
 

TECTONIC AND CLIMATIC INFLUENCES ON BEDROCK CHANNELS 

TRAVERSING THE CENTRAL ANDES, BOLIVIA 

Jonathon F. Syrek 

A thesis submitted to the faculty of the University of North Carolina at Chapel Hill in 

partial fulfillment of the requirements for the degree of Master of Science in the 

Department of Geological Sciences. 

Chapel Hill 

2012 

 

 

 

 

 

 Approved by: 

 Dr. Jason B. Barnes 

 Dr. Tamlin M. Pavelsky 

 Dr. Kevin G. Stewart 



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©2012 

Jonathon F. Syrek 

ALL RIGHTS RESERVED 

 



iii 

ABSTRACT 

JONATHON F. SYREK: Tectonic and Climatic Influences on Bedrock Channels 

Traversing the Central Andes, Bolivia 

(Under the direction of Jason B. Barnes) 

 

 

I combine rock strength variations estimated from field data and topographic 

analyses of 252 channels across the semiarid southern Bolivian Andes to investigate the 

role of tectonics on knickpoint formation and bedrock channel steepness patterns. Sixty 

percent (17 of 29) of knickpoints along 4 trunk rivers are spatially correlated with a rock 

unit transition. Seventy-seven percent (10 of 13) of identifiable knickpoint morphologies 

(vertical-step versus slope-break) that correlate with a rock unit change match a recently 

published theoretical framework. Knickpoints in southern Bolivia are only small-scale, 

local features. Larger, regional steepness patterns are not simply correlated to rock 

strength, but instead I argue they are primarily influenced by the fold-thrust belt 

architecture and associated active rock uplift patterns dictated by large-scale basement 

deformation. In contrast, rivers in northern Bolivia possess more systematic downstream 

decreases in channel steepness and high profile concavities that reflect strong influences 

from enhanced orographic precipitation.



iv 

ACKNOWLEDGEMENTS 

 

Financial support was provided by a United States Geological Society of America 

Graduate Student Research Grant and the University Of North Carolina Department Of 

Geological Sciences’ Martin Fund. Further financial support was provided to Jason B. 

Barnes by a UNC Junior Faculty Development Award. 

Many people contributed to the success of this project. First and foremost, I 

would like to thank my advisor, Dr. Jason Barnes, for his mentorship, knowledge, and 

patience during the last two years. I could not have asked for better training, and won’t 

ever forget his countless ideas that made the completion of this thesis possible. I thank 

Dr. Tamlin Pavelsky and Dr. Kevin Stewart for their additional critiques and insights that 

greatly improved the thesis. I also thank my Bolivian collaborators, Jaime Tito and 

Sohrab Tawackoli for logistical support while in the field. My colleagues provided 

invaluable discussions on project ideas and my understanding of geomorphologic and 

hydrologic concepts. I especially thank George Allen, Maggie Ellis, Colleen Long, Zach 

Miller, and Caitlin Rushlow. Finally, I thank my parents and sisters for their guidance 

and unwavering support throughout my graduate studies. 

 



v 

TABLE OF CONTENTS 

 

LIST OF TABLES ............................................................................................................ vii 

LIST OF FIGURES ......................................................................................................... viii 

Chapter 

I. INTRODUCTION .......................................................................................1 

II. BEDROCK RIVER MORPHOLOGY ........................................................4 

III. THE BOLIVIAN ANDES ...........................................................................7 

IV. METHODS ..................................................................................................9 

Rock Strength...............................................................................................9 

Channel Morphology .................................................................................10 

V. RESULTS ..................................................................................................12 

Rock Strength.............................................................................................12 

Knickpoints ................................................................................................13 

Regional Steepness Patterns ......................................................................15 

VI. DISCUSSION ............................................................................................17 

Knickpoint Form and Cause ......................................................................17 

Regional Steepness (ksn) and Rock Uplift Patterns ....................................18 

Comparison to Northern Bolivian Andes ..................................................21 

Channel Steepness Patterns in Orogens .....................................................23 

VII. SUMMARY AND CONCLUSIONS ........................................................25



vi 

APPENDIX ........................................................................................................................40

REFERENCES ..................................................................................................................41 



vii 

LIST OF TABLES 

 

Table 

1. Thrust-belt stratigraphy, strength measurements, and mean ksn ............................27 

 



viii 

LIST OF FIGURES

 

Figure 

1. Idealized river long profiles and their response to tectonic and 

climatic forcing ......................................................................................................28 

2. Bolivian Andes topography, thrust belt architecture, hydrology, 

and climate .............................................................................................................29 

3. Regional topography and structure of the thrust belt across 

southern Bolivia .....................................................................................................30 

4. Rock strength proxy measurements for rock units exposed 

across southern Bolivia ..........................................................................................31 

5. Mean fracture spacing versus mean Schmidt hammer R value 

for each rock unit ...................................................................................................32 

6. Longitudinal profiles and ksn vs. distance downstream for 

southern Bolivian trunk streams ............................................................................33 

7. Example of vertical-step knickpoint on the Río Yurimata, a 

tributary to the Río Pilcomayo ...............................................................................35 

8. Topography, channel steepness (ksn), and geology across 

southern Bolivia .....................................................................................................36 

9. Mean ksn for all southern Bolivian rivers within each rock unit ............................37 

10. Composite longitudinal profiles of the Río Pilaya and 6 

tributaries immediately downstream of the large knickpoint ................................38 

11. Bolivian Andes main stem long profiles, topography, channel 

steepness (ksn), and mean annual precipitation ......................................................39 

 



 

CHAPTER 1 

INTRODUCTION 

 

Active mountain landscapes are constantly evolving features. In these settings, 

tectonics, climate, and erosion combine to shape orogen topography that can result in a 

dynamic coupling between these processes (Stolar et al., 2006; Whipple, 2009; Willett, 

1999). Perhaps as a result, the alpine topography itself is thought to reflect the 

spatiotemporal patterns of differential rock uplift and climate (Wobus et al., 2006a and 

references therein). It is river incision into rock that dictates the manner and rate at which 

mountain topography changes (e.g., Kirby and Whipple, in review; Seidl and Dietrich, 

1992; Tinkler and Wohl, 1998; Whipple et al., in review). This is because river channels 

set the relief patterns, are the most efficient mechanisms for transmitting signals of 

tectonic and climatic change throughout the landscape, and set the boundary conditions 

for hillslope processes (Whipple and Tucker, 1999). In unglaciated regions devoid of 

variations in geologic structure, faulting, rock strength, precipitation, rock uplift rate, and 

sediment flux, bedrock rivers retain smooth, concave up longitudinal profiles (Whipple 

and Tucker, 1999). However, all mountains contain some of these variations, causing 

channels to deviate from this idealized form and develop local convexities called 

knickpoints (e.g., VanLaningham et al., 2006; Walsh et al., 2012; Whipple and Tucker, 

1999) or irregular changes in gradient downstream (e.g., Duvall et al., 2004; Whittaker, 
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2012). Emerging theory suggests that the specific form of a knickpoint can be used to 

identify the driving force behind it (Haviv et al., 2010; Whipple et al., in review). 

Patterns of bedrock river gradients can be a useful tool for ‘reading’ the patterns 

and rates of rock uplift (e.g., Wobus et al., 2006a). However, the channel gradient 

response to spatiotemporal changes in rock strength and climate must first be removed to 

isolate this tectonic uplift rate signal. The central Andes are characterized by significant 

variations in rock strength, fold-thrust belt structure, and orographic climate patterns 

(Allmendinger et al., 1997; Horton, 1999; Isacks, 1988; Masek et al., 1994; Montgomery 

et al., 2001; Norton and Schlunegger, 2011; Schlunegger et al., 2011). In particular, the 

semiarid climate south of the Bolivian orocline is well suited to investigate the principal 

effects of across-strike variations in fold-thrust belt architecture (patterns of rock 

deformation, age, and type) on bedrock river form. Furthermore, minor changes in the 

mechanical strength of the rocks (McQuarrie and Davis, 2002) suggest limited variation 

in erodibility within the rock units exposed along strike of the orogen. 

