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ABSTRACT 

 
Andrew Ethan Yosim: Estimating Relationships Between Arsenic Exposure Through Rice 

Consumption and Disease 
(Under the direction of Rebecca C. Fry) 

 

Arsenic (As) is a carcinogen and developmental toxicant with significant detrimental health 

outcomes associated with early life exposure.  Until recently, the potential for exposure to As via 

food in the US was considered minimal.  Recent data suggest that rice may contain elevated 

levels of inorganic arsenic (iAs) and dimethylarsinic acid (DMA), which are associated with 

adverse health outcomes.  In order to assess whether rice consumption could introduce exposure 

at levels of As associated with disease, As levels in 1,343 rice-based products from the FDA 

were analyzed and compared to three constructed daily exposure models.  The majority of 

samples had elevated levels of As and an average single serving of rice, and many rice-products, 

either meets or exceeds a child’s daily modeled exposure threshold.  Estimates suggest average 

lifetime rice consumption equates to exposure levels of As known to be associated with elevated 

risk for lung and bladder cancer. 
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CHAPTER 1: INTRODUCTION 

 

 

Research assessing the arsenic (As) content of foods consumed within the United States 

has increased markedly in the last several years (Cleland et al. 2009, Gilbert-Diamond et al. 2011a, 

Davis et al. 2012, Jackson et al. 2012).  Recent articles in the popular media (Bloom 2014, Reports 

2014) have raised concern over the potential presence of As, classified as a Group 1 carcinogen 

by the International Agency for Research on Cancer (IARC 2012), in commonly consumed food 

products. In order to reduce chronic exposure to the toxic metalloid, in 2001, the Environmental 

Protection Agency (EPA) set a maximum contaminant level (MCL) of 10 µg/L for the total As 

(tAs) content of publically supplied drinking water in the United States.  However, while the As 

content of drinking water is currently regulated, the As levels in solid foods are currently 

unregulated.  

Arsenic has been detected in foods in both organic and inorganic forms. Relative to organic 

arsenicals, iAs is often regarded as the more toxic species and has been associated with both cancer 

endpoints (Sohel et al. 2009) as well as non-cancer endpoints such as cardiovascular disease and 

neurological effects (States et al. 2009). The mode of action (MOA) of iAs is complex and likely 

multi-factorial. Some of the strongest experimental evidence indicates that mechanisms such as 

enzyme inhibition, altered DNA repair, the generation of oxidative stress (Alarifi et al. 2013), 

epigenetic modifications (Ren et al. 2010), and the induction of genotoxic damage such as 

chromosomal aberrations are major factors contributing to iAs toxicity  (as reviewed in Hughes, 

Beck et al. 2011, Naujokas, Anderson et al. 2013). The varied deleterious effects associated with 
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iAs exposure are likely the result of the combined effects of mechanisms such as these, which may 

be interacting in one or more synergistic and/or causal relationships. The most prevalent route of 

As exposure worldwide is through the consumption of As-laden drinking water, although 

individuals may also be exposed to As through other sources including food, air, and soil (Meacher 

et al. 2002).  

Adverse human health effects of long-term exposure to high levels of iAs in drinking water 

are well documented in areas such as Bangladesh and West Bengal, India (Chowdhury et al. 2000).  

Populations in areas such as these are routinely exposed to iAs in drinking water at levels much 

higher than national or World Health Organization (WHO) guidelines (WHO 2008). For example, 

iAs levels up to 2500 µg/L have been detected in the groundwater of Bangladesh, which exceed 

Bangladeshi national guidelines of 50 µg/L by 50-fold (Nordstrom 2002). Although levels of 

exposure to As in drinking water are generally not as high as those observed in Bangladesh, high 

level exposure is observed in the United States, as many private wells used for drinking water have 

iAs levels that exceed EPA limits (Sanders et al. 2012).  

Through a series of reduction and oxidative methylation reactions, iAs can be metabolized 

to mono-, di-, and trimethylated forms such as the pentavalent species, dimethylarsinic acid 

[DMA(V)], monomethylarsonic acid [MMA(V)], trimethylarsine oxide [TMAO(V)] and the 

trivalent species dimethylarsinous acid [DMA(III)], and monomethylarsonous acid [MMA(III)].  

The pharmacokinetics of human As metabolism are not fully understood (NRC 1999). The 

metabolism of iAs into mono- and dimethylated forms occurs primarily in the liver as well as the 

kidneys, lung, and testes (Healy et al. 1997), although the site of methylation is heavily dependent 

on the conversion rate of arsenate to arsenite (EPA 2010).  At these sites, the primary enzyme 

arsenic-(+3 oxidation state)-methyltransferase (AS3MT) is responsible for the transfer of a methyl 
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group from S-adenosyl methionine (SAM) to As substrates.  In humans, the pentavalent species 

MMA(V) and DMA(V) are readily excreted through the urine or may be further metabolized to 

form the trivalent species (NRC 1999).   

Arsenic metabolism was widely believed to act as a detoxifying process, such that each 

successive metabolite product would be less toxic than iAs.  However, in the last fifteen years, 

evidence has emerged that the toxicity of some of the metabolites may be of increasing concern, 

as forms of the trivalent arsenicals DMA(III) and MMA (III) have been shown to be more cytotoxic 

in primary human hepatocyte,  epidermal keratinocytes, bronchial epithelial, and UROtsa cells 

compared to iAs treatment (Styblo et al. 2000).  In addition, while research into the health effects 

associated with As metabolites is sparse, DMA(V) and MMA(V) are classified as Group 2B 

carcinogens (IARC 2012), and recent work suggests that individuals with higher levels of 

MMA(III) or DMA(III) in exfoliated urothelial cells have increased risk for diabetes (Currier et 

al. 2014).  Although the majority of the present work focuses on forms of As whose risk is well 

characterized such as tAs or iAs, levels of the metabolites DMA and MMA in rice products are 

presented and may significantly contribute to an individual’s later-life health outcomes. 

