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ABSTRACT 
 

Cynthia Jean Lin: Drinking Water Quality and Human Health: 
Impact of Harmful Algae and Water Pipe Breaks 

(Under the direction of David Richardson) 
 
 

Many factors within a water system can influence drinking water quality.  One example 

is the presence of cyanobacteria, which can naturally occur in surface water sources of drinking 

water and produce toxins associated with harmful algal blooms.  Another example is the 

deterioration of drinking water distribution systems, which can lead to pipe breaks.  This study 

assessed how such factors within a large drinking water system serving metropolitan Boston 

communities may influence human health. 

In Aim 1, Poisson regression models were used to estimate the associations between 

daily measures of cyanobacteria concentration in the water source and emergency department 

(ED) visits for acute gastrointestinal illness (AGI), respiratory illness, and dermal illness over a 7-

year period (7/27/2005 – 9/30/2012).  Considering both 2-4 and 5-7 day lag periods, small 

relative increases in daily ED visits were observed for AGI and respiratory illness when 

comparing upper quartile levels of cyanobacteria concentrations with the lowest quartile (≤5.0 

Areal Standard Units/mL). 

In Aim 2, case-crossover methods were used to examine the associations between 

water pipe breaks and ED visits for AGI. The first part (Aim 2a) examined 385 water main breaks 

in the City of Boston over a 10-year period (10/1/2002 – 9/30/2012). The second part (Aim 2b) 



iv 
 

examined a major water pipe break in 2010 that resulted in a boil water order affecting 30 

metropolitan Boston communities. Conditional fixed-effects logistic regression models 

estimated the risk of ED visits for AGI during 0-3 and 4-7 day hazard periods.  When restricted 

to zip codes served primarily by a single water service network, the association between main 

breaks and ED visits for AGI was slightly elevated during the 0-3 days after a break (Odds Ratio, 

OR=1.15; 95% Confidence Interval, CI: 0.99-1.34).  Furthermore, there was an increased risk of 

ED visits for AGI during the 0-3 days after the major water pipe break in 2010 (OR=1.32; 95% CI: 

1.07-1.61), particularly among children (≤5 years) and adolescents (6-18 years). 

This dissertation identified potential health risks related to cyanobacteria in the water 

source and water pipe breaks in the distribution system.  These associations are important to 

consider given the consequences of a changing climate and aging infrastructure. 
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CHAPTER 1. SPECIFIC AIMS 

 
 

Inadequately treated and contaminated drinking water can result in a wide range of 

adverse health effects, such as gastrointestinal, respiratory, and dermal symptoms of illness.  

Within a municipal water system, many factors can influence drinking water quality.  The 

objective of this dissertation was to examine whether two potential contamination events are 

associated with increased illness.  The first was the presence of cyanobacteria, or blue-green 

algae, in the water source.  The second was pipe breaks in the drinking water distribution 

system.  Both questions were analyzed within the context of a large water system operated by 

the Massachusetts Water Resources Authority (MWRA) that provides drinking water to 

metropolitan Boston communities. 

 

Specific Aim 1 

The first Specific Aim was to estimate the association between daily measures of 

cyanobacteria in the Wachusett Reservoir and emergency department (ED) visits for acute 

gastrointestinal, respiratory, and dermal symptoms of illness in metropolitan Boston 

communities served by MWRA over a 7-year period (7/27/2005 – 9/30/2012).  The hypothesis 

was that higher levels of cyanobacteria in the drinking water source would increase the rate of 

ED visits for acute gastrointestinal, respiratory, and/or dermal symptoms of illness. This 

association was expected to be most apparent during up-welling and blooming periods.  Also, 
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the effect of cyanobacteria was hypothesized to be strongest in sensitive populations, such as 

children and elderly. 

 

Specific Aim 2 

The second Specific Aim had two parts.  The first (Aim 2a) was to estimate the 

association between water main breaks and ED visits for acute gastrointestinal illness (AGI) over 

a 10-year period (10/1/2002 – 9/30/2012) in the City of Boston.  The second (Aim 2b) was to 

estimate the association between a major water pipe break in 2010 and ED visits for AGI in 

metropolitan Boston communities affected by the subsequent boil water order.  The overall 

hypothesis was that the occurrence of water main breaks would have a positive association 

with subsequent ED visits for AGI.  This association was anticipated to be strongest with the 

major water pipe break in 2010 (Aim 2b).  Sensitive populations, such as children and elderly, 

were expected to be most affected. 

 

Study Significance 

Unplanned and unregulated events, such as the amount of cyanobacteria in the source 

water (1-5) and the occurrence of main breaks (6, 7), are projected to increase over time due to 

a changing climate and aging infrastructure.  Therefore, human exposure to contaminated 

drinking water may also increase.  Harmful algal blooms and water main breaks are 

widespread(8, 9); therefore, results from this study are applicable to other water systems 

around the country.  A better understanding of the public health impact can aid in the overall 

decision-making process regarding drinking water regulations, monitoring procedures, and 



3 
 

response plans. Since drinking water is a human necessity, uncovering even a small effect could 

have major public health implications. 

 

Study Innovation 

 This dissertation project addresses gaps in the literature regarding the human health 

impact of potential contamination events in municipal drinking water systems.  The first 

Specific Aim provides insight on chronic low levels of cyanobacteria since the existing literature 

focuses primarily on high bloom levels that resulted in disease outbreaks.  Low-level drinking 

water exposure to cyanobacteria provides a more common scenario experienced by water 

treatment plants.  The second Specific Aim focuses on characterizing the risk of AGI after a main 

break.  While it is established that pressure transients can allow contaminants to enter a 

drinking water distribution system, there are few epidemiology studies that characterize the 

subsequent health risks. 
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CHAPTER 2. BACKGROUND 

 

Drinking Water Exposures 

Water is essential to sustain human life(10). Specifically, water is the solvent for 

biochemical reactions, is essential for cellular homeostasis, absorbs the body heat from 

metabolic processes, maintains vascular volume, and serves as the medium for transport within 

the body by supplying nutrients and removing waste(11).  Severe dehydration can lead to low 

blood pressure, rapid heartbeat, and even delirium(12).  Serious complications of dehydration 

include cerebral edema, seizures, and kidney failure(13).  Given these health risks, staying 

hydrated is an important part of maintaining health(14, 15).  The Institute of Medicine 

recommends a daily total water intake of 2.7 liters (91 ounces) for healthy adult women and 3.7 

liters (125 ounces daily) for healthy adult men(16). Total water intake can come from all 

beverages and foods(16). 

According to data from the 3rd National Health and Nutrition Examination Survey 

(NHANES III), adults in the U.S. obtained total water from the following sources: 35-54% from 

drinking water, 49-63% from other beverages (with juice, carbonated drinks, coffee, and milk 

being the major sources), and 19-25% from foods (such as fruits, vegetables, soups, ice cream, 

and meats)(11).  Similarly, the Institute of Medicine estimates approximately 80% of people's 

total water intake comes from drinking water and beverages while the other 20% come from 

food(16).  Although water is present in foods and beverages, plain water (i.e., tap and plain 

non-carbonated bottled water) is consumed on any given day by 76% of Americans over the 
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age of two(17).  Based on nationwide dietary intake data, the average daily intake of plain 

drinking water is 3.9 cups, with over half (61%) of the overall intake coming from tap water 

versus bottled water(17).  Most (69%) of the plain drinking water consumed occurs at home, 

with tap water accounting for two-thirds of the water consumed at home(17). Factors affecting 

water intake may include physical activity, extreme temperatures (hot and cold), and 

altitude(11). In addition, adult women (≥20 years) are more likely to report drinking water 

compared to men, especially among those over the age of 60 years(17). 

Most people consume and come in contact with tap water(18).  Human exposure to 

contaminants in tap water can occur through ingestion, inhalation, and/or dermal absorption 

(see Figure 1)(19).  Aside from drinking, water is also used for many everyday purposes, from 

cooking, cleaning, bathing and other basic hygiene, to recreational, agricultural, and industrial 

activities(20). The average American family uses over 300 gallons of water per day at home(21).  

With drinking water exposure being essentially universal, studies finding even a small effect on 

illness could have a major impact on public health(22). 

 

 
Figure 1: Routes of water exposure: ingestion, inhalation, dermal absorption. 
Source: http://sphweb.bumc.bu.edu/otlt/mph-modules/ExposureAssessment/exposureassessment3.html 

 

http://sphweb.bumc.bu.edu/otlt/mph-modules/ExposureAssessment/exposureassessment3.html
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Drinking Water-Associated Illnesses 

 When drinking water is not adequately treated, human exposure to waterborne 

contaminants such as pathogenic microorganism (waterborne pathogens) can lead to 

subsequent illness(23, 24).  In fact, prior to drinking water disinfection, the occurrence of 

diseases such as cholera and typhoid were common the U.S. and killed thousands(25).  

Considering the global challenges of producing safe water, the U.S. and other developed 

countries generally provide wide access to high-quality, safe drinking water supplies(26).  

Despite the wealth in resources and technologies in developed countries, however, poor quality 

source water, inadequate treatment, and failing distribution infrastructures still exist and 

waterborne illnesses associated with drinking water still occur(26-29). Also, a changing climate 

can impact water quality(4, 30).  For example, extreme weather events such as heavy 

precipitation and flooding can cause heavy runoff events to pollute drinking water sources and 

increased nutrient loadings can cause extensive algal blooms(4, 30).  In addition, floods can 

threaten the water distribution infrastructure(30, 31).  Contaminated drinking water can lead to 

serious health consequences, especially among sensitive populations (e.g., infants and young 

children, elderly, pregnant women, immunocompromised groups)(27, 32, 33).  According to a 

review of waterborne disease outbreaks occurring in developed nations, contributing factors 

include: contamination by wastewater, insufficient knowledge of source water hazards, 

inadequate disinfection, severe weather (e.g., heavy precipitation and runoff), filtration 

problems, cross-connections and distribution failures, livestock or wildlife fecal contamination, 

and changes in plant maintenance or treatment process(26). In the U.S., the majority of 

drinking water outbreaks have been linked to untreated or inadequately treated groundwater 
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and distribution system deficiencies(4).  Aside from factors directly contributing to drinking 

water outbreaks, there can be income or racial disparities in water infrastructure maintenance 

and drinking water quality(34, 35). Drinking water-associated illnesses, even if sub-clinical, 

could result in loss  of productivity at work and school for both the affected individuals and 

their caregivers(36, 37).  With acute cases of illness, there can also be added healthcare and 

medication costs(36).  

The types of illness that have been associated with drinking water contaminants (e.g., 

bacteria, chemicals, parasites, viruses) include acute gastrointestinal illness, acute respiratory 

illness, skin infections, neurological illness, and inflammation of the liver(19).  Acute 

gastrointestinal illness, which includes a range of symptoms such as diarrhea, vomiting, nausea, 

and cramps, is often the standard metric for illness associated with microbial contamination of 

drinking water because it is the broadest indicator of the health effects associated with most 

waterborne pathogens(38).  It is also a convenient measure because it can be evaluated by 

observation without needing multifaceted sample collection or analytical procedures(38).  

Cases from the cryptosporidiosis outbreak in Milwaukee shared many similar gastrointestinal 

symptoms (e.g., diarrhea, abdominal cramping, and nausea) and general signs and symptoms 

(e.g., fatigue, low-grade fever, muscle aches, and headaches)(39).  Acute respiratory illness, 

often caused by Legionella spp., has also been reported in more recent outbreaks associated 

with drinking water (40, 41).  Other outbreaks, such as skin infections (e.g., Pseudomonas), 

neurological illness (e.g., primary amebic meningoencephalitis), and inflammation of the liver 

(e.g., hepatitis A), have been observed but are less common(19, 40).  
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The Centers for Disease Control and Prevention (CDC) defines a waterborne disease 

outbreak as two or more persons experiencing a similar illness and are epidemiologically linked 

by time and by location to water exposure(19, 42).  The CDC, along with the EPA and the 

Council of State and Territorial Epidemiologists (CSTE), conduct regular surveillance for 

waterborne disease outbreaks(19).  During the 36-year period from 1971 through 2006, 780 

outbreaks were associated with drinking water exposure in the U.S., resulting in 577,094 cases 

of illness(19).  The total number of illnesses, however, was strongly influenced by an estimated 

403,000 cases from a single outbreak occurring in 1993 when a filtration process failed to 

remove Cryptosporidium oocysts at a municipal water treatment plant in Milwaukee, 

Wisconsin(19, 39).  This single outbreak was associated with 4,400 hospitalizations(36) and 50 

deaths(43).  After excluding the Milwaukee outbreak, the average size of a drinking water-

associated outbreak was estimated to be 340.5 cases for community water systems and 162.6 

cases for non-community water systems(19).  In the most recent surveillance report published 

by the CDC, 32 drinking water-associated outbreaks were reported from 2011 through 2012, 

accounting for at least 431 cases of illness, 102 hospitalizations, and 14 deaths(41).  Although 

this may appear to be a relatively low public health burden, the authors note that outbreak 

surveillance data underestimate actual values and should therefore not be used to evaluate the 

total number of outbreaks or cases of waterborne disease(41). 

The challenge in describing the potential significance of waterborne diseases related to 

drinking water is that they probably occur more often than reported(41, 42, 44, 45).  The true 

impact of drinking water-associated diseases is most likely underestimated due to limitations in 

available and well-documented surveillance data on drinking water quality, drinking water 
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consumption, and illness(26, 27, 41, 42). Specifically, the factors influencing the underreporting 

of gastrointestinal infections include the large number of asymptomatic cases, symptomatic 

cases that do not seek treatment, cases that seek treatment but are not given a specific 

diagnosis and/or are not asked to provide information regarding exposures, and cases that 

actually receive a diagnosis but are not then reported(44, 45).  Also, since the level of 

surveillance and reporting activity, as well as reporting requirements, vary across states and 

localities, it is difficult to produce a comprehensive national statistic(41).  Of all the illnesses 

associated with the massive cryptosporidiosis outbreak in Milwaukee, it has been estimated 

that the majority (88%) did not seek medical attention and only about 11% seen as outpatient 

and 1% hospitalized(36).  As expected, cases typically sought health care only when the illness 

was severe or prolonged(39).   

To address some of the data limitations of waterborne disease outbreaks, several 

attempts have been made to quantify the background or endemic levels of waterborne disease.  

Morris and Levins (1995) estimated an annual incidence of 7.1 million cases of gastrointestinal 

infections and 1,200 deaths attributable to waterborne disease(45).  Colford et al. (2006) 

estimated a range of 4.26 to 11.69 million cases of acute gastrointestinal illness in the U.S. 

attributable to drinking water from community drinking water systems(46).  Accounting for all 

waterborne illnesses attributable to drinking water (i.e., not just gastroenteritis), Reynolds et al. 

(2008) estimated 26 million infections and 13 million illnesses occurring each year in U.S. 

municipal surface water systems(27). 
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Waterborne Pathogens 

Water contamination can originate from many different sources, including nearby land 

use practices (fertilizers, pesticides, livestock), naturally occurring chemicals and minerals (e.g., 

arsenic, radon, uranium), manufacturing processes, and sewer overflows or wastewater 

releases (47).  While most enteric and opportunistic pathogens that can spread by the fecal-oral 

route can also be transmitted through water, an organism’s ability to cause a waterborne 

disease outbreak depends on its rate of survival in the water environment and its infectious 

dose(42, 44). Enteric pathogens that can survive but not proliferate in drinking water include 

Vibrio cholerae, Shigella spp., Campylobacter jejuni, Giardia lamblia, and Cryptosporidium 

parvum(44).  Giardia and Cryptosporidium are two of the most common and bothersome 

protozoan parasites since they can develop into hard-shelled cysts resistant to chlorine 

disinfection(24).  Other waterborne enteric bacteria include Salmonella and certain strains of 

Escherichia coli(27, 42).  Environmental pathogens that can both survive and proliferate in 

drinking water include a number of opportunistic pathogens, such as Legionella spp., 

Aeromonas spp., Pseudomonas aeruginosa, and Mycobacterium avium(42, 44).  There are also 

toxins produced by certain freshwater harmful algae (e.g., cyanobacteria)(4).  Viruses of 

greatest concern in water include enteroviruses, hepatitis A virus, noroviruses, astrovirus, 

adenovirus, and rotavirus(27).  While viruses cannot multiply in the receiving waters, their 

infective dose is low, typically ranging from just one to ten infectious units(42).   

Aside from microorganisms, other potentially health-threatening water pollutants 

include toxic minerals and metals (e.g., arsenic, lead, nitrates, nitrites), organic chemicals (e.g., 

synthetic fertilizers, pesticides, herbicides, pharmaceuticals), radioactive substances (e.g., 
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radon, radioactive runoff from mining, radioactive minerals from coal-fired power plants), and 

additives and their respective by-products (e.g., chlorine, fluoride, flocculating agents)(24).  

Newly emerging diseases also provide challenges to ensuring safe drinking water(48).  Such 

challenges include resistance to chlorination or disinfection, resistance to standard medical 

treatment, zoonotic as well as human transmission, and low infective dose(48).   

Given the abundance of potential waterborne pathogens in drinking waters, Messner et 

al. (2006) has stressed the need for addressing exposure to mixtures of pathogens, rather than 

to an individual pathogen, when considering health risks(27, 38).  They contend that there 

could be an order of magnitude difference between the risk from regulated pathogens (e.g. 

Cryptosporidium) and the risk from the total mixture of pathogens that people may be exposed 

to from drinking water(38). 

Since it is impossible to measure every possible waterborne pathogen, drinking water 

turbidity has often been used as a proxy measure for potential microbial contamination and the 

effectiveness of drinking water treatment(22, 49-51).  When light penetrates a water sample, 

turbidity is a measure of the amount of light that is scattered by material in the water (i.e., 

relative clarity; cloudiness)(52).  Pathogens (e.g., viruses, parasites, bacteria), along with clay, 

silt, finely divided inorganic and organic matter, algae, and plankton, can be among the mix of 

material found in water(51, 52).  While outbreaks of gastrointestinal illness have been linked to 

extreme turbidity events(39, 53, 54), the findings from epidemiology studies have been 

inconsistent(22).  Mann et al. (2007) reasoned that conflicting results could be due to variations 

in the mean turbidity level between study settings and differences in modeling strategies(22).  

Tinker et al. (2010) conducted a study in Atlanta and found a positive association between raw 



12 
 

water turbidity and emergency department visits for gastrointestinal illness(55).  Furthermore, 

they did not find an association with filtered water turbidity, thus highlighting the importance 

of considering source water quality (55).  Similarly, Beaudeau et al. (1999) had found an 

association between raw water turbidity and subsequent antidiarrheal drug sales, but not with 

filtered water turbidity(56).  Recently, Hsieh et al. (2015) found an association between source 

water turbidity in New York City and emergency department visits for diarrhea among the 

youngest age groups during the spring season, but concluded that the majority of the temporal 

variation in diarrhea was due to seasonal illness patterns unrelated to source water 

turbidity(57).  In effluent water, a study in Russia found an association between an increase in 

water turbidity and an increased risk of self-reported gastrointestinal illness with a lag of 2 

days(58). 

An etiology was determined for 55% of the 780 outbreaks associated with drinking 

water occurring from 1971 to 2006 in the U.S(19).  Of those, parasites were most frequently 

identified (18%), followed by non-Legionella bacteria (13%), chemicals (12%), and viruses 

(8%)(19).  Legionella (3%) was only identified as the etiologic agent during the latter part of the 

31-year period from 2001 to 2006(19).  Only six outbreaks (<1%) reported mixed agents (i.e., 

combination of bacteria, parasites, and/or viruses)(19).  Also, demonstrating the limitations in 

available data, it is important to note that no etiology was reported for 45% of the 

outbreaks(19). During the cryptosporidiosis outbreak in Milwaukee, physicians usually 

diagnosed viral gastroenteritis or intestinal flu, without further investigation into the etiologic 

agent(39).  By examining drinking water outbreaks associated with microbial contaminants in 

developed countries, Onyango et al. (2015) found that the most common pathogens involved 
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were Campylobacter spp., Norovirus and Cryptosporidium spp.(59).  Onyango et al. (2015) 

reported that 75% of cases were linked to a single microbial species, though the remaining 25% 

had either an unknown microbial agent or multiple etiologies of infection (see Figure 2)(59). 

 

 
Figure 2: Microbial agents associated with drinking water outbreaks in developed countries. 
Source: Onyango et al. 2015 (59) 

 
 

Maintaining Safe Drinking Water 

Safe drinking water depends on several factors that fall into three broad categories (see 

Figure 3).  First, it depends on a well-protected water source (e.g., lakes, streams, reservoirs, 

wells) that guards against natural and man-made pollution(27).  Secondly, it depends on 

effective treatment processes to remove a variety of potential contaminants in a timely 

manner(27). Lastly, it depends on a well-maintained distribution system to safely transport 

clean water to the consumers(27). 
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Figure 3: Fundamental stages of ensuring safe drinking water quality. 

 

The U.S. Environmental Protection Agency (EPA) defines drinking water systems as 

either public or individual(60, 61).  There are three types of public water systems: community; 

non-transient non-community; and transient non-community (see Figure 4 for definitions)(62).  

Of the approximately 153,530 public drinking water systems, 34% are community systems that 

serve the same population year-round(62, 63).  The majority (82%) of the U.S. population is 

served by just 8% of the community water systems(63).  During the 2009 fiscal year, there were 

a total of 51,651 community water systems serving 294,339,881 people(63).  Individual water 

systems consist of the use of non-public sources (e.g., bottled water) and private water systems 

(e.g., ground water wells)(60). In 2010, the majority (87%) of the U.S. population received their 

water from a public-supply system and only about 14% supplied their own water for domestic 

use(64, 65). 
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Figure 4: Different types of water systems, as defined by the EPA. 
Source: EPA 2015 (62), CDC 2014 (60) 

 

Drinking Water Regulations 

The World Health Organization (WHO) produces international drinking water guidelines 

for the protection of public health(33). These guidelines, which provide a framework for safe 

drinking water centered on health-based targets, water safety plans, and surveillance, serve as 

the basis for national drinking water regulations and standards around the world(33).  In the 

U.S., regulated drinking water can come in the form of tap and bottled water.  The Food and 

Drug Administration (FDA) oversees bottled water, while the EPA regulates tap water from 

public water systems(66-69).  Both kinds of water are regularly tested for contaminants, though 

public water systems are typically assessed more frequently(68).  For the protection of public 

water systems, the Safe Drinking Water Act (SDWA) authorizes the EPA to establish minimum 

drinking water contaminant standards and requires all system owners or operators to comply 
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with these standards(69, 70). Aside from setting legal limits on drinking water contaminants, 

the EPA also standardizes water-testing schedules and methods that water systems must 

follow(71).  Under the SDWA, each level of government (e.g., federal, state, tribal), every public 

water system, and the individual consumer have distinct roles and responsibilities(69, 72-74).  

Public water systems regulated by the EPA supply drinking water to 90% of the country’s 

population(69).  Individual water systems, such as privately owned wells, are not regulated by 

the EPA so it is up to the individual homeowners to maintain the safety of their water(60). 

The National Primary Drinking Water Regulations (NPDWRs or primary standards), 

established by EPA under the SDWA, requires public water systems to comply with the 

maximum contaminant levels (MCLs) for a list of contaminants(75).  Currently, EPA has drinking 

water regulations for over 90 contaminants(51, 76).  These contaminants include 

microorganisms, such as Cryptosporidium, Giardia lamblia, total coliforms, and enteric 

viruses(51).  Public water systems closely monitor bacteria because they can pose a 

recognizable human health risk and their presence can be easily detected(24).  Viruses, while 

common in water, are more difficult to detect due to their small size (0.004 – 0.1 μm) and 

inability to be easily grown in cell culture(24, 27, 77, 78).  Regulated contaminants also include 

disinfectants (e.g., chloramines, chlorine), disinfection byproducts (e.g., trihalomethanes, 

haloacetic acid, bromate, chlorite), inorganic chemicals (e.g., arsenic, lead, fluoride), organic 

chemicals (e.g., benzene, polychlorinated biphenyls), and radionuclides (e.g., alpha particles, 

uranium)(51).  These regulations are determined by the level that protects public health and 

the technological capability of the water systems(71).  EPA reviews each national primary 
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drinking water regulation at least once every six years and, if needed, revises them according to 

any new data, information, and technologies(79). See Appendix 1 for list of NPDWRs. 

Under SDWA, there are four types of reportable violations: 1) health-based; 2) 

monitoring and reporting; 3) public notice; and 4) other(80). Health-based violations are related 

to noncompliance with treatment requirements or exceedances in maximum contaminant or 

residual disinfectant concentrations(80).  Monitoring and reporting violations are related to 

inconsistent monitoring or not reporting monitoring results on time(80). Public notice violations 

are related to inadequate consumer alerts of drinking water issues(80).  Other violations are 

related to additional SDWA requirements, such as failing to issue annual consumer confidence 

reports(80). When SDWA marked its 25th anniversary at the end of 1999, the national goal for 

drinking water was set to provide water that met all health-based standards to 95% of the 

population served by public drinking water supplies by 2005(81, 82). In 2002, the level of 

compliance with these health-based standards was already 94%(81, 83). 

For both groundwater and surface water systems during the 2011 fiscal year, 55% of all 

community water systems had at least one violation of SDWA regulations(84). These 

community water systems served a total of 95.4 million people(84).  Most of the violations 

were related to monitoring and reporting requirements and public notification or consumer 

confidence reporting requirements.  Only about 10% of all community water systems had a 

health-related violation (e.g., exceeding a maximum contaminant level or violating a treatment 

technique)(84).  The most common health-related violations during the 2011 fiscal year 

involved regulations for total coliform (observed in every state), disinfection byproducts 

(predominantly in 24 states), arsenic (primarily states in the Southwest and Pacific Northwest 
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where arsenic naturally occurs at high levels), and lead and copper (mainly in 15 states)(84).  In 

general, Rubin (2013) found that SDWA violations during the 2011 fiscal year did not vary by 

source water or size of the community water systems(84).  It is important to note, however, 

that compliance statistics are based on violations reported by states to the EPA Safe Drinking 

Water Information System, so there can be inaccuracies and underreporting of some data(63). 

Resulting from the 1996 SDWA amendments, the EPA requires community water 

systems to provide customers with an annual drinking water quality report, referred to as a 

Consumer Confidence Report (CCR)(85).  The purpose of the CCR is for water utilities to inform 

their customers about the drinking water quality(85).  Specifically, the CCR describes the local 

water source and its risk of contamination(85).  It also provides a summary on compliance with 

regulations, including detected contaminant levels(85).  About 300 million residents receive 

water from a water utility that is mandated to provide a CCR to its customers(63).  Despite 

having the potential to be a powerful public resource, however, CCRs have been shown to be 

inadequate in informing consumers about the safety of their drinking water(86, 87). Also, the 

public disclosure of information may alter the reporting behavior of water suppliers(88).  Since 

the CCR requirement has been in place, Bennear and Olmstead (2008) found that violations 

reported by large water suppliers (serving 10,000 or more people) reduced in the state of 

Massachusetts(88).  Specifically, total violations reduced by 30-44% and more severe health 

violations reduced by 40–57%(88). 

In addition to the primary standards, EPA has established National Secondary Drinking 

Water Regulations (NSDWRs or secondary standards) that provide non-mandatory guidelines 

regulating 15 contaminants that may cause cosmetic effects (e.g., skin or tooth discoloration) or 
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aesthetic effects (e.g., taste, odor, or color) in drinking water(75). While EPA does not enforce 

these secondary standards, "secondary maximum contaminant levels" serve as guidelines to 

assist public water systems in managing their drinking water(75). Although these secondary 

contaminants are not known to cause health problems, the aesthetic nuisance they can cause 

may deter consumers from using the water even though it is actually safe to drink(75). See 

Appendix 2 for list of NSDWRs.   

 The Contaminant Candidate List (CCL) serves as the first level of evaluation for 

unregulated drinking water contaminants with a potential for public health concern(89).  

Published every five years, the CCL contains drinking water contaminants that are known or 

anticipated to occur in public water systems but are not subject to federal drinking water 

regulations(89).  The list includes pesticides, disinfection byproducts, chemicals used in 

commerce, waterborne pathogens, pharmaceuticals, and biological toxins(90). After a final CCL 

is published, the EPA must evaluate at least five contaminants and make a formal decision on 

whether a national primary drinking water regulation for each contaminant should be 

developed(89).  When making a regulatory determination, EPA considers the following criteria: 

1) potential adverse health effect of the contaminant; 2) occurrence of the contaminant in 

public water systems and levels which threaten public health; and 3) prospect that a regulation 

would reduce health risks(89).  After reviewing the CCL, the Unregulated Contaminant 

Monitoring Rule allows the EPA to collect data on occurrence and exposure for up to 30 

contaminants every five years(91). 
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Drinking Water Sources 

 Household tap water generally comes from a treated surface or ground water source.  In 

general, large metropolitan areas rely on surface water supplies while small rural areas rely on 

ground water(20).  Surface water is any body of water that is exposed to the atmosphere(69). 

That is, surface water accumulates on the ground or in a stream, river, lake, pond, reservoir, or 

ocean(20). The amount of local surface water can fluctuate depending on the amount of 

precipitation, factors related to evaporation (e.g., water temperature, air temperature, 

humidity), and seepage into ground water supplies(20).  Untreated surface water is also used 

for irrigation systems (e.g., dams, canals, and sprinkler systems), industrial purposes, mining, 

and thermoelectric power generation(69).   About 74% of the freshwater used in the United 

States is surface water(69).  The remaining freshwater comes from ground water sources 

located underground in the pores and spaces in soil, sand, and rock(20, 69).  Ground water is 

obtained by drilling wells and around 46% of U.S. residents rely on a ground water source for 

drinking water(20, 69).  Approximately 15% of the U.S. population relies on a private ground 

water well system(20).  Ground water is also used for agricultural purposes, such as watering 

crops and livestock(69). Figure 5 illustrates the different water sources. 
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Figure 5: Ground water versus surface water. 
Source: United States Geological Survey (USGS) 
http://www.cdc.gov/healthywater/drinking/public/water_sources_groundwater_fig.html 

 
 
Source Water Contamination 

Source water can be contaminated by natural and man-made contaminants(69, 92).  