The purpose of this paper is to determine the primary controls on local-to-regional 

scale channel steepness patterns along the eastern flank of the semiarid southern Bolivian 

Andes. I hypothesize that, since rainfall is reduced, substrate changes cause knickpoints 

on a local scale (10 m-1 km) and that the thrust belt kinematics, via long-lived rock uplift 

patterns, affect the regional steepness patterns on the 10 km or larger scale. To test this 

hypothesis, I (1) quantify bedrock strength with field measurements as proxies for 

erodibility, (2) determine the location, size, and specific morphology of the major 

knickpoints along the main stem rivers, (3) analyze long profiles of 252 rivers to map the 

regional channel steepness patterns, and (4) relate these observations to the fold-thrust 



3 

belt structure. Where knickpoint form and cause (via spatial correlation) are identifiable, I 

use this data to evaluate a recent theoretical framework that predicts the cause of 

knickpoint formation from its morphology. Finally, I compare my results to channel 

steepness patterns in subtropical, northern Bolivia to assess effects of orographically 

enhanced rainfall versus tectonics on channel form. 



 

CHAPTER 2 

BEDROCK RIVER MORPHOLOGY 

 

Rivers typically follow a power-law scaling between local channel slope (S) and 

contributing drainage area (A) (Fig. 1A inset; Flint, 1974; Hack, 1957; Howard and 

Kerby, 1983; Whipple and Tucker, 1999): 

S=ksA
-θ

, (1) 

where ks is the channel steepness index and θ the concavity index. The channel steepness 

index is local channel slope normalized to downstream increases in drainage area. This 

normalization allows for direct comparison of gradients between river reaches with 

different drainage areas. However, variations in θ can influence the value of ks found 

from a linear regression of log S vs. log A data (Sklar and Dietrich, 1998). To eliminate 

this autocorrelation, a reference concavity (θref) is used to produce a normalized channel 

steepness index (ksn) (Wobus et al., 2006a). This effectively corrects slope for its 

dependence on drainage area (Whipple et al., in review). In a steady state landscape, ksn is 

expected to vary with rock strength, rock uplift rate, and climate. For example, there is an 

observed positive correlation between ksn and rock uplift rate (Kirby and Whipple, 2001; 

Kirby et al., 2003; Lague and Davy, 2003; Ouimet et al., 2009; Wobus et al., 2006b), and 

a negative correlation between ksn and mean annual precipitation (Norton and 

Schlunegger, 2011). Moreover, some evidence suggests a positive correlation between 

rock strength and ksn (e.g., Duvall et al., 2004), yet many studies show no measureable 
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influence of rock strength on ksn (Johnson et al., 2009; Kirby and Ouimet, 2011; Safran et 

al., 2005; Schlunegger et al., 2011; van der Beek and Bishop, 2003). 

A knickpoint is a deviation from the typical power law slope-area scaling in 

rivers, defined as a distinct inflection point on a long profile followed by a locally high-

gradient reach between lower gradients both upstream and downstream of the knickpoint 

(Burbank and Anderson, 2011; Schoenbohm et al., 2004; Walsh et al., 2012; Whipple and 

Tucker, 1999). The formation of knickpoints and their upstream migration has been 

attributed to changes in lithology (Duvall et al., 2004; Snyder et al., 2003), rock uplift 

rate (Cyr et al., 2010; Karlstrom et al., 2012; Kirby et al., 2003; Snyder et al., 2000), 

precipitation (Norton and Schlunegger, 2011; Roe et al., 2002), or increased sediment 

input to the channel (Walsh et al., 2012). Knickpoints commonly take two distinct forms 

dependent upon the nature of the cause and the river incision mechanics (Whipple et al., 

in review). These two different knickpoint types, slope break and vertical step, can be 

identified in plots of local channel slope versus drainage area (Figs. 1B and 1C; Haviv et 

al., 2010; Whipple et al., in review). Vertical-step knickpoints are local, discrete increases 

in channel gradient that are recognized as spikes in S-A plots (Fig. 1B; e.g., Goldrick and 

Bishop, 2007). Stationary vertical-step knickpoints are caused by a change in substrate 

strength (Whipple et al., in review). Channels locally steepen to erode at the same rate as 

above the knickpoint. Other vertical-step knickpoints migrate upstream, forming from a 

discrete baselevel fall caused by stream capture, sea level fall, or a rock uplift pulse 

(Whipple et al., in review). The upstream propagating incision wave lowers the profile to 

a new baselevel without a change in ksn. In contrast, a slope-break knickpoint is defined 

as a permanent, extensive change in channel gradient that separates reaches with different 
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ksn and is recognized on S-A plots as a permanent upward step (Fig. 1C; e.g., Wobus et 

al., 2006a). A slope-break knickpoint forms where a river crosses an active fault or a 

transition in rock uplift rate. The knickpoint remains anchored in place while the 

contrasting uplift rates remain constant. In addition, slope-break knickpoints form at a 

contact between different lithologies when the more resistant lithology is spatially 

extensive. Incision into extensive, stronger rocks downstream typically requires higher 

equilibrium slopes. Slope-break knickpoints become mobile when tectonic activity on a 

structure ceases or abruptly increases (see Whipple et al., in review; Wobus et al., 2006a). 

Spatiotemporal variations in climate can also affect river long profiles (Fig. 1D; 

e.g., DiBiase and Whipple, 2011; Roe et al., 2002; Wobus et al., 2010). For graded 

streams, large concavity values (>1) occur where precipitation rates increase 

downstream (Roe et al., 2002; Schlunegger et al., 2011). Channels respond to orographic 

precipitation by forming a zone of increased θ, in some cases initiating a tectonic 

response to increased incision (Fig. 1D). This potential feedback causes the headwater 

reaches to form high ksn during headwater retreat (Schlunegger et al., 2011). 



 

CHAPTER 3 

THE BOLIVIAN ANDES 

 

The Andes span the entire western margin of South America and exhibit a sharp 

bend near their widest point at ~18°S (Fig. 2; Isacks, 1988). South of the bend, the 

eastern Andean flank is a fold-thrust belt that descends from ~5000 m to <300 m over 

~400 km distance. In Bolivia, the fold-thrust belt is shortened ~326 km and divided into 3 

distinct tectonomorphic zones defined by downward steps in mean elevation and upward 

steps in structural level of exposure (Figs. 2 and 3; Kley et al., 1996; McQuarrie, 2002): 

The Eastern Cordillera (EC) is comprised of Paleozoic quartzite, weakly metamorphosed 

sandstone, and shale with minor Tertiary volcanics. EC cover rocks are shortened ~122 

km and spacing between thrust sheets averages ~9 km. The Interandean zone (IA) is 

primarily tightly folded Devonian and Carboniferous sandstone with minor shale and 

siltstone. Total shortening in the IA is ~96 km with average spacing between thrust sheets 

~6 km. The Subandes (SA) contain mostly Carboniferous, Triassic, and Cretaceous 

sandstone uplifted along narrow (~1-5 km) thrust sheets, separated by Tertiary 

synorogenic sediments in broad, large wavelength (10-20 km) piggyback basins. 