In areas where exposure via water, soil, or air is low, food becomes the largest source of 

As exposure.  Foods potentially high in As include shellfish, grains, fruit and their juices (Xue et 

al. 2010).  For example, following growing concerns of excessive As exposure in children, the 

Food and Drug Administration (FDA) proposed an action level of 10 µg/L for the iAs content of 

apple juice (FDA 2013b). While shellfish is a major source of As, much of the As in shellfish is 

found in organic forms such as arsenobetaine and is comprised of relatively little iAs (as reviewed 

in (Schoof et al. 1999, Adair et al. 2005).  
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Rice has been implicated as a major dietary source of As due to its uptake of As from 

contaminated soil, ground, and surface water (Meharg 2004, Norton et al. 2012).  Unlike many 

other food staples that are grown under aerobic conditions, flooded rice paddy fields provide 

anaerobic conditions in which reduced forms of As may be incorporated into the growing rice (Xu 

et al. 2008, Su et al. 2010).  Under these conditions silicon transporters readily transport iAs and 

organic metabolites, which act as silicic acid analogues (Ma et al. 2008, Li et al. 2009), while the 

phosphate analogues, arsenate and deprotonated DMA are transported via phosphate transporters 

(Meharg et al. 2012).  The incorporated arsenicals predominantly accumulate in the hull of rice 

through a variety of mechanisms such as xylem transport, phloem transport, and sequestration of 

As-thiol complexes (Zhao et al. 2009, Tuli et al. 2010).  The rate and extent to which arsenicals 

are incorporated into rice plants are influenced by both inter-species and inter-subspecies 

differences in As transport and binding (Abedin et al. 2002a, Abedin et al. 2002b, Williams et al. 

2005, Liu et al. 2006, Ma et al. 2008), as well as concentrations of silicon, phosphate, heavy metals, 

and other minerals (Abedin et al. 2002b, Chen et al. 2005, Guo et al. 2007, Lihong et al. 2009, 

Zhang et al. 2011).  While the mineral content of the soil and redox conditions of the rice paddy 

govern arsenical transport, rice predominately accumulates iAs based on its proclivity to bind iAs 

at higher rates than organic arsenicals (Abedin et al. 2002b) and the lack of affinity in binding to 

iron oxyhydroxides to form immobile forms (Meharg et al. 2012).   

In addition to rice plants directly transporting and accumulating iAs and organic As 

species, arsenicals can be directly methylated at the rhizosphere and in planta. which may result 

in higher levels of iAs and DMA in the grain or husk (Williams et al. 2005, Tuli et al. 2010).  

Arsenate present in the soil or contaminated groundwater may be reduced via arsenate reductase 

by a number of soil-based microbes proximal to growing rice (Xu et al. 2007), and in vitro studies 
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suggest reduction in planta via the actions of homologues of the protein ACR2 (OsACR2;1 and 

OsACR2;2) in both the roots and shoots of the plant (Duan et al. 2007). In addition, genome-wide 

analysis from two different rice varieties found up regulation of three genes annotated as 

methyltransferases in the roots of the plant (Norton et al. 2008).  At present, additional studies are 

needed to further elucidate the locations of As methylation in rice. 

While the average US citizen consumes approximately 12 kilograms of rice a year (Batres-

Marquez et al. 2009, Rice 2009), certain sub-populations may be more vulnerable to iAs exposure; 

ethnicities who routinely consume large amounts of rice or individuals who consume rice as a 

dietary alternative.  For example, many individuals on low gluten diets or those suffering from 

celiac disease routinely consume large quantities of rice or rice-based products (Munera-Picazo et 

al. 2014a, Munera-Picazo et al. 2014b).  Rice with a high iAs content can act as an exposure 

vehicle, as iAs remains largely unmodified and bioavailable to absorption even after rice has been 

harvested and cooked (Laparra et al. 2005).  Children and infants may be at particular risk for iAs 

exposure (Xu et al. 2008) as in comparison to adults, they often consume larger quantities of fruits 

and rice products proportional to their body weight (Yost et al. 2004). In addition, recent work has 

revealed that infants may be exposed to high levels of iAs through As-rich formulas and infant 

foods (Carbonell-Barrachina et al. 2012, Jackson et al. 2012).    

Exposure to elevated levels of iAs can be particularly harmful during early childhood 

development (Steinmaus et al. 2013) and several adverse health effects in adults are associated 

with early childhood exposure, including both increased incidence of cancers, diabetes, and 

cardiovascular disease, as well as increase mortality associated with cancers, bronchiectasis, and 

cardiovascular disease (Tokar et al. 2011, Smith et al. 2012). Our lab along with others has shown 

that iAs exposure is associated with epigenetic alterations (Smeester et al. 2011, Bailey et al. 2013, 



6 
 

Bailey et al. 2014, Rager et al. 2014). Importantly, alterations to the genome and epigenome during 

critical developmental periods have been proposed as a plausible link between environmental 

toxicant exposure and later-life health complications (Barouki et al. 2012). 

 In 2011, and again in 2013, the FDA released the results of testing performed on various 

rice-containing food products available for purchase within the United States.  Currently, this is 

the largest dataset available on the speciated As content in food to date.  In the present work, the 

results of these tests were analyzed for statistical trends and patterns.  A total of 1,343 rice-based 

food samples were analyzed, including 487 samples of commercially available rice.  All of the 

tested rice samples with quantifiable data exceed the EPA’s limit of 10 µg/L for As in drinking 

water, the only available standard against which to judge the samples.   

While the EPA enforces a drinking water limit of 10 µg/L of As, there are currently no 

federal guidelines that regulate As levels in food. In July of 2013, the FDA proposed an action 

level of 10 µg/L iAs for apple juice, although no current recommendations have been made for 

other juices or foods (FDA 2013b).  In order to assess the possibility of elevated As exposure 

associated with rice or food products containing rice, daily exposure thresholds extrapolated from 

the EPA water MCL were constructed resulting in estimates of 0.68-1.00 µg As/kg bodyweight 

per day.  Results from the analysis of the FDA records were compared against these models to 

determine the potential for As exposure across different age groups.  The results were also 

compared against current risk estimates of As in drinking water to determine if chronic 

consumption of rice or rice-based products could contribute to As exposure at levels associated 

with the development of disease. These data highlight that for children, consumption of a single 

serving of rice or of many rice-based products could exceed their estimated daily exposure 

threshold and significantly contribute to As exposure at levels that may be associated with later-
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life adverse health effects.  Additionally, chronic consumption of rice consistent with national 

averages is associated with increased risks for lung and bladder cancer and may significantly 

contribute to the nation’s burden of disease. 

