = (sin(θ1), . . . , sin(θJ))T andXc = (cos(θ1), . . . , cos(θJ))T ,
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• H = (HT
1 , . . . ,H

T
n )T , where Hi = (Hi,1, . . . ,Hi,T )T .

• A = (AT
1 , . . . ,A

T
n )T , where Ai = (Ai,1, . . . ,Ai,T )T .

• B = (BT
1 , . . . ,B

T
n )T , where Bi = (Bi,1, . . . ,Bi,T )T .

Starting from the initiation step, the posterior sampler proceeds as follows:

1. Conditional on the previous set of state-specific transition densities ω(n−1), the

global transition density β(n−1), and the model parameters φ(n−1), U(n−1), θ(n−1),

block sample the state sequences z and the parameters φi,t:

(a) Compute backward messages mt,t−1(k) sequentially in time. Set ω = ω(n−1),

U = U(n−1), θ = θ(n−1). For t ∈ {T, . . . , 1}, k ∈ {1, . . . , L}, initialize mes-

sagesmT+1,T (k) = 1 and then computemt,t−1(k) =
∑L

l=1 ωk(l)N(yt; Ul,φl,θl,Σl).

(b) Initialize nkl = 0 and Yk = ∅, (k, l) ∈ {1, . . . , L}2. Sequentially sample the

state assignments z1:T forward in time

zt ∼
L∑
l=1

fl(yt)δl,

where fl(yt) = ωzt−1(l)N(yt; Ul,φl,θl,Σl)mt+1,t(l). Increment nzt−1zt and

update yt to the cached statistics Yzt for sampling φzt .

(c) Sample the auxiliary variables m, m̄, and q:

i. Denote Jkl = {t|zt−1 = k, zt = l}, for each (k, l) ∈ {1, . . . , L}2. Start

with mkl = 0, n = 0, for each t ∈ Jkl, sample

x ∼ Ber(
αβl + κδ(k, l)

n+ αβl + κδ(k, l)
),

increment n, and if x = 1 increment mkl.
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ii. Sample the number of override variables in restaurant k:

qk· ∼ Binomial(mkk,
ρ

ρ+ βk(1− ρ)
),

for k ∈ {1, . . . , L}, where ρ = κ
α+κ

.

iii. Set the number of informative tables in restaurant k serving dish l as:

m̄kl =

 mkl, k 6= l;

mkk − qk·, k = l,

(d) Sample the global transition density via

β ∼ Dir(γ/L+ m̄.1, . . . , γ/L+ m̄.L).

(e) Sample the new transition densities ωk and the model parameters φk, k =

1, . . . , L via

ωk ∼ Dir(αβ1 + nk1, . . . , αβk + κ+ nkk, . . . , αβL + nkL),

φk ∼ p(φ|η,Yk).

2. Sample U from its conditional distribution N(µu,Σu), where µu = Σu(Σ
−1(Y −

H1TJ −AXT
s −BXT

c )T1nT + Σ−1
0 µ0) and Σu = (nΣ−1 + Σ−1

0 ).

3. Sample σ−2
j from its conditional distribution Ga(r0 + nT/2, s0 + 0.5

∑
i,T (Yi,j,t −

Uj − Hi,t − Ai,tsin(θj)− Bi,tcos(θj))
2).

4. Sample λ−2 from its conditional distribution Ga(u0,1 + nT/2, v0,1 + HTH/2).

5. Sample τ−2 from its conditional distribution Ga(u0,2 + nT/2, v0,2 + ATA/2 +

BTB/2).
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6. Sample the latent cutpoints ci,g from the conditional distributions Unif(max(ȳg, ci,g−1),

min(y
g+1

, ci,g+1)), where ȳg = max{Yi,j,t : Wi,j,t = g} and y
g+1

= min{Yi,j,t :

Wi,j,t = g + 1}, g = 2, . . . , G− 2.

7. Sample the latent responses Yi,j,t from the conditional distributions:

(a) for observed Wi,j,t,

p(Yi,j,t|−) ∼ N(Uj+Hi,t+Ai,t sin θj+Bi,t cos θj, σ
2
j )X (ci,wi,j,t−1 < Yi,j,t < ci,wi,j,t).

(b) for missing Wi,j,t,

p(Yi,j,t|−) ∼ N(Uj + Hi,t + Ai,t sin θj + Bi,t cos θj, σ
2
j ).

8. Sample the item angles θ using a hybrid sampling strategy. These angles are

placed in C blocks of constraints B1, . . . ,BC . Denote Bc = min{θj : j ∈ Bc} and

B̄c = max{θj : j ∈ Bc} for the minimum and maximum angles in the cth block,

c = 2, . . . , C. For the first block, the “minimum” and “maximum” angles are

defined as

B1 =

 2π, if BC > max{θj : j ∈ B1};

min{θj : j ∈ B1 and θj > B̄C}, if BC < max{θj : j ∈ B1},

B̄1 = max{θj : j ∈ B1 and θj < B2}.