Basement deformation is significant within the Bolivian fold-thrust belt and 

compliments the exposed deformation in the cover rocks (e.g., Dunn et al., 1995; Elger et 

al., 2005; Kley, 1999). The large-scale structural and morphological variations across the 

thrust belt (EC-IA-SA) have been explained by the stacking of two major basement 
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structures (Fig. 3; Kley, 1996; McQuarrie, 2002; McQuarrie et al., 2005; Müller et al., 

2002). Elevated basement in the EC inferred from magnetotelluric data results from the 

eastward propagation of an upper basement thrust that fed deformation into the cover 

rocks (Kley, 1999; Kley et al., 1996; McQuarrie and DeCelles, 2001; Schmitz and Kley, 

1997). More recently, movement on a lower basement structure initiated passive uplift of 

the EC and IA and currently feeds deformation to the SA thrust sheets (Kley et al., 1996). 

Deformation and exhumation began ~40 Ma in the EC, ~20 Ma in the IA, and ~15-10 Ma 

in the SA (e.g., Barnes and Ehlers, 2009; Ege et al., 2007; McQuarrie, 2002; McQuarrie 

et al., 2005). Thus, the uplifted thrust-sheet hanging walls in the SA are the only surface 

structures that are active in the thrust belt over the last ~10 Myrs. 

In southern Bolivia, the Grande, Parapeti, and Pilcomayo Basins and their channel 

networks transport water and sediment eastward across the fold-thrust belt to the foreland 

(Fig. 2; Barnes and Pelletier, 2006). The channels are bedrock or mixed bedrock-

alluvium with variable gradients and discharge. They also traverse orographic 

precipitation gradients across the central Andes that vary significantly with latitude (Fig. 

2 inset; Garreaud and Wallace, 1997). In southern Bolivia, mean rainfall peaks at ~2 m/yr 

in the IA and decreases to <1 m/yr in the SA and to ≤0.1 m/yr in the EC (Fig. 2 inset; 

Bookhagen and Strecker, 2008). This moderate climate may help explain partial 

preservation of an extensive, subhorizontal, low-relief surface (the San Juan del Oro) at 

~3800-2000 m elevations in the EC-IA that truncates deformed Paleozoic to Cenozoic 

bedrock (Gubbels et al., 1993; Kennan et al., 1995; 1997). In contrast, an enhanced 

latitudinal and orographic precipitation gradient produces mean rainfall peaks up to ~5 

m/yr north of the orocline in the Upper Beni Basin. Here, perhaps as a result, a few 
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channel systems (e.g., Río La Paz) have cut headward through the EC and into the 

plateau, pushing the drainage divide to the west. 



 

CHAPTER 4 

METHODS 

 

Rock Strength 

Several factors can influence the resistance of substrate to erosion, an important 

element in river incision, including rock hardness (strength) and fracture spacing (Duvall 

et al., 2004; Hack, 1957; Sklar and Dietrich, 2001; Stock and Montgomery, 1999; 

Whipple et al., 2000a; Whipple et al., 2000b). I quantified both metrics in the field as a 

proxy for rock erodibility (after Dühnforth et al., 2010; Goudie, 2006; Katz et al., 2000). 

Schmidt hammer rebound (R) values are comparable to the unconfined compressive 

strength estimated from laboratory experiments (Selby, 1980). I collected 2829 Schmidt 

hammer measurements (~40 per site) at 71 sites from all major rock units exposed in the 

southern basins (Fig. 2). Measurements that yielded a hollow sound, fractured the rock, 

or recorded an R value <11 were eliminated (after Duvall et al., 2004; Kirby et al., 2003). 

I did not correct for hammer inclination because these deviations are negligible in 

comparison to the variability associated with the measurements themselves (Snyder et al., 

2003b). Within each major geologic unit (e.g., Ordovician, Silurian), I divided site 

measurements equally among the different exposed lithologies to define a representative 

hardness value. I report a mean R value (± 1σ) averaged over n sites from each rock unit 

(after Katz et al., 2000) (Table 1; details in Appendix).
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The degree of fracturing also influences substrate strength (Clarke and Burbank, 

2011; Dühnforth et al., 2010; Duvall et al., 2004; Whipple, 2004) because fractures 

enhance rock surface area exposed to weathering and dissolution, weakening rock (Selby, 

1980). I measured fracture spacing using scan lines (after Brooks et al., 1996; Dühnforth 

et al., 2010; Gillespie et al., 1993) and defined any crack, fault, or bedding plane that 

crossed the line at a near-perpendicular angle as a fracture. I measured fractures along 4 

scan lines of ~1 m each at every site. In most cases, half of the scan lines were measured 

perpendicular to bedding and half parallel to bedding. 

 

Channel Morphology 

I extracted channel slope and drainage area from the hydrologically-conditioned 

~90 m Shuttle Radar Topography Mission (USGS HydroSHEDS SRTM) digital 

elevation model (DEM) dataset (Lehner et al., 2008) with an ArcGIS stream profiler 

plugin and suite of Matlab scripts (see Kirby et al., 2003; Snyder et al., 2000; Wobus et 

al., 2006a). I then applied standard sampling and filtering techniques to the DEM and 

used a θref = 0.45 for comparison with previous studies (e.g., Safran et al., 2005; details in 

Appendix). 

Bedrock rivers are channels that incise rock over geologic timescales, even if 

temporarily covered in alluvium (Whipple et al., in review), which is the case for many 

channels in southern Bolivia. I focused on the regional,
 
first-order patterns of bedrock 

river morphology across the region and hence limited my analysis to channels with 

drainage areas >150 km
2
 (252 rivers in southern Bolivia). I then identified the large 

(>200 m
0.9

 in ksn) knickpoints unassociated with tributary junctions along the 4 main 
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stem southern rivers (Fig. 2: Ríos Grande, Pilcomayo, Pilaya, and Parapeti) and 

compared them to a 1:1,000,000-scale geologic map (Armijo et al., 1996) to determine if 

they are associated with any type of substrate change and/or fault. Where possible, they 

were also classified as vertical-step or slope-break knickpoints dependent upon their form 

in S-A plots (after Figs. 1B and 1C). Finally, I compared regional steepness (ksn) patterns 

to the tectonic architecture, kinematics, and climate of the thrust belt. 



 

CHAPTER 5 

RESULTS 

 

Rock Strength 

Schmidt hammer measurements show rock hardness does not correlate with age, 

yet there are significant differences within and between the major mapped rock units 

(Fig. 4, Table 1). The data suggest 2 distinct groups (vertical lines in Fig. 4): a ‘hard’ 

group that includes the Devonian, Cretaceous, and Ordovician quartzite and sandstone 

units (mean R = 52 ± 6), and a ‘soft’ group that includes the other Ordovician subset 

(shale/slate/siltstone), Silurian, Carboniferous, Triassic, and Tertiary units (mean R = 36 

± 4). In detail, the Devonian rocks are the strongest (R = 55 ± 7) and Ordovician shale, 

slate, and siltstones are the weakest (R = 27 ± 10). 

Fracture measurements show that (a) spacing inversely correlates with rock unit 

age and (b) there are 3 statistically different classes: low, moderate, and high mean 

fracture spacing (vertical lines in Fig. 4, Table 1). I included bedding planes in the 

fracture spacing measurements such that the fracture spacing reflects the combined result 

of average bed thickness and degree of strain for each rock unit. The Ordovician, 

Silurian, and Devonian units have low spacing (mean 3 ± 1 cm), the Carboniferous, 

Cretaceous, and Tertiary sedimentary units moderate spacing (14 ± 2 cm), and the 

Triassic and Tertiary volcanic units high spacing (60 ± 10 cm). I assigned a minimum 

spacing of 100 cm to 2 Triassic sites of massive sandstones devoid of fractures. I 
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expected a positive correlation between fracture spacing and rock hardness (after 

Stimpson, 1980), but my results do not show this (Fig. 5). 