  



8 
 

 
CHAPTER 2: METHODS 

 

Database generation 

Concentrations of tAs, iAs, MMA [MMA(V)+(MMA(III)], and DMA 

[DMA(V)+(DMA(III)] in 1,343 rice and rice-products were obtained from the FDA website (FDA 

2011).  Of the 1,343 rice and rice-product records, 1,275 contained quantifiable data (94.9%).  Of 

the 487 records that dealt with rice, one lacked a numerical value and was excluded from further 

analysis.  Subcategories of rice for study were designated as “basmati rice”, “white, short grain 

rice”, “white, medium grain rice”, “white, long grain rice”, “brown rice”, “jasmine rice”, 

“parboiled rice”, and “instant rice” by the inclusion of the aforementioned words in their 

description. Categories for rice products were designated as “mixes and pudding”, “beverages”, 

“cereals”, “cookies”, “dietary supplements”, “grain-based bars”, “pasta”, and “snacks”, with 

subcategories of these products designated as “rice cakes”, “hot/ready to eat cereal”, and “infant 

and toddler cereal”. 

 

Determination of extrapolated upper As exposure models 

Using the results from the previous analysis concerning the tAs content of rice and rice 

products, three exposure models were constructed to determine whether a single serving of rice 

could significantly contribute to or exceed a modeled threshold of As in children.  
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The first model was based on an extrapolated calculation of As exposure consistent with 

the EPA’s limit of As in drinking water   The limit of 10 µg/L As was multiplied by an individual’s 

assumed water intake (2L) to determine an upper daily intake of As due to water consumption.  

This upper limit of 20 µg As was then extrapolated to all sources of As exposure based on the 

average daily proportion of As exposure associated with water consumption.  Estimates suggest 

that water contributes 42.2% to 45.3% of exposure in men and women, respectively (Meacher et 

al. 2002).  Using the more conservative figure of 42.2% for women, the total potential exposure to 

As consistent with the current water guidelines suggests that an individual’s upper threshold of 

tAs exposure is 47.39 µg/day. This value was divided by the body weight of an adult to determine 

the upper threshold of As per kg of body weight per day.  Utilizing the EPA’s own weight 

assumptions of 70 kg for an adult male, an upper threshold of 0.68 µg As/kg per day was 

determined.  This model assumes consistent proportions of exposure from water and food for 

different age groups, which is supported by previous findings that the contribution of tAs by food 

group does not change significantly after age six (Yost et al. 2004).  Age-specific As thresholds 

were calculated by multiplying the lower derived threshold of 0.68µg As/kg/day by the average 

weight of both male and female children at each time point as determined by childhood 

anthropometric reference data collected from the National Health and Nutrition Examination 

Survey (NHANES) (CDC 2012). 

 Additional models were created to reflect values of As exposure associated with food 

consumption that had been utilized by the EPA’s risk assessment process for sensitivity analysis.  

As with the first model, consumption of two liters of water per day was assumed (one liter from 

cooking and one liter from drinking).  Values for dietary intake of As were estimated by the EPA 

at both 30 and 50 µg/day, which were combined with the 20 µg of As in water to produce modeled 



10 
 

daily thresholds of 50 and 70 µg As.  The model did not consider any significant exposure from 

other sources or uncertainty factors, so such values were not included in the three analyses.  These 

values were once again divided by the average weight of an individual (70kg) to produce 

thresholds of 0.71 and 1.00 µg As/kg bodyweight per day. 

Estimation of cancer incidence and mortality 

 To determine whether levels of As found in rice may be associated with increased incidence 

of cancer, As levels associated with average daily rice consumption were multiplied by an 

incremental lifetime cancer risk derived from an EPA oral cancer slope value for As.   

 

Equation 1. Incremental cancer risk (per μg/kg) = CSF (mg/kg-day) × 0.001 ÷ BW   

where: CSF =  oral cancer slope factor; 16.9 and 25.7 for males and females, respectively 

0.001 = conversion from milligrams to micrograms  

BW = body-weight standard of 70 kg utilized by the EPA  

 

The average American consumes 11.8 kg of dry rice per year, which is equivalent to a daily 

average consumption of 32.3 grams.  The 32.3 g of rice was multiplied by the values for the 

average tAs (217 µg/kg) and highest tAs content (854 µg/kg), henceforth referred to as “mean 

rice” and “high rice,” respectively.  Based on the calculations, an average daily single serving of 

mean rice yields an exposure of 7.0 µg As, while high rice yields a daily exposure of 27.6 µg As.  

The As values of 7.0 and 27.6 µg were then multiplied by the calculated incremental cancer 

incidence risk values for men (4.8 × 10�	 μg/kg) and women (7.3 × 10�	 µg/kg) to determine 

the excess incidence of cancer associated with an average lifetime-consumption of rice containing 

either calculated mean or high As levels (NRC 1999, EPA 2010).  Results from this analysis were 
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compared to lifetime cancer risks for various chemicals regulated in drinking water by the EPA 

(Appendix 4).   

A secondary analysis was carried out to compare these estimated daily exposure values 

corresponding to mean and high tAs rice (7.0 and 27.6 µg As) to a National Academy of Science’s 

(NAS) estimation of the lifetime risk of dying from cancer due to contaminated drinking water 

(NRC 1999).  The estimates from NAS utilized a linear dose-response with no biological threshold, 

so levels of As in drinking water were divided by two to account for the NAS’s underlying 

assumption of two liters of water consumed per day.   

 

Estimation of urinary excretion of arsenic 

 Levels of total urinary arsenic (U-tAs), defined as the sum of the arsenicals As(III),  

MMA(III), MMA(V), DMA(III), and DMA(V), were estimated for an individual consuming a 

daily national average quantity of rice (7.0 and 27.6 µg As for mean- and high-As rice, 

respectively).  Due to large inter-individual differences in As metabolism and excretion, several 

coefficient values were selected to estimate the conversion between As consumption and levels of 

U-tAs.  Coefficient values of 0.4, 0.5, 1, 2, and 3 were selected based on reported and calculated 

coefficients in populations with low As exposure (Biggs et al. 1997, Kurttio et al. 1998, Meza et 

al. 2004) (Appendix Table S1).  