Surface runoff, along with treated and untreated discharges from industry and wastewater 

treatment plants, bring pollutants in direct contact with surface water.  As more land gets 

developed and impervious surfaces increase, so does the amount of runoff from 

precipitation(69).  While some contaminants are naturally found in water or result from erosion 

of natural deposits, others result from fertilizers, pesticides, herbicides, drilling waste, sewage, 

human and animal fecal waste, leaching from septic tanks, additives and byproducts of drinking 

water disinfection, and discharge from factories, mills, and refineries(69).  Although usually less 

susceptible, ground water can also be vulnerable to contamination.  The most common threats 

http://www.cdc.gov/healthywater/drinking/public/water_sources_groundwater_fig.html
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to ground water quality are underground storage tanks, septic systems, landfills, industrial 

facilities, and agricultural operations(69). 

Source Water Protection 

Source water protection is crucial in maintaining safe drinking water supplies(48, 93).  

Not only does it reduce the public health risks associated with exposures to contaminated 

water, but it also reduces treatment costs(93). Source water protection relies on the 

involvement of many different players, from the EPA and other federal agencies, to businesses 

and industries, to local utilities and resources(93).  The EPA and other federal agencies provide 

the guidance and resources needed for implementing protection(93). For example, the Clean 

Water Act establishes the basic structure for regulating pollutant discharges and surface water 

quality standards(93, 94).  State and local governments play important roles in applying and 

assessing locally-relevant protection activities(93).  Water utilities can promote the protection 

of their source waters through education campaigns and community partnerships(93).  

Businesses and industries can directly contribute to source water protection by reducing their 

use of harmful contaminants and ensuring proper disposal of their waste products(93).   

Studies have suggested that drinking water quality is directly related to land-cover 

composition of the source areas(95, 96).  Thus, protection of the watershed surrounding source 

waters is an important component of protecting drinking water supplies. Approximately 78% of 

the contiguous U.S. is situated within a drinking water watershed(96).  The supply and 

purification of fresh water depends on a healthy watershed that serves as a well-balance 

ecosystem capable of sustaining a variety of environments and many forms of life(97). In a 

national, watershed-level environmental assessment of over 5,000 drinking water watersheds, 
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drinking water watersheds generally had a high percentage of natural vegetation but a low 

percentage set aside for conservation(96). Over time, drinking water watersheds may gradually 

lose their natural vegetation and increase in urban land development(96).  Due to increased 

population and increased pollution, however, many watersheds are in need of protection(97).  

The EPA’s Office of Wastewater Management oversees the safeguard of waters and watersheds 

in the U.S. and promotes the Clean Water Act by encouraging effective and responsible water 

practices in addition to watershed protection and restoration(69).   

 

Water Treatment Processes 

Since source waters can almost all be potentially impacted by some type of 

contamination, nearly all public water systems require at least some type of  treatment before 

being distributed to consumers(69). There are various methods of water treatment used by 

public drinking water systems to ensure safe drinking water. The steps most commonly used by 

community water systems (mainly surface water treatment) include: coagulation and 

flocculation; sedimentation; filtration; and disinfection(29, 92, 98). In brief, coagulation 

neutralizes the negative charge of dissolved particles (e.g., dirt) in the water(29, 98). 

Flocculation then occurs when particles bind with the chemicals and form larger particles, 

called flocs(29, 98).  During sedimentation, the floc settles to the bottom of the water supply, 

leaving clearer water on top that can then be more easily filtered(29, 98).  In order to remove 

an assortment of dissolved particles (e.g., dust, parasites, bacteria, viruses, and chemicals), 

filters vary in composition (e.g., sand, gravel, charcoal) and pore sizes(29, 98).  Either before or 

after filtration, a disinfectant may be added in order to destroy any remaining pathogens and, 
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in the U.S., a residual is required to protect the water from pathogens while in the distribution 

system(29, 98). Disinfection treatment processes for microbiological contaminants include 

chlorination, chloramination, ozonation, ultra-violet irradiation and chlorine dioxide 

disinfection(29, 81, 99).  Chlorination is probably the most widely used and generally the most 

cost-effective method of drinking water disinfection(29).  In terms of cost, efficacy, stability, 

ease of application, and formation of by-products, every disinfectant has its advantages and 

disadvantages(99).  

Since all disinfectants are reactive substances, they will inevitably produce by-

products(99). Chlorine-based disinfectants are the most commonly used disinfectants because 

they are inexpensive, easy to use, and usually effective for bacteria and viruses.  However, 

chlorination is not always effective against parasites and it produces disinfection by-products 

(e.g., trihalomethanes, haloacetic acids, bromate, chlorite)(99).  Disinfectants such as 

chloramines, ozone, chlorine dioxide, and ultraviolet disinfection are gaining popularity as 

alternatives to chlorine(99). Of these, ozone has been noted as the most efficient disinfectant 

for inactivating bacteria, viruses, and protozoa(99).  Existing risk assessment studies are 

inconclusive regarding the public health implications of drinking water exposure to 

disinfectants and their by-products(100). However, the WHO concludes that the estimated 

health risks from disinfectants and their by-products are negligible when compared to the 

actual risks associated with inadequate disinfection(99, 101).  

A number of U.S. cities have avoided construction of filtration plants by investing 

instead in watershed protection to maintain the purity of their drinking water(97, 102). In cities 

like Boston and Seattle, investing in watershed protection instead of filtration plants was 
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possible because the municipal water authority owned and was able to protect the critical 

watershed lands(97). In the case of New York City, however, a multifaceted agreement with 

watershed communities was necessary due to the private ownership of approximately three 

quarters of the watershed(97).  Utilizing an unfiltered surface supply, New York City provides 9 

million consumers with approximately 1.5 billion gallons of water per day(30).  Without 

filtration, the city relies on chlorination, fluoridation, and corrosion control to treat the water 

and also routinely monitors water quality indicators, such as coliform bacteria, turbidity, 

temperature, and pH(30).  In the event that extreme conditions increase turbidity levels, the 

city may also resort to additional chemical treatments, such as alum and sodium hydroxide(30).  

Increasingly, many of these unfiltered water systems may be threatened by developments in 

their watersheds and face greater risk of microbiological and chemical pollution(102).  As a 

result, some cities with unfiltered water systems have been ordered by either the EPA or state 

government to filter their water or to improve water treatment through use of advanced 

disinfection technologies such as ozone or ultraviolet light(102).  

 

In-Home Water Treatment 

In addition to the typical municipal water treatment, there are several types of in-home 

water treatment systems that can target a specific or range of contaminants as well as improve 

taste and odor(103).  Contaminants that can be removed by in-home treatment systems 

include: Giardia, Cryptosporidium, bacteria, viruses, arsenic, disinfection byproducts, lead, 

nitrates, pesticides, radium, and radon(77). Over 40% of Americans use some kind of in-home 

water treatment system, which has become a multi-billion dollar industry(77). In-home water 
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treatment systems range from whole-house systems to simpler point-of-use systems(103). 

Whole house systems usually treat the water at the point of entry in order to treat all or most 

of the water entering a residence(103).  Consequently, they are typically installed near the 

water meter (municipal) or pressurized storage tank (well water)(103).  Whole-house systems 

include ultraviolet microbiological systems, water softeners, and whole-house filters for 

chlorine, taste, odor and particulates(103).  Alternatively, point-of-use systems typically treat 

water at the point of consumption and include water pitchers, faucet filters, and reverse 

osmosis systems(103).  The majority of available home water filters remove Cryptosporidium, 

though some filter designs are more suitable than others(104).  Technologies more likely to 

reduce Cryptosporidium include filters with reverse osmosis and those with an absolute pore 

size of 1 micron or smaller(104).  Activated carbon filters are commonly used to treat general 

taste and odor problems, including the removal of chlorine residuals(24).  Although these filters 

do not remove nitrate, bacteria, or metals, they are one of the best methods for the removal of 

certain organic chemicals, including some pesticide residues, which adsorb to the surfaces of 

the carbon particles(24).  Obviously, the effectiveness of any in-home water treatment system 

depends on proper use and maintenance(24).  For example, activated carbon filters are 

designed to filter a certain amount of water and then can become clogged or their contaminant 

removal capacity has been exceeded rendering them ineffective(77). 

In a study investigating home water treatments in rural Arizona, residents with 

increased household income and education levels were more likely to use home treatments, 

regardless of the source water quality(105).  On the other hand, residents in older homes were 

less likely to use home treatment(105).  In terms of the effectiveness of home treatments 
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studied, the results were inconsistent as some contaminant concentrations increased and 

others decreased(105).  In a randomized intervention trial assessing the use of reverse-osmosis 

filters in Montreal, 35% of the self-reported gastrointestinal illness was related to the water 

and considered preventable(106).  Nevertheless, in a double-blinded, randomized, controlled 

intervention study conducted in Australia, the use of a combined 1-μm filtration and ultraviolet 

treatment did not seem to impact the incidence of self-reported gastrointestinal illness among 

residents drawing from a high quality water source(107).  Similarly, in a triple-blinded, 

randomized, controlled intervention study conducted in Iowa, the use of a combined 1-μm 

filtration and ultraviolet treatment did not affect the incidence of self-reported gastrointestinal 

illness among residents drawing from a microbiologically challenged water source(108). 

 

Water System Failures 

In the U.S. and other developed countries with robust treatment technologies, 

waterborne disease outbreaks still occur due to factors such as poor operational and 

maintenance practices, aged infrastructure, inadequate monitoring, and failures in the 

distribution network(29).  Drinking water system failures in developed countries can occur in 

the catchment, water source, treatment, disinfection system, and distribution system(59).  

Failure types can involve issues with operation and maintenance, breakage of equipment 

(cracked pipes, malfunctioning pumps, etc.), poor engineering design, inability to treat the 

capacity or composition of the raw water, inadequate maintenance and monitoring of the 

plant, and human error(59).  Onyango et al. (2015) found that the majority of the outbreaks 

stemmed from both failures in the management framework (27%) and inadequate 
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infrastructural design (25%)(59).  Figure 6 shows the breakdown of causes identified.  According 

to a quantitative microbial risk assessment (QMRA) on microbial health risks due to failures in 

Swedish drinking water systems, the majority of potential infections resulted from pathogens 

passing treatment during normal operation and not due to failures(109).  The primary water 

treatment risks identified were related to sub-optimal particle removal or disinfection 

malfunction(109). 

 

 
Figure 6: Causes of pathogenic outbreaks. 
Source: Onyango et al. 2015 (59) 

 

 

Aim 1 Background: Harmful Algae 

When an excess of nutrients (e.g., nitrogen, phosphorus) enters a waterbody, often due 

to anthropogenic activities, algae can rapidly grow and inundate the ecosystem(8, 110). Some 

algal blooms are harmful because they produce toxins and bacterial growth that can cause 

illness in humans and animals(8, 110).  Human exposure to harmful algae can result from 

contacting polluted water, consuming tainted fish or shellfish, inhaling contaminated water 

droplets, and drinking contaminated water(110, 111).  Harmful algal blooms occur in all 50 
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states and can have substantial consequences on human health, aquatic ecosystems, and the 

economy(8).   

Cyanobacteria, also referred to as blue-green algae, are microscopic organisms that 

naturally occur in fresh, estuarine, and marine waters(112).  While cyanobacteria have a 

bacterial ancestry, they are considered to be algae by phycologists due to phenotypic 

similarities(113).  Depending on the species, they can occur as single cells, filaments of cells, or 

colonies(114). Some species live dispersed in the water (phytoplankton) whereas others grow 

on sediments (phytobenthos)(115).  Cyanobacteria help maintain marine and freshwater 

ecosystems by producing oxygen (as a by-product of photosynthesis) and by serving as a food 

source for other organisms(115, 116).  However, under certain environmental conditions, such 

as high nutrient levels, warmer temperatures, and sun exposure, an excessive proliferation of 

cyanobacteria can form a bloom(5, 114, 115).  With a changing climate impacting freshwater 

and marine environments, harmful algal blooms may end up occurring more often, in more 

places, and at higher intensities(1-5).  Climate impacts potentially affecting algal blooms 

include: warming water temperature; changes in salinity resulting from droughts; higher carbon 

dioxide levels; changes in rainfall leading to more nutrient runoff; sea level rise creating more 

shallow and stable coastal waters; and coastal upwelling bringing nutrients from the ocean 

floor to the surface(1, 4, 5). 

Some cyanobacteria species produce relatively non-toxic taste-and-odor compounds, 

such as geosmin and 2-methylisoborneol(117-119). These compounds, also found in soil and 

mushrooms, have strong earthy tastes and odors(117).  On the other hand, some cyanobacteria 

species are often associated with toxic blooms as they produce a complex mixture of 
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hepatotoxins, neurotoxins, and dermatotoxins(115, 116, 119).  While taste-and-odor 

compounds and toxins frequently co-occur, odor alone does not indicate the presence of toxins 

because toxins still occur more frequently than taste-and-odor compounds(118). 

Cyanotoxins are a diverse group of natural toxins that can be produced by a wide variety 

of planktonic cyanobacteria(112, 115).  Most cyanotoxins, including anatoxin-a and 

microcystins, are produced and contained intracellularly and released in an algal bloom during 

cell death and lysis(111, 112).  However, some cyanotoxins, such as cylindrospermopsin, may 

be naturally released to the water by the live cyanobacterial cell, existing approximately  50% 

intracellularly and 50% extracellularly(111).  Compared to intracellular toxins, extracellular 

toxins can be more challenging to remove because they may adsorb to clays and organic 

material in the water column(111). 

Cyanotoxins can be divided into three general groups of chemical structure: cyclic 

peptides, alkaloids, and lipopolysaccharides(115).  Cyclic peptides include microcystins and 

nodularin, both of which primarily target the liver and are the most frequently found 

cyanobacterial toxins in freshwater blooms(115).  Microcystins are produced by a range of 

cyanobacterial genera (e.g., Anabaena, Fischerella, Gloeotrichia, Nodularia, Nostoc, Oscillatoria, 

members of Microcystis, Planktothrix) and can bioaccumulate in common aquatic vertebrates 

and invertebrates such as fish, mussels, and zooplankton(112).  Of the 80 or so known 

microcystins, Microcystin-LR is generally considered one of the most toxic(111).  Alkaloids can 

be neurotoxic (e.g., anatoxins, saxitoxins), cytoxic (e.g., cylindrospermopsins), and dermatotoxic 

(e.g., aplysatoxins, lyngbyatoxins)(115).  Lipopolysaccharides, which can be produced by all 

cyanobacterial genera (but not all species), are considered potential irritant toxins as their fatty 
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acid component generally elicits an irritant of allergenic response in humans and 

mammals(115).  The most commonly identified cyanotoxins in the U.S. are microcystins, 

cylindrospermopsin, anatoxins, and saxitoxins(112).   

The risk for exposure to cyanotoxins is not always obvious since toxins may still be 

present in the absence of a bloom or visible scum on the water(120). As mentioned above, this 

is because cyanotoxins are generally contained within cells and only released into surrounding 

waters during cell death and lysis(120).  Therefore, waters that appear to be free of 

cyanobacteria may actually be contaminated with free toxin(120).  Also, treatment methods 

may lyse cells and release toxins into the water(120).  In 2007, EPA identified microcystins, a 

group of cyanotoxins, in approximately one-third of the nation’s lakes(121). 

Aside from producing toxins, cyanobacteria can present other treatment challenges for 

public water systems, including taste and odor and shortened filter run times(117, 122).  The 

occurrence of cyanotoxins in drinking water depends on their concentration in the raw source 

water and how well the treatment methods are at removing cyanobacteria and 

cyanotoxins(122).  Unfortunately, data on the presence or absence of cyanotoxins in finished 

drinking water are limited because there is no centralized monitoring program(122).  

Nevertheless, drinking water treatment plants are increasingly met with the need to monitor 

and respond to harmful algal blooms(123).  In Florida, a survey conducted in 2000 reported that 

microcystins were the most commonly found toxin in pre- and post-treated drinking water, 

with finished water concentrations as high as 12.5 µg/L(122).  In 33 U.S. drinking water 

treatment plants in the Northeast and Midwest, a survey conducted in 2003 reported that 

microcystins were detected at low levels (≤0.36 µg/L) in all finished water samples 
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collected(124).  In more recent years, there has been a noticeable increase in the severity of 

cyanobacterial harmful algal blooms in Lake Erie, a drinking water source for many 

communities(123). Based on agricultural and meteorological trends that triggered a massive 

bloom in 2011, scientists predicted that, without any changes to mitigate future projections, 

nuisance algal blooms would only become more common(3). As predicted, in the summer of 

2014, microcystin concentrations were particularly severe in Western Lake Erie(2).  In fact, 

microcystin levels in fully treated tap water were detected at almost three times the WHO limit 

of 1 µg/L(2).  The immediate impact was that over 500,000 residents in and around Toledo, 

Ohio were warned not to use their water(2, 122). The Toledo event brought national attention 

to the threat of algal toxins in public water supplies(125).  In New York, two municipal systems 

that draw water from Owasco Lake in the Finger Lakes region began collecting samples for toxin 

testing after the Toledo event(125).  In September 2016, microcystins were detected at low 

levels (≤0.18 µg/L) in both water systems, first in the untreated water and then in the finished 

water(125).  This incident marked the first time algal toxins have ever been found in treated 

public drinking water in the state of New York(125). 

Drinking water systems that use surface water sources (e.g., lakes, reservoirs) are 

vulnerable to harmful algal blooms(126).  In fact, the lakes and reservoirs that supply drinking 

water to an estimated 30 to 48 million Americans may sometimes be contaminated by algal 

toxins(4, 126).  Despite this, there are currently no U.S. federal water quality criteria or 

regulations for harmful algae, such as cyanobacteria or their toxins (cyanotoxins), in drinking or 

recreational waters(117, 122).  Cyanobacteria and cyanotoxins were included on the first and 

second Contaminant Candidate List (CCL), in 1998 and 2005, respectively(122).  Based on 



33 
 

toxicological, epidemiology and occurrence studies, cyanotoxins, including anatoxin-a, 

cylindrospermopsin, and microcystin-LR, were included on the third CCL in 2009 and also on the 

draft of the fourth CCL in 2015(111, 122).  Although the EPA has yet to establish any drinking 

water standards, they developed health advisories (non-regulatory) for the cyanobacterial 

toxins microcystins and cylindrospermopsin in 2015(122, 127, 128).  Specifically, the EPA 

recommended that 1) young children and people with preexisting health conditions should not 

consume water containing more than 0.3 μg/L for microcystins or 0.7 μg/L for 

cylindrospermopsin; and 2) older children and healthy adults should not consume more than 

1.6 μg/L for microcystins and 3.0 μg/L for cylindrospermopsin (122, 127).  Other cyanotoxins, 

such as saxitoxins and anatoxin-a(S), that also occur in U.S. drinking water sources were not 

directly addressed(111, 122).  Also, the International Agency for Research in Cancer considers 

Microcystin-LR to be a possible human carcinogen (Group 2B) based on some evidence that it 

may act as a tumor promoter(112, 115).  According to the EPA, however, there is insufficient 

data to assess carcinogenic potential of microcystins in humans due to limitations in the few 

available human studies (i.e., potential co-exposure to other contaminants) and lack of long-

term animal studies evaluating cancer following oral exposure(112). 

The fourth Unregulated Contaminant Monitoring Rule (UCMR 4), proposed at the end of 

2015, included 10 cyanotoxin chemical contaminants to be monitored between 2018 and 2020 

to provide a basis for future regulatory developments(129). Internationally, 18 countries and 

three U.S. states (Minnesota, Ohio, Oregon) have developed drinking water guidelines for 

microcystins (see Table 1 and Table 2)(122).  Many standards and guideline values have been 
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based on the provisional WHO guideline value of 2,000 cyanobacterial cells/mL for drinking 

water or 1 μg/L of microcystin-LR(33, 122). 

 
Table 1. International drinking water guidelines for microcystins. 

Country Guideline Value 

Brazil, China, Czech Republic, Denmark, 

Finland, France, Germany, Italy, Japan, 

Korea, Netherlands, Norway, New 

Zealand, Poland, South Africa, and Spain 

1.0 μg/L microcystin-LR 

Australia 1.3 μg/L microcystin-LR 

(toxicity equivalents) 

Canada 1.5 μg/L microcystin-LR 

 
 
Table 2. U.S. state drinking water guidelines for microcystins. 

State Guideline Value 

Minnesota 0.04 µg/L microcystin-LR 

Ohio 1 µg/L microcystin 

Oregon 1 µg/L microcystin-LR 

 
 
Harmful Algae and Illness 

Human exposure to cyanobacteria and cyanotoxins can occur through direct contact, 

inhalation of contaminated water droplets (e.g., while showering or during recreational 

activities), and ingestion (e.g., drinking contaminated water, consuming tainted fish or 

shellfish)(110, 111).  In the U.S., recreational activities during freshwater harmful algal blooms 

have been associated with waterborne disease outbreaks that include dermatologic, 

gastrointestinal, respiratory, febrile, ear, and eye symptoms(130-133).  Among 11 states 

participating in the Harmful Algal Bloom-Related Illness Surveillance System (HABISS) program, 
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458 suspected or confirmed human illnesses and 175 animal morbidity and mortality cases 

were reported as being associated with bloom events during 2007-2011(134).  The data in 

HABISS, however, only reflects recreational exposures for humans and domestic pets(134).  

When public drinking water systems are contaminated with harmful algae, there can be a 

substantial public health impact as large numbers of people may be exposed and become 

ill(134, 135).  Drinking water exposure to harmful cyanobacteria can lead to symptoms of 

illness, both chronic (e.g., liver and kidney damage) and acute (e.g., gastroenteritis, muscle pain 

and dermatitis)(116, 133, 135).  Toxic cyanobacterial blooms have been associated with human 

and animal illness in at least 43 states(136). Figure 7 shows the distribution of reports and 

events related to such blooms.  In August 2016, at least 19 states had public health advisories 

because of cyanobacterial harmful algal blooms(136). 

 

 
Figure 7: Cyanobacterial harmful algal blooms in the United States. 
Source: https://www.usgs.gov/media/images/national-status-cyanohabs-august-2016  

 
 
Although there are other more frequent causes (e.g., bacterial, viral, protozoal) of 

drinking water outbreaks, there is epidemiologic evidence for human illness due to 

https://www.usgs.gov/media/images/national-status-cyanohabs-august-2016
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cyanobacterial toxins(115).  Throughout history, there have been many recorded cases of 

gastrointestinal and hepatic illness that have been attributed to cyanobacterial toxins in the 

water supplies(115).  Cyanobacterial toxins are generally released during the breakdown of a 

natural cyanobacterial bloom or with the application of copper sulfate to destroy the bloom 

(artificial lysis)(115).  The earliest reported cases of gastroenteritis from cyanobacteria occurred 

in 1931 along the Ohio River(115).  In 1975, a gastroenteritis outbreak affected over half (62%) 

of a population supplied by a single reservoir in a Pennsylvania town that was affected by 

bloom of a cyanobacterium (Schizothrix calicola) (133, 137).  In 1988, the most deadly outbreak 

attributed to cyanobacterial toxins in drinking water occurred in Brazil and caused 88 deaths, 

the majority of whom were children(115, 133).  In the summer of 2009, Lévesque  et al. (2014) 

conducted a prospective study of residents who lived in close proximity to lakes affected by 

cyanobacteria in Quebec, Canada(138).   Among participants receiving drinking water from a 

plant whose source was contaminated by cyanobacteria, an increase in self-reported muscle 

pain, gastrointestinal symptoms, dermal symptoms, and ear symptoms was observed (138).  In 

Australia, a case-control study suggested that gastrointestinal and dermal symptoms were 

correlated with increased cyanobacterial cell counts in a drinking water supply that came from 

a river affected by an extensive bloom(139).  During the 10-year period from 1998 to 2008, 

Beaudeau et al. (2014) found that cyanobacteria in the drinking water source may be 

associated with a higher risk of Medicare (≥65 years of age) hospital admissions for acute 

gastrointestinal illness(140).  In particular, the association between cyanobacteria and acute 

gastrointestinal illness was weakly significant over 8-12 day lags and peaked over 23-27 day 

lags(140).  The rationale for the long latency of the effects for cyanobacteria was unclear and 
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the authors suggested a need for further investigation(140).  Gastrointestinal illness has been a 

common outcome in studies of cyanobacteria exposure via drinking water ingestion and 

accidental recreational intake(141).  While acute toxicity is the most evident problem in 

cyanobacterial poisoning, there may also be chronic effects(115, 133).  As mentioned earlier, 

there is some evidence suggesting Microcystin-LR may act as a tumor promoter and the 

International Agency for Research in Cancer considers it to be a possible human carcinogen 

(Group 2B)(112, 115).  Human studies and long-term animal studies, however, are limited(112).  

Human studies suggesting a link between cyanobacteria and malignant disease come primarily 

from the southeast coastal area of China, where ponds and ditches that serve as drinking water 

regularly suffer from intense cyanobacterial blooms(115, 133).  A few epidemiologic studies 

have suggested that populations obtaining water from ponds and ditches have a much higher 

incidence of primary liver cancer than those using river or well water(115, 133). 

Certain subgroups of the general population may be more susceptible to the health 

effects of cyanotoxins.  As with any microbial contaminant, infants and children, pregnant 

women, the elderly, and immunocompromised persons may be at higher risk for becoming ill 

after drinking contaminated water(102, 142).  In particular, individuals with liver or kidney 

conditions (e.g., hepatitis, liver cirrhosis, other toxic liver injuries, kidney damage) may be more 

susceptible to cyanobacterial toxins(143).  In an extreme scenario, when water used for dialysis 

was contaminated with microcystins in Brazil, a number of fatalities among end-stage renal 

failure patients occurred(115, 144).  Also, infants and children are another susceptible group 

who are at a higher risk, relative to adults, due to their lower body weight (thus swallowing 

more water per body weight than adults) and developmental stage(143).  While developmental 
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effects of different cyanotoxins (e.g., microcystins, saxitoxin, anatoxin-a, cylindrospermopsin) 

have been observed in fish embryos and mouse models, the impact on human development 

has not been established(143).   

Globally, cyanotoxins have been detected in raw and finished waters and direct 

ingestion of contaminated drinking water is a common route of exposure(144).  Increased risks 

to human illness have been linked to the ingestion of high levels of cyanotoxin in water; 

however, the effect of chronic low levels not well-documented or understood(144).  There are 

challenges to addressing the potential public health impacts because the risks associated with 

exposure vary across organisms, toxins, and routes of exposure(134).  As noted by Hudnell 

(2010), the least characterized risks are perhaps those from repeated, low-level, multi-route 

exposures to cyanotoxins in surface and drinking waters(128). 

Water Treatment for Harmful Algae 

The management of cyanobacterial blooms in surface water is complex. In order to 

protect consumers from exposure, the primary management objectives are to prevent, 

monitor, and, if necessary, remove cyanobacteria and their toxins(119).  Preventing the 

occurrence of algal blooms involves the control and management of nutrients from outside and 

from within the lake or reservoir(119).  Monitoring involves the routine counting and 

identification of phytoplankton, and analysis of toxins if cyanobacteria are predominant(119).  

To eradicate a bloom of cyanobacteria, an algaecide, usually copper sulfate, can be applied(115, 

119).  If applied correctly, algaecides are effective at eliminating blooms; however, they can 

induce cell lysis and subsequent release of intracellular toxins(115, 119).  In addition, copper 

sulfate can pose ecological and public health risks through copper accumulation in 
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sediments(115, 119).  In order to avoid these negative consequences, algaecides should only be 

used under very specific conditions(115).  In essence, there are no simple restorative measures 

once a bloom occurs in surface water(119).  

Research on cyanotoxin removal is ongoing(123).  While certain drinking water 

treatment processes can remove cyanobacterial toxins, their efficacy range from 60% to 

99.9%(4). An ineffective treatment method not only compromises water quality, but it can also 

bring about severe treatment disruption or treatment plant shutdown(4).  Factors that impact 

cyanotoxin removal include the cyanobacterial species and cell density, coagulant type and 

dose, pH, natural organic material, and operational parameters such as flocculation time, 

frequency of filter backwashing and clarifier sludge removal(122, 145).  Existing operations 

working to address cyanotoxins are modifying the locations where treatment chemicals are 

applied, the types and concentrations of chemicals applied, and the pH at which the processes 

are operated(123). Recent research has focused on the impacts of pH and hydrogen peroxide 

addition on ozone contactor efficiency(123).  While chlorination has demonstrated some 

potential in treating microcystins during oxidation and disinfection processes, chlorine-based 

processes (chlorine, chloramines and chlorine dioxide) have not been found to successfully 

treat other cyanotoxins (e.g., anatoxin-a)(146, 147).   

Water treatment processes are typically based on either the retention or degradation of 

contaminants(119).  Retention-based treatments include 

coagulation/flocculation/sedimentation, sand filtration, membrane filtration, and activated 

carbon(119).  Degradation-based treatments include ultraviolet irradiation and photocatalysis, 

ozonation, and chlorination and chloramination(119).  While retention-based treatments 
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generally require more regular maintenance (e.g., cleaning procedures, backflushing, 

replacement of activated carbon and membranes), degradation-based treatments may produce 

potentially harmful by-products (e.g., trihalomethanes)(119). 

Although intracellular microcystins make up the majority of the total microcystin 

concentration in source water, extracellular microcystins (either dissolved in water or bound to 

other materials) still make up a portion (<30%)(122).  Therefore, it is essential that treatment 

processes consider the presence of both intracellular and extracellular microcystins(122).  In 

the absence of cell damage, conventional water treatment (e.g., coagulation, flocculation, 

sedimentation, rapid granular filtration) can be effective at removing intact cells and the 

majority of intracellular toxins(122). In fact, 60 to 95% of cells and intracellular microcystins can 

be removed during sedimentation and up to 99.9% can be removed through filtration(122). If 

toxins are released into the water, however, conventional treatments need additional 

processes such as chemical oxidation, adsorption, biodegradation or reverse osmosis, and 

nanofiltration(122).  Studies have suggested that conventional drinking water treatment 

followed by oxidation or activated carbon may remove both intracellular and extracellular 

microcystins up to 99.99% of total microcystins to achieve concentrations below 0.1 μg/L in 

treated water(122).   

Ozone has been commonly used in developed countries, more in Europe than in North 

America, to remove potentially harmful organic pollutants and for disinfection(29, 116).  The 

biggest advantage ozone has over chlorination is its ability to disinfect Cryptosporidium(29).  It 

has also been shown to be an effective method for destroying microcystins and nodularins(116, 

119, 148). Ozonation can be applied just once or several times during various phases of the 
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water treatment process(148).  Since ozone will oxidize most organic materials in the water, its 

concentration must be above the ozone demand of the organic material in the raw water(116, 

148).  Combining ozonation and chlorination can successfully remove the most common 

extracellular toxins(119).   