The combined fracture spacing and Schmidt hammer data suggest the rock units 

can be put into 2 rock strength groups, a proxy for rock erodibility (after Selby, 1980). 

The weaker rocks are the Ordovician shale, slate, and siltstone and the Silurian, 

Carboniferous, and Tertiary sediments. The stronger rocks are the Ordovician quartzite, 

Devonian, Triassic, and Cretaceous sediments, and Tertiary volcanics. These collective 

results suggest no systematic variation in strength across strike or with rock age. 

 

Knickpoints 

Many (29) large knickpoints exist along the 4 principal rivers traversing the 

southern basins. Sixty-two percent (18 of 29) of them correlate with a rock unit contact 

and 52% (15 of 29) correlate with a mapped fault. Only 17% (5 of 29) of the knickpoints 

correlate with a fault and no rock unit contact. Along the Río Yurimata (Río Pilcomayo 

tributary), a knickpoint correlates with a thin (~4 km), fault-bounded section of strong 

Cretaceous sandstone between weak Ordovician slate upstream and downstream (Fig. 6). 

The Cretaceous sandstone correlates with a river profile convexity and a steepened reach 

(dashed line in Fig. 6B). Here, large (1-5 m) sandstone boulders are the primary bedload 

size of the steepened reach within the Cretaceous and then reduce to cobbles and smaller 

within the Silurian sediments (Fig. 6A). The Río Grande has 9 knickpoints and 5 of them 

correspond to rock unit contacts (Fig. 6A). Three of the 5 knickpoints are in the IA, 

including the maximum ksn, aligned with a transition between Silurian rock and 

Ordovician quartzite. Five of 9 knickpoints also correlate with a fault, including 2 not at a 
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rock unit contact. The largest knickpoint reaches a ksn near 600 m
0.9

 (1 in Fig. 7A). The 

Río Parapeti flows almost entirely within the SA, crossing multiple uplifted thrust sheets. 

There are 4 knickpoints, 3 correlate with rock unit contacts and 3 with mapped faults. 

Two of 4 are knickpoints that correspond with uplifted thrust sheets. The Río Pilcomayo 

has 11 knickpoints, 8 of which correspond to rock unit contacts (Fig. 7B) and 4 of the 11 

with a fault. Only 1 knickpoint at a fault is not near a rock unit contact. Most (7) of the 

knickpoints are in the EC, of which 4 occur at a contact with Ordovician rock. Maximum 

ksn on the Río Pilcomayo is >800 m
0.9

 at an Ordovician-Silurian contact in the IA, and 

remains high throughout the Silurian unit (2 in Fig. 7B). Farther south, the Río Pilaya has 

5 knickpoints upstream of its confluence with the Río Pilcomayo. Two knickpoints 

correspond to rock unit contacts and 3 with faults. The 2 knickpoints correlated with rock 

unit contacts are in the EC and both are at thrust faults. One corresponds with the edge of 

the Los Frailes ignimbrites and the other with a thin, isolated Cretaceous unit (km 40 & 

140; Fig. 7C). 

About half (13 of 25) of the knickpoints are distinct enough to be classified as 

slope break or vertical step in form. Three knickpoints on the Río Grande are distinct 

(arrows in Fig. 7A). The first 2 are slope-break knickpoints at a rock unit contact (km 90 

and 360; Fig. 7A) where the downstream unit is spatially extensive and both are also at 

thrust faults. The third is a vertical-step knickpoint at a rock unit contact where the 

weaker Ordovician section is extensive (~5 km). There are 7 distinct knickpoints on the 

Río Pilcomayo (arrows in Fig. 7B): 3 are vertical step, 2 of which correspond to rock unit 

contacts and 1 of those also at a fault. The other is at neither a rock unit contact nor a 

surface fault. The other 4 are slope-break knickpoints that all coincide with rock unit 
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contacts and 2 of which are also at faults. On the Río Pilaya, 3 knickpoint forms are 

identifiable (arrows in Fig. 7C). The first is a slope break that is located on a rock unit 

contact between the Los Frailes ignimbrites and an extensive Silurian section 

downstream. Another is a vertical-step knickpoint (at km 140 in Fig. 7C) at a fault-

bounded, thin Cretaceous section between locally stronger Ordovician rocks. The third is 

a slope-break knickpoint upstream of a section of high ksn (>3500 m
0.9

) within the 

Ordovician. Other knickpoints are identifiable in S-A plots, but the data is too coarse to 

accurately assess their form. Knickpoints occur regardless of whether weak or strong 

rock is downstream of the knickpoint because any change in substrate requires a change 

in equilibrium grade. I conclude that 5 of 6 slope-break knickpoints and 3 vertical-step 

knickpoints are related to a lithologic contact. It is also possible that 4 slope-break 

knickpoints and 2 vertical-step knickpoints are related to mapped faults. 

The largest knickpoint (~35 km in length) is on the Río Pilaya and is not related to 

a major rock unit change (3 in Fig. 7C). Here the river traverses interbedded Ordovician 

slate and quartzite. The lower end of the knickpoint occurs ~50 km downstream of the 

San Juan del Oro tributary junction and ~15 km west of the EC-IA boundary (3 in Fig. 8). 

Channel elevation drops ~1 km with maximum ksn ~3500 m
0.9

 and mean ksn ~720 m
0.9

 

throughout the knickpoint. 

 

Regional Steepness Patterns 

A ksn map reveals large-scale (10
1-2

 km) patterns of channel steepness for 252 

rivers across southern Bolivia (Fig. 8, Table 1). I identify 3 main zones of channel 

steepness: (1) a zone of low ksn throughout most of the EC, transitioning to (2) a N-S 
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zone (~90 wide) of high ksn that roughly follows the easternmost EC and entire IA and 

widens to ~200 km in the northern Grande Basin, and (3) a low-ksn zone south of the Río 

Grande in the SA. Most rivers in the SA flow within piggyback basins and reveal few 

perturbations to a graded profile. Locally steepened reaches correspond to rivers flowing 

across strike over uplifted thrust-sheet hanging walls that also expose mostly pre-Tertiary 

rocks. 

I compared mean ksn and estimated the strength for each rock unit to evaluate the 

effect of rock erodibility on regional ksn patterns (Table 1). I expected rock strength to be 

positively correlated with ksn (e.g., Duvall et al., 2004) because the majority of steep 

reaches occur within strong Devonian rock. For strong rock, the stream must steepen to 

increase its stream power, and hence its ability to incise (e.g., Whipple, 2004). However, 

my results show mean steepness indices are the same within error for every major 

mapped rock unit (Fig. 9), revealing rock strength is not a factor at regional (10
1-2

 km) 

scales in southern Bolivia, similar to other studies (e.g., Kirby and Ouimet, 2011; 

Schlunegger et al., 2011). 



 

CHAPTER 6 

DISCUSSION 

 

Knickpoint Form and Cause 

Most knickpoints can be explained by a lithologic change (~62%) and/or a fault 

(~52%). This suggests that the tectonic architecture of the thrust belt imparts the largest 

influence on channel morphologies draining the eastern Andean flank in southern 

Bolivia. However, 7 additional knickpoints do not correlate with either feature, but this 

does not eliminate the possibility they result from faulting or a lithologic change. For 

example, these knickpoints may result from strength variations within a single rock unit 

at a scale smaller than the mapped geology. Second, these knickpoints could be 

migratory, in which case the cause (e.g. baselevel change) may be located downstream. 

Given the structural complexity of the thrust belt and the transient nature of channel 

steepness variations, I consider the channels to be significantly influenced by the thrust 

belt architecture because >50% of knickpoints in southern Bolivia can be directly related 

to tectonic discontinuities. The geomorphic implication is that local-scale, abrupt changes 

in channel gradients will continue to reflect substrate changes in fold-thrust belts long 

after the surface deformation has ceased (~10 Ma or more in the EC and IA). 