 

Estimation of in utero exposure 

 To determine whether the developing fetus might be exposed to harmful levels of As during 

pregnancy, previously estimated levels of U-tAs associated with rice consumption of mean or high 

tAs rice (7.0 and 27.6 µg As) were converted into estimates of maternal blood As levels based on 
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simultaneous measurements of As in maternal urine and blood.  In order to convert levels of U-

tAs to corresponding estimates of maternal blood As levels, conversion factors of 0.03 and 0.09 

were utilized based on calculated coefficients from moderately exposed populations (Concha et al. 

1998, Hall et al. 2007).  Because As readily crosses the placenta, levels of As in cord blood were 

assumed to be equal to levels in maternal blood based on strong supporting evidence (Concha et 

al. 1998, Hall et al. 2007, Rudge et al. 2009).   

 

Comparison to Biological Exposure Index, Minimal Risk Level, and Chronic Oral Reference 

Dose 

 Estimated levels of U-tAs for rice with mean and high tAs content (7.0 and 27.6 µg As) 

were compared against the Biological Exposure Index (BEI) level of 35 µg As/L  

(iAs+MMA+DMA) in urine set by the American Conference of Industrial Hygienists (ACGIH).  

This value represents an upper level of exposure that is unlikely to be associated with non-cancer 

health effects among occupationally exposed individuals.   

 In addition, modeled daily thresholds of As intake from the present work were compared 

against the minimal risk level (MRL) and chronic oral reference dose (RfD) of 0.0003 mg 

As/kg/day set by the Agency for Toxic Substances and Disease Registry (ATSDR) and the 

Environmental Protection Agency (EPA), respectively.   
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CHAPTER 3: RESULTS 

 

As and metabolite levels in rice samples  

 The FDA dataset included a total of 487 rice samples with tAs ranging from 47 to 854 

µg/kg (Table 1).  Speciated testing revealed that the majority of the As content was inorganic, with 

a mean and standard deviation of 106 (49% of tAs) and 44 µg/kg, respectively. All of the tested 

samples with numerical data exceeded the EPA’s 10 µg/kg limit for As in drinking water, with the 

highest sample representing more than eighty-five times the EPA limit.  The rice sample with the 

lowest As content had 47 µg/kg, over four times the EPA’s limit for drinking water.  In addition, 

the rice contained relatively high levels of DMA, with a mean and standard deviation of 104 (48% 

of tAs) and 91 µg/kg, respectively.  The majority of the samples contained low levels of MMA, as 

many were either below the limit of detection (3 µg/kg) or between the limit of detection and the 

limit of quantification (23 µg/kg).  For those rice samples with quantifiable MMA values (21%), 

the mean MMA content and standard deviation were 6.2 and 4.7 µg/kg, respectively.   
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Table 1.  Arsenic levels in 487 rice samples. Non numerical values, as those below the limit of 
detection (3 µg/kg) as well as between the limit of detection and the limit of quantification (23 
µg/kg) were excluded from the analysis.   Data obtained from the FDA (FDA 2011). 

 tAsa 

(µg/kg) 

iAsb 

(µg/kg)   

DMAc   

(µg/kg) 

MMAd 

(µg/kg)   

iAs per 

Serving 

(45g) 

Average 217 106 104 6 5 

Min 47 20 10 3 1 

Median 199 99 87 4 4 

Max 854 249 687 25 11 

SD 118 44 91 5 2 

a tAs refers to total arsenic [iAs + DMA(III) + DMA(V) + MMA(III) + MMA(V)] 

b iAs refers to inorganic arsenic 
c DMA refers to dimethylarsenic acid and dimethylarsinous acid 
d MMA refers to monomethylarsonic acid and monomethylarsonous acid 
 

As and metabolite levels in rice by country of origin  

Among the rice samples, the mean iAs concentration was higher for products originating 

in the United States (N=439, mean=109 µg/kg) compared to India (N=34, mean=71 µg/kg) and, 

within the United States, rice samples from Texas contained the highest levels of iAs (N=41, 

mean=124μg/kg ) (Table 2).  Levels of DMA were over four times higher in rice grown in the 

United States compared to India (108 and 26 µg/kg, respectively), although there was much 

variability within United States-based rice, as the DMA content of Texas-based rice (266 µg/kg) 

was six times greater than the DMA content of rice packaged in California (40 µg/kg).  However, 

caution should be taken in interpreting these results, because the country or state of origin for each 

rice sample is reflective of the origin-of-distribution information provided on each packaging label 

and may not accurately reflect the country or state where the rice was actually grown.    
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Table 2. Average tAs and arsenical levels by state or country of origin. Country or state of origin 
refers to information on the packaging label and may not accurately reflect where the rice was 
grown. Data obtained from the FDA (FDA 2011). 

 Arkansas 

(µg/kg) 

California 

(µg/kg) 

Texas 

(µg/kg) 

Louisiana 

(µg/kg) 

US 

National 

Average 

(µg/kg) 

India 

(µg/kg) 

tAs 207 130 428 235 226 102 

iAs 101 88 124 105 109 71 

DMA 96 40 266 121 108 26 

MMA 3.7 1.9 10.3 4.1 4.9 3.0 

 

As and metabolite levels in rice species and products  

  Brown rice was found to have the highest iAs content, with over twice the iAs content of 

basmati rice and one and a half times the iAs content of white rice (Figure 1).  Samples of both 

short- and medium-grained rice had similar iAs levels as basmati rice, although long-grained white 

rice had approximately 20% more iAs than all three.  Rice snacks and cereals had similar levels of 

tAs, iAs, and DMA, and were comparable to white rice in tAs and iAs levels (Appendix Figure 1).  