Although effective at oxidizing extracellular microcystins, chemical oxidation using 

chlorine, potassium permanganate, or ozonation can also impair cell integrity(122).  Impaired 

cell integrity can lead to cell lysis, which would subsequently increase the concentrations of 

extracellular microcystins(122). One solution to this is to simply apply a conventional (or 

alternative) filtration process first to remove the majority of intact cells(122).  As expected, the 

removal efficiency of filtration depends on the size of the filter’s pores(122).  In general, 

microfiltration (0.1–10 μm) and ultrafiltration (1–100 nm) membranes can remove both 

cyanobacterial cells and intracellular microcystins(122).  For the removal of extracellular 

microcystins, however, ultrafiltration is inconsistent (35 to 70% removal) and microfiltration is 

ineffective(122). On the other hand, nanofiltration (around 1 nm) and reverse osmosis 

membranes (0.1 nm) can effectively remove intracellular and extracellular microcystins (82 to 

100% removal)(119, 122). 

Table 3 provides a summary of different cyanotoxin treatment processes(111).  

Although there are ways to efficiently remove or transform individual toxins, there is not one 

ideal method that can simultaneously remove all the cyanotoxins in a mixture(119). 
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Table 3. Cyanotoxin treatment processes and relative effectiveness. 
Treatment Process Relative Effectiveness 

Intracellular Cyanotoxins Removal (Intact Cells) 

Pre-treatment oxidation Oxidation often lyses cyanobacteria cells releasing the cyanotoxin to 

the water column. If oxidation is required to meet other treatment 

objectives, consider using lower doses of an oxidant less likely to lyse 

cells (potassium permanganate). If oxidation at higher doses must be 

used, sufficiently high doses should be used to not only lyse cells but 

also destroy total toxins present (see extracellular cyanotoxin removal). 

Coagulation/Sedimentation/ 
Filtration 

Effective for the removal of intracellular toxins when cells accumulated 

in sludge are isolated from the plant and the sludge is not returned to 

the supply after sludge separation. 

Membranes Study data are limited; it is assumed that membranes would be 

effective for removal of intracellular cyanotoxins. Microfiltration and 

ultrafiltration are effective when cells are not allowed to accumulate 

on membranes for long periods of time. Can clog and form biofilms. 

Flotation Flotation processes, such as Dissolved Air Flotation (DAF), are effective 

for removal of intracellular cyanotoxins since many of the toxin-

forming cyanobacteria are buoyant. 

Extracellular Cyanotoxins Removal (Dissolved) 

Membranes Depends on the material, membrane pore size distribution, and water 

quality. Nanofiltration is generally effective in removing extracellular 

microcystin. Reverse osmosis filtration is generally applicable for 

removal of extracellular microcystin and cylindrospermopsin. Cell lysis 

is highly likely. Further research is needed to characterize performance. 

Potassium Permanganate Effective for oxidizing microcystins and anatoxins. Further research is 

needed for cylindrospermopsin. 

Ozone Very effective for oxidizing extracellular microcystin, anatoxin-a, and 

cylindrospermopsin. 

Chloramines Not effective. 

Chlorine dioxide Not effective with doses used in drinking water treatment. 

Chlorination Effective for oxidizing extracellular cyanotoxins as long as the pH is 

below 8; ineffective for anatoxin-a. 

Ultraviolet Radiation Effective at degrading microcystin and cylindrospermopsin but at 

impractically high doses. 

Activated Carbon Powdered activated carbon (PAC): Effectiveness varies highly based on 
type of carbon and pore size.  Wood-based activated carbons are 
generally the most effective at microcystin adsorption. Carbon is not as 
effective at adsorbing saxitoxin or taste and odor compounds.  Doses in 
excess of 20mg/L may be needed for complete toxin removal. 
 
Granular activated carbon (GAC): Effective for microcystin but less 

effective for anatoxin-a and cylindrospermopsins. 

Source: EPA-810F11001 (https://www.epa.gov/sites/production/files/2014-08/documents/cyanobacteria_factsheet.pdf)  

 
  

https://www.epa.gov/sites/production/files/2014-08/documents/cyanobacteria_factsheet.pdf
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Aim 2 Background: Drinking Water Distribution Systems 

 After the treatment of water, public water systems rely on a distribution system made 

up of a complex, interconnected series of pipes, storage facilities, pumps, and valves to 

transport drinking water from the water source or treatment plant to the consumer (see Figure 

8)(6, 149).  A water main is any pipe that distributes potable water to more than one 

property(150). From a main, water reaches an individual property through a service line(150).  

Aside from providing an uninterrupted supply of pressurized safe drinking water to all 

consumers, distribution systems also deliver fire protection needs to facilities such as homes, 

schools, hospitals, and businesses(149).  Based on surveys of water utilities, there are about 1 

million miles of piping, 24,000 storage tanks, 6.8 million fire hydrants, 69.5 million service lines, 

and 14.6 million valves in the U.S.(6, 151).  According to a study of utilities across the U.S. and 

Canada, 264 people are served per 1 mile of pipe regardless of utility size(152).  Public water 

systems in the U.S. produce 34 billion gallons of drinking water each day, over half of which is 

used by residential customers(6). Although the majority (>80%) of water used by residential 

customers is used for activities other than human consumption (e.g., sanitary service, 

landscape irrigation), distribution systems are designed to supply water that is safe for human 

consumption(6). 
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Figure 8: Drinking water distribution system. 
Source: https://www.epa.gov/dwsixyearreview/drinking-water-distribution-systems 

 
 

Ideally, the quality of treated water from the time it leaves the treatment plant until the 

time it is consumed should not change(6). In reality, however, complex physical, chemical, and 

biological reactions can cause substantial changes in water quality during distribution(6). Thus, 

distribution systems are a potential source of contamination that can lead to waterborne 

disease outbreaks(6). 

Most drinking water regulations focus on water quality standards at the treatment plant 

and not within the distribution system(6). The few rules under SDWA that address the 

degradation of distribution system water quality include the Lead and Copper Rule, the Surface 

Water Treatment Rule, the Total Coliform Rule, and the Disinfectants/Disinfection By-Products 

Rule(6).  These rules focus on measurements taken within the distribution system and in tap 

water samples(6).  In addition, there are a number of state regulations and plumbing codes that 

influence distribution system water quality, from requirements for design, construction, 

operation, and maintenance of distribution systems to cross-connection control programs(6).  

https://www.epa.gov/dwsixyearreview/drinking-water-distribution-systems
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Regardless, regulations only address certain aspects of distribution system water quality rather 

than the integrity of the entire distribution system(6). 

Unplanned Disruptions in Distribution 

Due in part to the EPA regulations governing public water systems using surface water, 

waterborne disease outbreaks associated with untreated surface water systems have declined 

since 1971, with none reported between 1991 and 2002(153).  Also, treatment deficiencies, 

such as inadequate filtration of surface water, have declined over the years(153).  Instead, 

disruptions in the distribution infrastructure have become the main culprit of waterborne 

disease outbreaks in recent years(153). During 2001-2002, these disruptions were responsible 

for over half of all waterborne disease outbreaks(153). 

The pipes that make up water distribution systems can vary considerably in material and 

age(6, 154).  From the 1880s to the early 1930s, grey cast iron pipes were manufactured by 

pouring molten cast iron in upright sand molds placed in a pit(155). In 1920s and 1930s, a new 

manufacturing process improved the material uniformity by casting the pipes horizontally in 

molds made of sand or metal that spun as the molds were cooled externally with water(155). In 

1948, the composition of the iron was changed to produce ductile iron pipe; however, industrial 

production of ductile iron pipe did not begin until the late 1960s(155). By 1982, virtually all new 

iron pipes were ductile iron(155).  In the 1970s, plastic (e.g., polyvinyl chloride) pipes were also 

introduced(6).  As distribution systems age, they can deteriorate due to corrosion, materials 

erosion, and external pressures(102, 149).  This deterioration can lead to breaches in pipes and 

storage facilities, intrusion due to water pressure fluctuation, and main breaks(102, 149).  In 

order to keep up with aging water systems and distribution pipes,  the water industry will have 
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to make substantial investments in pipe assessment, repair, and replacement(6).  The EPA’s 

Drinking Water Infrastructure Needs Survey and Assessment, published in 2013, estimated that 

drinking water utilities need $384.2 billion over the next 20 years (from 2011 to 2030) for 

infrastructure projects to ensure that water systems continue to provide safe drinking water to 

the public(154).  In a study of drinking water systems in 19 U.S. cities, the Natural Resources 

Defense Council, reported that many cities (e.g., Atlanta, Boston, Washington, D.C.) were built 

toward the end of the 19th century and that the water supply infrastructure is breaking 

down(102).  In fact, an estimated 240,000 main breaks occur each year, wasting over two 

trillion gallons of treated drinking water(9).  The report also revealed that an increase in the 

frequency of periodic spikes in contamination in many cities may be an indication that aging 

equipment and infrastructure are overwhelmed(102).   

A pressure transient (also known as surge or water hammer) in a drinking water pipeline 

results from an abrupt change in the velocity of water(156). Rapid changes in pressure and flow 

are inevitable and can strain any water system(6).  The loss of water pressure can impede water 

delivery by decreasing the water supply, reducing fire suppression capability, and increasing the 

risk of water contamination via intrusion(6). Pressure loss can occur as a result of pipe breaks, 

major leaks, excessive pressure loss due to friction at pipe walls (head loss), pump or valve 

failures, and pressure surges(6).  When water spends a longer duration in the distribution 

system due to low flows, disinfectant residuals decline and sediments can accumulate and 

allow microbes to grow(6).  Among pressure transients that resulted in a negative pressure, 

Gullick et al. (2004) found that most were caused by the sudden shutdown of pumps at a pump 

station due to either unintentional (e.g., power outages) or intentional (e.g., pump stoppage or 
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startup tests) situations(156).  High water pressures can also impair water delivery by 

exacerbating the wear on valves and fittings, increasing leaks, and potentially trigger new leaks 

or breaks(6).  

Several studies have shown that pressure transients can lead to the intrusion of 

contaminants into the distribution system(6, 154, 157). When transient pressure events occur 

in distribution systems, groundwater can enter into treated drinking water through pipeline 

leaks(6, 157).  Specifically, an intrusion event occurs when contaminated water from the 

environment surrounding the pipe flows into the distribution system through leakage points, 

submerged air valves, faulty seals, or other openings(157, 158).  This can happen when the 

pressure of water outside or surrounding a water pipe exceeds the internal pressure(156).  It is 

not uncommon for water systems to lose more than 10% of the total water production through 

leaks in the pipelines and the percent of leakage (unaccounted for water) can range as high as 

32% (157, 159).  Mora-Rodríguez et al. (2012) noted three factors required to generate 

pathogen intrusion: 1) the mechanism that forces the intrusion event; 2) the way of entrance 

for possible contaminants; and 3) the pollution source(158).  A typical intrusion scenario is 

illustrated in Figure 9. LeChevallier et al. (2003) reported that fecal indicators and culturable 

human viruses are present in the soil and water external to the distribution system, thus 

capable of entering the water system during a negative pressure event(157).  Likewise, Karim et 

al. (2003) collected soil and water samples collected external to drinking water pipelines from 

eight utilities in six states and detected total coliform and fecal coliform bacteria in about half 

of all samples(160).  Viruses were also detected in soil and water using both culturable and 

molecular methods(160).  When drinking water is contaminated with a virus, the virus 
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concentration tends to be high and the risk of infection could be substantial(161).  While the 

intrusion of many types of pathogens is possible, the extent to which mixtures of pathogens 

may enter the distribution system and survive has not been well-established(38).  Also of note, 

while engineering standards require drinking water pipes to be at least 0.5 to 3 meters away 

from sewer lines, microbes can travel several meters in short periods of time under certain 

conditions(157, 162).  According to Friedman et al. (2004), the locations and system types that 

are most susceptible to developing low pressure conditions are pumped (i.e., non-gravity) 

system, distribution system mains one to two miles downstream of pumps (in relatively simple 

hydraulic connection to the pump), high elevation areas, areas with low static pressures, areas 

far away from overhead storage, and upstream and downstream of active valves in high flow 

areas(163).  Furthermore, locations with the highest intrusion potential include sites with 

frequent leaks or main breaks, areas with high water table (i.e., submerged mains), flooded air-

vacuum valve vaults, and high-risk cross-connection locations(163). 

 

 
Figure 9: Pathogen intrusion factors. 
Source: Mora-Rodríguez et al. 2012 (158) 
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In the absence of external contamination, water quality can still deteriorate when 

transformations (e.g., biofilm growth, nitrification, leaching, internal corrosion) occur within the 

pipes(6).   A biofilm, which usually exists as patches but can also by continuous, is a complex 

mixture of microbes, organic and inorganic material which can accumulate on the inner surface 

of a distribution pipe(164). Biofilms form when corrosion in the distribution system pipes 

produces tubercles that increase the surface area of the pipe and provide niches to protect 

bacteria and other organisms from disinfection(164, 165).  As a result, when flow disruptions 

occur, biofilms can release pathogens into the water(164, 166).  Opportunistic pathogens that 

have been associated with biofilms differ from the primary waterborne pathogens entering the 

distribution system during a low pressure or intrusion event(164).  Opportunistic bacterial 

pathogens commonly found in biofilms that are of most concern include Legionella 

pneumophila, Mycobacterium avium complex, and Pseudomonas aeruginosa(164).  Biofilms 

can also increase pipe corrosion, consume disinfectant residual, impair pipe hydraulics, hinder 

the utility of total coliforms as indicator organisms, generate bad tastes and odors, and 

promote the exchange of resistance or virulence factors between the mixed microbial 

population in close proximity with each other(44, 164). 

Many water utilities face the constant challenges of an aging distribution infrastructure 

and chronic water main breaks(6, 7).  The average age of failing water mains has been 

estimated to be 47 years old(152).  Despite this, water pipes that were installed in many cities 

during periods of greatest population growth and urban expansion (e.g., late 1800s, around 

World War I, during the 1920s, and post-World War II) are still in use today(7).  According to 

U.S. water industry data, main breaks occur an average of 700 times per day(6).  The increasing 
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numbers of main breaks is a public health concern because of the potential relationship 

between waterborne disease outbreaks and main breaks(7).  As illustrated in Figure 10 by 

Mora-Rodríguez et al. (2012), there are 3 types of breaks: 1) joint failures caused by cross-

sectional tension in pipe union; 2) circumferential failure caused by longitudinal tension; and 3) 

longitudinal failures caused by cross-sectional tension (radial tension)(158).  The severity of 

each break can range depending on the severity of the corrosion(158). 

 

 
Figure 10: Different types of failures in pipes. 
Source: Mora-Rodríguez et al. 2012 (158) 

 
 
The rate at which water mains need to be replaced or renovated depends on a number 

of factors, including the age and material of the pipe, soil characteristics, weather conditions, 

and construction methods(154).  Pipes become vulnerable to breaks when environmental and 

operational stresses overwhelm the structural integrity of pipes, especially when the pipes have 

already been compromised by factors such as corrosion, degradation, inadequate installation, 

or manufacturing(155, 158).  Table 4 summarizes common problems of different pipe materials 

that can result in pipe failures(6).  Water utilities, especially those in colder climates, often 
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observe a peak in main breaks when the air temperature approaches the freezing point, 

0°C(167).  In some cases, the increase in main break frequency occurs when the air 

temperature passes the freezing point (e.g., during late fall or early spring)(167).  Different pipe 

materials are also of consideration as they can respond differently to air and water 

temperature(167).  Rajani et al. (2012) reported that the temperature factors that most 

influenced water main breaks included the average mean air temperature, the maximum 

increase and decrease in air temperature, and the speed (intensity) at which air temperature 

fluctuates over a specific period of time(167).  While air temperature had an impact on main 

breaks, water temperature had the most impact on observed breaks, especially in cast iron 

pipes(167).  Besides temperature, there are many other factors that contribute to pipe 

deterioration(168, 169).  The major causes of main breaks and deterioration include inadequate 

design, improper installation, pressure transient, soil movement, internal corrosion (chemical, 

galvanic, bacterial), external corrosion (galvanic, electrolytic or stray current, biochemical or 

bacterial), temperature differential, manufacturing defects, and impact caused by the 

construction or maintenance of other utilities(169).  Kleiner & Rajani (2002) presented three 

types of factors affecting water main deterioration: static, dynamic, and operational(168).  

Table 5 provides examples for each type.   
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Table 4. Common problems of different pipe materials. 

Pipe Material 

(common  sizes) 

Problems 

PVC and Polyethylene 

(4-36 in.) 

Excessive deflection, joint misalignment and/or leakage, 

leaking connections, longitudinal breaks from stress, 

exposure to sunlight, too high internal water pressure or 

frequent surges in pressure, exposure to solvents, hard to 

locate when buried, damage can occur during tapping 

Cast/Ductile Iron 

(4-64 in.) (lined and 

unlined) 

Internal corrosion, joint misalignment and/or leakage, 

external corrosion, leaking connections, 

casting/manufacturing flaws 

Steel 

(4-120 in.) 

Internal corrosion, external corrosion, excessive deflection, 

joint leakage, imperfections in welded joints 

Asbestos-Cement 

(4-35 in.) 

Internal corrosion, cracks, joint misalignment and/or 

leakage, small pipe can be damaged during handling or 

tapping, pipe must be in proper soil, pipe is hard to locate 

when buried 

Concrete 

(12-16 to 144-168 in.) 

(pre-stressed or 

reinforced) 

Corrosion in contact with groundwater high in sulfates and 

chlorides, pipe is very heavy, alignment can be difficult, 

settling of the surrounding soil can cause joint leaks, 

manufacturing flaws 

Source: National Research Council 2006 (6) 

 
 
Table 5. Factors affecting pipe breakage rates. 

Type of Factor Examples 

Static Pipe material, diameter, wall thickness, soil (backfill) 

characteristics, installation 

Dynamic Age, temperature of soil and water, soil moisture, soil 

electrical resistivity, bedding condition, dynamic loadings 

Operational Replacement rates, cathodic protection, water pressure 

Source: Kleiner & Rajani 2002 (168) 
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Before a main break happens, the pipes usually show other kinds of failure that will 

generate leaks during distribution(158).  In a survey of 26 utilities, Kirmeyer et al. (2001) 

reported that 85% had some kind of leak detection program, with leak detection techniques 

ranging from a leakage correlator, comparison of metered sales to water production data, and 

electronic noise detection(159).  A large main break is often identified by unexpected low 

pressure readings, excessive pumping, or a drop in reservoir levels in a specific area(6).  Since 

small breaks are harder to find, water utilities often encourage their customers to help identify 

water main leaks and breaks(170-174).  Signs of a faulty water main include water seeping up 

out of the ground or pavement, water running down the street at a constant stream, water 

accumulating at an unusual location, buckled pavement, sinkholes, rises from the ground, 

water leaking around a water manhole, water leaking out of a fire hydrant nozzle cap, leaking 

service line, and, in extreme situations, a loss of water service(170-174). 

Between 1971 and 1998, 113 waterborne outbreaks (18% of all waterborne outbreaks) 

were caused by disruptions in the distribution system(29).  Between 1981 and 2010, 9,000 

cases of illness resulted from 57 waterborne outbreaks that were associated with disruptions in 

the distribution system(175). The majority of these outbreaks were caused by microbial 

pathogens (see Figure 11)(175).  Although disruptions in the distribution system represent only 

a small fraction of contamination events, the resulting health outcomes can be severe(175). For 

example, one of the largest outbreaks of Escherichia coli O157:H7 infection occurred at the end 

of 1989 into early 1990 in rural Missouri(176).  Escherichia coli O157 was transmitted through a 

municipal water system after 45 water meters were replaced and two water mains 

ruptured(176).  This resulted in 243 cases with bloody diarrhea or diarrhea and abdominal 
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cramps(176).  Among these cases, 32 were hospitalized, 4 died, and 2 had the hemolytic uremic 

syndrome(176). 

The most common faults related to waterborne outbreaks were cross-connections and 

back siphonage(175).  Other distribution deficiencies include breaking or leaking water mains, 

corrosion or leaching of metals, contamination during storage, contamination during repair or 

installation of water mains, pressure fluctuations, contamination of household plumbing, and 

inadequate separation of water mains and sewer(29, 175).  As shown in Figure 12, the 

distribution deficiency associated with waterborne outbreaks is not always known(175). 

Waterborne outbreaks have also been associated with low water pressure and intermittent 

supply(175).  For example, in January 2010, below-freezing temperatures in Alabama led to 

system-wide failures due to breaks in water mains and service lines(177).  As a result, 

approximately 18,000 residents lost access to municipal water for up to 12 days(177).  An 

investigation led by the CDC revealed significant dose-response relationships between 

increased duration of lost water service or pressure and acute gastrointestinal illness(177).  In 

particular, acute gastrointestinal illness was more prevalent among residents who lost both 

water service and water pressure, residents who lost water service for at least 7 days, and 

residents who lost water pressure for at least 7 days(177).  In another example from August 

2012, a Giardia intestinalis outbreak occurred in a Utah neighborhood after the drinking water 

distribution system transitioned from one public water system to another(41).  The transition 

likely caused a low pressure scenario that temporarily allowed contaminated water to flow 

through a previously unknown cross-connection into the drinking water system(41). After the 

cross-connection was fixed, no additional illnesses were reported(41).   
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Figure 11: Etiologic agents of U.S. 
waterborne outbreaks associated with 
disruptions in the distribution infrastructure 
from 1981 to 2010. 
Source: 
http://www.who.int/water_sanitation_health/publication
s/Water_safety_distribution_systems_2014v1.pdf 

 
Figure 12: Disruptions in the distribution 
system that were associated with U.S. 
waterborne outbreaks from 1981 to 2010. 
Source: 
http://www.who.int/water_sanitation_health/publication
s/Water_safety_distribution_systems_2014v1.pdf 

 
 
Unplanned Disruptions and Waterborne Illnesses 

Estimating the association between microbial intrusion events in a distribution system 

and public health risk is difficult due to the many assumptions that have to be made(157, 178).  

For example, an intrusion event is contingent on a sequence of events, from the occurrence of 

an adverse pressure condition, to the presence of an outside contamination source, to the 

availability of an external pathway for contamination(157, 178). In addition, population 

exposure depends on several factors, such as the type and concentration of pathogen entering 

the system and then reaching the consumers’ taps, the duration and magnitude of intrusion, 

and the consumers’ drinking habits(157, 178).  A quantitative microbial risk assessment (QMRA) 

is one method of estimating the association between microbial intrusion events and 

illness(178).  For example, Westrell et al. (2003) used a QMRA to evaluate the microbial risks 

due to failures in Swedish drinking water systems(109).  Findings suggested that the majority of 

http://www.who.int/water_sanitation_health/publications/Water_safety_distribution_systems_2014v1.pdf
http://www.who.int/water_sanitation_health/publications/Water_safety_distribution_systems_2014v1.pdf
http://www.who.int/water_sanitation_health/publications/Water_safety_distribution_systems_2014v1.pdf
http://www.who.int/water_sanitation_health/publications/Water_safety_distribution_systems_2014v1.pdf
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annual infections were likely due to pathogens passing treatment during normal operations 

rather than failure events, thus suggesting an endemic presence(109).  Among the three model 

organisms included, rotavirus caused the largest number of potential infections, followed by 

Campylobacter jejuni(109).  In contrast to the current focus on minimizing the risk of 

Cryptosporidium, the calculated risk of Cryptosporidium infections was the lowest(109).  In 

another QMRA, Yang et al. (2011) evaluated various factors influencing the risk of viral infection 

from intrusion due to low/negative pressure transients in distribution systems(179).  The risk of 

infection from intrusion was most sensitive to the duration and the number of nodes 

experiencing negative pressures(179). 

In a systematic review of 20 papers and meta-analysis of 14, tap water consumption was 

found to be associated with gastrointestinal illness in faulty distribution networks(180). System 

deficiencies, such as water outages, were also associated with increased gastrointestinal 

illness(180).  In a Swedish study, water treatment and disruptions in the distribution 

infrastructure during a three year period were not associated with telephone inquiries to a 

national healthcare network for symptoms of gastrointestinal illness(181). A limitation, 

however, was that there were only 14 major disruptions(181).  In contrast, Shortridge et al. 

(2014) found an association between the number of pipe breaks and the internet search 

volume for symptoms of gastrointestinal illness(182).  This positive correlation provided 

support that distribution system disturbances may increase mild cases of gastrointestinal illness 

that do not necessitate a doctor’s visit(182).  In the United Kingdom, a postal questionnaire-

based study conducted from February 2001 to May 2002 found a strong association (Odds Ratio 

= 12.5; 95% Confidence Interval: 3.5-44.7) between reported low water pressure at the tap and 
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self-reported diarrhea(183).  Results suggested that up to 15% of gastrointestinal illness in the 

general population could be related to drinking water that has been contaminated from a burst 

water main or other loss of pressure in the distribution system(183).  In Norway, a cohort study 

conducted during 2003-2004 found that reports of gastrointestinal illness increased during the 

week after an episode of main breaks or maintenance work on the water distribution 

system(184). In addition, consumers living far from the treatment plant had the highest risk of 

gastrointestinal illness(184). Similarly, a study in Russia found that decreased chlorine residuals 

further away from the plant was associated with higher rates of gastrointestinal illness(185).  In 

addition to gastrointestinal symptoms, Huang et al. (2011) considered eye and skin infections in 

relation to water outages in Taiwan(186).  Water outages, which can occur when water supply 

pipes are broken, were positively associated with receiving medical care for gastroenteritis, eye 

infections, and skin infections(186).  These results appeared strongest during warmer 

temperatures (186).  Even though the water outages averaged less than a day (15.7 hours), 

increased risks for illness were also observed during 10-day lag periods(186). 

As described earlier, the longer duration water spends in a distribution system, the 

more likely it is to encounter contamination due to lower disinfectant residuals and more 

sediments accumulating both of which allow microbes to grow(6).  Tinker et al. (2009) used 

estimates of residence time to assess the association between distribution system 

contamination and endemic gastrointestinal illness among the population served by two large 

drinking water utilities in the metro Atlanta, Georgia area(187).  The authors found a modest 

increased risk for emergency department visits for gastrointestinal illness among people living 

in zip codes with the longest residence time (mean=47.40-74.41 hours, depending on the utility 
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and years) compared to people living in zip codes with intermediate residence times 

(mean=18.45-33.42 hours, depending on the utility and years)(187).  In an attempt to reduce 

exposure misclassification with a more spatially refined characterization of water residence 

time, Levy et al. (2016) did a follow-up analysis using residence times based on residential 

address and proximity to the nearest distribution system node (pipe intersection)(188).  The 

authors observed an increased odds of illness (but with a large amount of uncertainty in the 

estimates) when comparing long residence times (≥90th percentile) with intermediate residence 

times (11th to 89th percentile)(188).  In addition, they reported that only residence times greater 

than 2 days (48 hours) were associated with increased risk of gastrointestinal illness, with 

residence times greater than 4 days (96 hours) having the strongest associations(188).  Past 

studies that did not find an association with shorter residence times (e.g., 0.3 h to 34 h in 

Montreal(189); 24–36 h in Melbourne(107)) simply may not have reached durations needed to 

cause elevated risks of illness(188). 

Due to a lack of quality long-term data on negative pressure transients, mains breaks, 

and maintenance work, there are few epidemiology studies on the association between 

disruptions in the distribution infrastructure and related illnesses.  A 2006 report prepared for 

the EPA by the Water Science and Technology Board of the National Research Council 

concluded that epidemiology studies explicitly studying the distribution system component of 

waterborne disease are in need(6).  It described limitations of recent studies, such as not 

focusing on specific distribution failures that could lead to gastrointestinal illness or being 

unable to detect any link between illness and drinking water(6).  In particular, the report 

emphasized the need to conduct properly designed studies with sufficient power to estimate 
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the risk of endemic disease associated with drinking water distribution systems(6).  Exposure to 

contaminated drinking water from main breaks could be much greater than what has been 

documented given the high occurrence of main breaks and the challenges of detecting any 

subsequent contamination that may be highly localized(7).  In addition, any health effect 

uncovered could be underestimated due to the underreporting of illness(7, 190). 
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CHAPTER 3. STUDY DESIGN, MATERIALS, AND METHODS 
 

 

Overview 

This dissertation examined whether two types of potential contamination events are 

associated with increased illness.  The first was cyanobacteria, or blue-green algae, in the water 

source.  The second was pipe breaks in the drinking water distribution system.  Both questions 

were studied within the context of a large water system operated by the Massachusetts Water 

Resources Authority (MWRA) that provides drinking water to metropolitan Boston 

communities. 

 

Massachusetts Water Resources Authority 

The Massachusetts Water Resources Authority (MWRA) is a state public authority 

established in 1984 to provide wholesale water and sewer services to 2.5 million people in 61 

metropolitan Boston communities. Specifically, MWRA serves 890,000 households and 5,500 

businesses.  It supplies an average of 215 millions of gallons per day (mgd) to 2.2 million people 

and 5,500 industrial users in 51 communities. While some these communities only receive a 

partial supply or emergency back-up, 33 of the water communities receive full water service 

(see Table 6).  Figure 13 shows a map of the MWRA service areas. (191, 192) 
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Table 6. MWRA communities with full water service. 