Most (77%) of the large knickpoints I identified corroborate recently proposed 

theory that links form and cause (Figs. 1 and 7; Haviv et al., 2010). All 6 knickpoints (4 

slope break, 2 vertical step) on the Ríos Grande and Pilaya, where knickpoint form is 
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identifiable, match the theory. Along the Río Pilcomayo, on the other hand, 3 of 7 

knickpoints do not agree with the theory. Although it is unclear why, I note uncertainties 

may result from inaccuracies on the geologic map or misinterpretation of knickpoints due 

to DEM artifacts. Slope-break knickpoints are thought to form where the stronger unit is 

extensive and vertical-step knickpoints are thought to form along small, local patches of 

stronger units (Whipple et al., in review). The slope-break knickpoints I observe coincide 

with where the stronger units are ≥5 km wide; however, there is no definition quantifying 

the length scale for a rock unit to be considered extensive. I expect this boundary to 

fluctuate dependent upon the contrast in rock strength at the contact and external forces 

(e.g., climate, tectonics, and sediment flux). Regardless, this study provides validation for 

the relationship between knickpoint morphology and cause (Haviv et al., 2010; Whipple 

et al., in review). 

 

Regional Steepness (ksn) and Rock Uplift Patterns 

Mean ksn patterns show no correlation with rock strength at large (10
1-2

 km) length 

scales in southern Bolivia (Fig. 9), suggesting minimal influence on regional-scale ksn 

patterns. The narrow, high-ksn zone is primarily within the IA and parallels the fold-thrust 

belt structure along strike (Fig. 8). Two reaches with the highest ksn are both ~20 km west 

of the EC-IA boundary (2 and 3 in Fig. 8). The relatively high-relief IA receives locally 

high precipitation (up to ~2 m/yr; Fig. 2 inset) and thus I might expect to see increased 

concavity as well (Roe et al., 2002; Zaprowski et al., 2005). However, rivers crossing the 

high-ksn zone possess below average concavities relative to rivers in northern Bolivia. 
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These observations thus suggest some other type of tectonic influence besides substrate 

change, such as differential rock uplift rate. 

On the SW corner of the high-ksn zone is a 40 km reach of the Río Pilaya that 

drops ~1 km and displays the highest ksn values near 3500 m
0.9

 (3 in Figs. 7C and 8). It is 

unlikely that rock strength variations cause this knickpoint because lithologic effects are 

unlikely to create 1 km of relief (Whittaker et al., 2008) and it traverses both weak and 

strong Ordovician rocks. Existing balanced sections place ramps on basement faults as 

well as a duplex directly below this knickpoint (dashed box in Fig. 3; Kley et al., 1996; 

McQuarrie, 2002). Since ~40 Ma, there has been movement on various basement 

structures concentrated at this location. Continuing motion along the lower basement 

thrust since ~20-10 Ma is responsible for uplifting the easternmost EC via a ramp. 

Passive uplift of the IA results via emplacement of a basement wedge while transferring 

deformation from the basement into the SA thrust sheets (e.g., McQuarrie, 2002). The 

kinematics may be maintaining a long-lived west-to-east gradient in relative rock uplift 

rate at the easternmost EC, hence causing the knickpoint (see also Barke, 2004). Thus, 

the regional extent of the high-ksn zone and its lack of a correlation with mapped rock 

units, the low channel concavity, and the spatial correlation with active basement 

deformation suggest spatial variations in rock uplift rate may be influencing the regional-

scale ksn patterns in southern Bolivia. 

If the regional steepness patterns are the product of a long-lived uplift gradient, 

the Río Pilaya knickpoint should be a static feature (Whipple et al., in review). Transient 

knickpoints propagate more quickly along main stem rivers because of higher discharge 

relative to small tributaries (Foster and Kelsey, 2012). Thus, knickpoints migrating 
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through a channel network that are related to the same mechanism (e.g., differential rock 

uplift rate) occur at similar elevations (Niemann et al., 2001; Wobus et al., 2006a). If the 

large Río Pilaya knickpoint is transient, I expect to see tributary knickpoints at similar 

elevations. I analyzed S-A scaling for 6 tributaries downstream of the main knickpoint on 

the Río Pilaya to assess if it is a migrating or stationary feature. 

Half (3 of 6) of the Río Pilaya tributaries that link immediately downstream of the 

main knickpoint contain knickpoints themselves, but all at different elevations (Fig. 10). 

One of the knickpoints (river 6 in Fig. 10) is likely related to a rock unit change from 

Devonian sandstone to Cretaceous quartzite. Knickpoints on 2 tributaries are at ~2500 m 

and ~2200 m, respectively, whereas the Pilaya knickpoint is at ~2000 m. However, the 

other 3 tributaries have no knickpoints. Even if the 2 tributary knickpoint elevations 

roughly correlate with the main Pilaya knickpoint, I would still expect to see them on the 

other tributaries. I may expect lithologic variations to cause knickpoints to migrate at 

different rates, but many of the tributaries (rivers 2-5 in Fig. 10) flow only through 

Devonian rock, therefore it is unlikely that lithologic variations can explain a lack of 

knickpoints along rivers 2-5. In addition, the Devonian rock is strong (Table 1), so 

knickpoints should propagate upstream at a slower rate than they would in weaker rock, 

and thus they would be at lower elevations than the Pilaya knickpoint. Furthermore, these 

tributaries are close to the Pilaya knickpoint and hence precipitation patterns are similar 

along all of them. In conclusion, I argue that the main Pilaya knickpoint is stationary in 

nature and the result of long-lived differential rock uplift, consistent with prior work 

(Barke, 2004; Barke and Lamb, 2006). 
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Previous studies along the eastern margin of the Tibetan Plateau adjacent to the 

Sichuan Basin show similar ksn patterns to southern Bolivia. A sharp, linear 

physiographic transition in central Nepal at the location of the Main Central Thrust 

correlates with an abrupt increase in ksn values (Kirby and Ouimet, 2011; Kirby et al., 

2003). These patterns are attributed to duplex growth associated with accretion across a 

deep-seated fault ramp (Wobus et al., 2006c) or a surface breaking thrust fault (Kirby and 

Whipple, in review). I suggest the situation is similar in southern Bolivia. Therefore, the 

kinematics of basement deformation may play a key role in influencing steepness patterns 

of bedrock rivers traversing active orogens. 

 

Comparison to Northern Bolivian Andes 

I compare my results to the Upper Beni Basin in northern Bolivia to evaluate the 

influence of a dramatically enhanced rainfall gradient on ksn and θ patterns. The 

topographic front along the Upper Beni Basin coincides with a sharp precipitation 

gradient across the EC (Figs. 2 and 11; Masek et al., 1994) that may have existed since 

~15-11 Ma (Barnes et al., in press). Empirical results suggest a correlation between θ and 

high mean annual rainfall (Schlunegger et al., 2011; Zaprowski et al., 2005) and 

theoretical studies propose that increased precipitation along the front reduces ksn 

downstream (e.g., Roe et al., 2002; Whipple et al., 1999). Using a normalized 

contributing drainage area, downstream increases in discharge are largely the effect of 

increased precipitation, especially in the EC. Channel morphologies in the Upper Beni 

Basin show high-ksn profiles at low drainage areas, low ksn at high drainage areas (Fig. 