Rice cakes had the highest levels of both tAs and DMA of any rice or rice-based product, and had 

iAs levels comparable to those in brown rice.  Rice-based beverages had the lowest levels of any 

of the arsenicals, although this is likely due to the low amounts of rice within each product. Of 

particular concern, levels of tAs, iAs, and DMA were high in infant and toddler cereals, consistent 

with previously published results (Carbonell-Barrachina et al. 2012, Jackson et al. 2012).   
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Figure 1. Mean levels of tAs, iAs, and DMA in different rice varieties.  Data obtained from the 
FDA (FDA 2011) for basmati (N=51), brown (N=99), jasmine (N=13), instant (N=14), parboiled 
(N=34), white (N=251), white long (N=147), white medium (N=81), and white short (N=81). 

 

Modeled daily As maximum allowable dose  

Three models were constructed to estimate age-specific As daily thresholds.  The first 

model extrapolated a daily threshold based on the EPA’s MCL for As in drinking water and the 

proportion of As exposure from drinking water.  The second and third models were constructed 

based on food-associated As values selected by the EPA for sensitivity analysis.  Safe consumption 

thresholds of 0.68, 0.71, and 1.0 µg As/kg/day were determined.  Until age 16, female daily As 

thresholds differed from male thresholds by no more than 3%, so all subsequent analysis were 

performed using female daily As thresholds (Appendix Figure 2).   

As expected, results between modeled thresholds of 0.68 and 0.71 µg As/kg/day were 

comparable, and a similar trend was noted for a threshold of 1.0 µg As/kg/day.  Using the modeled 
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thresholds of 0.68 and 0.71 µg As/kg/day, consumption of a single serving of mean-tAs rice will 

contribute at least 50% to this modeled threshold for children under eight years of age (or under 

four years of age using a modeled threshold of 1.0 µg As/kg/day). Based on modeled thresholds 

of 0.68 and 0.71 µg As/kg/day, consumption of a single serving of rice with high tAs content (27.6 

µg As) by children under 14 years old will likely exceed the modeled daily thresholds, and 

consumption of this rice will exceed 50% of the daily thresholds at any age (Figure 2).  

Figure 2. Age-specific As exposure from a serving of rice or a rice product with the mean tAs 
content or high tAs content (27.6 µg As) for (A) ages 1-10 and (B) ages 12-20+.  Percent of 
modeled daily As threshold based on a threshold of 0.68 µg As/kg/day.  

 

Estimation of excess cancer incidence and mortality in relationship to rice consumption 

 An estimation of excess cancer incidence associated with lifetime rice consumption was 

achieved by multiplying an individual’s average daily rice consumption by levels of tAs found in 

A 

B 
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rice. Rice with mean tAs content (217 µg As/kg) vs. high tAs content (854 µg As/kg) yields a daily 

exposure of 7.0 vs. 27.6 µg As, respectively.  These values were then multiplied by a unit risk 

value of 4.8× 10�	 for males and 7.3× 10�	/ μg/kg for females, an estimation of  excess cancer 

incidence attributed to each µg/kg As in consumed drinking water (NRC 1999).  As a result, it is 

estimated that individuals consuming an average quantity of mean-tAs rice (217 µg As/kg) over a 

lifetime will experience an excess cancer incidence of 1.7× 10�� for males and 2.6× 10�� for 

females, or 1.7 and 2.6 in 1,000 individuals, respectively.  These numbers equate to a lifetime 

cancer risk associated with exposure to 3.5 µg As/L in water. For those individuals consuming an 

average quantity of rice with high-tAs (854 µg As/kg), an excess cancer incidence of 6.6× 

10�� for males and 1.0× 10�� for females, or 6.6 and 10 in 1000 individuals, respectively.  These 

numbers equate to a lifetime cancer risk associated with exposure to 13.8 µg As/L in water.  

Among both males and females, average lifetime consumption of rice with mean (217 µg As /kg) 

and high tAs (854 µg As /kg) levels yields an excess cancer incidence of 4.2× 10�� and 1.7× 

10��, or 4.2 out of 1,000 and 1.7 out of 100, respectively (Figure 3).  
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Figure 3. Lifetime risk of cancer for regulated drinking water contaminants and consumption of 
rice.  For regulated chemicals, lifetime consumption of 2 L of water with levels of the contaminant 
equal to the EPA’s MCL was assumed.   

To estimate excess cancer mortality associated with the consumption of rice, daily As 

exposure values corresponding to mean- and high-As rice (7.0 and 27.6 µg As, respectively) were 

multiplied by a NAS estimation of the lifetime risk of dying from cancer associated with As level 

in drinking water.  Lifetime consumption of drinking water containing 1 μg As/kg was estimated 

to contribute to a 1 in 5,000 risk of dying from cancer (NRC 1999). As the NAS model assumes 

linearity without a biological threshold, daily exposure values were multiplied by the 1 in 5,000 

risk and divided by two to account for the drinking water assumption of 2 liters per day.  As a 

result, average consumption of rice with mean (217 µg As/kg) and high tAs (854 µg As/kg) content 

yields a 1 in 1,426 and 1 in 362 risk of dying from cancer, respectively (Figure 4). 
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Figure 4. Estimated lifetime risk of dying from cancer associated with a lifetime daily average 
consumption of rice with mean and high tAs content (7.0 and 27.6 µg As, respectively) plotted 
against estimated lifetime risk of dying from cancer associated with drinking water with variable 
As content.  Estimations of lifetime risk of dying from cancer for different As water standards 
were obtained from the NAS (NRC 1999).  

 

Estimation of in U-tAs and in utero exposure  

 Values for rice with mean and high tAs content (7.0 and 27.6 µg As, respectively), were 

multiplied by the conversion factors 0.4, 0.5, 1, 2, and 3, representing the conversion of oral As 

exposure into estimated levels of U-tAs.  U-tAs values ranging from 2.8-21 µg/L were determined 

for rice samples with an As content of 7.0 µg As, and values between 11 and 82.8 µg/L were 

determined for rice samples with an As content of 27.6 µg As.   