These blocks satisfy the ordering

0 ≤ B̄1 < B2 < B̄2 < . . . < BC < B̄C < B1 ≤ 2π.
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(a) Gibbs step: sample θ from the conditional distribution

p(θ|−) ∝
J∏
j=1

VM(dj, Qj, Cj),

Qj = σ−2
j

 ATA ATB

BTA BTB

+Q0,

dj = Q−1
j {(A B)T (Y·,j − Uj1nT + A) +Q0d0}

where Cj is the constraint set for θj.

(b) Metropolis step: generate θj from a mixture of R uniform distributions.

Denote b1, . . . , bC for the indices of the last angle in each block such that

1, . . . , b1 ∈ B1 and bc−1 + 1, . . . , bc ∈ Bc, c = 2, . . . , C.

i. For θj ∈ B1, generate the candidate angle from the jump distributions

g1(ψm|ψ2, . . . , ψm−1, θm, . . . , θJ) ∼
R∑
r=1

pr
X (ar,m,1 < ψm < br,m,1)

br,m,1 − ar,m,1
,

ar,m,1 = max{B̄C − 2π, θm − ur},

br,m,1 = min{B2, θm + ur},

for m = 2, . . . , b1. If ψm < 0, set ψm = 2π + ψm.

ii. For θj ∈
⋃C
c=2 Bc, generate the candidate angle from the uniform random

walk

gc(ψm|ψ2, . . . , ψm−1, θm, . . . , θJ) ∼
R∑
r=1

pr
X (ar,m,c < ψm < br,m,c)

br,m,c − ar,m,c
,

ar,m,1 = max{B̄c−1, θm − ur},

br,m,1 = min{Bc+1, θm + ur},
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for m = bc−1 + 1, . . . , bc. Note BC+1 = B1.

The acceptance probability for the candidates are

min{1,
[ψ|Y ]

∏C
c=1

∏bc
m=bc−1+1 gc(θm|θ2, . . . , θm−1, ψm, . . . , ψJ)

[θ|Y ]
∏C

c=1

∏bc
m=bc−1+1 gc(ψm|ψ2, . . . , ψm−1, θm, . . . , θJ)

},

where b0 + 1 = 2.

We use a modified Brier score (Lenk et al., 2006) as the fit measure. After the burn

in, we compute a Brier score at each iteration h:

BS(h) =
1

NG

n∑
i=1

J∑
j=1

T∑
t=1

G∑
g=1

δi,j,t(zi,j,t,g − P (Wi,j,t = g|Ω(h)))2,

where N is the total number of observations, the indicator variable zi,j,t,g = 1 if the

ith subject responded g to the jth item at time t and 0 otherwise, δi,j,t takes the value

of 1 if this record is not missing, and P (Wi,j,t = g|Ω) is the predictive probability for

Wi,j,t = g conditional on the parameters Ω and the data.

4.4 Simulation Study

We conducted a Monte Carlo simulation study to access the performance of the sticky

HDP-iHMM circumplex model. We simulated a three-state sequence data containing

T = 9 time points. At each state s, we generated 16 item responses on a 7 point ordinal

scale for 50 subjects from the following model:

Yi,j,s = Uj + Hi,s + Ai,s sin θj + Bi,s cos θj + εi,j,s,

Wi,j,s = g, iff cg−1 ≤ Yi,j,s < cg, for g = 1, . . . , 7. (4.16)
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where the item specific response means Uj were drawn from N(0, 1), the item specific

angles θj were randomly generated under the constraints of four blocks along the circle

with four angles in each block, and the state specific random factors (Hi,s,Ai,s,Bi,s)
T

were generated from a 3-dimensional normal distribution with the Gaussian mean of

(−10, 0, 10)T and the diagonal covariance matrix with 0.01 variances. The measurement

error εi,j,s was assumed to be drawn from a normal distribution with mean 0 and

variance 0.01. The cutoff points were set as (−1,−0.6,−0.2, 0.2, 0.6, 1).

We analyzed the simulated data using our sticky HDP-iHMM circumplex model and

applied the block-z Gibbs sampler. The block-z Gibbs sampler ran 7,000 iterations, with

the first 2000 samples discarded as burn-in. Every 5th sample was collected to thin

the chain. Our Gibbs sampler converges rapidly and exhibits efficient mixing. We set

0.98 for the self-transition probability in the sticky HDP-iHMM model. We assigned

Ga(1, 1) hyperpriors for the hyperparameters α and γ. We used a truncation level

of L = 5 in the block sampler, while letting the sampler learn a strict subset of the

available states.