Community MWRA Service 

Arlington Water and Sewer 

Belmont Water and Sewer 

Boston Water and Sewer 

Brookline Water and Sewer 

Chelsea Water and Sewer 

Chicopee* Water 

Clinton Water and Sewer 

Everett Water and Sewer 

Framingham Water and Sewer 

Lexington Water and sewer 

Lynnfield Water District Water 

Malden Water and Sewer 

Marblehead Water 

Medford Water and Sewer 

Melrose Water and Sewer 

Milton Water and Sewer 

Nahant Water 

Newton Water and Sewer 

Norwood Water and Sewer 

Quincy Water and Sewer 

Reading Water and Sewer 

Revere Water and Sewer 

Saugus Water 

Somerville Water and Sewer 

South Hadley Fire District #1* Water 

Southborough Water 

Stoneham Water and Sewer 

Swampscott Water 

Waltham Water and Sewer 

Watertown Water and Sewer 

Weston Water 

Wilbraham* Water 

Winthrop Water and Sewer 

*Located in Central Massachusetts; water not treated at the John J. Carroll Water Treatment Plant where there 
was a change primary disinfection. 
Source: http://www.mwra.com/02org/html/whatis.htm 

 
 

http://www.mwra.com/02org/html/whatis.htm
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Figure 13: Massachusetts Water Resources Authority (MWRA) service areas. 
Source: http://www.mwra.com/02org/html/whatis.htm 

 
 
History 

As one of the oldest cities in the U.S., Boston has one of the oldest public water supply 

systems, dating all the way back to 1652 when wooden pipes were used to provide domestic 

water and fire protection.  In the 1848 municipal system, wooden pipes were eventually 

replaced with lead pipes.  This early system flowed by gravity through a series of distribution 

reservoirs.  Between 1875 and 1898, seven major reservoirs were constructed and the four 

pressure zones were established: Boston Low; Southern High; Northern Low; and Northern 

High.  From 1897 to 1905, the Wachusett Reservoir was constructed and, at the time, it became 

the largest man-made water supply reservoir in the world, with 65 billion gallons supplying 118 

mgd.  Like before, the use of gravity flow allowed the water to be transported by aqueduct 

without pumping.  In 1919, the Metropolitan District Commission was created by an act which 

consolidated responsibility for water, sewage and parks into one agency.  In the 1920s, an 

http://www.mwra.com/02org/html/whatis.htm
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inadequate water supply was projected by 1930 and plans were put in place to add the Ware 

River and the Quabbin Reservoir.  The construction of the Quabbin Reservoir began in 1936 and 

required the flooding of four towns.  It was eventually filled with water from the Swift River and 

the Ware River.  At the time, the 412 billion gallon reservoir became the largest man-made 

reservoir in the world.  The Quabbin Reservoir, located 60 miles from Boston, was another 

source that could be gravity-operated and did not require filtration.  Around the same time, the 

high service Pressure Aqueduct System was constructed to deliver water to the Metropolitan 

area.  As sections of the Pressure Aqueduct came on line, the need for pumping was reduced 

since more of the service area could be supplied by gravity.  Around 1951, several pump 

stations were constructed to supply the fast growing suburbs.  Soon enough, however, 

thousands of miles of aging pipelines were leaking millions of gallons of water and no set plans 

were in place for upgrades.  In addition, the sewer system was unable to meet increasing 

demands and became a major cause of harbor pollution. In 1982-1983, the Metropolitan 

District Commission faced lawsuits regarding improper sewage discharge and violations of the 

Clean Water Act.  In 1985, when the system was in serious need of an overhaul, MWRA stepped 

in and assumed responsibility for the delivery and distribution of water to 46 communities 

primarily in the metropolitan Boston area.(193, 194) 

From 1988 to 1990, a leak detection survey of 6,085 miles of community pipes revealed 

that 30 million gallons per day was lost in community systems. Repairs were subsequently 

carried out and, in 1991, MWRA implemented leak detection regulations requiring communities 

to complete leak detection surveys every two years. In addition, all MWRA distribution pipes 

(286 miles) are checked annually for leaks and repairs made promptly.  In November 2003, the 
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MetroWest Water Supply Tunnel was brought on line (see Figure 14).  Prior to July 27, 2005, 

water treatment occurred at several different facilities as it traveled to the metropolitan Boston 

area(195).  Since July 27, 2005, all water treatment for the metropolitan Boston area was 

centralized at the John J. Carroll Water Treatment Plant (CWTP) at Walnut Hill in Marlborough.  

MWRA is currently provides water to 51 communities.  The water system is managed as a 

partnership with the Massachusetts Department of Conservation and Recreation (DCR), which 

still maintains responsibility for managing the reservoir watersheds.(193-195) 

 

 
Figure 14: MetroWest Water Supply Tunnel. 
Source: http://www.ecs.umass.edu/cee/reckhow/courses/seminar/presentations/Laskey%20HH%20Lecture%202014.pdf 

 
 

Water Source 

MWRA's water comes from the Quabbin and Wachusett Reservoirs, located 

approximately 65 and 35 miles west of Boston, respectively.  MWRA and DCR regularly monitor 

reservoir levels at Quabbin (412 billion gallon capacity) and Wachusett (65 billion gallon 

capacity). The reservoirs are naturally filled by rain and snow fed in by nearby streams. While 

Wachusett levels are kept relatively fixed, Quabbin levels fluctuate with precipitation and 

watershed runoff.  To protect the reservoirs, forest and wetlands cover over 85% of the 

http://www.ecs.umass.edu/cee/reckhow/courses/seminar/presentations/Laskey%20HH%20Lecture%202014.pdf
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surrounding watershed lands.  In addition, about 75% of the total watershed land cannot be 

built on.  While recreational activities (e.g., shoreline fishing, hiking, biking, snowshoeing) are 

permitted, public access is carefully regulated and controlled.  Regulations strictly prohibit 

activities with direct water contact (e.g., swimming, wading) and dogs are not allowed.  To 

ensure the quality of the water, DCR routinely tests and patrols the streams and reservoirs.  

MWRA also tests water samples (over 1,600 per month) throughout the entire system (from 

the reservoirs to the consumers’ taps). (196-199)  

Water Treatment 

From the Wachusett reservoir, it takes approximately five hours for water to move 

southeast to the treatment plant(200).  The water system has always been unfiltered and relies 

primarily on disinfection(201).  There is no sedimentation, coagulation, or flocculation process; 

however, raw water turbidity is normally <0.50 Nephelometric Turbidity Units (NTUs)(201).  

Between 1998 and 2005, chlorine was the primary disinfectant, with chloramine as the 

secondary (residual) disinfectant to maintain sanitary condition throughout the distribution 

system(195, 202).  Primary disinfection was done at the Cosgrove Disinfection facility and 

corrosion control and chloramination was done at other facilities to the east.  Since July 27, 

2005, all water treatment for the metropolitan Boston area (all communities listed in Table 6 

except Chicopee, South Hadley Fire District #1, and Wilbraham) was centralized at CWTP and 

the primary disinfectant changed to ozone while the secondary (residual) disinfectant remained 

chloramine(195, 202).  All other facilities were taken out of service after CWTP went on line. 

In April 2014, ultraviolet light disinfection was added to achieve Cryptosporidium 

inactivation. Table 7 and Figure 15 show the treatment steps since ultraviolet disinfection was 
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added.  Downstream of the CWTP, there is no re-chlorination and no community practice 

booster chlorination or phosphate addition(202).  According to personal communications with 

MWRA, major changes observed after the primary disinfection changed to ozone were a large 

decrease in taste and odor complaints (likely due to algae) and a large reduction in 

trihalomethanes (disinfection by-products). Also, MWRA claims that ever since CWTP has been 

on line, it has exceeded current regulatory requirements for inactivation of Giardia, provided 

Cryptosporidium inactivation, and reduced the formation of regulated disinfection by-

products.(195, 198, 201-203)  

 

Table 7. Water treatment steps at the John J. Carroll Water Treatment Plant (CWTP). 
Treatment Current Dose Purpose 

Ozone 1.5-4.0 mg/l Primary disinfectant, to achieve 99.9% Giardia inactivation 

Sodium bisulfite 0.0-3.5 mg/l To remove ozone 

Ultraviolet Light 
(Added in April 2014) 

  Second primary disinfectant, to inactivate chemically 
resistant parasites such as Cryptosporidium 

Sodium hypochlorite 
(chlorine) 

3-4 mg/l For residual disinfection, to protect water as it travels 
through the pipe network 

Sodium 
hydrofluorosilicic acid 
(fluoride) 

0.6 mg/l For dental health 

Aqueous ammonia 0.6-0.85 mg/l To combine with chlorine to form monochloramine for 
residual disinfection 

Sodium carbonate 35-37 mg/l To raise the alkalinity of the water for pH buffering; to 
minimize lead and copper leaching from home plumbing 

Carbon dioxide 4.5-8.5 mg/l To adjust pH to final level 

Source: http://www.mwra.state.ma.us/04water/html/watsys.htm 

 
 

http://www.mwra.state.ma.us/04water/html/watsys.htm
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Figure 15: Water Plant Process Schematic (since the addition of ultraviolet disinfection in April 
2014). 
Source: MWRA, 2017. Optimal Corrosion Control Treatment Evaluation Review.(195) 

 
 

The MWRA system is the second largest unfiltered water system in the U.S., after New 

York City(204).  Through watershed management practices to protect existing sources, both 

cities qualify for Filtration Avoidance Determination(205).  Under the EPA’s 1989 Surface Water 

Treatment Rule, public surface water providers are required to filter their water unless a waiver 

is granted based on water quality and watershed protection(206).  In 1999-2000, MWRA 

successfully defended its comprehensive strategy to protect and improve drinking water 

(through watershed protection, its new $261 million treatment facility to provide 

ozonation/chloramination disinfection, and its community pipe rehabilitation program) and 

avoided having to spend $180 million in filtration facilities, as requested by the EPA.  U.S. 
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District Judge Richard G. Stearns concluded that the EPA failed to show that filtration of MWRA 

water was required either as a matter of cost-benefit or scientific necessity.(207, 208) 

It is possible, under certain conditions, that the consequences of an unfiltered water 

system can impact the individual consumers.  For example, according to the Town of Reading 

which uses MWRA water, in-home filters may need to be changed more often due to the 

unfiltered water supply.  In particular, during certain times of the year when the source water 

reservoirs experience algae blooms, in-home filters may quickly become saturated and thus 

decline in performance. To reduce required filter changes, suggestions have been made to only 

filter drinking water and not all the water entering the house.(209) 

Distribution System 

After water is treated at the CWTP, it enters the distribution network and is sent 

through the MetroWest Water Supply Tunnel and the Hultman Aqueduct before being stored in 

covered tanks. From there it is drawn into distribution mains and many smaller community 

pipes. Local pipes serve each street and eventually carry water to the consumer.(198)  The 

distribution networks are gridirons, meaning water can reach any service line by at least two 

different paths.  This ensures permanent feeding and avoiding dead-ends. Figure 16 illustrates 

the entire MWRA water system, from source to community. 
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Figure 16: Massachusetts Water Resources Authority (MWRA) water system. 
Source: http://www.mwra.com/annual/waterreport/2014results/images/2014watermap.png 

 
The travel time for water, from source to tap, is complex because it depends on many 

sections of the water system.  Figure 17, provided by a hydraulic modeling specialist at MWRA, 

illustrates the range of travel times for each section of the system. At the beginning of the 

system, the travel time from the Quabbin Reservoir into the Wachusett Reservoir typically 

range from 10-11 hours at an average rate of 300 mgd. Water remains in the Wachusett 

Reservoir from any time between 3 weeks to 6 months. Then, it takes about 4 hours from the 

Wachusett Reservoir to the treatment plant.  From the treatment plant, the water continues 

east to the Norumbega Covered Storage Facility, taking 14 to 16 hours depending upon system 

demands. Since the storage facility is a “flow thru” design, the water remains in the tank for 8 

to 12 hours. East of the Norumbega facility, the Metrowest tunnel and the Hultman Aqueduct 

carry water to a storage tank at Loring Road to supply the Boston Low service area or continue 

east along the City Tunnel which feeds both the City Tunnel Extension to the North and the 

Dorchester Tunnel to the South.  Shafts along each of these tunnel sections bring water up riser 

pipes that feed the distribution system.  Since MWRA is a wholesaler, the water supply enters 

http://www.mwra.com/annual/waterreport/2014results/images/2014watermap.png
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the communities through large metered connections. Based on the ground elevation, the water 

system is divided into seven pressure zones. The number of metered connections in each 

community depends on the size and geography of a community. For example, the City of 

Boston has 29 meters serving two pressures zones and the town of Marblehead has only one 

metered connection. Once the water passes through the metered connection, it enters the 

community system which is owned and operated by the local community.  In general, the travel 

time from the Wachusett Reservoir to one of the larger Boston metered connections in their 

high system ranging from 40 to 50 hours depending upon system demands. For a town like 

Marblehead, which is located at the far Northeastern portion of the system, the travel times 

from the Wachusetts Reservoir range from 60 to 70 hours.(200) 



 

 
 

7
1

 

 
Figure 17: Range of water travel times for each section of the MWRA system. 
Source: MWRA hydraulic modeling specialist 
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Prior to July 2005 (before the switch to CWTP), the travel times may have differed since 

water was treated at several facilities as it travelled to the metropolitan Boston area. According 

to a 1998 Waterworks System Handbook, the travel time from Cosgrove Disinfection facility, 

where primary disinfection was conducted, to the Norumbega facility was 11-12 hours.  Table 8 

provides times from Norumbega to the first meter in each community.(201, 210) 

 
Table 8. Approximate travel times from the Norumbega facility to select communities, prior to 
2005. 

Community Winter Travel Time 
(Hours) 

(Average 215 mgd) 

Summer Travel Time  
(Hours) 

(Average 275 mgd) 

Arlington 18 14 
Belmont 11 8 
Boston 7 5 
Brookline 7 5 
Chelsea 24 18 
Everett 20 15 
Lexington 15 11 
Lynnfield 31 23 
Malden 20 15 
Marblehead 38 28 
Medford 21 16 
Milton 24 18 
Nahant 47 35 
Newton 3 2 
Norwood 29 22 
Quincy 28 21 
Revere 25 18 
Saugus 26 19 
Somerville 36 27 
Swampscott 42 31 
Waltham 8 6 
Watertown 14 10 
Winthrop 32 23 
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Study Population 

This dissertation research includes residents of metropolitan Boston communities that 

receive full water service from MWRA.  All residents are assumed to have regular contact with 

tap water, whether through drinking, cooking, cleaning, bathing, and/or other basic hygiene.  

MWRA-served communities are primarily urban so there is a low prevalence of private well use.  

Due to data limitations, however, the actual fraction of the population using bottled water, 

private well water, and/or in-home water treatment was unknown. 

By using emergency department (ED) data, the study population only includes residents 

with access to healthcare.  In April 2006, Massachusetts passed a comprehensive healthcare 

reform law to reduce the number of people without health insurance. In 2007, all 

Massachusetts adults (with a few exceptions) were required to have health insurance (or else 

they would lose their personal income tax deduction on their 2007 state taxes).  A slight 

increase in ED visits across the state of Massachusetts has been associated with the 

implementation of the health care reform(211).   

 

Health Outcomes 

Massachusetts Healthcare Data 

Emergency department (ED) and hospital outpatient data were obtained from the 

Commonwealth of Massachusetts Center for Health Information and Analysis for a 10-year 

period (10/1/2002 – 9/30/2012).  ED visits are a reasonable and valid way to study population 

health because they play a vital role in the health care system and provide data concerning 

important aspects of public health, medical, and social problems(212). ED data also contribute 
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to public health surveillance by capturing the onset of infectious disease outbreaks or other 

medical emergencies(212).  Environmental epidemiology studies that have used ED data 

include studies of air pollution and asthma(213), ambient temperature and heat-related 

illness(214), extreme precipitation and gastrointestinal illness(215), and flooding and 

gastrointestinal illness(216).  As with any secondary data source, there are possible limitations 

such as the completeness of data, consistency in coding and classification of diseases, and 

representativeness of the study population(212).  ED data may only capture a subset of the 

outcome of interest and not reflect the total population burden(190).  For example, regarding 

gastrointestinal illness, only the most severe cases may seek immediate medical attention at 

the ED and those experiencing milder symptoms may opt to recover at home(190). 

ED visits included emergency departments in Massachusetts’ acute care hospitals and 

satellite emergency facilities. Hospital outpatient data included patients who received 

observation services but were not admitted to the hospital.  Hospital outpatient visits are often 

transferred from the ED (217-219). The yearly databases were compiled from quarterly hospital 

reports and collected for administrative purposes. They were made available to the public 

through an application process and did not contain information that could be used to identify 

an individual; the data were considered anonymous. 

These data were determined exempt (category 4 – existing data, public or deidentified) 

from Institutional Review Board evaluation by the Office of Human Research Ethics at the 

University of North Carolina at Chapel Hill (Study #: 17-0381). They were also exempt from 

Institutional Review Board evaluation by the U.S. Environmental Protection Agency’s Human 
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Subjects Research Protocol Officer as they were not considered human subjects data under the 

Common Rule (40 CFR 26). 

Each data observation included patient-level information, including town and zip code 

of residence, age, sex, primary diagnosis code (International Classification of Disease, Version 9, 

Clinical Modification, ICD-9-CM), and five associated diagnosis codes.  These data have been 

used in the past to examine the association between extreme weather events (e.g., flooding, 

extreme precipitation) and ED visits for gastrointestinal illness(215, 216, 220). 

Use of ICD-9-CM diagnosis codes in healthcare 

ICD-9-CM codes are managed by The National Center for Health Statistics, and the 

Medicare and Medicaid Services. This coding process is done for all medical services at all types 

of health facilities, including inpatient/outpatient facility, physician office, and diagnostic 

services. The main purpose of ICD-9-CM codes is to report diseases and signs and symptoms for 

data and billing purposes. For example, diagnosis coding provides documentation of medical 

necessity for health insurance claims.(221) 

Gastrointestinal Illness (Aims 1 & 2) 

Acute gastrointestinal illness (AGI) was an outcome of interest for both Aim 1 and Aim 2.  

AGI was defined using ICD-9-CM diagnosis codes.  Several studies assessing drinking water 

quality have used ICD-9-CM diagnostic codes to define healthcare visits for AGI.  In a study of 

drinking water turbidity, Schwartz et al. (2010) used primary diagnosis of gastrointestinal 

related illness (001 to 009.9 and 558.9) or associated general symptoms such as electrolyte 

disorders (276), nausea and vomiting (787), and abdominal pain (789)(50).  In another study of 

drinking water turbidity, Tinker et al. (2010) used the following codes: infectious 
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gastrointestinal illness (001–004, 005.0, 005.4, 005.89, 005.9, 006–007, 008.0, 008.42–008.44, 

008.47, 008.49, 008.5, 008.6, 008.8, 009), non-infectious gastrointestinal illness (558.9), and 

nausea and vomiting plausibly related to gastrointestinal illness (787.01–787.03, 787.91)(55).  

The authors included non-infectious gastrointestinal illness because infectious cases of 

gastrointestinal illness are often misclassified as non-infectious(55).  In a study of the release of 

partially treated sewage into drinking water sources, Redman et al. (2007) used specified 

gastrointestinal infections (001–009.9), unspecified gastroenteritis (558.9), and diarrhea 

(787.91)(222).  In a study of water outages, Huang et al. (2011) used similar codes to Schwartz 

et al. (2010) but added 535, 536.2, 555, 558.2, 558.9, 567, 568.9, and 578(186). 

Few studies on harmful algae or cyanobacteria have used ICD-9-CM diagnosis codes.  

For recreational water exposure to Florida Red Tide blooms, Kirkpatrick et al. (2010) used 

535.0-537.9 and 557.0-558.0 (223) and Hoagland et al. (2014) used all diseases of the digestive 

system (520.0–579.9)(224).  

Based on what has been used in the literature, the ICD-9-CM codes listed in Table 9 

were considered in defining AGI in Aims 1 and 2.  The codes in bold font were ultimately 

selected for this study. Using similar codes for AGI in the Massachusetts data, Wade et al. 

(2014) found an association between flooding and an increased risk of visiting the ED for 

AGI(216). 
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Table 9. ICD-9-CM diagnosis codes that have been used to define acute gastrointestinal illness. 

ICD-9-CM Code Diagnosis 
Schwartz 

(50) 
Redman 

(222) 
Tinker 

(55) 
Huang 
(186) 

Wade 
(216) 

001-009.9 Intestinal Infectious Diseases: Cholera; 
Typhoid and paratyphoid fevers; Other 
salmonella infections; Shigellosis; Other 
food poisoning (bacterial); Amebiasis; 
Other protozoal intestinal diseases; 
Intestinal infections due to other 
organisms; Ill-defined intestinal 
infections 

x x   x x 

001-004 Cholera; Typhoid and paratyphoid fevers; 
Other salmonella infections; Shigellosis 

    X     

005.0 Staphylococcal food poisoning     x     

005.4 Food poisoning due to Vibrio 
parahaemolyticus 

    x     

005.89 Other bacterial food poisoning     x     

005.9 Food poisoning, unspecified     x     

006-007 Amebiasis; Other protozoal intestinal 
diseases 

    x     

008.0 Escherichia coli [E. coli]     x     

008.42-008.44 Pseudomonas; Campylobacter; Yersinia 
enterocolitica 

    x     

008.47 Other gram-negative bacteria - Gram-
negative enteritis NOS 

    x     

008.49 Other specified bacteria - Other     x     

008.5 Bacterial enteritis, unspecified     x     

008.6 Enteritis due to specified virus     x     

008.8 Other organism, not elsewhere classified - 
Viral: enteritis NOS, gastroenteritis 

    x     

009 Ill-defined intestinal infections     x     

276 Disorders of fluid, electrolyte, and acid-
base balance 

x         

535 Gastritis and duodenitis       x   

536.2 Persistent vomiting       x   

555 Regional enteritis       x   

558.2 Toxic gastroenteritis and colitis       x   

558.9 Other and unspecified noninfectious 
gastroenteritis and colitis 

x x x x x 

567 Peritonitis and retroperitoneal infections       x   

568.9 Unspecified disorder of peritoneum       x   

578 Gastrointestinal hemorrhage       x   

787 Symptoms involving digestive system x     x x 

787.0 
(787.01-787.03) 

Nausea and vomiting (Nausea with 
vomiting; Nausea alone; Vomiting alone) 

    x   x 

787.01 Nausea with vomiting         x 

787.03 Vomiting alone         x 

787.4 Visible peristalsis         x 

787.9 Other symptoms involving digestive 
system 

        x 

787.91 Diarrhea   x x   x 

789 Other symptoms involving abdomen and 
pelvis 

x     x   

*Diagnosis codes in bold font were selected for this study. 
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Dermal Symptoms of Illness (Aim 1) 

 Unlike AGI, ICD-9-CM diagnosis codes for dermal symptoms of illness have rarely been 

used in studies of healthcare visits, especially in relation to waterborne pathogens.  In a study 

of water outages by Huang et al. (2011), the group of skin diagnoses selected included: 

infectious skin diseases (680-686), acariasis (133), mycoses of skin (110 and 111), and rashes 

(782.1)(186).  Based on this list, the ICD-9-CM codes used to define dermal symptoms of illness 

in Aim 1 are listed in Table 10. 

Respiratory Symptoms of Illness (Aim 1) 

 A number of air quality studies have used ICD-9-CM diagnostic codes to define 

healthcare visits for respiratory outcomes(225-227).  Generally, respiratory outcomes have 

been defined broadly using ICD-9-CM codes 460-519, which includes chronic obstructive 

pulmonary disease, asthma, pneumonia, and acute respiratory infections(225-227).  Few 

studies of waterborne exposures have used ICD-9-CM codes to define respiratory illness.  In 

studies of human exposure to Florida red tides formed by Karenia brevis, the same ICD-9-CM 

codes (460-519) used in air quality studies were used(224, 228).  Based on this list, along with a 

few additional codes for cough, wheezing, and shortness of breath, ICD-9-CM codes used to 

define respiratory illness in Aim 1 were selected and are listed in listed in Table 10. 
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Table 10. ICD-9-CM diagnosis codes used to define study outcomes. 

ICD-9-CM Code Diagnosis 

Gastrointestinal   
001-009.9 Intestinal Infectious Diseases: Cholera; Typhoid and paratyphoid fevers; 

Other salmonella infections; Shigellosis; Other food poisoning (bacterial); 
Amebiasis; Other protozoal intestinal diseases; Intestinal infections due to 
other organisms; Ill-defined intestinal infections 
 

558.9 Other and unspecified noninfectious gastroenteritis and colitis 
 

787.0 Nausea and vomiting 
 

787.91 Diarrhea 
 

Dermal   
782.1 Rash and other nonspecific skin eruption 

 
136.9 Unspecified infectious and parasitic diseases 

 
686.9 Unspecified local infection of skin and subcutaneous tissue 

 
692 Contact dermatitis and other eczema 

 
691.8 Other atopic dermatitis and related conditions 

 

Respiratory   
460 Acute nasopharyngitis [common cold] 

 
461 Acute sinusitis 

 
465.9 Acute Upper Respiratory Infection (Not Otherwise Specified) 

 
493 Asthma 

 
786.2 Cough 

 
786.07 Wheezing 

 
786.05 Shortness of breath 

 
Abbreviation: ICD-9-CM, International Classification of Disease, Version 9 Clinical Modification 
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Data Quality Assurance  

This project only involved secondary data analyses.  All data were obtained directly from 

the source (e.g., MWRA, BWSC, Commonwealth of Massachusetts Center for Health 

Information and Analysis) and documents describing procedures and quality operations are 

available. 

In addition, each analysis began with a careful examination of all relevant variables.  

Frequency tables were used to summarize categorical variables.  Measures of distribution and 

graphical representation were used to summarize continuous variables.  Each variable was 

checked for implausible values, outliers, and missing data.  If there was more than a trivial 

amount of missing data for a certain variable (>5% of study population), an analysis was 

conducted to determine whether an imputation method would be appropriate. 

 

Aim 1 Materials and Methods 

The objective of Aim 1 was to estimate the association between daily measures of total 

cyanobacteria in the Wachusett Reservoir and emergency department (ED) visits for acute 

gastrointestinal, respiratory, and dermal symptoms of illness in metropolitan Boston 

communities served by MWRA over a 7-year period (7/27/2005 – 9/30/2012). 

Study Population 

For consistency regarding water treatment and travel times, this study was restricted to 

only when the John J. Carroll Water Treatment Plant (CWTP) was on line (July 27, 2005 – 

September 30, 2012).  This study included a subset of MWRA communities that met the 

following criteria: 1) received full water service from MWRA; 2) located 20-35 miles from the 
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intake at Wachusett Reservoir (estimated using ArcMap); and 3) received water after the 

Norumbega Covered Storage Facility.  Figure 18 highlights the 22 study communities in relation 

to the Wachusett Reservoir, CWTP, and Norumbega Covered Storage Facility.  These 

communities include Arlington, Belmont, Boston, Brookline, Chelsea, Everett, Lexington, 

Lynnfield, Malden, Medford, Melrose, Milton, Newton, Norwood, Reading, Revere, Saugus, 

Somerville, Stoneham, Waltham, Watertown, and Weston.  Based on the 2010 U.S. Census, the 

total population of these communities was around 1.4 million.   

 

 
Figure 18. Metropolitan Boston Communities included in Aim 1. 

Health Outcomes 

Emergency department (ED) data were used to capture acute symptoms of 

gastrointestinal, respiratory, and dermal illnesses, all of which have been related to exposure to 

cyanobacteria and/or their toxins(133, 138, 139, 229). 
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Cyanobacteria Exposure 

The MWRA and the Massachusetts Department of Conservation and Recreation (DCR) 

provided cyanobacteria data from the Wachusett Reservoir.  Water samples were collected 

weekly during the winter (October 1- April 30) and twice per week during the summer (May 1-

September 30, Mondays and Thursdays).  In the winter, no samples were collected if the 

reservoir was ice covered.  Increased monitoring occurred whenever there were concerns, such 

as counts above early trigger levels, increased consumer complaints, and/or other information 

suggesting a bloom threat (e.g., weather, nutrient, dissolved oxygen). Trigger levels were based 

on “nuisance algae” known to cause taste and odor problems in the water (e.g., Anabaena, 

Synura, Dinobryon, Chrysosphaerella, Uroglenopsis).(230) 

 Routine grab samples were collected at various depths near the Cosgrove Intake which 

transfers water from the Wachusett Reservoir to the CWTP(230).  Depending on the weather 

and other relevant conditions, one of two sampling locations was used – Basin North (BN) 3417 

(by boat) or from Cosgrove Intake (see Figure 19).  Location BN 3417 was sampled preferentially 

by DCR as it was not impacted by turbulence at the Intake, wind driven effects, etc.  However, 

Cosgrove Intake was used if conditions did not allow for sampling from Location BN 3417.  

Cyanobacteria densities were quantified using a Sedgewick-Rafter (S-R) Cell(231).  The method 

used, including 10 field count, three strips count, and full S-R cell count, is documented in 

Standard Methods 18th Edition (230-232).  Phytoplankton densities were expressed as Areal 

Standard Units (ASUs; equivalent to 400 square microns) per milliliter(231).   
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Figure 19: Wachusett sampling locations. 

 
MWRA generally uses overall maximum measures, irrelevant of depth, to determine 

monitoring and treatment decisions.  Based on MWRA’s procedures, a daily measure of total 

cyanobacteria was based on the daily maximum, regardless of the location or depth of sample 

collection. Linear interpolation was used to address days without sample collection (83%) in 

order to form a daily time-series of cyanobacteria (Figure 20).  During the winter, 

concentrations were low and relatively stable.(230)  Cyanobacteria genera included, but were 

not limited to, Anabaena, Aphanocapsa, Aphanothece, Chroococcus, Coelosphaerium, 

Dactylococcopsis, Gloeocapsa, Gomphosphaeria, Merismopedia, Microcystis, Oscillatoria, and 

Rhabdoderma.  Figure 21 shows an example of Microcystis, a genus of freshwater 

cyanobacteria, observed at the Cosgrove Intake in the Wachusett Reservoir on July 20, 2015. 
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Figure 20. Time-series of Total Cyanobacteria in Wachusett Reservoir, 7/27/2005-9/30/2012. 

 
 

 
Figure 21: Microcystis observed in the Wachusett Reservoir in July 2015. 
Source: Massachusetts Department of Conservation and Recreation(231) 

 



 

85 
 

Latency between Cyanobacteria Measurement and ED visits 

According to a hydraulic modeling specialist at MWRA, it takes about 4 hours for water 

to travel from the Wachusett Reservoir to the treatment plant.  From the treatment plant, the 

water continues east to the Norumbega Covered Storage Facility, taking 14 to 16 hours 

depending on system demands. Since the storage facility is a “flow thru” design, the water 

remains in the tank for 8 to 12 hours before leaving. In general, the travel time from the 

Wachusett Reservoir to the City of Boston ranges from 40 to 50 hours depending on system 

demands.(200) 

The time it takes water to travel from the Wachusett Reservoir to each study 

community varies depending on system demands and distance travelled.  By selecting 

communities within 20-35 miles of the Wachusett Reservoir, water travel times were estimated 

to be similar (within a day of each other) and take a minimum of 2-3 days.  The health effects of 

cyanobacteria were expected to be acute (i.e., without an incubation period), occurring within 

0-2 days of exposure.  In a previous study, drinking water contaminated by cyanobacteria was 

associated with symptoms of illness (e.g., muscle pain, gastrointestinal, skin, and ear) within 0-3 

days of exposure (138).  Given the acute nature of expected symptoms, the time it might take 

to visit the ED was estimated to be within 0-2 days.  Accounting for the travel time and lag to 

visit the ED, a 2-4 and 5-7 day lag between cyanobacteria measurement and ED visit were 

considered in the analysis.  For each lagged period of exposure, daily maxima of total 

cyanobacteria were summed together. 
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Other Variables 

Mean daily air temperature for Boston were obtained from the National Climatic Data 

Center.  Mean daily water temperature in the Wachusett Reservoir were obtained from MWRA.  