These values were then multiplied by the conversion factors of 3 and 9%, reflecting an 

estimated conversion of U-tAs levels to maternal blood As levels.  The conversion factors of 3 and 

9% were obtained from studies in which populations were chronically exposed to low levels of As 

and U-tAs and blood As levels were measured simultaneously (Concha et al. 1998, Hall et al. 
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2007).  The estimated range of maternal blood As levels associated with consumption of rice with 

mean tAs content ranged from 0.084-2.5 µg/L and the range associated with consumption of high-

tAs rice was 0.25-7.5 µg As/L.  Because As levels in maternal blood are linearly associated with 

levels in fetal cord blood (Concha et al. 1998, Rudge et al. 2009), cord blood levels of As were 

assumed to be consistent with the measured maternal blood levels. 

 

Comparison to BEI, MRL, and RfD 

The range of predicted U-tAs associated with a single serving of rice with mean and high- 

tAs content was 2.8-21 and 11-82.8 µg As/L, respectively.  As a result, a urine sample taken after 

consumption of a single serving of rice with high-tAs content may surpass the BEI level of 35 

µg/L when a coefficient greater than one is utilized.  While such a conversion factor may not be 

applicable to the entire population, inter-individual differences in As metabolism suggest that in a 

segment of the population urine As level could exceed the BEI value following consumption of a 

single serving of high-tAs rice.  In addition, it is likely that exposure to As from other sources 

including other foods, beverages, and water may increase the likelihood of exceeding the BEI 

value.   

 As expected, both the MRL and RfD values of 0.3 µg As/kg/day are lower than any of the 

three daily exposure thresholds calculated in the present work (0.68, 0.71, 1.0 µg As/kg/day).  

Unlike the MRL and RfD, the current MCL for As in drinking water does not include any safety 

factors and the risk assessment process included considerations of the cost that community water 

suppliers might incur in reducing the MCL below 10 µg/L (EPA 2000).  As a result, both the MRL 

and RfD are more protective, and as a result, a single serving of rice will contribute significantly 

more to an individual’s modeled daily threshold.  Children under the age of ten consuming a single 
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serving of rice with the mean tAs content will likely exceed the MRL and RfD while U-tAs levels 

of individuals at any age consuming a single serving of rice with high tAs content are likely to 

exceed the MRL and RfD level (Figure 5).  

 

Figure 5. Age-specific As exposure for (A) ages 1-8 and (B) ages 10-20+ from either a single 
serving of rice with mean (217 µg As/kg) or high tAs (854 µg As/kg) or a rice snack with high tAs 
(1931 µg As/kg) content based on the MRL and RfD for As. 

 

  



23 
 

 
CHAPTER 4: DISCUSSION 

 

Because iAs is an IARC Group 1 carcinogen and developmental toxicant, exposure to iAs 

from any source, including food, presents a serious health concern. Children are especially 

vulnerable to the health effects caused by exposure to iAs, as they consume more food proportional 

to their body weight than adults, are more sensitive to the adverse developmental effects of iAs 

(Davis et al. 2012), and can be at risk for long-term health effects (EPA 2013). While much 

research and legislation has gone into limiting As exposure from water, and now juices (FDA 

2013), no such standardized action levels currently exist for solid foods.  In the present work, 

speciated As testing performed by the FDA was analyzed to quantify levels of iAs and the 

metabolites DMA and MMA in rice and rice-products.  The results were then compared against 

modeled age-specific daily thresholds to determine whether consumption of a single serving of 

rice or rice-based products could significantly contribute to an individual’s tAs exposure.  In 

addition, the tAs content of the rice-based samples was analyzed to determine if exposure to such 

products during childhood could significantly contribute to As exposure at levels associated with 

the development of disease.  

Within the FDA’s records, some of the rice cereals containing high tAs and iAs levels were 

infant cereals.  Although there was not enough data about specific rice products to accurately 

quantify possible tAs and iAs exposure directly for infants, evidence suggests the potential for 

high levels of exposure through formula or baby food (Xu et al. 2008, Carbonell-Barrachina et al. 
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2012, Jackson et al. 2012).  In addition, research has pointed to an increase in U-tAs among 

pregnant women consuming rice compared to pregnant women who did not report rice 

consumption (Gilbert-Diamond et al. 2011b).  Based on the adverse health effects observed in 

infants before and after birth (Rahman et al. 2011, Kippler et al. 2012), levels of As in an infants 

or pregnant women’s diet may play a critical role in the future development of disease.  This is 

particularly worrisome, as As readily crosses the placenta, and cord blood As levels closely mirror 

levels found in the mother’s whole blood (Concha et al. 1998, Rudge et al. 2009).  While additional 

data would be needed to accurately estimate if the rice consumption of women differs from the 

general population during pregnancy, analysis of the As content of rice in the present work 

suggests that in utero exposure to As may be high, with estimated cord blood As levels of 0.084-

2.5 µg/L and 0.25-7.5 µg/L associated with mean (7.0 µg As) and high tAs (27.6 µg As) 

consumption, respectively.  However, additional studies are needed, as As in the blood is cleared 

quickly and, therefore, peripheral or cord blood As level may not be the best measure to estimate 

chronic in utero As exposure due to large fluctuations in measured As levels (Mann et al. 1996).  

In addition to elevated exposures during the prenatal period, based on the results from the 

present study, it is likely that children who consume rice or rice products may be unwittingly 

exposed to high levels of tAs, specifically high levels of iAs and DMA.  This is consistent with 

previous studies that have shown an increase in children’s U-tAs content following consumption 

of rice (Davis et al. 2012).  While the extent of exposure to iAs is not consistent between 

individuals due to differences in iAs metabolism (reviewed in (Bailey et al. 2013), younger 

individuals may be at increased risk of cancer as well as non-cancer health effects (Smith et al. 

2012), as a child consuming a serving of tAs-rich rice will have a higher iAs exposure proportional 

to their body weight (reviewed in (Yost et al. 2004).  This potential for elevated childhood exposure 
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is particularly worrisome, because the brain and nervous system of children continue to develop 

and are, therefore, particularly vulnerable to the effects of toxicants (reviewed in (Vahter 2008, 

IARC 2012).  