Our algorithm was able to recover the true states accurately. Fig. 4.2 plots the true

state sequence in the upper panel and the labeled state sequence learned in the sampler

in the lower panel. Three colors stand for three states, navy for state 1, dodger blue for

state 2, and green yellow for state 3. The true state sequence shares the same color map

as the labeled state sequence. The posterior estimates of the angles are accurate for

the angles in the 2nd to 4th block, while have relatively large bias for the angles in the

first block (Table 4.1). The brier score comparing the posteriori predictive probabilities

and the ordinal outcomes was 0.056.
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4.5 PANAS Data Analysis

The PANAS data comes from a large emotion study. This study was designed to

investigate the emotion dynamics. Participants were asked to complete a “daily” survey

four times a day for a total of thirty days in addition to one ”nightly” survey each day.

We included 55 individuals who did the daily self-reports of their feelings over the first 7

consecutive days. Eight ordinal positive emotion (PE) items and nine ordinal negative

emotion (NE) items measured on a scale from 1 ( = none) to 4 ( = always) were used

for model fitting purpose in the chapter. The PE items include enthusiastic, interested,

determined, active, strong, proud, inspired, and attentive. The NE items included

scared, afraid, upset, nervous, ashamed, guilty, distressed, jittery, and irritable.

We analyzed the PANAS data set using the sticky HDP-iHMM circumplex model.

We collected 1000 samples for every 5th samples from the block-z Gibbs sampler, after

the initial burn in of 2000 iterations. We initiated a truncation level of L = 5, and

placed Ga(1, 1) hyperpriors for the hyperparameters α and γ. We chose 0.98 for the

self-transition probability, favoring state persistence. The chain converges rapidly and

exhibits efficient mixing. We estimated the item specific direction posteriori and labeled

the emotion states over the seven days.

The analysis results for the PANAS data are displayed in Fig. 4.3 and 4.4. The

emotions were labeled as two states over the seven days (Fig. 4.3), where the first

six days fell in one state, and the seventh day fell in the other state. This result is

supported by the fact that day 7 has the smallest averages of both the difference and

the ratio between the PE scores and the NE scores (Table 4.2). This phenomenon

concludes that the prolonged effects on emotions from the emotion induction exposure

in the laboratory experiment extended for six days and elapsed in the seventh day.

The estimates of the emotion directions along the unit circle were graphed in Fig. 4.4,

where the PE items are in the right panel and the NE items are in the left panel. The
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brier score evaluating the distance between the posteriori predictive probabilities and

the ordinal outcomes was 0.063.

4.6 Discussion

We demonstrated the considerable benefits of the extended circumplex model in which

the time related state switching structure is constructed by the sticky HDP-iHMM

model. The circumplex model has been appealing to social science researchers because

of its circular correlation structure of measure items. Our approach further yields

another appealing feature allowing the capture of the state persistence/switching dy-

namics. We have also presented an efficient sampling technique. The synthetic data

analysis and the empirical application clearly demonstrate the practical importance of

our state-space extensions. We believe that our contributions will facilitate rigorous

tests and increase the popularity of circumplex models in the analysis of psychological

measures.
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Fig. 4.1: A circular structure of affects classified into six clusters. PA = positive affect;
NA = negative affect; HighAct = high activation; MediumAct = medium activation;
LowAct = low activation.
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Table 4.1: Simulation study: estimated directions for the synthetic data.

Standardized
Item Block True Estimate Bias Bias
1 1 0.000 0.000 0.000 0.000
2 1 1.425 0.697 -0.723 -0.511
3 1 0.865 0.701 -0.165 -0.190
4 1 1.210 0.650 -0.559 -0.462

5 2 2.828 3.054 0.226 0.080
6 2 2.731 2.853 0.121 0.045
7 2 1.793 1.540 -0.254 -0.141
8 2 2.259 2.840 0.581 0.257

9 3 3.692 3.571 -0.121 -0.033
10 3 3.893 3.594 -0.299 -0.077
11 3 4.064 3.597 -0.467 -0.115
12 3 3.371 3.323 -0.048 -0.014

13 4 6.135 6.148 0.014 0.002
14 4 5.718 5.875 0.157 0.028
15 4 4.968 4.996 0.028 0.006
16 4 5.601 5.884 0.283 0.051

Table 4.2: PANAS data: the averages of the difference and the ratio between positive
emotion (PE) scores and negative emotion (NE) scores.

day
Measure Average 1 2 3 4 5 6 7
PE-NE Average 1.44 1.41 1.48 1.37 1.31 1.37 1.29
PE/NE Average 2.23 2.22 2.34 2.29 2.18 2.22 2.17
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Fig. 4.2: Performance of state labeling in the simulated data. Upper panel: the true
state sequence; lower panel: the labeled state sequence.
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Fig. 4.3: The classified states for the PANAS data.
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Fig. 4.4: Plot of the sine versus cosine of the posteriori estimated angles for the PANAS
data. Right panel: positive emotion (PE) items; left panel: positive emotion (NE)
items;
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