To form a daily time series of water temperature, linear interpolation was used to address days 

without a measurement (13%).  Rain gauge data were obtained from the Boston Water and 

Sewer Commission.   

Statistical Analysis 

Poisson regression models were used to estimate the associations between varying 

levels of cyanobacteria in the Wachusett Reservoir and daily rates of ED visits for acute 

gastrointestinal, respiratory, and dermal symptoms of illness.  Potential confounders were 

time-dependent factors related to both cyanobacteria and symptoms of illness.  Long-term 

trends and seasonal variations were modeled using indicator variables for year, month, and day 

of the week.  This also addressed the consistent increase in ED utilizations after the 

implementation of the Massachusetts health care reform in 2006(211).  For gastrointestinal 

illness, air temperature, water temperature, and extreme precipitation were also considered 

potential confounders.  For respiratory illness, air temperature was considered a potential 

confounder. 

Total cyanobacteria were categorized into quartiles and the lowest quartile served as 

the reference category.  Results are reported as incidence rate ratios (IRR) and 95% confidence 

intervals (CI) to describe the relative change in the rate of ED visits between quartiles of 

cyanobacteria.  Due to the potential for differences in susceptibility by age, the analyses were 
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also stratified by age group.  Data management and statistical analyses were conducted using 

SAS 9.4(233).   

 

Aim 2a Materials and Methods 

The objective of Aim 2a was to estimate the association between water main breaks and 

ED visits for acute gastrointestinal illness (AGI) over a 10-year period (10/1/2002 – 9/30/2012) 

in the City of Boston. 

Study Population 

Boston’s water system is operated by the Boston Water and Sewer Commission (BWSC) 

and delivers potable water to over a million people each day(234).   The 2010 Census reported 

a resident population of 617,594 for the City of Boston(235). BWSC also serves schools and 

universities, hospitals, businesses, industries, and private and public institutions throughout the 

city(236). 

Health Outcomes 

Waterborne pathogens often cause acute gastrointestinal illness (AGI)(33).  While the 

type of pathogen and length of incubation period can vary, they often cause a range of similar 

symptoms such as diarrhea, vomiting, nausea, and abdominal cramping(33, 38).  Symptoms can 

develop in less than a day for some viruses (e.g., norovirus)(237), within a few days for some 

bacteria (e.g., Campylobacter)(238), and up to a week or more for some parasites (e.g., 

Cryptosporidium, Giardia)(239, 240).  AGI was defined using ICD-9-CM diagnosis codes 

described earlier.  Both primary and associated diagnosis codes were included; however, a 
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sensitivity analysis based on only the primary diagnosis code was also conducted to examine 

the robustness of results. 

Main Break Exposure 

Main break records were obtained from BWSC for the entire study period.  These 

records are maintained by BWSC Field Engineering Department(241). Aside from the location of 

the break, the data included details such as the pipe material and type of break.  It was 

hypothesized that ED visits for any AGI caused by a main break would occur within a week of 

the break. This hazard period was examined as two mutually exclusive intervals: 0-3 days and 4-

7 days.  The different hazard periods accounted for various amounts of time that it could take 

for contaminated water to enter the distribution system after a main break, reach the 

consumer, and cause AGI symptoms that ultimately result in an ED visit.  Figure 22 summarizes 

the total number of main breaks by zip code during the entire study period.   

 

 
Figure 22. Number of main breaks by zip codes in Boston, 10/1/2002 – 9/30/2012. 
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Statistical Analysis 

A case-crossover study design was used to examine the association between main 

breaks and ED visits for AGI.  In a case-crossover study, cases effectively serve as their own 

control at different point(s) in time(242).  This type of study design was suitable because a main 

break is a brief exposure and any related AGI would be a transient effect(242, 243).  Using a 

time-stratified bi-directional approach matched on zip code and day of week, control date(s) 

were selected two weeks before and/or after the ED visit within 42-day time-stratified 

periods(244).  Conditional fixed-effects logistic regression models were used to estimate the 

risk of visiting the ED for AGI following a main break.  This type of regression model has been 

shown to be unbiased when a time-stratified bi-directional approach is used for referent 

selection(244, 245).  Results are reported as odds ratios (OR) and 95% confidence intervals (CI) 

to describe the relative increase in odds of ED visit for AGI after a main break.  Data 

management and statistical analyses were conducted using Stata SE Version 13 and the 

xtlogit command was used to fit the conditional logistic regression models(246).  

The analysis was also stratified by potential effect modifiers, including age, sex, median 

household income, and type of pipe break (e.g., circumferential, blowout).  Age and sex were 

considered potential effect modifiers due to possible differences in immune status and drinking 

water intake(17, 247, 248). Since individual-level socioeconomic status was unavailable, median 

household income was assessed at the zip code level(249).   Median household income, 

obtained from Esri(249), is a useful summary measure of the general economic condition for 

each zip code.  In Boston, median household income at the zip code level ranged from $29,000 

to $127,000 and the median was $50,000.  The analysis was stratified by the following 



 

90 
 

categories: <50th percentile (<$50,000); 50th-<75th percentile ($50,000-<$84,000); 75th-100th 

percentile (≥$84,000). Finally, the type of break was also considered a potential effect modifier 

because it could affect the volume of water that is released and hence the potential for 

contamination(158, 250). 

Sensitivity Analysis 

As shown in Figure 23, Boston’s water is distributed through five major water service 

networks: Southern Low; Northern Low; Southern High; Southern Extra-High; and Northern 

High(241). Approximately 90% of Boston’s water is delivered through Southern Low and 

Southern High, with most of the remaining water delivered through Northern Low(241).  Since 

service networks are independent of each other, main breaks only affect the network it occurs 

in(251).  In a sensitivity analysis, the case-crossover analysis was restricted to zip codes served 

primarily (90%) by one service network. In order to do so, zip codes had to first be summarized 

by service network. 
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Figure 23. Boston Water Service Areas. 
Source: CDM Camp Dresser & McKee Inc., 2011. 

 

Summarizing Zip Codes by Service Network 

Since Boston’s water service networks were unavailable as datasets in vector GIS 

format, an image file (.tiff) was first imported into ArcGIS and converted from a color 3-band (R-

G-B) raster file to a gray-scale single-band file, wherein each different color on the original map 

was converted to a gray-scale value (e.g. the Southern Extra High red service network might be 

represented as 75% gray in the converted raster file).  The conversion from 3-band to single 
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band allowed for the separation and classification of the different service networks based on 

their pixel values (e.g. 100% black, 50% black, etc.), yielding a raster dataset with 5 classes- one 

for each service network.  After the 3-band raster file was processed to create a 5-class raster 

file, it needed to be georeferenced to align to its proper location in the real world to allow for 

more advanced spatial analyses (e.g. population per service area per zip code).  Up to this point, 

both the original 3-band raster and the derived 5-class raster were only digital images depicting 

water service networks.  The 5-class map was georeferenced in ArcGIS 10.5 using a GIS layer of 

ZIP Codes as the control/reference layer.  When georeferencing, it is necessary to identify 

locations in the unreferenced dataset (the 5-class raster) and their corresponding locations in 

the real world.  Once identified, the unreferenced dataset is processed (warped, stretched, 

twisted), yielding a new dataset that exists in its correct location in the real world.   

A Census block shapefile (obtained from the U.S. Census Bureau) was joined with Census 

block population data (obtained from the National Historical Geographic Information System) 

based on common FIPS (Federal Information Processing Standard) codes that uniquely identify 

census units.  Census blocks with no population living inside them were excluded.  Then, Census 

blocks were converted from polygons to point features based on the centroid within each 

block. The location of each point feature determined the zip code for the entire block.  This was 

done using a Spatial Join, whereby the attributes of the features that points fall within were 

appended to the points. 

To model the population that is served by each water service network, the 5-class raster 

dataset described above was converted to a vector GIS file.  In this file, the pixels assigned to 

each water service network were converted to polygons (e.g. in the output GIS file, pixels for 
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service area 1 became polygon features, pixels for service area 2 became polygon features, 

etc.).  With this file created, block centroids could be assigned to water service networks based 

on spatial overlap or proximity.  For this analysis, the location of each census block point 

feature determined the service network for the entire block (as opposed to assigning blocks to 

water service areas based on the amount of overlap of between block polygons and water 

service polygons).  Census block points that fell within the boundaries of a water service 

polygon were assigned to that water service area.  Census block points that did not overlap 

with a service network were assigned to the network in closest proximity.  It was assumed that 

the closest service network would be connected to the Census block through individual 

property water lines not shown on the service network map. 

Since residential data for patients admitted to the emergency department were at the 

zip code level, the water service networks had to be summarized at the same geographic scale.  

To do this, Census block populations were aggregated by service network for each zip code and 

compared to the total zip code population.  The main limitation was that the service network 

data was not available as a map file containing location details (e.g., address, coordinates, place 

information).  Consequently, only the networks visible in the image file could be quantified and 

any overlapping of networks could not be addressed.  Most overlapping was between the 

Southern Low and Southern High networks and limited to Downtown Boston. 
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Aim 2b Materials and Methods 

 
The objective of Aim 2b was to estimate the association between a major water pipe 

break on May 1, 2010 and ED visits for AGI in metropolitan Boston communities affected by the 

subsequent boil water order. 

Study Population 

The Massachusetts Water Resources Authority (MWRA) provides drinking water to 

residents living primarily in metropolitan Boston communities(198).  At around 9:30 a.m. on 

May 1, 2010, a coupling that secured segments of a 10-foot diameter water pipe broke along a 

major distribution line(252).  Approximately two million residents were affected by a boil water 

order that follow this major water pipe break(252-254).  Figure 24 highlights the 30 Boston 

metropolitan communities that were affected.  They included Arlington, Belmont, Boston, 

Brookline, Canton, Chelsea, Everett, Hanscom Air Force Base, Lexington, Lynnfield, Malden, 

Marblehead, Medford, Melrose, Milton, Nahant, Newton, Norwood, Quincy, Reading, Revere, 

Saugus, Somerville, Stoneham, Swampscott, Wakefield, Waltham, Watertown, Winchester, and 

Winthrop.  These communities were located approximately 3 to 23 miles from the water pipe 

break.  For the purposes of this study, these communities were considered exposed. 

Negative Control Exposure 

In a separate analysis, communities unaffected by the pipe break served as a negative 

control to assess whether AGI also increased at the time of the event(255).  Communities 

receiving water unaffected by the pipe break were selected as a negative control exposure if 

they were 1) located in relatively close proximity (<40 miles) of the break and 2) had a Census 

population of at least 40,000 residents to ensure a sample size comparable to the truly exposed 
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communities. These communities included Attleboro, Billerica, Brockton, Cambridge, 

Framingham, Haverhill, Lawrence, Lowell, Lynn, Methuen, Peabody, Salem, Taunton, 

Weymouth, and Worcester.  Although Framingham receives full water service from MWRA, it 

was unaffected by the pipe break.  Peabody is partially supplied by MWRA but was also 

unaffected.  The remaining communities are not served by MWRA, though Cambridge and 

Worcester have access to MWRA for emergency/back-up supplies.  Figure 24 highlights these 

15 communities serving as negative controls. These communities were located approximately 7 

to 31 miles away from the water pipe break. 

 

 
Figure 24. Massachusetts communities studied in relation to the 2010 water pipe break. 
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Health Outcome 

As with Aim 2a, AGI was defined using ICD-9-CM diagnosis codes from ED visits.  Both 

primary and associated diagnosis codes were included; however, a sensitivity analysis based on 

only the primary diagnosis code was also conducted to examine the robustness of results. 

Pipe Break Exposure 

It was hypothesized that any ED visit for AGI caused by the water pipe break would 

occur within a week of the break.  Despite the magnitude of the situation, the broken pipe was 

repaired in less than two days and the boil water order was lifted within 3 days(252).  The one-

week hazard period encompassed the time it would take for contaminated water to enter the 

distribution system and reach the consumer, the pathogen incubation period, and the time for 

an affected person to visit the ED.  The hazard period was examined as two mutually exclusive 

intervals: 0-3 days and 4-7 days.  The 0-3 day period encompassed the duration of the boil 

water order.  The later 4-7-day hazard period accounted for a longer time lag from the pipe 

break to exposure, infection, onset of AGI symptoms, and visiting the ED.  The length of these 

hazard periods were optimal for capturing the effect of pathogens with an incubation period of 

no more than a few days. 

Statistical Analysis 

A case-crossover study design was used to examine the association between the major 

water pipe break and AGI.  This type of study design, in which cases effectively serve as their 

own control at different point(s) in time, was applicable because the water pipe break was a 

brief exposure with potentially transient effects on AGI(242, 243).  Control times were selected 

bidirectionally, two weeks before and two weeks after the pipe break(244, 256).  
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Conditional fixed-effects logistic regression models were used to estimate the risk of 

visiting the ED for AGI following the pipe break.  This type of regression model is the standard 

for case-crossover studies(243).  Only case-control groups with discordant exposures contribute 

information to the analysis(257); therefore, this analysis was confined to a 64-day period (April 

3, 2010 through June 5, 2010) based on all possible discordant exposure scenarios.  Results are 

reported as odds ratios (OR) and 95% confidence intervals (CI) and interpreted as the relative 

increase in odds of ED visit for AGI after the water pipe break. 

The analysis was also stratified by potential effect modifiers.  Age and sex were 

considered potential effect modifiers due to possible differences in immune status, risk for AGI, 

and drinking water intake(17, 247, 248). In addition, the analysis was stratified by distance from 

the pipe break in order to examine whether closer communities were impacted earlier, or more 

seriously, than further communities. A sensitivity analysis in which AGI was defined based on 

only the primary diagnosis code was conducted to examine the robustness of results. Lastly, 

attributable fractions and population attributable fractions were calculated using the odds ratio 

and proportion of exposed cases(258).  Data management and statistical analyses were 

conducted using Stata SE Version 13 and the xtlogit command was used to fit the conditional 

logistic regression models(246). 
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CHAPTER 4. CYANOBACTERIA IN AN UNFILTERED DRINKING WATER SYSTEM AND EMERGENCY 

DEPARTMENT VISITS FOR GASTROINTESTINAL, RESPIRATORY, AND DERMAL ILLNESS 

 

Introduction  

Cyanobacteria, also referred to as blue-green algae, are microscopic organisms that 

naturally occur in fresh, estuarine, and marine waters(112).  Cyanobacteria help maintain 

marine and freshwater ecosystems by producing oxygen (as a by-product of photosynthesis) 

and by serving as a food source for other organisms(115, 116).  Under certain environmental 

conditions, such as high nutrient levels, warmer temperatures, and sun exposure, 

cyanobacteria can form a bloom(5, 114, 115).  Occasionally, cyanobacterial blooms produce a 

complex mixture of hepatotoxins, neurotoxins, and dermatotoxins(115, 116, 119).  The most 

commonly identified cyanotoxins in the U.S. are microcystins, cylindrospermopsin, anatoxins, 

and saxitoxins(112).  In 2007, the U.S. Environmental Protection Agency (EPA) identified 

microcystins in approximately one-third of the nation’s lakes(121).   

In the U.S., many drinking water systems that use surface water sources (e.g., lakes, 

reservoirs) are vulnerable to harmful algal blooms and may be periodically contaminated by 

algal toxins(126).  Data on the presence or absence of cyanotoxins in finished drinking water 

are limited because there is no centralized monitoring program(122).  Nevertheless, drinking 

water treatment plants are increasingly met with the need to monitor and respond to harmful 

algal blooms(123).  In 2000, microcystins were the most commonly found toxin in pre- and 

post-treated drinking water in Florida, with finished water concentrations as high as 12.5 
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µg/L(122).  In 33 U.S. drinking water treatment plants in the Northeast and Midwest, a survey 

conducted in 2003 reported that microcystins were detected at low levels (≤0.36 µg/L) in all 

finished water samples collected(124).  In more recent years, there has been a noticeable 

increase in the severity of cyanobacterial harmful algal blooms in Lake Erie, a drinking water 

source for many communities(123). In the summer of 2014, microcystin levels in fully treated 

tap water from Western Lake Erie were high enough (3.2 µg/L) to make the city of Toledo, Ohio 

issue a warning not to use the water(2).  In September 2016, microcystins were detected at low 

levels (≤0.18 µg/L) for the first time in treated public drinking water in the state of New 

York(125). 

Human exposure to cyanobacteria can occur in everyday and recreational settings, 

through direct contact, ingestion (e.g., drinking contaminated water, eating tainted fish or 

shellfish), and even inhalation of contaminated water droplets (e.g., in the shower or during 

recreational activities)(110, 111).  In the U.S., recreational activities during freshwater harmful 

algal blooms have been associated with waterborne disease outbreaks that include 

dermatologic, gastrointestinal, respiratory, febrile, ear, and eye symptoms(130-133).  Drinking 

water exposure to harmful cyanobacteria can lead to symptoms of illness both acute (e.g., 

gastroenteritis, muscle pain and dermatitis) and chronic (e.g., liver and kidney damage)(116, 

133, 135).  In the summer of 2009, Lévesque et al. (2014) conducted a prospective study of 

residents who lived in close proximity to lakes affected by cyanobacteria in Quebec, 

Canada(138).   Among participants receiving drinking water from a plant whose source was 

contaminated by cyanobacteria, an increase in self-reported muscle pain, gastrointestinal 

symptoms, dermal symptoms, and ear symptoms was observed (138).  In Australia, a case-
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control study suggested that gastrointestinal and dermal symptoms were correlated with 

increased cyanobacterial cell counts in a drinking water supply that came from a river affected 

by an extensive bloom(139).  While high levels of cyanotoxin in drinking water have been linked 

to human health risks, the effect of chronic low levels is not well-documented or 

understood(128, 144). 

The risk for exposure to cyanotoxins is not always obvious since they can be present in 

the absence of a bloom or visible scum on the water(120).  In other words, waters that appear 

to be free of cyanobacteria may actually be contaminated with free toxin(120). Therefore, 

water treatment processes need to consider the presence of both intracellular and extracellular 

cyanotoxins(122).  In the absence of cell damage, conventional water treatment (e.g., 

coagulation, flocculation, sedimentation, and filtration) can be effective at removing intact cells 

and the majority of intracellular toxins(122). If toxins are released into the water, however, 

conventional treatments need additional processes such as chemical oxidation, adsorption, 

biodegradation or reverse osmosis, and nanofiltration(122).   

The Massachusetts Water Resources Authority (MWRA) provides wholesale water and 

sewer services to 2.5 million people in 61 metropolitan Boston communities (191, 192).  The 

MWRA system does not use conventional water treatment (e.g., filtration) and instead relies on 

protecting existing sources through strict watershed management practices(205).  The 

objective of this analysis was to estimate the association between cyanobacteria levels in the 

MWRA water source and the rate of emergency department visits for acute gastrointestinal, 

respiratory, and dermal illness in metropolitan Boston communities in Massachusetts during a 

7-year period (July 27, 2005 – September 30, 2012).  
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Methods 

Massachusetts Water Resources Authority  

The Massachusetts Water Resources Authority (MWRA) provides drinking water to 

residents living in the metropolitan Boston area(198).  MWRA's water comes from the Quabbin 

and Wachusett Reservoirs, located approximately 65 and 35 miles west of Boston, respectively 

(196-199).  The surrounding watershed lands are protected by forest and wetlands (>85% 

coverage) and about 75% cannot be built on (196-199).   

Since July 27, 2005, water from the Wachusett reservoir serving the metropolitan 

Boston area has been treated at the John J. Carroll Water Treatment Plant (CWTP).  The 

treatment process has always been unfiltered and relies primarily on disinfection.  The primary 

disinfectant is ozone and the secondary (residual) disinfectant is chloramine. For consistency 

regarding water treatment and travel times, this study was restricted to only when CWTP was 

on line (July 27, 2005 – September 30, 2012). 

Study Population 

This study included a subset of MWRA communities that met the following criteria: 1) 

received full water service from MWRA; 2) located 20-35 miles from the intake at Wachusett 

Reservoir (estimated using ArcMap); and 3) received water after the Norumbega Covered 

Storage Facility.  Figure 25 highlights the 22 study communities in relation to the Wachusett 

Reservoir, CWTP, and Norumbega Covered Storage Facility.  These communities include 

Arlington, Belmont, Boston, Brookline, Chelsea, Everett, Lexington, Lynnfield, Malden, Medford, 

Melrose, Milton, Newton, Norwood, Reading, Revere, Saugus, Somerville, Stoneham, Waltham, 
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Watertown, and Weston.  Based on the 2010 U.S. Census, the total population of these 

communities was around 1.4 million. 

Cyanobacteria 

The MWRA and the Massachusetts Department of Conservation and Recreation (DCR) 

provided cyanobacteria data from the Wachusett Reservoir.  Water samples were collected 

weekly during the winter (October 1- April 30), and twice per week during the summer (May 1-

September 30, Mondays and Thursdays).  In the winter, no samples were collected if the 

reservoir was ice covered.  Increased monitoring occurred whenever there were concerns, such 

as counts above early trigger levels, increased consumer complaints, and/or other information 

suggesting a bloom threat (e.g., weather, nutrient, dissolved oxygen). Trigger levels were based 

on “nuisance algae” known to cause taste and odor problems in the water (e.g., Anabaena, 

Synura, Dinobryon, Chrysosphaerella, Uroglenopsis).  Linear interpolation was used to address 

days without sample collection (83%) in order to form a daily time-series of cyanobacteria 

(Figure 26).  During the winter, concentrations were low and relatively stable.(230) 

Grab samples were collected at various depths near the Cosgrove Intake which transfers 

water from the Wachusett Reservoir to the CWTP(230).  Cyanobacteria densities were 

quantified using a Sedgewick-Rafter (S-R) Cell(231).  The method used, including 10 field count, 

three strips count, and full S-R cell count, is documented in Standard Methods 18th Edition (230-

232).  Phytoplankton densities were expressed as Areal Standard Units (ASUs; equivalent to 400 

square microns) per milliliter(231).  A daily measure of total cyanobacteria was based on the 

daily maximum, regardless of the depth of sample collection. Cyanobacteria genera included, 

but were not limited to, Anabaena, Aphanocapsa, Aphanothece, Chroococcus, Coelosphaerium, 
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Dactylococcopsis, Gloeocapsa, Gomphosphaeria, Merismopedia, Microcystis, Oscillatoria, and 

Rhabdoderma.  

Emergency Department Visits  

Emergency department (ED) data were used to capture acute symptoms of 

gastrointestinal, respiratory, and dermal illnesses that have been related to exposure to 

cyanobacteria and/or their toxins(133, 138, 139, 229).  ED data were obtained from the 

Commonwealth of Massachusetts Center for Health Information and Analysis for the 7-year 

study period (July 27, 2005 – September 30, 2012).  These included visits to emergency 

departments in Massachusetts’ acute care hospitals and satellite emergency facilities. Patients 

receiving observation services but not admitted to the hospital were also included since these 

hospital outpatient visits are often transferred from the ED (217-219).  

Acute gastrointestinal, respiratory, and dermal symptoms of illness were defined using 

ED visit diagnosis codes (International Classification of Disease, Version 9 Clinical Modification, 

ICD-9-CM).  Acute gastrointestinal illness (AGI) was defined using any of the following ICD-9-CM 

diagnosis codes: 001-009.9 (intestinal infectious diseases); 558.9 (other and unspecified 

noninfectious gastroenteritis and colitis); 787.0 (nausea and vomiting); 787.91 (diarrhea).  

Respiratory illness was defined using: 460 (acute nasopharyngitis; common cold); 461 (acute 

sinusitis); 465.9 (acute upper respiratory infection); 493 (asthma); 786.2 (cough); 786.07 

(wheezing); 786.05 (shortness of breath).  Dermal irritation was defined using: 782.1 (rash and 

other nonspecific skin eruption); 136.9 (unspecified infectious and parasitic diseases); 686.9 

(unspecified local infection of skin and subcutaneous tissue); 692 (contact dermatitis and other 
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eczema); 691.8 (other atopic dermatitis and related conditions).  Both primary and associated 

diagnosis codes were considered. 

Latency between cyanobacteria measurement and ED visits 

According to a hydraulic modeling specialist at MWRA, it takes about 4 hours for water 

to travel from the Wachusett Reservoir to the treatment plant.  From the treatment plant, the 

water continues east to the Norumbega Covered Storage Facility, taking 14 to 16 hours 

depending on system demands. Since the storage facility is a “flow thru” design, the water 

remains in the tank for 8 to 12 hours before leaving. In general, the travel time from the 

Wachusett Reservoir to the City of Boston ranges from 40 to 50 hours depending on system 

demands.(200) 

The time it takes water to travel from the Wachusett Reservoir to each study 

community varies depending on system demands and distance travelled.  By selecting 

communities within 20-35 miles of the Wachusett Reservoir, water travel times were estimated 

to be similar (within a day of each other) and take a minimum of 2-3 days.  The health effects of 

cyanobacteria were expected to be acute and immediate (i.e., without an incubation period), 

occurring within 0-2 days of exposure.  In a previous study, drinking water contaminated by 

cyanobacteria was associated with symptoms of illness (e.g., muscle pain, gastrointestinal, skin, 

and ear) within 0-3 days of exposure (138).  Given the acute nature of expected symptoms, the 

time it might take to visit the ED was estimated to be within 0-2 days.  Accounting for these 

different time components, a 2-4 and 5-7 day lag between cyanobacteria measurement and ED 

visit were considered in the analysis.  For each lagged period of exposure, daily measures of 

total cyanobacteria were summed together. 
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Other Variables 

Mean daily air temperature for Boston were obtained from the National Climatic Data 

Center.  Mean daily water temperature in the Wachusett Reservoir were obtained from MWRA.  

To form a daily time series of water temperature, linear interpolation was used to address days 

without a measurement (13%).  Rain gauge data were obtained from the Boston Water and 

Sewer Commission.   

Statistical Analysis 

Poisson regression models were used to estimate the associations between varying 

levels of cyanobacteria in the Wachusett Reservoir and daily rates of ED visits for acute 

gastrointestinal, respiratory, and dermal symptoms of illness.  Potential confounders were 

time-dependent factors related to both cyanobacteria and symptoms of illness.  Long-term 

trends and seasonal variations were modeled using indicator variables for year, month, and day 

of the week.  This also addressed the consistent increase in ED utilizations after the 

implementation of the Massachusetts health care reform in 2006 (see Figure 27 for time-series 

of ED visits)(211).  For AGI, air temperature, water temperature, and extreme precipitation 

were also considered potential confounders.  For respiratory illness, air temperature was 

considered a potential confounder. 

Total cyanobacteria were categorized into quartiles and the lowest quartile served as 

the reference category.  Results are reported as incidence rate ratios (IRR) and 95% confidence 

intervals (CI) to describe the relative change in the rate of ED visits between quartiles of 

cyanobacteria.  Due to the potential for differences in susceptibility by age, the analyses were 
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also stratified by age group.  Data management and statistical analyses were conducted using 

SAS 9.4.   

 

Results 

Emergency department visits for acute gastrointestinal illness 

Table 11 describes the characteristics of the ED visits for gastrointestinal, respiratory, 

and dermal symptoms of illness during the 7-year study period (7/27/2005-9/30/2012) in the 

22 Metropolitan Boston communities.  There were a total of 60,826 visits for AGI (of which 46% 

had a primary diagnosis), 48,802 for respiratory (5% primary), and 1,161 for dermal (76% 

primary).  The average number of daily ED visits was 23.2 for AGI, 18.6 for respiratory, and less 

than 1 for dermal (Table 12).  There were slightly more females than males with ED visits for 

AGI (56%) and respiratory illness (58%).  The distribution by age were similar for ED visits for 

AGI and dermal illness, with over a third of the ED visits among young children (≤5 years).  Also, 

the elderly (≥65 years) had the fewest visits (~5%).  For respiratory illness, the majority (70%) of 

ED visits were among adults (19-64 years), followed by the elderly (21%).   For AGI and 

respiratory illness, there were more whites (41% AGI; 58% respiratory) compared to other racial 

groups.  For dermal symptoms of illness, there were more blacks (44%). 

As shown in Figure 27, there was a gradual increase in ED utilizations during the first half 

of the study period before starting to level out in 2010.  A seasonal trend was evident for AGI as 

it peaked in the winter months.  Respiratory and dermal symptoms were relatively constant by 

month and season.   
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Cyanobacteria in the reservoir 

Total cyanobacteria levels in the Wachusett Reservoir ranged from 0 - 532.5 ASU/mL 

during the study period (Table 12).  The distribution was highly right-skewed.  The mean level 

was 58.0 ASU/mL (standard deviation = 80.5) while the median was 24.4 ASU/mL.  As shown in 

Figure 26, there was a seasonal trend throughout the study period.  Cyanobacteria levels 

generally peaked in the late summer and early fall.  

Model results 

 Table 13 summarizes the association between cyanobacteria in the Wachusett Reservoir 

and daily ED visits for each health outcome.  In particular, the incidence rate ratio (IRR) 

describes the change in the rate of ED visits for each quartile of total cyanobacteria relative to 

the lowest quartile.  All models were adjusted for time trends using indicator variables for year, 

month, and day of the week.  The addition of air temperature, water temperature, and/or 

extreme precipitation did not meaningfully change the magnitude or direction of any estimates 

for AGI.  Similarly, the addition of air temperature did not alter any estimates for respiratory 

illness. 

 Compared to the lowest quartile of total cyanobacteria (≤5.0 ASU/mL), the rate of ED 

visits for respiratory illness increased by 6% (IRR=1.06; 95% CI: 1.02-1.11) in the highest quartile 

(≥80.2 ASU/mL) and 7% (IRR=1.07; 95% CI: 1.04-1.11) in the second highest quartile (24.4-80.2 

ASU/mL) during the 2-4 day lag period.  A similar increase was observed during the 5-7 day lag 

period.  In other words, the rate of ED visits for respiratory illness increased by 3-8% in each 

quartile for both the 2-4 and 5-7 lag periods.  
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Similarly, the rate of ED visits for AGI increased by 3-6% in the top two quartiles for both 

lag periods.  In particular, the rate of ED visits increased by 6% (IRR=1.06; 95% CI: 1.03-1.10) in 

the highest quartile and 5% in the second highest quartile during the 2-4 day lag period.  A 

similar increase was observed during the 5-7 day lag period.   