When the FDA records were analyzed with regard to country of origin, trends were 

apparent.  Rice originating in the US had higher tAs and iAs content, a finding both consistent 

with previous geographic distribution studies (Zavala et al. 2008, Meharg et al. 2009), and at odds 

with other studies that have shown that rice grown in Asia has higher iAs levels than rice grown 

in the US (Williams et al. 2005, Meharg et al. 2008).  In addition, the results from the present study 

suggest that in US-grown rice contains equal amounts of iAs and DMA, a finding at odds with 

published research that suggests that As in US-grown rice tends to be primarily DMA, with a 

smaller percentage of iAs (Zhao 2013). In addition to country-specific trends, rice originating in 

Texas had higher levels of iAs, MMA, and DMA than rice in California, Louisiana, or Arkansas.  

However, caution should be taken when trying to draw any inferences from these seemingly 

contradictory results, as the state of origin may not correspond to the state where the rice was 

actually grown, and may help to explain why the results from the current work are not always 

consistent with other published studies. 

In addition to trends in the country or state of origin, large differences in As content were 

observed between different varieties of rice.  Brown rice contained higher levels of tAs and iAs 

than any other type of rice, while white-long grained rice had the highest level of DMA.  White 

short rice had the lowest concentrations of every arsenical, although level of the arsenicals in 

basmati and jasmine rice were approximately half that of brown rice.  These findings are consistent 

with previous published reports and are expected because rice predominately accumulates iAs and 

DMA in the hull of rice, which is removed in the dehulling process which produces varieties such 
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as polished white rice (Rahman et al. 2007).  In addition, differences in arsenical concentrations 

may be due to inter-species and inter-genotype differences in which different rice varieties 

accumulate or metabolize As at different rates (Abedin et al. 2002a, Abedin et al. 2002b, Williams 

et al. 2005, Liu et al. 2006, Ma et al. 2008).  In addition, the present of environmental factors such 

as concentrations of silicon or phosphate in the soil can affect the accumulation of arsenicals 

(Williams et al. 2005).   

 The three daily exposure thresholds calculated in the present work (0.68, 0.71, and 1.0 µg 

As/kg/day) were two to three times higher than the MRL and RfD value of 0.3 µg As/kg/day from 

the ATSDR and EPA. Although values utilized in the present work are based on extrapolations of 

the EPA’s As drinking water standard and assumed food-based As values, it must be noted that 

the current EPA limit for As in drinking water includes results from feasibility studies assessing 

the economic cost to community water suppliers of reducing the level below 10 µg/L (EPA 2000).  

As a result, comparing the levels of As found in rice to the current MCL may not truly reflect a 

benchmark of levels of “safe” As exposure, but rather, simply a comparison to the current legal 

standard.   

With regards to cancer endpoints, consumption of contaminated rice may be associated 

with high levels of cancer incidence and mortality.  Based on an individual’s average annual rice 

intake, consumption of rice over a lifetime containing the mean tAs content from the present 

analysis (7.0 µg As) is associated with an increased incidence of cancer (based on lung and bladder 

cancer estimates) of 420 out of 100,000 with a 1 in 1,426 lifetime cancer mortality risk.  Individuals 

consuming this same quantity of rice over a lifetime with the high tAs content (27.6 µg As) would 

have a lifetime cancer incidence of 1,700 out of 100,000 and a cancer mortality risk of 1 in 362.  

Although an individual in the US in unlikely to chronically consume rice with the high tAs content 
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(27.6 µg As), even rice with the mean tAs content (7.0 µg As) is predicted to be associated with 

cancer risks at levels much higher than any substances currently regulated by the EPA.  In addition, 

these values are based on average national consumption of rice and do not accurately reflect the 

range of cancer risk for populations consuming larger quantities of rice.  In addition to populations 

consuming larger quantities of rice for dietary reasons, such as individuals with celiac disease or 

individuals on a gluten-free diet, there is also a high variability in rice consumption between 

different ethnicities.  For example, populations such as Asian Americans and American Indians 

reported consuming up to six times the national average (Batres-Marquez et al. 2009, Cleland et 

al. 2009). 

Based on the estimates of U-tAs associated with rice consumption, certain populations 

consuming high-tAs rice (27.6 µg As) may frequently exceed the BEI level of 35 µg As/L in urine.  

In addition, it should be noted that these U-tAs estimates do not account for As exposure from 

other sources such as food, water, or occupational exposures.  While the BEI is a useful benchmark 

for industrial hygienists to estimate non-cancer health effects, recent studies have shown non-

cancer health effects such as increased rates of lower and upper respiratory infections in 

populations exposed to As levels similar to those observed in the present study (Farzan et al. 2013).  

As a result, it is likely that individuals in general population may experience non-cancer health 

effects due to As exposure associated with their rice consumption. 
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CHAPTER 5: LIMITATIONS, FUTURE DIRECTIONS AND CONCLUSIONS 

 

Further studies 

Given the levels of As present in rice, which is available for purchase in the United States, 

and the later-life health effects associate with these levels, it is clear that further studies are 

warranted.  First, additional studies are needed to accurately estimate both childhood and adult rice 

consumption from all sources, including rice-based products.  While large national surveys such 

as NHANES routinely ask participants about their rice consumption, limited data exists concerning 

quantity, and the results do not accurately reflect consumption of rice-based products.  In addition 

to the NHANES data, studies that routinely estimate childhood consumption of particular foods 

often neglect to ascertain rice consumption, and those that do are particularly scarce.  Given the 

elevated levels of As present in rice-based products such as cereals, snacks, and energy bars, 

additional studies are needed to quantify the As exposure from these seldom-studied products in 

an individual’s diet.  As an example of the need for further research, an often-cited study estimating 

childhood consumption-based As exposure utilizes a value of  3.2 µg iAs per day (Yost et al. 

2004), although as the present study demonstrates, a single serving of rice or rice-based products 

such as cereal can, and often will, exceed this daily estimate.   

In response to additional research into the iAs content of apple juice, the FDA proposed an 

action level of 10 µg/L in July of 2013 (FDA 2013b).  This recommendation was supported by a 

quantitative risk assessment in which the lung and urinary cancer rate of approximately 1 in 
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100,000 was estimated due to United States apple juice consumption with As levels below 10 µg/L 

(FDA 2013a).  Based on the data in the present work, the average iAs content of rice is twenty-

four times higher than the average iAs content found in apple juice (FDA 2013a).  Given this 

proportion, as well as the lifetime frequency and ubiquity of rice consumption, it stands to reason 

that either an action level for rice or dietary recommendations concerning the frequency of rice 

consumption are warranted.   