11A), and high concavity, particularly along the reaches directly affected by orographic 
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precipitation (Fig. 1D, see also Safran et al., 2005; Schlunegger et al., 2011). These 

characteristics may reflect a landscape that is also responding to tectonic perturbations, 

but the channel morphology signal of those perturbations is muted by the enhanced 

orographic precipitation in comparison to southern Bolivia. Instead, the northern rivers 

have enough discharge, and hence stream power (e.g., Horton, 1999; Whipple and 

Tucker, 1999), to sustain more uniformly graded profiles despite similar variations in 

thrust-belt architecture and rock uplift patterns that exist in the south (cf. Barnes et al., 

2008; McQuarrie et al., 2008a). This is not to say that knickpoints do not exist along the 

northern rivers (see Schlunegger et al., 2011), just that they are more modest features 

relative to those in the south (Fig. 11A). This idea is consistent with the Upper Beni 

Basin as a climatically driven landscape (Masek et al., 1994; Norton and Schlunegger, 

2011; Safran et al., 2005; Schlunegger et al., 2011). 

The northern Río Coroico exhibits larger  than any southern Bolivian trunk river 

(0.52 ± 0.03; Fig. 11A), suggesting orographic precipitation is altering river profiles in 

the north (Fig. 1D). Concavity systematically decreases to the south from the Upper Beni 

Basin, in concert with maximum mean annual precipitation rates (Fig. 11; Bookhagen 

and Strecker, 2008), despite minimal latitudinal variations in rock strength (e.g., 

McQuarrie and Davis, 2002; McQuarrie et al., 2008b). From north to south, the Río 

Grande ( = 0.32 ± 0.022), Río Pilcomayo ( = 0.19 ± 0.027), and Río Pilaya ( = 0.16 ± 

0.032) all show low concavity relative to typical mean values from other locations (Fig. 

11A; cf., Cyr et al., 2010; Duvall et al., 2004; Kirby and Whipple, 2001; Kirby et al., 

2003). Upper Beni Basin channels receive rainfall focused in the EC and reflect a 

response to surface uplift in upstream reaches (Safran et al., 2005; Schlunegger et al., 
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2011). A stream power model demonstrates that enhanced precipitation can increase 

incision, effectively reducing a river’s gradient downstream (e.g., Bookhagen and 

Strecker, 2012; Roe et al., 2002; Whipple et al., 1999). The Upper Beni Basin results are 

consistent with this model. Fold-thrust belt kinematics are similar along strike, therefore a 

regional knickpoint located in the south and a lack of such prominent knickpoints in the 

Upper Beni Basin suggest climate is an important factor influencing river profiles in the 

north. 

 

Channel Steepness Patterns in Orogens 

My results suggest 2 distinct scales of channel steepness patterns. At a local scale 

(<~10 km), knickpoints in bedrock rivers traversing fold-thrust belts may result from its 

structural architecture even in specific areas devoid of near-surface active tectonics. For 

example, in the active Santa Ynez Mountains in California, rock strength variations affect 

both concavity and ksn at local length scales (Duvall et al., 2004). Also, strength 

variations between massive quartzite and more highly fractured rocks in western Scotland 

have an effect on channel slope at the reach scale, but not as much on a catchment scale 

(Jansen et al., 2010). These studies demonstrate that my results in southern Bolivia are 

not unique, but in fact lithologic variations in an array of settings affect river morphology 

at similarly small, local length scales. 

At a regional scale (>~10 km), I observe channel steepness patterns that vary 

differently depending on whether tectonics or climate exerts the dominant influence. A 

systematic decrease in ksn patterns downstream is likely a result of enhanced orographic 

precipitation (Schlunegger et al., 2011). In contrast, nonsystematic changes in ksn patterns 
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downstream, such as the intermediate zone of high steepness in southern Bolivia, may be 

the result of tectonic processes. The southern margin of the Tibetan Plateau shows similar 

features to the tropical, northern Bolivian Andes, including a steep front with high peaks 

at a plateau edge and comparable precipitation patterns (Masek et al., 1994; Bookhagen 

and Burbank, 2006; Bookhagen and Strecker, 2008). One hypothesis is that the current 

topography of the northern Bolivian Andes and Himalayan front result from enhanced 

orographic precipitation (e.g., Masek et al., 1994). However, ksn patterns along the 

Himalayan front are inconsistent with those expected from enhanced orographic 

precipitation in the absence of differential rock uplift (Wobus et al., 2006c). Instead, the 

river profiles suggest a zone of differential rock uplift (Wobus et al., 2006c) similar to the 

rivers in southern Bolivia. This underscores the importance that subsurface tectonics may 

play in affecting the regional-scale form of river long profiles traversing active orogens. 



 

CHAPTER 7 

SUMMARY AND CONCLUSIONS 

 

I analyzed bedrock river profiles to quantify channel steepness patterns across the 

semiarid southern Bolivian Andes. Field measurements show that the region is 

characterized by distinctive rock strength variations, determined by the fold-thrust belt 

architecture. Sixty-two percent of large (> ∆200 m
0.9

) knickpoints along the main stem 

rivers correlate with changes in major rock units, and hence strength. Fifty-two percent of 

all knickpoints correlate with a mapped fault, but only 14% are at a fault with no rock 

unit contact. I also found that 77% of the large knickpoints that I could classify as 1 of 2 

end-member morphologies (vertical step, slope break) are consistent with theory that 

relates form to cause (Haviv et al., 2010). I show for southern Bolivia, 5 of 6 slope-break 

knickpoints are caused by lithologic changes where the stronger rock is spatially 

extensive. The other knickpoint is above basement thrust ramps and duplexing on the Río 

Pilaya. Three vertical-step knickpoints are related to lithologic changes where the 

stronger unit is small in extent. Regional steepness (ksn) patterns display a steep zone that 

parallels strike across the entire IA region. This zone becomes steeper in the southern 

Pilcomayo Basin, reaching ksn near 3500 m
0.9

 at the Río Pilaya knickpoint. I attribute this 

high-ksn zone to movement along basement structures that have created long-lived, 

continued differential rock uplift. Finally, rivers in the northern Upper Beni Basin display 

high-ksn profiles near the headwaters, low ksn at high drainage areas, and high concavities 
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despite traversing similar thrust-belt architecture, but significantly enhanced orographic 

rainfall patterns. I suggest that increased precipitation in the north decreases channel 

steepness downstream and increases the concavity of the profile, tempering the signals of 

tectonic or lithologic variations so prevalent in the south. I conclude that river profile 

analyses can be used to distinguish between the primary factors controlling river 

morphology in the central Andes. These patterns can then be used to help decipher river 