For the rate of ED visits for dermal ailments, the second lowest quartile (5.0-24.4 

ASU/mL) was associated with a 21% increase during the 2-4 day lag period (IRR=1.21; 95% CI: 

1.01-1.46) and a 27% increase during the 5-7 day lag period (IRR=1.27; 95% CI: 1.06-1.52).  

However, these associations did not remain statistically significant in the third and fourth 

quartiles. 

 In stratified analyses, the younger (≤18 years) and older (≥65 years) age groups 

appeared to be more strongly affected by increasing levels of cyanobacteria.  Among the 

youngest children (≤5 years), the highest quartile of cyanobacteria was associated with 

increased rates of respiratory illness (IRR=1.27; 95% CI: 1.01-1.60) and dermal ailments 

(IRR=1.54; 95% CI: 1.01-2.35).  Among older children and adolescents (6-18 years), the rates of 

AGI were 11-14% higher in the top two quartiles of cyanobacteria compared to the lowest 

quartile.  Among the elderly, the rates of ED visits for respiratory illness increased with each 

quartile for both lag periods.  However, the linear trend did not deviate much from a null 

association of 1 during the 2-4 day lag period (IRR=1.0015; 95% CI: 1.0003-1.0027) or 5-7 day 

lag period (IRR=1.0018; 95% CI 1.0006-1.0030). 
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Discussion 

 As a changing climate impacts freshwater and marine environments (e.g., warming 

water temperature, higher carbon dioxide levels, changes in rainfall leading to more nutrient 

runoff), harmful algal blooms may occur more often, in more places, and at higher intensities(1-

5).  Although the U.S. only has non-regulatory health advisories for two cyanobacterial toxins, 

cyanobacteria is recognized as a potential drinking water contaminant in public water systems 

around the world(33, 122).  In this study, the upper quartile levels of cyanobacteria were 

associated with slightly increased rates of ED visits for AGI and respiratory illness when 

compared to the lowest quartile.  The results for dermal illness were inconclusive due to the 

small number of ED visits and inconsistent findings by quartile. 

These findings were consistent regardless of whether additional variables (air 

temperature, water temperature, extreme precipitation) were included.  It is possible that the 

indicator variables for time adequately controlled for the influence of temperature.  In addition, 

extreme precipitation may not have been a true confounder due to the temporal and spatial 

lags between cyanobacteria levels in the reservoir and subsequent ED visits in the city.  The 

potential for residual confounding should still be further investigated. 

 While the magnitude of a relative measure is informative, it does not necessarily 

translate to the public health significance.  Incorporating estimated baseline rates provides 

more meaning to the relative measures.  Table 12 summarizes the average number of visits per 

day for each health outcome (AGI=23.2; respiratory=18.6; dermal=0.4).  Table 14 shows the 

estimated number of ED visits for each quartile of cyanobacteria, holding the time variables at 

their respective reference levels.  The very low baseline rate (0.4) for dermal ailments means 
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that any relative increase would have a minimal impact.  For example, the 21% increase in the 

second quartile with a 2-4 day lag (IRR=1.21; 95% CI: 1.01-1.46) is equal to a rate difference of 

only 0.9 (0.50-0.41).  Considering an estimated population of 1.4 million in the study area, this 

would be equivalent to an excess of 4.5 visits per million person-weeks ((0.9/1.4)*7).  Even with 

a baseline rate around 20 for both AGI and respiratory illness, the relative increase observed 

(<10%) does not compare with much of an absolute increase (<2 visits/day).  

This study only considered short lag periods (less than a week) because cyanobacteria 

were expected to have acute toxic effects(138).  Also, prolonging lag periods can allow for other 

factors to influence the association of interest. The 2-4 and 5-7 day periods may have reflected 

differences in the severity of illness or the time to seek medical care; however, cyanobacteria 

appeared to have similar effects in both periods.  Using Medicare data over a 10-year period 

from 1998 to 2008, Beaudeau et al. (2014) reported finding an association between 

cyanobacteria and AGI that was weakly significant over 8-12 day lags and peaked over 23-27 

day lags(140).  The rationale for the long latency of the effects was unclear(140). 

Strengths 

 A strength of this study was having 7 years of data to estimate the association between 

low levels of cyanobacteria and ED visits for AGI, respiratory, and dermal illness.  It is often a 

challenge to have quality long-term data on algae in drinking water supplies, let alone speciated 

data such as cyanobacteria.  Fortunately, MWRA has been collecting algae data in the 

Wachusett Resevoir since the early 1990s so their methods have been in place for a while. 

 Another strength of this study was the large population served by MWRA.  As 

mentioned above, the study population was approximately 1.4 million.  This provided the 
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statistical power to detect a small effect, which was expected given the low levels of 

cyanobacteria. 

Limitations 

The use of ED data likely captured the most severe cases of illness.  As a result, the 

overall effects of cyanobacteria could be underestimated.  Residents experiencing milder 

symptoms of illness may have opted to recover at home or visit their primary care provider.  

Unfortunately, this is a limitation of using administrative healthcare data. 

Another limitation was that cyanobacteria measurements were taken in the reservoir 

prior to treatment.  Therefore, it may not be an accurate representation of the concentrations 

in the treated water delivered to consumers.  Of note, however, is that MWRA used an 

unfiltered treatment process that relies primarily on disinfection (ozone) to achieve Giardia 

inactivation(195).  While ozone has been shown to destroy certain types of cyanotoxins, its 

efficacy depends on the ozone demand of organic material in the raw water(148).  In addition, 

ozonation of raw waters containing high cyanobacteria cell concentrations can lead to cell lysis 

and release of intracellular toxins(148).  In the absence of filtration, it may have been possible 

for cyanobacteria to survive the disinfection treatment process(122). 

Future Directions 

While total cyanobacteria did not indicate the presence of toxins, several species of 

cyanobacteria are known to produce toxins.  Since the end of 2014, MWRA began collecting 

data on toxins, such as microcystins. It would be useful to include toxins data in future analyses. 
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Conclusion 

This study provides support that low levels of cyanobacteria can have an effect on acute 

symptoms of gastrointestinal and respiratory illnesses in an unfiltered water system.  Building 

upon this work can help water utilities and health departments develop algae response plans.   

Figures 
 

 
Figure 25. Metropolitan Boston Communities included in analysis. 
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Figure 26. Time-series of Total Cyanobacteria in Wachusett Reservoir, 7/27/2005-9/30/2012. 

 

 

 
Figure 27. Time-series of Emergency Department Visits in the Metropolitan Boston area, 
Massachusetts, 7/27/2005-9/30/2012. 
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Tables 

 

Table 11. Emergency department visits in the Metropolitan Boston area, Massachusetts, 
7/27/2005-9/30/2012. 

 Gastrointestinal Respiratory Dermal 

  N % N % N % 

Total 60,826 100% 48,802 100% 1,161 100% 

              

Type of Visit            

Emergency Department 59,514 98% 43,550 89% 1,117 96% 

Outpatient* 1,312 2% 5,252 11% 44 4% 

              

Age            

Children (≤5 years) 22,151 36% 1,477 3% 431 37% 

Youth/Adolescents (6-18 years) 10,099 17% 2,988 6% 197 17% 

Adults (19-64 years) 25,608 42% 34,255 70% 483 42% 

Elderly (≥65 years) 2,968 5% 10,082 21% 50 4% 

              

Sex            

Female 33,983 56% 28,187 58% 577 50% 

Male 26,840 44% 20,614 42% 584 50% 

              

Primary Diagnosis 28,012 46% 2,411 5% 888 76% 

              

Race            

White 25,048 41% 28,085 58% 239 21% 

Black 14,567 24% 9,495 19% 512 44% 

Hispanic 12,546 21% 6,861 14% 225 19% 

Other 6,712 11% 3,182 7% 144 12% 

*Hospital outpatient visits included patients who received observation services but were not admitted to the 

hospital.
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Table 12. Summary of daily measures considered in analysis. 

Variable 
Days of 

observation Mean 
Standard 
Deviation Min 

10th 
Percentile 

25th 
Percentile Median 

75th 
Percentile 

90th 
Percentile Max 

ED Visits for Gastrointestinal Illness 2623 23.19 9.18 5 13 17 22 28 35 76 

ED Visits for Respiratory Illness 2623 18.61 6.29 3 11 14 18 23 27 41 

ED Visits for Dermal Irritations 2623 0.44 0.70 0 0 0 0 1 1 4 

Total Cyanobacteria (ASU/mL) 2617 57.96 80.49 0 0 5.00 24.43 80.24 154.26 532.54 

Abbreviations: ED, emergency department; ASU/mL, Areal Standard Units per milliliter. 
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Table 13. Cyanobacteria in the Wachusett Reservoir and emergency department visits in Metropolitan Boston, Massachusetts, 
7/27/2005-9/30/2012. 

 Gastrointestinal Respiratory Dermal 

  # visits 
2-4 day lag 

IRR* (95% CI) 
5-7 day lag 

IRR* (95% CI) # visits 
2-4 day lag 

IRR* (95% CI) 
5-7 day lag 

IRR* (95% CI) # visits 
2-4 day lag 

IRR* (95% CI) 
5-7 day lag 

IRR* (95% CI) 

Cyanobacteria 
(per 10 ASU/mL) 

60,68
7 

1.0007 
(1.0002, 1.0012) 

1.0006 
(1.0001, 1.0011) 

48,678 1.0003 
(0.9997, 1.0008) 

1.0005 
(1.0000, 1.0010) 

1,155 0.9989 
(0.9954, 1.0024) 

0.9992 
(0.9957, 1.0028) 

Q1 
(≤5.0 ASU/mL) 

15,69
6 

1.0 1.0 11,136 1.0 1.0 246 1.0 1.0 

Q2 
(5.0-24.4 ASU/mL) 

17,01
5 

1.00 (0.97, 1.02) 0.99 (0.97, 1.01) 12,382 1.04 (1.01, 1.07) 1.03 (1.00, 1.06) 299 1.21 (1.01, 1.46) 1.27 (1.06, 1.52) 

Q3 
(24.4-80.2  ASU/mL) 

15,07
4 

1.05 (1.02, 1.08) 1.03 (1.00, 1.06) 12,596 1.07 (1.04, 1.11) 1.07 (1.03, 1.10) 313 1.19 (0.96, 1.48) 1.03 (0.83, 1.29) 

Q4 
(≥80.2  ASU/mL) 

12,90
2 

1.06 (1.03, 1.10) 1.04 (1.01, 1.08) 12,564 1.06 (1.02, 1.11) 1.08 (1.04, 1.12) 297 1.16 (0.90, 1.49) 1.24 (0.96, 1.59) 

                 

Children (≤5 years)                
Cyanobacteria 
(per 10 ASU/mL) 

22,09
2 

1.0005 
(0.9996, 1.0014) 

1.0005 
(0.9996, 1.0014) 

1,469 1.0027 
(0.9998, 1.0056) 

1.0013 
(0.9984, 1.0042) 

430 1.0019 
(0.9963, 1.0075) 

1.0013 
(0.9957, 1.0069) 

Q1 5,744 1.0 1.0 296 1.0 1.0 92 1.0 1.0 
Q2 6,484 1.01 (0.97, 1.05) 1.00 (0.96, 1.04) 390 1.13 (0.95, 1.34) 1.03 (0.87, 1.22) 122 1.44 (1.07, 1.94) 1.28 (0.96, 1.71) 
Q3 5,533 1.07 (1.02, 1.12) 1.02 (0.97, 1.07) 372 1.12 (0.92, 1.38) 1.07 (0.87, 1.30) 102 1.17 (0.81, 1.68) 1.03 (0.72, 1.49) 
Q4 4,331 1.06 (1.00, 1.13) 1.04 (0.98, 1.11) 411 1.27 (1.01, 1.60) 1.08 (0.86, 1.36) 114 1.54 (1.01, 2.35) 1.22 (0.79, 1.86) 

Youth/Adolescents 
(6-18 years)                

Cyanobacteria 
(per 10 ASU/mL) 

10,08
7 

1.0004 
(0.9991, 1.0016) 

1.0005 
(0.9992, 1.0017) 

2,974 0.9995 
(0.9975, 1.0016) 

0.9991 
(0.9970, 1.0012) 

195 1.0015 
(0.9927, 1.0103) 

1.0012 
(0.9924, 1.0101) 

Q1 2,588 1.0 1.0 658 1.0 1.0 43 1.0 1.0 
Q2 2,883 1.01 (0.95, 1.07) 1.00 (0.94, 1.06) 728 1.01 (0.90, 1.13) 1.15 (1.02, 1.29) 51 1.23 (0.79, 1.93) 1.59 (1.01, 2.51) 
Q3 2,476 1.13 (1.05, 1.22) 1.14 (1.06, 1.22) 740 1.08 (0.94, 1.24) 1.13 (0.99, 1.30) 53 1.20 (0.70, 2.05) 1.43 (0.82, 2.50) 
Q4 2,140 1.11 (1.02, 1.21) 1.11 (1.01, 1.21) 848 1.06 (0.90, 1.24) 1.07 (0.91, 1.25) 48 1.29 (0.70, 2.39) 1.49 (0.79, 2.82) 

Adults (19-64 years)                
Cyanobacteria 
(per 10 ASU/mL) 

25,54
9 

1.0007 
(0.9999, 1.0015) 

1.0005 
(0.9997, 1.0013) 

34,176 0.9998 
(0.9992, 1.0005) 

1.0002 
(0.9996, 1.0009) 

480 0.9955 
(0.9898, 1.0011) 

0.9961 
(0.9905, 1.0018) 

Q1 6,583 1.0 1.0 7,909 1.0 1.0 106 1.0 1.0 
Q2 6,899 0.97 (0.94, 1.01) 0.97 (0.94, 1.01) 8,682 1.03 (0.99, 1.06) 1.02 (0.98, 1.05) 115 1.02 (0.76, 1.37) 1.11 (0.83, 1.48) 
Q3 6,302 1.00 (0.96, 1.05) 0.99 (0.95, 1.04) 8,848 1.06 (1.02, 1.10) 1.06 (1.01, 1.10) 144 1.15 (0.83, 1.59) 0.91 (0.65, 1.28) 
Q4 5,765 1.03 (0.98, 1.09) 1.00 (0.95, 1.06) 8,737 1.02 (0.98, 1.07) 1.05 (1.00, 1.10) 115 0.88 (0.60, 1.30) 1.08 (0.74, 1.58) 



 

 
 

1
1

7 

 Gastrointestinal Respiratory Dermal 

  # visits 
2-4 day lag 

IRR* (95% CI) 
5-7 day lag 

IRR* (95% CI) # visits 
2-4 day lag 

IRR* (95% CI) 
5-7 day lag 

IRR* (95% CI) # visits 
2-4 day lag 

IRR* (95% CI) 
5-7 day lag 

IRR* (95% CI) 

Elderly (≥65 years)                
Cyanobacteria 
(per 10 ASU/mL) 

2,959 1.0026 
(1.0003, 1.0048) 

1.0023 
(1.0001, 1.0046) 

10,059 1.0015 
(1.0003, 1.0027) 

1.0018 
(1.0006, 1.0030) 

50 0.9987 
(0.9824, 1.0152) 

1.0058 
(0.9905, 1.0214) 

Q1 781 1.0 1.0 2,273 1.0 1.0 5 1.0 1.0 
Q2 749 1.04 (0.93, 1.17) 1.00 (0.90, 1.12) 2,582 1.07 (1.01, 1.14) 1.04 (0.98, 1.11) 11 1.49 (0.49, 4.56) 2.31 (0.76, 7.03) 
Q3 763 1.04 (0.90, 1.19) 1.07 (0.93, 1.23) 2,636 1.11 (1.03, 1.19) 1.09 (1.01, 1.17) 14 2.30 (0.72, 7.32) 1.42 (0.39, 5.14) 
Q4 

666 1.14 (0.98, 1.34) 1.15 (0.98, 1.35) 2,568 1.19 (1.09, 1.29) 1.19 (1.09, 1.29) 20 1.50 (0.41, 5.48) 
3.62 (0.96, 

13.65) 

Abbreviations: Q, quartile; ASU/mL, Areal Standard Units per milliliter; IRR, incidence rate ratios; 95% CI, 95% confidence intervals. 

*Adjusted for month, year, day of week.  
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Table 14. Estimated number of emergency department visits per day, by cyanobacteria quartile. 

 Gastrointestinal Respiratory Dermal 

  
2-4 day lag 

Rate* (95% CI) 
5-7 day lag 

Rate* (95% CI) 
2-4 day lag 

Rate* (95% CI) 
5-7 day lag 

Rate* (95% CI) 
2-4 day lag 

Rate* (95% CI) 
5-7 day lag 

Rate* (95% CI) 

Cyanobacteria Q1 
(≤5.0 ASU/mL) 

22.3 (21.4, 23.4) 22.6 (21.6, 23.7) 21.1 (20.1, 22.2) 21.1 (20.1, 22.2) 0.41 (0.30, 0.56) 0.40 (0.29, 0.55) 

Cyanobacteria Q2 
(5.0-24.4 ASU/mL) 

22.3 (21.3, 23.2) 22.4 (21.5, 23.4) 21.9 (20.9, 22.9) 21.8 (20.8, 22.8) 0.50 (0.37, 0.67) 0.51 (0.38, 0.69) 

Cyanobacteria Q3 
(24.4-80.2  ASU/mL) 

23.5 (22.5, 24.6) 23.4 (22.4, 24.4) 22.6 (21.6, 23.7) 22.5 (21.5, 23.6) 0.49 (0.36, 0.66) 0.41 (0.30, 0.57) 

Cyanobacteria Q4 
(≥80.2  ASU/mL) 

23.8 (22.7, 24.9) 23.6 (22.5, 24.7) 22.4 (21.4, 23.5) 22.7 (21.7, 23.9) 0.47 (0.35, 0.65) 0.50 (0.36, 0.68) 

Abbreviations: Q, quartile; ASU/mL, Areal Standard Units per milliliter; 95% CI, 95% confidence intervals. 

*At reference levels for time variables (day of week = Wednesday; month = June; year = 2009).
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CHAPTER 5. MAIN BREAKS AND EMERGENCY DEPARTMENT VISITS FOR ACUTE GASTROINTESTINAL 

ILLNESS, A 10 YEAR LONGITUDINAL STUDY IN BOSTON, MASSACHUSETTS 

 

Introduction  

Drinking water distribution systems are aging and deteriorating in many U.S. cities built 

before the end of the 19th century (e.g., Atlanta, Boston, Philadelphia)(102, 149).  This 

deterioration can lead to breaches in pipes and storage facilities, main breaks, and intrusion of 

contaminants due to water pressure fluctuations(102, 149).  Any deficiency within a system can 

potentially jeopardize the quality of drinking water supplied for human consumption(6).   

In the U.S., there are an estimated 240,000 main breaks each year, wasting over two 

trillion gallons of treated drinking water(9).  Pipes become vulnerable to breaks when 

environmental and operational stresses overwhelm their structural integrity, especially when 

they have already been compromised by factors such as corrosion and degradation(155, 158).  

A main break can cause abrupt changes in flow rate and water pressure within a drinking water 

pipeline(6, 156).  When the flow rate drops, water spends a longer duration in the distribution 

system, disinfectant residuals decline, and sediments can accumulate and allow microbes to 

grow(6).  When there is an abrupt reduction in water pressure and the external pressure 

exceeds the internal pressure (known as a negative pressure event), contaminants from the 

surrounding environment can enter the distribution system through leakage points, faulty seals, 

or other openings(6, 156-158).  Depending on the environment surrounding a water pipe, a 

variety of pathogens can enter the water system during a negative pressure event resulting 
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from a main break(157, 160).  In particular, indicators of fecal pollution (e.g., fecal coliform 

bacteria, total coliform) and culturable human viruses have been detected in the water and soil 

external to drinking water pipelines(157, 160).   

Waterborne disease outbreaks have occurred due to failures in water distribution 

systems(29, 153).  Due to the unplanned and circumstantial nature of such failures, it can be 

difficult to study and to estimate related health risks(157, 178).  A few epidemiology studies 

have found associations between pipe breaks or low pressure events and subsequent illness.  

For example, the number of pipe breaks in the U.S. was associated with the internet search 

volume for symptoms of gastrointestinal illness(182).  In Norway, main breaks were associated 

with self-reported gastrointestinal illness in Norway(19).  In the United Kingdom, low water 

pressure at the tap was associated with self-reported diarrhea(183).    

Studies have yet to examine main breaks in a distribution system and clinical diagnoses 

of gastrointestinal illness over an extended period.  The objective of this analysis was to 

estimate the association between water main breaks and the risk of emergency department 

visits for acute gastrointestinal illness over a 10-year period in Boston, Massachusetts. 

 

Methods 

Study Population 

Boston’s water system is operated by the Boston Water and Sewer Commission (BWSC) 

and delivers potable water to over a million people each day(234).   The 2010 Census reported 

a resident population of 617,594 for the City of Boston(235). BWSC also serves schools and 
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universities, hospitals, businesses, industries, and private and public institutions throughout the 

city(236). 

Emergency Department Visits for Acute Gastrointestinal Illness 

Waterborne pathogens often cause acute gastrointestinal illness (AGI)(33).  While the 

type of pathogen and length of incubation period can vary, they often cause a range of similar 

symptoms such as diarrhea, vomiting, nausea, and abdominal cramping(33, 38).  Symptoms can 

develop in less than a day for some viruses (e.g., norovirus)(237), within a few days for some 

bacteria (e.g., Campylobacter)(238), and up to a week or more for some parasites (e.g., 

Cryptosporidium, Giardia)(239, 240).  AGI was defined using diagnosis codes (International 

Classification of Disease, Version 9 Clinical Modification, ICD-9-CM) from emergency 

department (ED) visits.  Both primary and associated diagnosis codes were included; however, a 

sensitivity analysis based on only the primary diagnosis code was also conducted to examine 

the robustness of results.  Based on earlier studies that have also used ICD-9-CM diagnosis 

codes to assess drinking water-related AGI, the following codes were used to define AGI: 001-

009.9 (intestinal infectious diseases); 558.9 (other and unspecified noninfectious gastroenteritis 

and colitis); 787.0 (nausea and vomiting); and 787.91 (diarrhea) (50, 55, 186, 216). 

ED administrative data were obtained from the Commonwealth of Massachusetts 

Center for Health Information and Analysis for a 10 year period from October 1, 2002 through 

September 30, 2012.  These data included visits to emergency departments in Massachusetts’ 

acute care hospitals and satellite emergency facilities. They also included patients who received 

observation services but were not admitted to the hospital.  These hospital outpatient visits are 
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usually transferred from the ED, though not included in the ED database to avoid duplicate 

reporting(217-219). Only 2.8% of AGI diagnoses in our data were hospital outpatient visits. 

Main Break Exposure 

Main break records were obtained from BWSC for the entire study period.  These 

records are maintained by BWSC Field Engineering Department(241). Aside from the location of 

the break, the data included details such as the pipe material and type of break.  It was 

hypothesized that ED visits for any AGI caused by a main break would occur within a week of 

the break. This hazard period was examined as two mutually exclusive intervals: 0-3 days and 4-

7 days.  The different hazard periods accounted for various amounts of time that it could take 

for contaminated water to enter the distribution system after a main break, reach the 

consumer, and cause AGI symptoms that ultimately result in an ED visit. 

Statistical Analysis 

A case-crossover study design was used to examine the association between main 

breaks and ED visits for AGI.  In a case-crossover study, cases effectively serve as their own 

control at different point(s) in time(242).  This type of study design was suitable because a main 

break is a brief exposure and any related AGI would be a transient effect(242, 243).  Using a 

time-stratified bi-directional approach matched on zip code and day of week, control date(s) 

were selected two weeks before and/or after the ED visit within 42-day time-stratified 

periods(244).  Conditional fixed-effects logistic regression models were used to estimate the 

risk of visiting the ED for AGI following a main break.  This type of regression model has been 

shown to be unbiased when a time-stratified bi-directional approach is used for referent 

selection(244, 245).  Results are reported as odds ratios (OR) and 95% confidence intervals (CI) 
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to describe the relative increase in odds of ED visit for AGI after a main break.  Data 

management and statistical analyses were conducted using Stata SE Version 13 and the 

xtlogit command was used to fit the conditional logistic regression models(246).  

The analysis was also stratified by potential effect modifiers, including age, sex, median 

household income, and type of pipe break (e.g., circumferential, blowout).  Age and sex were 

considered potential effect modifiers due to possible differences in immune status and drinking 

water intake(17, 247, 248). Since individual-level socioeconomic status was unavailable, median 

household income was assessed at the zip code level(249).   Median household income, 

obtained from Esri(249), is a useful summary measure of the general economic condition for 

each zip code.  In Boston, median household income at the zip code level ranged from $29,000 

to $127,000 and the median was $50,000.  The analysis was stratified by the following 

categories: <50th percentile (<$50,000); 50th-<75th percentile ($50,000-<$84,000); 75th-100th 

percentile (≥$84,000). Finally, the type of break was also considered a potential effect modifier 

because it could affect the volume of water that is released and hence the potential for 

contamination(158, 250). 

Boston’s water is distributed through five major service networks which are 

independent of each other(241).  Therefore, main breaks affect only the network they occur 

in(251).  A sensitivity analysis restricted the analysis to only zip codes served primarily by a 

single water service networks.  The proportion of each zip code population served by a water 

network was estimated in ArcGIS using census block populations combined with a map of the 

service networks and zip codes.  In the sensitivity analysis, only zip codes with 90% or more of 

their population covered by one network were included.  
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Results 

Main breaks  

 During the study period from October 1, 2002 through September 30, 2012, there were 

385 main breaks recorded in Boston, Massachusetts.  There was at least one main break in 29 

Boston zip codes.  Figure 28 summarizes the total number of main breaks by zip code during the 

entire study period.  Annual totals ranged from 29 to 51 breaks.  Most breaks occurred during 

the winter months, with almost half (47.5%) occurring in December, January, and February. 

 The material of pipes was primarily pit cast iron (52.2%), cement-lined cast iron (28.6%), 

and cement-lined ductile Iron (11.7%).  The size of pipes ranged from 4 to 48 inches, with 45% 

of breaks occurring in 8-inch pipes and 27% in 12-inch pipes.  The most common break type was 

circumferential (n=231; 60.0%) followed by blowout (n=117; 30.4%).  Break type was related to 

pipe size, with 78.4% of circumferential breaks occurring in 4-8 inch pipes and 74.4% of blowout 

breaks in larger 10-16 inch pipes. 

Emergency department visits for acute gastrointestinal illness 

Table 15 describes the characteristics of the ED visits for AGI during the 10-year study 

period in Boston.  There were 32,530 ED visits for AGI, of which 53.5% had a primary diagnosis.  

There were slightly more females (55.1%) than males.  Over a third (39.5%) of the ED visits were 

among young children (≤5 years).  Only 3.7% were among elderly (≥65 years).  There were also 

more blacks (40.9%) compared to whites (23.0%) and Hispanics (23.4%).  The majority (64.2%) 

of AGI visits were from those who resided in zip codes with a median household income less 

than $50,000.  Only 6.5% of AGI visits were from those who resided in zip codes with a median 

household income of $84,000 or more.   
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Case-crossover analysis  

 As shown in Table 16, there was no overall association between main breaks and ED 

visits for AGI during the 0-3 day hazard period (odds ratio, OR=1.05; 95% confidence interval, 

CI: 0.94-1.17) and subsequent 4-7 day period (OR=0.97; 95% CI: 0.87-1.08).  This null association 

remained when AGI was defined more specifically using only primary diagnosis codes (OR=1.01; 

95% CI: 0.87-1.17). There was also no difference by sex.   

 Among elderly residents (≥65 years), the odds of visiting the ED for AGI was elevated 

during the 0-3 days after a main break (OR=2.12; 95% CI: 1.20-3.74).  In other words, elderly 

residents were two times more likely to visit the ED for AGI during the 0-3 days after a main 

break.  This association was strengthened when main breaks were restricted to only blowout 

breaks (OR=5.27; 95% CI: 1.43-19.36). In contrast, when limited to only circumferential breaks, 

the association was attenuated and not as strong (OR=1.61; 95% CI: 0.83-3.14). No associations 

among the elderly were observed during the subsequent 4-7 day hazard period for any type of 

main break (OR=0.80; 95% CI: 0.48-1.35), or for only blowout breaks (OR=0.96; 95% CI: 0.36-

2.56), or only circumferential breaks (OR=0.66; 95% CI: 0.35-1.27). 

 Residents living in zip codes with a median household income less than $50,000 were at 

a 17% increased odds of visiting the ED for AGI during the 0-3 days after a main break (OR=1.17; 

95% CI: 1.01-1.35). This association was consistent when main breaks were restricted to only 

circumferential breaks (OR=1.27; 95% CI: 1.05-1.52).  However, when limited to only blowout 

breaks, there was no association (OR=1.03; 95% CI: 0.80-1.32).  Similar with the other analyses, 

there was no association observed during the 4-7 day hazard period (OR=0.98; 95% CI: 0.85-
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1.13).  Residents living in zip codes with a higher median household income (>$50,000) were 

not at an increased odds of visiting the ED for AGI in the days following a main break. 

As shown in Table 17, the odds of visiting the ED for AGI during the 0-3 days after a main 

break was slightly elevated (OR=1.15; 95% CI: 0.99-1.34) when the analysis was restricted to 

only zip codes (n=9) served primarily (≥90%) by one water service network.  Among the elderly, 

the association observed for all zip codes during the 0-3 day hazard period was strengthened 

(OR=3.70; 95% CI: 1.29-10.62) though imprecise due to a small sample size (n=437).  Among 

older children and adolescents (6-18 years), the odds of visiting the ED for AGI was also 

elevated during the same 0-3 day hazard period (OR=1.44; 95% CI: 1.01-2.04).  Among residents 

living in zip codes with a median household income less than $50,000, the association during 

the 0-3 day hazard period (OR=1.15; 95% CI: 0.98-1.36) was similar to what was observed with 

all zip codes. Lastly, when restricted to only circumferential breaks, the overall association 

during the 0-3 day period strengthened (OR=1.22; 95% CI: 0.99-1.51). 