 

Limitations 

While the data presented suggest that As exposure via rice consumption is of concern, there 

are several critiques and limitations of the present work.  First, the model that derived a daily 

threshold of 0.68 µg/kg assumes that the EPA guidelines regarding As were created to limit 

exposure to As in water proportional to all other sources of exposure.  While the use of a historical 

proportional constant for As exposure associated with water may be incorrect in light of the current 

work, the value is very close to one of the daily thresholds (0.71 µg/kg) based on values agreed to 

by the EPA’s limit derived from their risk assessment.  Within the United States, drinking water 

was considered one of the primary sources of exposure to As and, therefore, the regulation of As 

levels in drinking water was likely viewed as an effective means of regulating total As exposure 

(NRC 1999).  However, if rice consumption is associated with higher As exposure than previously 

thought, it seems prudent that additional research is conducted to determine new values that are 

more protective for children and adults.   

A second limitation of the current work is the estimation of U-tAs and maternal and cord 

blood As levels.  Because As metabolism differs between individuals (Vahter 2000, Loffredo et 

al. 2003), a single coefficient value was not appropriate in the conversion between levels of U-tAs 
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and maternal blood As levels.  With regard to estimating U-tAs from As exposure, several values 

were selected in an attempt to mitigate these inter-individual differences (Biggs et al. 1997, Kurttio 

et al. 1998).  However, these values are based on small cohort studies in which individuals were 

routinely exposed to much higher levels of As than what would be commonly seen within the 

United States.  As a result, extrapolation to lower As levels may not be accurate.  In addition, the 

estimations of maternal blood levels from U-tAs levels are likely to be limited.  As is readily 

cleared from the blood into urine, because As in the blood has a half-life of approximately one 

hour (Mann et al. 1996, NRC 1999).  Consequently, spot measures of blood As levels are much 

more sensitive to the timing of the sample collection than measures of U-tAs levels (Mann et al. 

1996).  Therefore, it is probable that the conversion factors chosen are inaccurate due to highly 

variable blood As levels.  
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Conclusion 

Based on the current work, average consumption of rice available for purchase in the 

United States may significantly contribute to an individual’s As exposure at levels associated with 

increased risk for cancer and non-cancer health effects.  Children consuming rice are likely 

exposed to As at levels equivalent or exceeding age-adjusted daily As thresholds based on the 

MCL set for drinking water.  Given the association between in utero or childhood As exposure 

and later-life adverse health effects, new regulations or recommendations are warranted to limit 

the national burden of disease associated with rice consumption.  At present, it seems prudent that 

vulnerable populations such as pregnant women, infants, and children eat a varied diet and reduce 

their rice consumption in order to mitigate their As exposure.  
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APPENDIX  1: TABLE 1 

Appendix Table 1.  Sources used to estimate coefficients factors in the conversion of As 
consumption to U-tAs.  Because excretion of As in urine is dependent on inter-individual 
differences in As metabolism, five values were utilized for sensitivity analysis purposes.    

Coefficient Source As dose (µg) U-tAs (µg/L) U-tAs/As 

0.4 (Meza et al. 2004) 665 (405-1192) 240 (51-500) 0.36 

  (Kurttio et al. 1998) 1489.9 (16.2-4905.4) 582.4 (61.2-1892.6) 0.39 

0.5 (Kurttio et al. 1998) 20 (13-27) 9 (3-34) 0.48 

1 (Meza et al. 2004) 65.5 (18–108) 64.5 (46-90.6) 0.98 

2 (Biggs et al. 1997) 29.8 (11.5-78.3) 58.8 (4.4-266.5) 1.97 

3 (Meza et al. 2004) 11.9 (3.1–24.5) 38.4 (26-56.7) 3.23 
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APPENDIX  2: FIGURE 1 

 
Appendix Figure 1. Average levels of tAs and iAs in various rice-based products.  Data obtained 
from the FDA (FDA 2011) for rice cakes (N=59), snacks (N=190), mixes and pudding (N=36), 
beverages (N=222), ready to eat cereal (N=110), infant and toddler cereal (N=85), cereal (N=195), 
cookies (N=43), dietary supplements (N=12), grain based bars (N=115), and pasta (N=23).  
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APPENDIX  3: FIGURE 2 

 
Appendix Figure 2. Modeled daily thresholds of As for males and females based on an 
extrapolated daily threshold of 0.68 µg/kg.  Until age 16, modeled daily thresholds differed by less 
than 3%.  Age-specific body weights for males and females was determined by childhood 
anthropometric reference data collected from the National Health and Nutrition Examination 
Survey (NHANES) (CDC 2012). 
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APPENDIX  4: TABLE 2 

Appendix Table 2. Derivation of the lifetime cancer risk associated with exposure to chemicals 
in drinking water at MCL levels.  To compare against lifetime cancer risk associated with 
consumption of mean (7.0 µg As) and high tAs rice (27.6 µg As), MCLs were multiplied by 
drinking water unit risk to determine the associated lifetime cancer risk.   

 MCL (mg/L) MCL (µg/L) 

Drinking Water 

Unit Risk  

(per µg/L) 

Cancer 

Incidence 

Vinyl Chloride 0.002 2 4.2E-05 8.4E-05 

Benzene 0.005 5 1.6E-06 8.0E-06 

Benzo[a]pyrene 2.0E-04 0.2 2.1E-04 4.2E-05 

1,2-

Dichloroethane 
0.005 5 2.6E-06 1.3E-05 

Dioxin  

(2,3,7,8-TCDD) 
3.0E-08 3.0E-05 4.5 1.4E-04 

1,2-

Dichloroethane 
0.005 5 2.6E-06 1.3E-05 

Dichloromethane 0.005 5 3.0E-05 1.5E-04 

Di(2-ethylhexyl) 

phthalate 
0.006 6 4.0E-07 2.4E-06 

Ethylene 

dibromide 
5.0E-05 0.05 3.0E-05 1.5E-06 
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