patterns in other fold-thrust belts such as the Himalayan front. 
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Figure 1. Idealized river long profiles and 
their response to tectonic and climatic 
forcing. Long profile and slope-area data 
(insets) for: (A) two equilibrium profiles 
with different steepness indices and the 
same concavity (modified from Duvall et 
al., 2004), (B) a vertical-step knickpoint 
and (C) a slope-break knickpoint 
(modified from Whipple et al., in review). 
(D) Effect of focused orographic 
precipitation or differential rock uplift rate 
on channel long profiles (simplified from 
Norton & Schlunegger, 2011). Increased 
rainfall causes channels to increase their 
concavity. Differential rock uplift rate 
causes a convex up reach to form. Solid 
black line is initial profile form, dashed 
line is profile affected by enhanced 
precipitation or differential rock uplift rate 
(arrows).
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Figure 2. Bolivian Andes topography, thrust belt structure, hydrology, and climate. Major 
montane basins (solid black lines), trunk rivers (blue lines; after Barnes and Pelletier, 2006), 
and tectonomorphic zones (dashed white lines; modified from McQuarrie, 2002): EC, 
Eastern Cordillera; IA, Interandean zone; SA, Subandes. Rivers: 1, Río Coroico; 2, Río 
Grande; 3, Río Parapeti; 4, Río Pilcomayo; 5: Río Pilaya; 6: Río San Juan del Oro. Small 
white circles indicate data collection sites. Inset is mean annual rainfall estimated from 
1998-2006 TRMM data (Bookhagen and Strecker, 2008).
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Figure 3. Regional topography and structure of the thrust belt across southern Bolivia 
(location A-A’ in Fig. 2). (A) 100-km-wide swath profile of maximum, mean, and minimum 
elevations. (B) Geologic cross section showing the linked surface and basement deformation 
(simplified from McQuarrie, 2002). Geologic map legend is in Figure 8B. Tectonomorphic 
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increased channel steepness above the basement thrust-sheet ramp discussed in the text.
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Figure 4. Rock strength proxy measurements for units exposed across southern Bolivia 
(Table 1). n = number of Schmidt hammer measurements. Mean R values (± 1σ) show a 
distinct ‘hard’ and ‘soft’ group (vertical dashed lines, shaded bar is ± 1 SE). Mean fracture 
spacing indicates rock units can be divided into three distinct groups. No error bars are 
shown for the Triassic fracture spacing because the estimate is qualitative.
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Figure 6. Example of vertical-step knickpoint on the Río Yurimata, a tributary to the Río 
Pilcomayo (location in Fig. 8B). (A) Photo of channel traversing from strong Cretaceous 
sandstone to weak Ordovician slaty shale (house for scale). Red indicates the high ksn reach, 
green the low ksn reaches. Mean bedload grain size is larger in the high ksn reach. (B) 
Slope-area plot for Río Yurimata. Red lines are best-fit regression (with θref = 0.45) used to 
calculate ksn. Dashed line is location of vertical-step knickpoint in A.
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Figure 7. Longitudinal profile (blue line), and ksn (grey line) vs. distance downstream for 
Ríos (A) Grande, (B) Pilcomayo, and (C) Pilaya. Colors above the profiles are rock units 
exposed at that location and match the geologic map in Fig. 8B. Dashed vertical lines 
indicate a transition in rock unit that is spatially aligned with knickpoint on river. Black 
arrows indicate knickpoints correctly identified as vertical step (arrows above profile) or 
slope break (arrows below profile). Pink=Ordovician; Purple=Silurian; Dark 
Brown=Devonian; Grey=Carboniferous and Triassic; Green=Cretaceous; Yellow=Tertiary 
sediments; Light Brown=Tertiary volcanics.
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Figure 9. Mean ksn for all southern Bolivian rivers within each rock unit. Vertical bars 
represent 1σ error. Large errors are present because of a very large range of ksn within each 
rock unit.
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APPENDIX 

LONGITUDINAL PROFILE ANALYSIS 

 

Past studies show that the 3 arc-second SRTM dataset is sufficient to characterize 

the channel profiles of large rivers (e.g., Kirby et al., 2003; Miller et al., 2012; Wobus et 

al., 2006a). To focus on long length-scale changes and to minimize DEM noise, I applied 

a 45-pixel streamwise moving average filter to the raw DEM data (after Kirby et al., 

2003). For the individual river analysis, I sampled at 10 m vertical intervals for channel 

slope and contributing drainage area (after Snyder et al., 2000). For comparison between 

streams and to eliminate the autocorrelation between ks and θ, I estimated a normalized 

steepness index (ksn) by fitting the data with a fixed reference concavity (θref) (e.g., 

Wobus et al., 2006a). Theoretically, θref is assigned the regional mean θ for all 

equilibrium bedrock channels (Wobus et al., 2006a). However, studies show results are 

insensitive to the choice of θref (Schoenbohm et al., 2004). For comparison with previous 

studies, I used θref = 0.45 (e.g., Cyr et al., 2010; Karlstrom et al., 2012; Ouimet et al., 

2009; Safran et al., 2005; Schoenbohm et al., 2004; Snyder et al., 2000). To analyze 

regional steepness patterns, I calculated mean ksn in a 0.5 km moving window along 252 

rivers in southern Bolivia (Fig. 8A) and 130 rivers in the Upper Beni River Basin (Fig. 

11B) (e.g., Cyr et al., 2010; Kirby and Whipple, 2001; Kirby et al., 2003; Snyder et al., 

2000; Wobus et al., 2006a). Knickpoints at tributary junctions are disregarded because 

large increases in contributing drainage area can alter ksn calculations.



42 

REFERENCES 

 

Allmendinger, R.W., Jordan, T.E., Kay, S.M., and Isacks, B.L., 1997, The evolution of 

the Altiplano-Puna Plateau of the Central Andes: Annual Review of Earth and 

Planetary Sciences, v. 25, p. 139-174, doi:10.1146/annurev.earth.25.1.139. 

Armijo, A.V., Quiroga, F.H.G., Ontiveros, A.A., and Guarachi, J.C., compilers, 1996, 

Mapa Geológico de Bolivia: SERGEOMIN and YPFB, scale 1:1,000,000, 1 sheet. 

Barke, R., 2004, Late Cenozoic tectonic and topographic evolution of the Bolivian Andes 

[Ph.D. thesis]: University of Oxford, 420 p. 

Barke, R., and Lamb, S., 2006, Late Cenozoic uplift of the Eastern Cordillera, Bolivian 

Andes: Earth and Planetary Science Letters, v. 249, p. 350-367, 

doi:10.1016/j.epsl.2006.07.012. 

Barnes, J.B., and Ehlers, T.A., 2009, End member models for Andean Plateau uplift: 

Earth-Science Reviews, v. 97, p. 105-132, doi:10.1016/j.earscirev.2009.08.003. 

Barnes, J.B., and Pelletier, J.D., 2006, Latitudinal Variation of Denudation in the 

Evolution of the Bolivian Andes: American Journal of Science, v. 306, p. 1-31, 

doi:10.2475/ajs.306.1.1. 

Barnes, J.B., Ehlers, T.A., McQuarrie, N., O'Sullivan, P.B., and Tawackoli, S., 2008, 

Thermochronometer record of central Andean Plateau growth, Bolivia (19.5°S): 

Tectonics, v. 27, p. TC3003, doi:10.1029/2007tc002174. 

Barnes, J.B., Ehlers, T.A., Insel, N., McQuarrie, N., and Poulsen, C.J., 2012, Linking 

orography, climate, and exhumation across the central Andes: Geology, (in press). 

Bookhagen, B., and Burbank, D.W., 2006, Topography, relief, and TRMM-derived 

rainfall variations along the Himalaya: Geophysical Research Letters, v. 33, p. 

L08405, doi:10.1029/2006gl026037. 

Bookhagen, B., and Strecker, M.R., 2008, Orographic barriers, high-resolution TRMM 

rainfall, and relief variations along the eastern Andes: Geophysical Research 

Letters, v. 35, p. L06403, doi:10.1029/2007gl032011. 

Bookhagen, B., and Strecker, M.R., 2012, Spatiotemporal trends in erosion rates across a 

pronounced rainfall gradient: Examples from the southern Central Andes: Earth 

and Planetary Science Letters, v. 327–328, p. 97-110, 

doi:10.1016/j.epsl.2012.02.005. 

Brooks, B.A., Allmendinger, R.W., and de la Barra, I.G., 1996, Fault spacing in the El 

Teniente Mine, central Chile: Evidence for nonfractal fault geometry: Journal of 



43 

Geophysical Research-Solid Earth, v. 101, p. 13633-13653, 

doi:10.1029/96jb00800. 

Burbank, D.W., and Anderson, R.S., 2011, Tectonic Geomorphology, John Wiley & 

Sons. 

Clarke, B.A., and Burbank, D.W., 2011, Quantifying bedrock-fracture patterns within the 

shallow subsurface: Implications for rock mass strength, bedrock landslides, and 

erodibility: Journal of Geophysical Research-Earth Surface, v. 116, p. F04009, 

doi:10.1029/2011jf001987. 