 

Discussion 

Overall, the occurrence of a main break did not affect the odds of visiting the ED for AGI 

during the following week.   This was consistent when using a more specific definition of AGI 

based on only primary diagnosis codes.  However, higher risks in certain subpopulations suggest 

they may be more vulnerable to AGI following main breaks. 

Impact of main breaks among the elderly 

Elderly residents (≥65 years) were at an increased odds of visiting the ED for AGI in the 

0-3 days after a main break (OR=2.12; 95% CI: 1.20-3.74).  Based on this result, as many as 53% 
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of elderly ED visits for AGI in the 0-3 days following a main break could be attributed to the 

main break (attributable fraction = (2.12-1)/2.12 = 0.53). Since ED visits for AGI are generally rare 

and there were relatively few elderly cases (n=1,191), the attributable fraction only accounts 

for 16 excess cases (0.53*31=16.3). Due to their declining immune function, the elderly may be 

more susceptible to certain infections(259, 260).  It is also possible that they have different 

drinking water habits or perhaps they do not effectively receive or respond to main break 

notices. Understanding why elderly residents are more vulnerable to the effects of drinking 

water contamination caused by main breaks could help with future prevention efforts. 

Median household income 

Median household income was used to summarize the general neighborhood economic 

condition of each zip code(249). The hypothesis was that the overall economic condition of a 

residential area might influence the maintenance of its water infrastructure and, therefore, the 

impact of a main break.  Although there have been documented instances of low-income 

communities without guaranteed access to safe drinking water, there have been few studies 

examining disparities in drinking water infrastructure(35).  In 2010, the median household 

income in Boston was $50,684(261).  In this analysis, 64.2% of ED visits for AGI lived in a zip 

code with a median household income below $50,000.  In a crude analysis, zip code median 

household income was not associated with ED visits for AGI.  Residents living in zip codes with a 

median household income less than $50,000, however, were 17% more likely to visit the ED for 

AGI in the 0-3 days after a main break (OR=1.17; 95% CI: 1.01-1.35).  This suggests that main 

breaks occurring in zip codes with a lower median income (<$50,000) may pose a greater risk 

for AGI. Without individual-level socioeconomic data, it is difficult to explain why residents of 
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these zip codes may be more susceptible.  It is possible that fewer resources are used to 

maintain and rehabilitate the infrastructure in these zip codes.  That is, if the pipes are already 

deteriorating and then a main break causes a sudden change in water pressure, there could be 

more entry points (e.g., leaks) to allow contaminants into the drinking water supply. 

Potential pathogens 

When a main break occurs, there are many potential pathogens in the environment that 

could enter the distribution pipes and contaminate the drinking water supply(27, 38).  The 

associations during the 0-3 day hazard period suggests a quick progression from the main break 

to being exposed to contaminated water, being infected by a pathogen, experiencing AGI 

symptoms, and visiting the ED.  In other words, the pathogens involved probably had a short 

incubation period (e.g., enteric viruses). 

Break type as an effect modifier 

Main breaks often occurred during the colder months because a drop in temperature, 

especially fluctuations around the freezing point, can place added geologic stresses on the 

distribution system(6, 167).  Besides temperature, there are other factors that can contribute to 

main breaks, such as soil movement, internal corrosion, external corrosion, pressure transients, 

and damage from construction or other utilities (e.g., electric, natural gas, cable)(168, 169).  

Pipe size, ranging from 4 to 48 inches in diameter, was related to break type.  Smaller pipes 

(≤10 inches in diameter) mostly broke circumferentially (78.5%), which is analogous to a pencil 

snapping(250, 251).  Circumferential breaks result in a clean shear opening of the pipe around 

its circumference and leave a small opening all around the pipe(250). Breaks in larger pipes (>10 

inches in diameter) often resulted in a blowout (57.6%), which is when a large hole opens on 
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the side of the pipe and allows a substantial volume of water to escape(72). In this analysis, 

blowout breaks strengthened the association among elderly residents (≥65 years).  If blowout 

breaks allow a more substantial volume of water to escape, there could be a greater likelihood 

of microbial intrusion into the drinking water supply at nearby leakage points(158). The 

increased effect among elderly residents (OR=5.27; 95% CI: 1.43-19.36) may indicate that 

drinking water contamination caused by blowout breaks has more of an effect among elderly 

residents. 

Strengths 

A strength of this study was having 10 years of data to estimate the association between 

water main breaks and ED visits for AGI.  One of the major challenges to measuring the related 

health effects of main breaks is having quality long-term data on main breaks.  Existing studies 

have been limited to one to two years due to data availability(182, 184).  Fortunately, BWSC has 

been recording water mains breaks since 1975(241). 

The case-crossover design eliminated confounding by self-matching on determinants 

(e.g., age, sex, race, socioeconomic status) that are constant within individuals over the 42-day 

sampling period(242, 257).  Also, the two week period between case and control time(s) 

automatically matched on day of week, thus controlling for any confounding by day of 

week(244).  In addition, the two week period prevented any autocorrelation between case and 

control times by ensuring independent exposure windows(257).  Lastly, conditional logistic 

regression estimates have been shown to be unbiased when using a time-stratified bi-

directional approach to select control time(s)(244, 245). 
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 Another strength of this study was being able to incorporate water service networks in a 

sensitivity analysis.  Since main breaks only affect the water service network they occur in(251), 

zip codes served by more than one network will not be entirely exposed by a given main break. 

By restricting the analysis to only zip codes served primarily (≥90%) by one water service 

network, any misclassification of exposure due to having multiple water service networks in a 

zip code was reduced. This sensitivity analysis yielded a slightly elevated overall association 

(OR=1.15; 95% CI: 0.99-1.34) compared to the main analysis (OR=1.05; 95% CI: 0.94-1.17) for 

the 0-3 day hazard period. In addition, stratified results were strengthened (e.g., for the elderly, 

for only circumferential breaks) or remained (e.g., for lower income zip codes).  This may 

suggest that the more specific exposure definition reduced misclassification. 

Limitations 

There were a few data limitations that may have attenuated the association between 

main breaks and AGI. For example, this analysis used ED visits, which capture only the most 

severe cases of AGI requiring immediate medical attention.  Consequently, the burden of AGI 

due to main breaks would be underestimated.  By using internet search volume for symptoms 

of gastrointestinal illness, Shortridge et al. (2014) suggested that water pipe breaks may 

increase mild cases of AGI that may not result in a doctor’s visit(182). Unfortunately, hospital-

based administrative databases do not have information needed to describe such mild cases of 

AGI. 

A limitation of the main breaks data was that there was no marker of break severity, 

such as the duration of the break and how much water was lost.  In other words, all breaks 

were treated equally even though the magnitude and impact of main breaks can vary.  A large 
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main break is often identified by unexpected low pressure readings, excessive pumping, or a 

drop in reservoir levels in a specific area(6).  Since small breaks are harder to find, water utilities 

often encourage their customers to help identify water main leaks and breaks(170-174).  Signs 

of a faulty water main include water seeping up out of the ground or pavement, buckled 

pavement, and a leaking service line(170-174).  Depending on size and location, some breaks 

may go unnoticed for hours(241).  In addition, the main breaks included in the analysis do not 

represent all water pipe breaks since service line breaks are often the responsibility of an 

individual property owner and therefore not necessarily recorded by the water utility (150).   

Another limitation was that main break exposure was based on zip code of residence 

even though people may spend time in other zip codes for various reasons (e.g., school, work, 

healthcare, business, entertainment, etc.). Similarly, people visiting Boston from elsewhere may 

have been exposed to a main break but would not have been included in the analysis.  In 

addition, without individual-level data on water consumption, other factors affecting tap water 

exposure (e.g., bottled water use, in-home water filters) was unknown.  Somewhat analogous 

to the mobility of people, the water in the distribution system is not confined within zip code.  

Rather, water is distributed within its service network which could span several zip codes(241, 

251).  In addition, the direction of flow can change depending on consumer demand(251).  In 

order to simplify the analysis, main break exposure was based on zip code under the 

assumption that main breaks have a localized impact that does not spread across multiple zip 

codes.  Due to these exposure limitations, there was some inevitable mixing and 

misclassification of exposure. Nevertheless, zip code was the most detailed residential variable 

available in the ED database.  This is often the case when using administrative data in order to 
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protect the privacy and confidentiality of potentially person-identifiable data. Zip codes have 

been used in past studies of drinking water quality and ED visits for AGI(55, 187).  For example, 

Tinker et al. (2010) assigned residential zip codes to water treatment plants in Atlanta and 

observed a small association between raw water turbidity at the treatment plant and ED visits 

for AGI(55).   

Conclusion 

This study identified elderly residents (≥65 years) as a sensitive subgroup that may be 

particularly susceptible to AGI resulting in an ED visit after a main break.  In addition, there may 

be a slightly elevated risk in areas with a lower median household income.  Any effect is 

important to consider, especially in cities with aging systems that experience more main breaks.  

Boston’s water system is made up of approximately 1,018 miles of pipe(236) and the number of 

main breaks ranged from 29 to 51 breaks per year.  This is considerably less than the national 

average of 240 to 270 breaks per 1,000 miles of water main(6). For comparison, Philadelphia 

estimated an average of 212 breaks per 1,000 miles for the year 2001(6).  As the water 

infrastructure ages around the country, main breaks will continue to occur and likely increase in 

frequency(102).  With an estimated 240,000 main breaks occurring each year(9), even a small 

effect on the risk of illness is of great public health concern.  Although this study may not be 

generalizable to smaller water systems (e.g., rural areas) with fewer families served by 

distribution pipes, main breaks are universal and water is likely contaminated a similar way. 

Understanding the health consequences can help water utilities and health departments 

establish and improve preparedness and response plans.  
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Figures 

 

 

Figure 28. Number of main breaks by zip codes in Boston, Massachusetts, Oct. 1, 2002 – Sept. 
30, 2012.  
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Tables 

 

Table 15. Descriptive summary of emergency department visits for acute gastrointestinal illness 
in Boston, Massachusetts (October 1, 2002 - September 30, 2012). 

 N % 

Total 32,530 100% 

   
Type of Visit   

Emergency Department 31,624 97.21% 

Hospital Outpatient* 906 2.79% 

   
Age   

Young Children (≤5 yrs) 12,853 39.51% 

Youth/Adolescents (6-18 yrs) 5,742 17.65% 

Adults (19-64 yrs) 12,744 39.18% 

Elderly (≤65 yrs) 1,191 3.66% 

   
Sex   

Female 17,910 55.06% 

Male 14,620 44.94% 

   
Primary Diagnosis 17,393 53.47% 

   
Race   

White 7,472 22.97% 

Black 13,294 40.87% 

Hispanic 7,596 23.35% 

Other 3,073 9.45% 

Missing 1,095 3.37% 

   
Median Household Income**   

<$50,000 20,897 64.24% 

$50,000-<$84,000 9,525 29.28% 

≥$84,000 2,108 6.48% 

*Hospital outpatient visits included patients who received observation services but were not admitted to the 

hospital. 

**Median Household Income based on zip code of residence. 
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Table 16. Association between water main breaks and emergency department visits for acute 
gastrointestinal illness in Boston, Massachusetts (October 1, 2002 - September 30, 2012). 

 

Number 
of visits 

Odds Ratio 

(95% Confidence Interval) 

 0-3 days after 
main break 

4-7 days after 
main break 

Any type of break and any diagnosis for AGI 32,530 1.05 0.97 

(0.94, 1.17) (0.87, 1.08)     

Young Children (≤5 years) 12,853 0.93 1.07 

(0.78, 1.11) (0.90, 1.28) 

Youth/Adolescents (6-18 years) 5,742 1.11 0.85 

(0.86, 1.44) (0.66, 1.10) 

Adults (19-64 years) 12,744 1.07 0.95 

(0.89, 1.28) (0.79, 1.13) 

Elderly (≥65 years) 1,191 2.12 0.80 

(1.20, 3.74) (0.48, 1.35)     

Females 17,910 1.06 0.94 

(0.92, 1.23) (0.81, 1.09) 

Males 14,620 1.03 1.00 

(0.87, 1.21) (0.85, 1.18)     

Median Household Income*    
 <$50,000 20,897 1.17 0.98 

(1.01, 1.35) (0.85, 1.13) 

 $50,000 - <$84,000 9,525 0.89 0.91 

(0.74, 1.08) (0.76, 1.10) 

≥$84,000 2,108 0.82 1.14 

(0.50, 1.33) (0.72, 1.81)     

Any type of break and any primary diagnosis for AGI 17,393 1.01 1.01 

(0.87, 1.17) (0.87, 1.17)     

Circumferential break and any AGI 32,530 1.09 0.89 

(0.95, 1.25) (0.78, 1.01)     

Blowout break and any AGI 32,530 0.98 1.18 

(0.79, 1.21) (0.96, 1.46) 
Abbreviation: AGI, acute gastrointestinal illness 

*Median Household Income based on zip code of residence. 
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Table 17. Sensitivity analysis including only zip codes served primarily (≥90%) by one water 
service network. 

 

Number 
of visits 

Odds Ratio 

(95% Confidence Interval) 

 0-3 days after 
main break 

4-7 days after 
main break 

Any type of break and any diagnosis for AGI 15,365 1.15 0.99 

(0.99, 1.34) (0.85, 1.16)     

Young Children (≤5 years) 5,981 0.93 1.02 

(0.73, 1.18) (0.80, 1.31) 
Youth/Adolescents (6-18 years) 2,838 1.44 0.86 

(1.01, 2.04) (0.60, 1.22) 
Adults (19-64 years) 6,109 1.19 1.07 

(0.93, 1.52) (0.83, 1.37) 
Elderly (≥65 years) 437 3.70 0.72 

(1.29, 10.62) (0.33, 1.57)     

Females 8,529 1.09 0.84 

(0.89, 1.33) (0.68, 1.04) 
Males 6,836 1.23 1.21 

(0.97, 1.56) (0.96, 1.52)     

Median Household Income*    
 <$50,000 13,320 1.15 0.96 

(0.98, 1.36) (0.81, 1.13) 
 $50,000 - <$84,000 1,247 1.07 1.02 

(0.53, 2.17) (0.52, 2.01) 
≥$84,000 798 1.13 1.53 

(0.63, 2.03) (0.85, 2.73)     

Any type of break and any primary diagnosis for AGI 8,148 1.13 1.04 

(0.91, 1.40) (0.84, 1.29)     

Circumferential break and any AGI 15,365 1.22 0.91 

(0.99, 1.51) (0.74, 1.12)     

Blowout break and any AGI 15,365 1.09 1.14 

(0.85, 1.40) (0.88, 1.49) 
Abbreviation: AGI, acute gastrointestinal illness 

Note: Zip codes served primarily (≥90%) by one water service network estimated in ArcMap using census block 

populations combined with a map of the service networks and zip codes. 

*Median Household Income based on zip code of residence.  



 

138 
 

Acknowledgements 

I would like to acknowledge Mr. Stephen Shea for sharing the main breaks data along 

with the 2011 BWSC Water Distribution System Study Final Report, Mr. John Sullivan for 

explaining the inner workings of the distribution system, and Mr. Philip McDaniel for providing 

GIS assistance. 

 

  



 

139 
 

CHAPTER 6. EMERGENCY DEPARTMENT VISITS FOR ACUTE GASTROINTESTINAL ILLNESS AFTER A 
MAJOR WATER PIPE BREAK IN 2010 

 

Introduction 

On the morning of Saturday, May 1, 2010, a major water pipe broke near Boston, 

Massachusetts, releasing millions of gallons of water and disrupting the drinking water supply 

for nearly two million residents(252, 254).  By the late afternoon, Massachusetts Governor 

Deval Patrick issued a boil water order for the City of Boston and 29 nearby communities 

(Figure 29) and declared a state of emergency(252, 262).  Affected residents were instructed to 

boil their water through several modes of communication including the local media (e.g., radio, 

television, local papers), reverse 911 calls or texts, and highway signs(252, 253).  In some 

communities, emergency officials drove through neighborhoods using bullhorns and 

loudspeakers to inform residents(252, 253).  Within a week of the pipe break, a survey 

conducted in waiting rooms at Boston Medical Center revealed that the most common ways of 

learning about the boil water order were by word of mouth, television, and 

telephone/cellphone calls(263).  By the early morning of May 4th, the boil water order had been 

lifted for all affected communities(252).   

Water pipe breaks are a public health concern because they can cause a rapid change in 

water pressure and allow contaminants from the surrounding environment to enter the 

distribution system through openings such as leakage points, submerged air valves, and faulty 

seals(6, 154, 156-158).  Depending on the physical condition of the distribution network, abrupt 
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changes in water pressure following a pipe break can lead to the intrusion of contaminants 

throughout the network, not just at the location of the pipe break(158).  Fecal indicator 

bacteria and culturable human viruses have been detected in the soil and water external to 

drinking water pipelines, thus making them capable of entering the water system during a 

negative pressure event(157, 160).  Intestinal parasites (e.g., Cryptosporidium, Giardia) have 

also been found in soil(264, 265).  Several studies have reported an association between tap 

water consumption in faulty distribution networks and gastrointestinal illness(180). In the 

United States, Shortridge & Guikema (2014) found an association between the number of pipe 

breaks and the internet search volume for symptoms of gastrointestinal illness(182).  In the 

United Kingdom, Hunter et al. (2005) suggested that up to 15% of gastrointestinal illness in the 

general population could be related to drinking water contaminated by low water pressure 

events such as a burst water pipe(183).  In Norway, Nygard et al. (2007) observed that reports 

of gastrointestinal illness increased during the week after the occurrence of main breaks or 

maintenance work on the water distribution system(184). 

Few epidemiology studies have explicitly studied how distribution failure events may 

contribute to the occurrence of waterborne illnesses(6).  The major water pipe break near 

Boston in May 2010 provided an opportunity to study this using existing healthcare data.  The 

aim of this analysis was to estimate the association between the pipe break and the risk of 

emergency department visits for acute gastrointestinal illness (AGI). 
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Methods 

Study Population 

The Massachusetts Water Resources Authority (MWRA) provides drinking water to 

residents living primarily in metropolitan Boston communities(198).  At around 9:30 a.m. on 

May 1, 2010, a coupling that secured segments of a 10-foot diameter water pipe broke along a 

major distribution line(252).  Approximately two million residents were affected by a boil water 

order that follow this major water pipe break(252-254).  Figure 29 highlights the 30 Boston 

metropolitan communities that were affected.  They included Arlington, Belmont, Boston, 

Brookline, Canton, Chelsea, Everett, Hanscom Air Force Base, Lexington, Lynnfield, Malden, 

Marblehead, Medford, Melrose, Milton, Nahant, Newton, Norwood, Quincy, Reading, Revere, 

Saugus, Somerville, Stoneham, Swampscott, Wakefield, Waltham, Watertown, Winchester, and 

Winthrop.  These communities were located approximately 3 to 23 miles from the water pipe 

break.  For the purposes of this study, these communities were considered exposed. 

Negative Control Exposure 

In a separate analysis, communities unaffected by the pipe break served as a negative 

control to assess whether AGI also increased at the time of the event(255).  Communities 

receiving water unaffected by the pipe break were selected as a negative control exposure if 

they were 1) located in relatively close proximity (<40 miles) of the break and 2) had a Census 

population of at least 40,000 residents to ensure a sample size comparable to the truly exposed 

communities. These communities included Attleboro, Billerica, Brockton, Cambridge, 

Framingham, Haverhill, Lawrence, Lowell, Lynn, Methuen, Peabody, Salem, Taunton, 

Weymouth, and Worcester.  Although Framingham receives full water service from MWRA, it 
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was unaffected by the pipe break.  Peabody is partially supplied by MWRA but was also 

unaffected.  The remaining communities are not served by MWRA, though Cambridge and 

Worcester have access to MWRA for emergency/back-up supplies.  Figure 29 highlights these 

15 communities serving as negative controls. These communities were located approximately 7 

to 31 miles away from the water pipe break. 

Emergency Department Visits for Acute Gastrointestinal Illness 

Acute gastrointestinal illness (AGI) is often the most common recognizable health 

endpoint following infection with waterborne pathogens(33, 38).   Incubation periods can vary 

by type of pathogen –  from less than a day for some viruses (e.g., norovirus)(237) to a few days 

for some bacteria (e.g., Campylobacter)(238).  Some parasites (e.g., Cryptosporidium, Giardia) 

have a longer incubation period on average (~7 days), though it can range from a day to two 

weeks(240, 266, 267).  These different types of pathogens often cause similar symptoms such 

as diarrhea, vomiting, nausea, and cramps(33, 38).  AGI is also a convenient measure because it 

does not usually require any sample collection or analytical test(38).  AGI was defined using the 

primary and five associated diagnosis codes (International Classification of Disease, Version 9 

Clinical Modification, ICD-9-CM).  Several prior studies assessing drinking water quality and AGI 

have used ICD-9-CM codes(50, 55, 186, 216); building on what has been used in the literature, 

the following ICD-9-CM diagnosis codes were used to define AGI: 001-009.9 (intestinal 

infectious diseases); 558.9 (other and unspecified noninfectious gastroenteritis and colitis); 

787.0 (nausea and vomiting); and 787.91 (diarrhea). 

Emergency department (ED) data, including hospital outpatient data, were obtained 

from the Commonwealth of Massachusetts Center for Health Information and Analysis for the 
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year 2010.  ED data included visits to emergency departments in Massachusetts’ acute care 

hospitals and satellite emergency facilities. Hospital outpatient data included patients who 

received observation services but were not admitted to the hospital.  Patients receiving 

observation services are usually transferred from the ED, though they are not included in the 

ED database to avoid duplicate reporting(217-219). Only 2.2% of AGI diagnoses were from 

hospital outpatient visits. 

Pipe Break Exposure 

It was hypothesized that any ED visit for AGI caused by the water pipe break would 

occur within a week of the break.  Despite the magnitude of the situation, the broken pipe was 

repaired in less than two days and the boil water order was lifted within 3 days(252).  The one-

week hazard period encompassed the time it would take for contaminated water to enter the 

distribution system and reach the consumer, the pathogen incubation period, and the time for 

an affected person to visit the ED.  The hazard period was examined as two mutually exclusive 

intervals: 0-3 days and 4-7 days.  The 0-3 day period encompassed the duration of the boil 

water order.  The later 4-7-day hazard period accounted for a longer time lag from the pipe 

break to exposure, infection, onset of AGI symptoms, and visiting the ED.  The length of these 

hazard periods were optimal for capturing the effect of pathogens with an incubation period of 

no more than a few days. 

Statistical Analysis 

A case-crossover study design was used to examine the association between the major 

water pipe break and AGI.  This type of study design, in which cases effectively serve as their 

own control at different point(s) in time, was applicable because the water pipe break was a 
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brief exposure with potentially transient effects on AGI(242, 243).  Control times were selected 

bidirectionally, two weeks before and two weeks after the pipe break(244, 256).  

Conditional fixed-effects logistic regression models were used to estimate the risk of 

visiting the ED for AGI following the pipe break.  This type of regression model is the standard 

for case-crossover studies(243).  Only case-control groups with discordant exposures contribute 

information to the analysis(257); therefore, this analysis was confined to a 64-day period (April 

3, 2010 through June 5, 2010) based on all possible discordant exposure scenarios.  Results are 

reported as odds ratios (OR) and 95% confidence intervals (CI) and interpreted as the relative 

increase in odds of ED visit for AGI after the water pipe break. 

The analysis was also stratified by potential effect modifiers.  Age and sex were 

considered potential effect modifiers due to possible differences in immune status, risk for AGI, 

and drinking water intake(17, 247, 248). In addition, the analysis was stratified by distance from 

the pipe break in order to examine whether closer communities were impacted earlier, or more 

seriously, than further communities. A sensitivity analysis in which AGI was defined based on 

only the primary diagnosis code was conducted to examine the robustness of results. Lastly, 

attributable fractions and population attributable fractions were calculated using the odds ratio 

and proportion of exposed cases(258).  Data management and statistical analyses were 

conducted using Stata SE Version 13 and the xtlogit command was used to fit the conditional 

logistic regression models(246). 
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Results 

Among residents of the 30 communities affected by the water pipe break, there were 

1,818 ED visits with at least one diagnosis code for AGI during the study period (April 3, 2010 

through June 5, 2010).  Over a third (n=756; 42%) had a primary diagnosis of AGI.  The majority 

(80%) of all visits were among adults (19-64 years) and young children (≤5 years) and there 

were slightly more females (n=1,027; 56%) than males.  Table 18 summarizes characteristics of 

ED visits for AGI in the communities affected by the pipe break; the table also reports 

characteristics of ED visits for AGI in the communities selected as the negative control.  

 There was a 32% increased odds for visiting the ED for AGI during the 0-3 days after the 

pipe break (OR=1.32; 95% CI: 1.07-1.61; Table 19).  This association was of smaller magnitude 

during the 4-7 day hazard period (OR=1.17; 95% CI: 0.93-1.47).  The associations were similar in 

males and females.  When the analysis was restricted to visits with a primary diagnosis for AGI, 

the association strengthened for both the 0-3 day hazard period (OR=1.48; 95% CI: 1.10-1.98) 

and the 4-7 day hazard period (OR=1.34; 95% CI: 0.93-1.93). 

As illustrated in Figure 30, the odds for visiting the ED for AGI after the water pipe break 

varied by age group, with the increased odds most consistent among children and adolescents 

(≤18 years).  In particular, the odds ratio among youth/adolescents (6-18 years) was elevated 

during both 0-3 and 4-7 day hazard periods.  Adults (>18 years) were not at an increased odds 

for visiting the ED for AGI. Due to the small number of cases, effect estimates for the elderly 

(≥65 years) were imprecise. 

When the analysis was stratified by distance from the water pipe break, the 

communities less than the median distance (<12 miles) away were at an increased odds for 
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visiting the ED for AGI during the 0-3 day hazard period (OR=1.46; 95% CI: 1.15-1.84) but not 

during the 4-7 day hazard period (OR=0.95; 0.62, 1.46).  There were no associations for the 

communities over 12 miles from the break (0-3 day OR=1.18; 95% CI: 0.90, 1.54). 

In a separate analysis using the negative control exposure, there was no association 

between the time of the major water pipe break and ED visits for AGI during both the 0-3 day 

hazard period (OR= 0.99; 95% CI: 0.78-1.25) and the 4-7 day hazard period (OR= 0.83; 95% CI: 

0.65-1.08). 

 Based on the overall association (OR=1.32), almost a quarter (24%) of ED visits for AGI 0-

3 days after the pipe break could be attributed to the break.  Using the proportion of ED visits 

that occurred 0-3 days after the break (152/1818=0.08), the population attributable fraction 

was 2% (0.08*0.24=0.02). In other words, an estimated 2% of all ED visits for AGI during the 64-

day study period in the affected communities would not have occurred had the break never 

happened. 

 

Discussion 

Water pipe break and acute gastrointestinal illness 

The major water pipe break in May 2010 provided the opportunity to investigate the 

association between a water pipe break and ED utilization for AGI.  Wang et al. (2011) reported 

that the Massachusetts Department of Public Health did not observe a notable rise in disease 

reports after the break(263).  The present study, however, found an increased risk of ED visits 

for AGI during the week after the pipe break. This association was strongest during the 

immediate 0-3 days after the break (OR=1.32; 95% CI: 1.07-1.61) when the boil water order was 
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in effect.  Since ED visits for AGI are rare (<1%), attributing 24% of the visits to the break only 

amounts to 36.5 excess cases during the 0-3 days after the pipe break (0.24*152=36.5).  There 

was also a suggestive positive association during the 4-7 days after the break (OR=1.17; 95% CI: 

0.93-1.47).  These findings were further supported by a negative control exposure yielding a 

null effect.  When AGI was defined based on only the primary diagnosis code, the association 

strengthened for both the 0-3 day hazard period (OR=1.48; 95% CI: 1.10-1.98) and the 4-7 day 

hazard period (OR=1.34; 95% CI: 0.93-1.93). This may indicate that the more specific outcome 

definition reduced misclassification (i.e., ED visits that were not waterborne AGI). 

Age appeared to modify the risk of visiting the ED for AGI after the water pipe break.  In 

particular, the risk was highest among children and adolescents (≤18 years).  Children may 

differ from adults in how they are exposed to environmental contaminants and how they react 

to it when exposed(268).  In contrast to the youngest age group (≤5 years), the increased 

association among the youth/adolescents (6-18 years) during the 0-3 day hazard period 

(OR=1.59; 95% CI: 0.99-2.55) was persistent during the 4-7 day hazard period (OR=1.75; 95% CI: 

0.97-3.14). It is not clear why this may be, but perhaps parents took longer to become aware of, 

or respond to, symptoms in older children.  Although the oldest age group (≥65 years) is also a 

sensitive sub-group, effect estimates were too imprecise to make any meaningful conclusions 

due to the small number of AGI cases (n=66). 

When the analysis was stratified by distance from the water pipe break, the closer 

communities less than 12 miles away were at an increased risk of ED visits for AGI during the 0-

3 day hazard period (OR=1.46; 95% CI: 1.15-1.84).  To assess if this was due to disproportionate 

effects of Boston’s large population, a sensitivity analysis excluding Boston was conducted and 
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the association remained (OR=1.50; 95% CI: 1.02-2.21).  In the communities further (>12 miles) 

away, there was no association between the pipe break and ED visits for AGI.  It is possible that 

the risk of AGI was highest immediately (0-3 days) after the pipe break in the closer 

communities because their water was impacted first.  Consequently, the closer communities 

may have had more time to drink contaminated water before becoming aware of, or 

responding to, the boil water order. 

This study may have underestimated the impact of the pipe break on the burden of AGI 

because ED visits only capture the most severe cases of AGI requiring immediate medical 

attention.  Shortridge et al. (2014) provided support that distribution system disturbances may 

increase mild cases of AGI that do not necessitate a doctor’s visit(182). Unfortunately, 

administrative databases lack the information necessary to capture such mild cases of AGI.  

Although it is also possible that the boil water order and widespread media attention increased 

the rate of ED visits for psychosomatic illnesses, the Mayor’s 24-hour hotline had a scripted 

response for concerned residents(252): 

“Please do not go to an emergency room unless you are seriously ill and/or have been 

advised by your health care provider to seek immediate care. Please do not go to an 

emergency room to be checked out because you drank tap water and are concerned. 

There is no testing that can be done at emergency rooms for patients who are not in 

need of emergency care.”(252) 

Water exposure after pipe break 

A strength of this analysis was that the pipe break and subsequent boil order were 

clearly defined events that help determine exposure to potential water contamination.  
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Estimating the association between drinking water contamination and risk of illness is difficult 

due to the many assumptions that have to be made(157, 178).  For example, a contamination 

event is contingent on a sequence of events, from the occurrence of an adverse pressure 

condition, to the presence of an outside contamination source, to the availability of an external 

pathway for contamination(157, 178). In addition, population exposure depends on factors 

such as the type and concentration of pathogen entering the system and then reaching the 

consumers’ taps, the duration and magnitude of contamination, and the consumers’ drinking 

habits(157, 178).   

While the pipe was being repaired, water pressure had to be maintained throughout the 

system in order to sustain sanitation needs (e.g., flushing toilets), to keep up with fire 

protection requirements, and to prevent contamination from backflow(252). As a result, the 

distribution system was reconfigured to use backup water supplies treated only with 

emergency chlorination(252). However,  the water authority claimed that, according to samples 

taken from throughout the affected area, the water quality was not atypical for a normal day at 

that time of year(269). Out of over 800 water samples collected and tested each day, there 

were very few (two to three) total coliform positive samples and no E. coli positive samples on 

each day of testing(252).  This meant that water was always available at the tap and 

uninformed or preoccupied residents could easily consume it without first boiling it.  

Furthermore, the boil water order focused on direct ingestion through eating and 

drinking(252).  Exposure through other pathways was still possible, such as through 

bathing/showering.  Despite aggressive efforts to inform the public about the boil water 

order(252, 253), there would inevitably be residents who do not get the message in time.  A 
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survey conducted the week after the pipe break among a convenience sample (n=533) at 

Boston Medical Center found that 97% were aware of the order(263). However, the authors 

estimated that 34% of those who lived in affected communities were potentially exposed to 

contaminated water(263).  Potential exposure was defined according to three criteria: 1) 

awareness of the order; 2) timing of receipt of the message; and 3) action taken upon receipt of 

the message(263). 

There are numerous potential pathogens in the environment and in untreated water 

that can contaminate drinking water supplies under conditions such as a distribution system 

failure(27, 38).  The association during the 0-3 day period after the break suggests that the 

pathogens involved had a short incubation period (e.g., enteric viruses).  Since the backup 

water supplies were treated only with chlorine, parasites like cryptosporidium would be a 

concern since their outer shell can protect them from chlorine disinfection(266). Apart from the 

ineffectiveness of chlorine treatment for some parasites in the backup water supplies, those 

parasites may also be present in the soil(264, 265) surrounding the distribution pipes and could 

infiltrate the system when the pressure initially drops.  Given that parasites generally have a 

longer incubation period (average 7 days)(266, 267), it is possible that the slightly elevated (but 

statistically insignificant) association during the 4-7 day hazard period (OR=1.17; 95% CI: 0.93-

1.47) was driven by parasitic infections.  Unfortunately, without routine cultures being 

performed, the non-specific definition of AGI may dilute associations due to etiologies 

unrelated to the pipe break. 

A limitation of this study is that exposure was based on community of residence even 

though people likely commute to other communities for work and other activities. This would 
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result in some mixing and misclassification of exposure. However, since the pipe break occurred 

on a Saturday, less people would be commuting to work or school.  Aside from not knowing the 

exact location of exposure, information on individual water consumption, such as bottled water 

use and in-home filter use, was unavailable.   

Case-crossover study design 

The case-crossover method was appropriate because the duration of the pipe break was 

brief (fixed within two days) and the onset of AGI, if any, was expected to be rapid and short-

lived(38, 242, 252). By having cases serve as their own control, this self-matching design 

eliminates confounding by individual characteristics that do not vary over a short time period, 

such as sex, race, and socioeconomic status(242, 257). Selecting control times on the same day 

of week as the case time controlled for any confounding due to day of week(244). Also, the two 

week gap between case and control times ensured that exposure during the 0-3 and 4-7 day 

hazard periods was independent of exposure during the control period, thus preventing any 

autocorrelation between case and control periods(257).  

Conclusion 

This study provides evidence for an association between a recent major water pipe 

break and AGI in the United States. Understanding the health implications of water pipe breaks 

will help inform public health prevention and response plans. This is especially pertinent as 

drinking water systems age and the likelihood of pipe breaks increases(102, 149). 
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Figures 
 
 

 
Figure 29. Massachusetts communities studied in relation to the 2010 water pipe break. 
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Figure 30. Odds ratios and 95% confidence intervals for emergency department visits for acute gastrointestinal illness in the A) 0-3 
and B) 4-7 days following the major water pipe break, by age group.
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Tables 
 
Table 18. Descriptive summary of emergency department visits for acute gastrointestinal illness (April 3, 
2010 - June 5, 2010). 

 

Communities affected 
by pipe break 

(n=30) 

Communities serving as 
negative control exposure 

(n=15) 

 N % N % 

Total 1,818 100% 1,558 100% 

     
Type of Visit     
Emergency Department 1,777 97.7% 1,521 97.6% 

Hospital Outpatient* 41 2.3% 37 2.4% 

     
Age     
Children (≤5 yrs) 650 35.8% 599 38.5% 

Youth/Adolescents (6-18 yrs) 297 16.3% 240 15.4% 

Adults (19-64 yrs) 805 44.3% 650 41.7% 

Elderly (≥65 yrs) 66 3.6% 69 4.4% 

     
Sex     
Female 1,027 56.5% 865 55.5% 

Male 791 43.5% 693 44.5% 

     
Primary Diagnosis 756 41.6% 706 45.3% 

     
Race     
White 769 42.3% 719 46.2% 

Black 408 22.4% 173 11.1% 

Hispanic 374 20.6% 461 29.6% 

Other 217 11.9% 182 11.7% 

Missing 50 2.8% 23 1.5% 
*Hospital outpatient visits included patients who received observation services but were not admitted to the 
hospital. 
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Table 19. Association between the major water pipe break and emergency department visits for 
acute gastrointestinal illness in Boston metropolitan communities. 

 

Number 
of visits 

Odds Ratio 
(95% Confidence Interval) 

  
0-3 days after 

pipe break 
4-7 days after 

pipe break 

Acute Gastrointestinal Illness* 1,818 1.32 
(1.07, 1.61) 

1.17 
(0.93, 1.47) 

Among Young Children (≤5 years) 650 1.40 
(0.99, 1.99) 

1.26 
(0.86, 1.83) 

Among Youth/Adolescents (6-18 years) 297 1.59 
(0.99, 2.55) 

1.75 
(0.97, 3.14) 

Among Adults (19-64 years) 805 1.21 
(0.89, 1.65) 

0.92 
(0.65, 1.31) 

Among Elderly (≥65 years) 66 0.67 
(0.18, 2.46) 

1.71 
(0.58, 5.10) 

    

Among Females 1,027 1.33 
(1.01, 1.76) 

1.15 
(0.84, 1.57) 

Among Males 791 1.30 
(0.96, 1.75) 

1.19 
(0.85, 1.66) 

    

    

Among residents living <12 miles from the break 1,365 1.46 
(1.15, 1.84) 

0.95 
(0.62, 1.46) 

Among residents living >12 miles  from the break 453 1.18 
(0.90, 1.54) 

1.13  
(0.73, 1.75) 

    

Any primary diagnosis for acute gastrointestinal illness 756 1.48 
(1.1, 1.98) 

1.34 
(0.93, 1.93) 

*Primary and associated diagnoses 
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CHAPTER 7. DISCUSSION 
 
Summary of Findings 

There are many factors within a municipal water system that can influence drinking 

water quality.  In this dissertation, I examined whether two types of potential contamination 

events are associated with increased illness.  The first was cyanobacteria, or blue-green algae, 

in the water source.  The second was pipe breaks in the drinking water distribution system.  I 

analyzed both questions within the context of a large water system operated by the 

Massachusetts Water Resources Authority (MWRA) that provides drinking water to 

metropolitan Boston communities. 

In the first Specific Aim, I estimated the association between daily cyanobacteria 

measures in the water source and the rate of emergency department (ED) visits in the 

metropolitan Boston service area for symptoms of acute gastrointestinal illness (AGI), 

respiratory illness, and dermal ailments.  Over a 7-year period (7/27/2005 – 9/30/2012), there 

was a small relative increase in daily ED visits for AGI and respiratory illness when comparing 

upper quartile levels of cyanobacteria with the lowest quartile (≤5.0 ASU/mL).  In addition, the 

younger and older age groups appeared to be more strongly affected for respiratory illness.   

The second Specific Aim had two parts.  In the first part, I used a case-crossover study 

design to estimate the association between water main breaks and ED visits for AGI over a 10-

year period (10/1/2002 – 9/30/2012) in the City of Boston.  Overall, there was no association 

between main breaks and ED visits for AGI during the 0-3 day hazard period (OR=1.05; 95% CI: 
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0.94-1.17) and subsequent 4-7 day period (OR=0.97; 95% CI: 0.87-1.08). However, stratified 

analyses revealed an increased risk during the 0-3 day period among the elderly (OR=2.12; 95% 

CI: 1.20-3.74) and among residents living in zip codes with a median household income less 

than $50,000 (OR=1.17; 95% CI: 1.01-1.35).  When the analysis was restricted to zip codes 

served primarily by a single water service network, the overall association became slightly 

elevated (OR=1.15; 95% CI: 0.99-1.34) and stratified results (by age and median household 

income) were strengthened. In the second part of this Specific Aim, I focused on a major water 

pipe break in 2010 that resulted in a boil water order affecting nearly two million residents.  

Using another case-crossover study design, I estimated the association between the major 

water pipe break and subsequent ED visits for AGI.  Overall, there was an increased risk for 

visiting the ED for AGI during the 0-3 days after the pipe break when the boil water order was in 

effect (OR=1.32; 95% CI: 1.07-1.61).  This association was most apparent in children and 

adolescents.  In addition, there was no association using a negative control exposure in a 

separate analysis. 

 

Strengths 

A strength of this dissertation project was that there were many years of data available.  

In the first Specific Aim, I used 7 years of data to estimate the association between low levels of 

cyanobacteria and ED visits for AGI, respiratory, and dermal illness.  It is often a challenge to 

have quality long-term data on algae in drinking water supplies, let alone speciated data such as 

cyanobacteria.  Fortunately, MWRA has been collecting algae data in the Wachusett Resevoir 

since the early 1990s so their methods have been in place for a while.  In the second Specific 
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Aim, I used 10 years of data to estimate the association between water main breaks and ED 

visits for AGI.  Existing studies have been limited to one to two years due to data 

availability(182, 184).  Conveniently, the Boston Water and Sewer Commission has been 

recording water mains breaks since 1975(241).  Another strength of this dissertation project 

was the large population served by MWRA.  This provided the statistical power to detect a small 

effect, which is often the case with environmental epidemiology studies. 

In the second Specific Aim, there were a few advantages to using a case-crossover study 

design.  The self-matching design eliminated confounding by determinants that are constant 

within individuals over the sampling period (e.g., age, sex, race, socioeconomic status)(242, 

257).  Also, the two week period between case and control time(s) automatically matched on 

day of week, thus controlling for any confounding by day of week(244).  In addition, the two 

week period prevented any autocorrelation between case and control times by ensuring 

independent exposure windows(257).  Lastly, conditional logistic regression estimates have 

been shown to be unbiased when using a time-stratified bi-directional approach to select 

control time(s)(244, 245). 

In the analysis of Boston main breaks, a strength was being able to incorporate water 

service networks in a sensitivity analysis.  Since main breaks only affect the water service 

network they occur in(251), zip codes served by more than one network will not be entirely 

exposed by a given main break. By restricting the analysis to only zip codes served primarily 

(≥90%) by one water service network, any misclassification of exposure due to having multiple 

water service networks in a zip code was reduced. This sensitivity analysis yielded a slightly 

elevated overall association (OR=1.15; 95% CI: 0.99-1.34) compared to the main analysis 
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(OR=1.05; 95% CI: 0.94-1.17) for the 0-3 day hazard period. In addition, stratified results were 

strengthened (e.g., for the elderly, for only circumferential breaks) or remained (e.g., for lower 

income zip codes).  This may suggest that the more specific exposure definition reduced 

misclassification. 

In the analysis of the major water pipe break, a strength was that the pipe break and 

subsequent boil order were clearly defined events that help determine exposure to potential 

water contamination.  Estimating the association between drinking water contamination and 

risk of illness is difficult due to the many assumptions that have to be made(157, 178).  For 

example, a contamination event is contingent on a sequence of events occurring and 

population exposure depends on factors such as the duration and magnitude of 

contamination(157, 178). 

 

Limitations 

This dissertation used ED visits, including hospital outpatient visits, to capture acute 

symptoms of illness defined using ICD-9-CM diagnosis codes.  A limitation of using ED visits is 

that it only characterizes a subset of residents who may have experienced the outcomes of 

interest.  That is, ED visits represent those who required immediate medical attention.  As a 

result, the burden of illness due to cyanobacteria and main breaks may have been 

underestimated.  For example, by using internet search volume for symptoms of AGI, 

Shortridge et al. (2014) suggested that water pipe breaks may increase mild cases of AGI that 

may not result in a doctor’s visit(182). Residents experiencing milder symptoms of illness may 

have opted to recover at home or visit their primary care provider. Unfortunately, hospital-
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based administrative databases do not have information needed to describe such mild cases of 

AGI. 

In the first Specific Aim, a limitation was that cyanobacteria measurements were taken 

in the reservoir prior to treatment.  Therefore, it may not be an accurate representation of the 

concentrations in the treated water delivered to consumers.  Of note, however, is that MWRA 

used an unfiltered treatment process that relies primarily on disinfection (ozone) to achieve 

Giardia inactivation(195).  While ozone has been shown to destroy certain types of cyanotoxins, 

its efficacy depends on the ozone demand of organic material in the raw water(148).  In 

addition, ozonation of raw waters containing high cyanobacteria cell concentrations can lead to 

cell lysis and release of intracellular toxins(148).  In the absence of filtration, it may have been 

possible for cyanobacteria to survive the disinfection treatment process(122).  Given the 

unconventional treatment process, results may not be applicable to water systems that use 

filtration or different treatment processes. 

In the second Specific Aim, a limitation was that water pipe break exposure was based 

on zip code or town of residence even though people likely commute to other communities for 

work and other activities (e.g., school, healthcare, business, entertainment, etc.). Similarly, 

visitors coming from unaffected localities may have been exposed to a water pipe break but 

would not have been included in the analysis even if they visited the ED.  In addition, without 

individual-level data on water consumption, other factors affecting tap water exposure (e.g., 

bottled water use, in-home water filters) could not be accounted for.  These limitation could 

have resulted in some mixing and misclassification of exposure. 
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In the Boston main breaks analysis, a limitation was that there was no marker of main 

break severity, such as the duration of the break and how much water was lost.  In other words, 

all breaks were treated equally even though the magnitude and impact of main breaks can vary.  

A large main break is often identified by unexpected low pressure readings, excessive pumping, 

or a drop in reservoir levels in a specific area(6).  Since small breaks are harder to find, water 

utilities often encourage their customers to help identify water main leaks and breaks(170-

174).  Signs of a faulty water main include water seeping up out of the ground or pavement, 

buckled pavement, and a leaking service line(170-174).  Depending on size and location, some 

breaks may go unnoticed for hours(241).  In addition, the main breaks included in the analysis 

do not represent all water pipe breaks since service line breaks are often the responsibility of 

an individual property owner and therefore not necessarily recorded by the water utility (150).   

Another limitation in the Boston main breaks analysis was that exposure was based on 

zip code with the assumption that main breaks have a localized impact that does not spread 

across multiple zip codes.  However, the water in the distribution system is not confined within 

zip code.  Rather, water is distributed within its service network which could span several zip 

codes(241, 251).  In addition, the direction of flow can change depending on consumer 

demand(251).  Due to these exposure limitations, there was some inevitable mixing and 

misclassification of exposure. Nevertheless, zip code was the most detailed residential variable 

available in the ED database.  This is often the case when using administrative data in order to 

protect the privacy and confidentiality of potentially person-identifiable data. Zip codes have 

been used in past studies of drinking water quality and ED visits for AGI(55, 187).  For example, 

Tinker et al. (2010) assigned residential zip codes to water treatment plants in Atlanta and 



 

163 
 

observed a small association between raw water turbidity at the treatment plant and ED visits 

for AGI(55).   

 

Significance 

The drinking water emergency in Flint, Michigan brought concerns about drinking water 

safety to the national spotlight. Safe drinking water depends on a well-protected water source, 

effective treatment processes, and a well-maintained distribution system. The results of my 

dissertation identified potential health risks related to different stages of a drinking water 

system, specifically cyanobacteria in the water source and water pipe breaks in the distribution 

system.  If causal, the observed associations are important to consider given the consequences 

of a changing climate(4, 30).  For example, heavy runoff events can increase nutrient loadings in 

drinking water sources and cause extensive algal blooms(4, 30) and water main breaks can be 

susceptible to extreme temperature fluctuations(167).  In addition, drinking water reservoirs 

and distribution pipes are aging.  Observing even a small effect on risk of illness could have a 

substantial public health impact, particularly when a large community is affected. 

Aging Reservoirs 

Many reservoirs in the U.S. are now at or approaching old age as they were designed to 

last 50 to 100 years(270).  As of 2013, the median age of large reservoirs owned by different 

federal agencies ranged from 49-70 years(270).  Another measure of a reservoir’s age is the 

amount of water storage capacity that has been lost due to ongoing sedimentation(270).  Aging 

reservoirs can lead to hydrological, sedimentological, and morphological changes(270).  These 

changes can ultimately affect the presence of cyanobacteria because a change in algal 
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composition often complements the transitional trophic changes in aging reservoirs, especially 

with increased nutrient input(271).  A recent survey of aging lakes and reservoirs in Virginia 

suggested future concerns for the increased presence of cyanobacteria(271).  There has also 

been a noticeable increase in the severity of cyanobacterial harmful algal blooms in Lake Erie, a 

drinking water source for about 11 million people(123, 272). In the summer of 2014, 

microcystin concentrations were particularly severe in Western Lake Erie(2).  In fact, 

microcystin levels in fully treated tap water were detected almost three times the WHO limit of 

1 µg/L and over 500,000 residents in and around Toledo, Ohio were warned not to use their 

water(2, 122). The Toledo event brought national attention to the threat of algal toxin in public 

water supplies(125).  In February 2018, Governor Andrew Cuomo of New York recognized the 

impending threat of harmful algal blooms in the state’s drinking water sources and announced 

a series of summits to address the issue(273).  In March 2018, the Ohio EPA proposed to 

designate the open waters of Lake Erie’s Western Basin as impaired for recreation due to 

harmful algae and drinking water due to occurrences of microcystin(274).  The least 

characterized health risks are those from repeated, low-level, multi-route exposures to 

cyanotoxins in surface and drinking waters(128).  The results of the first Specific Aim suggest 

that cyanobacteria at chronic low levels in the water source may slightly increase the risk of AGI 

and respiratory illness, especially among younger and older age groups. 

Aging Water Distribution Systems 

As drinking water distribution systems age, they can deteriorate due to corrosion, 

materials erosion, and external pressures(102, 149).  This deterioration can lead to breaches in 

pipes and storage facilities, intrusion due to water pressure fluctuations, and main breaks(102, 
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149).  An estimated 240,000 main breaks occur each year, wasting over two trillion gallons of 

treated drinking water(9).  Due to a lack of quality long-term data on negative pressure 

transients, mains breaks, and maintenance work, there are few epidemiology studies on the 

association between disruptions in the distribution infrastructure and related illnesses.  

Limitations of existing studies include not focusing on specific distribution failures that could 

lead to illness and not having sufficient power to estimate the risk of endemic disease 

associated with drinking water distribution systems(6).  The results of the second Specific Aim 

suggest that the risk of AGI may depend on the magnitude of the main break, especially among 

children, elderly, and lower income residents. 

In order to keep up with aging distribution pipes,  the water industry will have to make 

substantial investments in pipe assessment, repair, and replacement(6).  According to the EPA’s 

Drinking Water Infrastructure Needs Survey and Assessment, drinking water utilities will need 

an estimated $384.2 billion over the next 20 years (from 2011 to 2030) for infrastructure 

projects to ensure that water systems continue to provide safe drinking water to the 

public(154).  According to the American Water Works Association, upgrading existing water 

systems to meet the drinking water infrastructure needs of a growing population will require at 

least $1 trillion(9).  Piratla et al. (2015) created an empirical model based on data collected 

from 11 different large diameter water main breaks to estimate the overall impact costs of 

main breaks(275). Health risk accounted for the least share of the overall cost of impact, 

whereas repair and property damage accounted for the greatest share(275).  While such impact 

models can be useful, they are only as informative as the studies and assumptions they are 

based on.  Given the limited number of studies that have quantified the health risk of main 
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breaks, the results of this dissertation project could help improve the model inputs related to 

health risk. 

Local Impact 

 The Triangle region of North Carolina (Raleigh, Durham, and Chapel Hill) has also felt the 

impact of main breaks and harmful algae.  In February 2017, a major water main break caused a 

“Do Not Use, Do Not Drink” directive to be issued for about 25 hours in the Carrboro-Chapel Hill 

community(276). This emergency was complicated by a treatment error (an accidental overfeed 

of fluoride) that occurred less than a day before the main break(276).  The 12-inch water main 

break resulted in loss of water service to about 250 people, about 1.3 million gallons of water 

lost from storage, a damaged road, and flooded residences(276).  Also, over a 2-year study 

period, from 2014 to 2016, four cyanotoxins (microcystin, anatoxin-a, cylindrospermopsin, and 

β-N-methylamino-L-alanine) were detected in Jordan Lake, a major drinking water reservoir for 

nearly 300,000 people in Morrisville, Cary, and Apex(277).  Multiple toxins were detected at 

86% of the tested sites and during 44% of the sampling events.  Although concentrations were 

low, the recurrence of multiple cyanotoxins throughout the year confirmed their ubiquitous 

nature(277). 

 

Recommendations 

 Cyanobacteria and water main breaks can threaten drinking water quality and public 

health. Many states provide guidance and emergency response procedures for main breaks and 

boil water orders; however, there are no federal regulations.  Regarding cyanobacteria, 

cyanotoxins, and other harmful algae, EPA has yet to establish any drinking water 
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standards(128), though the EPA did develop health advisories (non-regulatory) for the 

cyanobacterial toxins microcystins and cylindrospermopsin in 2015(122, 127). 

Given the influences of aging infrastructure and climate change, more and more 

drinking water utilities around the country will be met with the need to monitor and respond to 

harmful algae and water main breaks.  The results of this dissertation suggest that it may be 

important to monitor chronic low levels of cyanobacteria, not just bloom events.  

Understanding the implications of cyanobacteria in drinking water reservoirs will better inform 

monitoring and management decisions.  Also, proactively rehabilitating deteriorated water 

pipes can help minimize the consequence and severity of water main breaks.  

 It is important to bring awareness to the potential health effects of low-level 

cyanobacteria and water main breaks so that water utilities and public health departments can 

implement relevant prevention and response plans.  A limitation is often having enough funds 

to implement prevention and rehabilitation plans since the majority of funding for drinking 

water infrastructure in the U.S. comes from revenue generated by rate payers (and the rate 

structure can greatly vary across the country)(9).  The American Society of Civil Engineers 

recommends increasing funding at the federal level through the State Revolving Loan Fund, the 

Water Infrastructure Finance and Innovation Act, and a federal Water Infrastructure Trust 

Fund(9).   

 

Future Directions 

 To build upon the work of this dissertation, I have several suggestions for future 

research.  For the first Specific Aim, it would be interesting to consider other methods of 
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harmful algae detection that are being developed to rely less heavily on grab samples and 

laboratory techniques (e.g., satellite images, remotely deployed biosensors).  It would also be 

informative to include toxins data since not all species of cyanobacteria produce toxins.  In 

recent years, water utilities including MWRA and the City of Raleigh have started collecting data 

on cyanotoxins (e.g., microcystin, cylindrospermopsin).  Lastly, to incorporate treatment 

efficacy and refine the exposure definition, it would be meaningful to consider post-treatment 

measures of cyanobacteria if available in the future.  For the second Specific Aim, it would be 

interesting to incorporate a measure of main break severity.  This could include real-time 

monitoring data on water pressure fluctuations. In addition, it would be worthwhile to further 

explore vulnerable groups. 

 

Conclusion 

 This dissertation examined whether two types of potential contamination events within 

a drinking water system are associated with increased illness.  A small relative increase in daily 

ED visits was observed for AGI and respiratory illness when comparing upper quartile levels of 

cyanobacteria concentrations in the source water with the lowest quartile (≤5.0 ASU/mL).  A 

slightly elevated association between main breaks and ED visits for AGI was also observed when 

focusing on zip codes served primarily by a single water service network. When a major water 

pipe broke in 2010, an increased risk for visiting the ED for AGI was observed during the 0-3 

days after the pipe break when a boil water order was in effect.  Sensitive populations included 

younger and older age groups as well as residents living in zip codes with a median household 

income less than $50,000. 
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APPENDIX 1: NATIONAL PRIMARY DRINKING WATER REGULATIONS 
 

Contaminant Type of Contaminant 

Cryptosporidium Microorganisms 
Giardia lamblia Microorganisms 
Heterotrophic plate count (HPC) Microorganisms 
Legionella Microorganisms 
Total Coliforms (including fecal coliform and E. Coli) Microorganisms 
Turbidity Microorganisms 
Viruses (enteric) Microorganisms 
Bromate Disinfection Byproducts 
Chlorite Disinfection Byproducts 
Haloacetic acids (HAA5) Disinfection Byproducts 
Total Trihalomethanes (TTHMs) Disinfection Byproducts 
Chloramines (as Cl2) Disinfectants 
Chlorine (as Cl2) Disinfectants 
Chlorine dioxide (as ClO2) Disinfectants 
Antimony Inorganic Chemicals 
Arsenic Inorganic Chemicals 
Asbestos (fiber > 10 micrometers) Inorganic Chemicals 
Barium Inorganic Chemicals 
Beryllium Inorganic Chemicals 
Cadmium Inorganic Chemicals 
Chromium (total) Inorganic Chemicals 
Copper Inorganic Chemicals 
Cyanide (as free cyanide) Inorganic Chemicals 
Fluoride Inorganic Chemicals 
Lead Inorganic Chemicals 
Mercury (inorganic) Inorganic Chemicals 
Nitrate (measured as Nitrogen) Inorganic Chemicals 
Nitrite (measured as Nitrogen) Inorganic Chemicals 
Selenium Inorganic Chemicals 
Thallium Inorganic Chemicals 
Acrylamide Organic Chemicals 
Alachlor Organic Chemicals 
Atrazine Organic Chemicals 
Benzene Organic Chemicals 
Benzo(a)pyrene (PAHs) Organic Chemicals 
Carbofuran Organic Chemicals 
Carbon tetrachloride Organic Chemicals 
Chlordane Organic Chemicals 
Chlorobenzene Organic Chemicals 
2,4-D Organic Chemicals 
Dalapon Organic Chemicals 
1,2-Dibromo-3-chloropropane (DBCP) Organic Chemicals 
o-Dichlorobenzene Organic Chemicals 
p-Dichlorobenzene Organic Chemicals 
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Contaminant Type of Contaminant 
1,2-Dichloroethane Organic Chemicals 
1,1-Dichloroethylene Organic Chemicals 
cis-1,2-Dichloroethylene Organic Chemicals 
trans-1,2-Dichloroethylene Organic Chemicals 
Dichloromethane Organic Chemicals 
1,2-Dichloropropane Organic Chemicals 
Di(2-ethylhexyl) adipate Organic Chemicals 
Di(2-ethylhexyl) phthalate Organic Chemicals 
Dinoseb Organic Chemicals 
Dioxin (2,3,7,8-TCDD) Organic Chemicals 
Diquat Organic Chemicals 
Endothall Organic Chemicals 
Endrin Organic Chemicals 
Epichlorohydrin Organic Chemicals 
Ethylbenzene Organic Chemicals 
Ethylene dibromide Organic Chemicals 
Glyphosate Organic Chemicals 
Heptachlor Organic Chemicals 
Heptachlor epoxide Organic Chemicals 
Hexachlorobenzene Organic Chemicals 
Hexachlorocyclopentadiene Organic Chemicals 
Lindane Organic Chemicals 
Methoxychlor Organic Chemicals 
Oxamyl (Vydate) Organic Chemicals 
Polychlorinated biphenyls (PCBs) Organic Chemicals 
Pentachlorophenol Organic Chemicals 
Picloram Organic Chemicals 
Simazine Organic Chemicals 
Styrene Organic Chemicals 
Tetrachloroethylene Organic Chemicals 
Toluene Organic Chemicals 
Toxaphene Organic Chemicals 
2,4,5-TP (Silvex) Organic Chemicals 
1,2,4-Trichlorobenzene Organic Chemicals 
1,1,1-Trichloroethane Organic Chemicals 
1,1,2-Trichloroethane Organic Chemicals 
Trichloroethylene Organic Chemicals 
Vinyl chloride Organic Chemicals 
Xylenes (total) Organic Chemicals 
Alpha particles Radionuclides 
Beta particles and photon emitters Radionuclides 
Radium 226 and Radium 228 (combined) Radionuclides 
Uranium Radionuclides 

Source: https://www.epa.gov/ground-water-and-drinking-water/table-regulated-drinking-water-contaminants; 
https://www.epa.gov/sites/production/files/2016-06/documents/npwdr_complete_table.pdf 

 
  

https://www.epa.gov/ground-water-and-drinking-water/table-regulated-drinking-water-contaminants
https://www.epa.gov/sites/production/files/2016-06/documents/npwdr_complete_table.pdf
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APPENDIX 2: NATIONAL SECONDARY DRINKING WATER REGULATIONS 
 

Contaminant 
Secondary Maximum 
Contaminant Level 

Aluminum 0.05 to 0.2 mg/L 
Chloride 250 mg/L 
Color 15 (color units) 
Copper 1.0 mg/L 
Corrosivity noncorrosive 
Fluoride 2.0 mg/L 
Foaming Agents 0.5 mg/L 
Iron 0.3 mg/L 
Manganese 0.05 mg/L 
Odor 3 threshold odor number 

pH 6.5-8.5 
Silver 0.10 mg/L 
Sulfate 250 mg/L 
Total Dissolved Solids 500 mg/L 
Zinc 5 mg/L 

Source: https://www.epa.gov/sites/production/files/2016-06/documents/npwdr_complete_table.pdf 

 
  

https://www.epa.gov/sites/production/files/2016-06/documents/npwdr_complete_table.pdf
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