Cyr, A.J., Granger, D.E., Olivetti, V., and Molin, P., 2010, Quantifying rock uplift rates 

using channel steepness and cosmogenic nuclide-determined erosion rates: 

Examples from northern and southern Italy: Lithosphere, v. 2, p. 188-198, 

doi:10.1130/l96.1. 

DiBiase, R.A., and Whipple, K.X., 2011, The influence of erosion thresholds and runoff 

variability on the relationships among topography, climate, and erosion rate: 

Journal of Geophysical Research-Earth Surface, v. 116, p. F04036, 

doi:10.1029/2011jf002095. 

Dühnforth, M., Anderson, R.S., Ward, D., and Stock, G.M., 2010, Bedrock fracture 

control of glacial erosion processes and rates: Geology, v. 38, p. 423-426, 

doi:10.1130/g30576.1. 

Dunn, J.F., Hartshorn, K.G., and Hartshorn, P.W., 1995, Structural styles and 

hydrocarbon potential of the sub-Andean thrust belt of southern Bolivia: AAPG 

Memoir, v. 62, p. 523-543. 

Duvall, A., Kirby, E., and Burbank, D.W., 2004, Tectonic and lithologic controls on 

bedrock channel profiles and processes in coastal California: Journal of 

Geophysical Research-Earth Surface, v. 109, p. F03002, 

doi:10.1029/2003jf000086. 

Ege, H., Sobel, E.R., Scheuber, E., and Jacobshagen, V., 2007, Exhumation history of the 

southern Altiplano plateau (southern Bolivia) constrained by apatite fission track 

thermochronology: Tectonics, v. 26, p. TC1004, doi:10.1029/2005tc001869. 

Elger, K., Oncken, O., and Glodny, J., 2005, Plateau-style accumulation of deformation: 

Southern Altiplano: Tectonics, v. 24, p. TC4020, doi:10.1029/2004tc001675. 

Flint, J.J., 1974, Stream gradient as a function of order, magnitude, and discharge: Water 

Resources Research, v. 10, p. 969-973. 

Foster, M.A., and Kelsey, H.M., 2012, Knickpoint and knickzone formation and 

propagation, South Fork Eel River, northern California: Geosphere, v. 8, p. 403-

416, doi:10.1130/ges00700.1. 



44 

Garreaud, R.D., and Wallace, J.M., 1997, The diurnal march of convective cloudiness 

over the Americas: Monthly Weather Review, v. 125, p. 3157. 

Gillespie, P.A., Howard, C.B., Walsh, J.J., and Watterson, J., 1993, Measurement and 

characterization of spatial distributions of fractures: Tectonophysics, v. 226, p. 

113-141, doi:10.1016/0040-1951(93)90114-y. 

Goldrick, G., and Bishop, P., 2007, Regional analysis of bedrock stream long profiles: 

evaluation of Hack's SL form, and formulation and assessment of an alternative 

(the DS form): Earth Surface Processes and Landforms, v. 32, p. 649-671, 

doi:10.1002/esp.1413. 

Goudie, A.S., 2006, The Schmidt Hammer in geomorphological research: Progress in 

Physical Geography, v. 30, p. 703-718, doi:10.1177/0309133306071954. 

Gubbels, T.L., Isacks, B.L., and Farrar, E., 1993, High-level surfaces, plateau uplift, and 

foreland development, Bolivian central Andes: Geology, v. 21, p. 695-698, 

doi:10.1130/0091-7613(1993)021<0695:hlspua>2.3.co;2. 

Hack, J.T., 1957, Studies of longitudinal stream profiles in Virginia and Maryland: U. S. 

Geological Survey Professional Paper, p. 45-97. 

Haviv, I., Enzel, Y., Whipple, K.X., Zilberman, E., Matmon, A., Stone, J., and Fifield, 

K.L., 2010, Evolution of vertical knickpoints (waterfalls) with resistant caprock: 

Insights from numerical modeling: Journal of Geophysical Research-Earth 

Surface, v. 115, p. F03028, doi:10.1029/2008jf001187. 

Horton, B.K., 1999, Erosional control on the geometry and kinematics of thrust belt 

development in the Central Andes: Tectonics, v. 18, p. 1292-1304. 

Howard, A.D., and Kerby, G., 1983, Channel changes in badlands: Geological Society of 

America Bulletin, v. 94, p. 739-752. 

Isacks, B.L., 1988, Uplift of the central Andean Plateau and bending of the Bolivian 

Orocline: Journal of Geophysical Research-Solid Earth and Planets, v. 93, p. 

3211-3231. 

Jansen, J.D., Codilean, A.T., Bishop, P., and Hoey, T.B., 2010, Scale Dependence of 

Lithological Control on Topography: Bedrock Channel Geometry and Catchment 

Morphometry in Western Scotland: The Journal of Geology, v. 118, p. 223-246, 

doi:10.1086/651273. 

Johnson, J.P.L., Whipple, K.X., Sklar, L.S., and Hanks, T.C., 2009, Transport slopes, 

sediment cover, and bedrock channel incision in the Henry Mountains, Utah: 

Journal of Geophysical Research-Earth Surface, v. 114, p. F02014, 

doi:10.1029/2007jf000862. 



45 

Karlstrom, K.E., Coblentz, D., Dueker, K., Ouimet, W.B., Kirby, E., Van Wijk, J., 

Schmandt, B., Kelley, S., Lazear, G., Crossey, L.J., Crow, R., Aslan, A., Darling, 

A., Aster, R., MacCarthy, J., Hansen, S.M., Stachnik, J., Stockli, D.F., Garcia, 

R.V., Hoffman, M., McKeon, R., Feldman, J., Heizler, M., Donahue, M.S., and 

the CREST Working Group, 2012, Mantle-driven dynamic uplift of the Rocky 

Mountains and Colorado Plateau and its surface response: Toward a unified 

hypothesis: Lithosphere, v. 4, p. 3-22, doi:10.1130/l150.1. 

Katz, O., Reches, Z., and Roegiers, J.C., 2000, Evaluation of mechanical rock properties 

using a Schmidt Hammer: International Journal of Rock Mechanics and Mining 

Sciences, v. 37, p. 723-728, doi:10.1016/s1365-1609(00)00004-6. 

Kennan, L., Lamb, S.H., and Rundle, C., 1995, K-Ar dates from the Altiplano and 

Cordillera Oriental of Bolivia: implications for Cenozoic stratigraphy and 

tectonics: Journal of South American Earth Sciences, v. 8, p. 163-186, 

doi:10.1016/0895-9811(95)00003-x. 

Kennan, L., Lamb, S.H., and Hoke, L., 1997, High-altitude palaeosurfaces in the Bolivian 

Andes: evidence for late Cenozoic surface uplift, in Widdowson, M., ed., 

Palaeosurfaces: Recognition, Reconstruction and Palaeoenvironmental 

Interpretation, Volume 120: Milton Keynes, United Kingdom, The Geological 

Society, London, p. 307-323. 

Kirby, E., and Ouimet, W.B., 2011, Tectonic geomorphology along the eastern margin of 

Tibet: insights into the pattern and processes of active deformation adjacent to the 

Sichuan Basin, in Gloaguen, R., and Ratschbacher, L., eds., Growth and Collapse 

of the Tibetan Plateau, Geological Society, London, Special Publications 353, p. 

165-188. 

Kirby, E., and Whipple, K.X., 2001, Quantifying differential rock-uplift rates via stream 

profile analysis: Geology, v. 29, p. 415-418, doi:10.1130/0091-

7613(2001)029<0415:qdrurv>2.0.co;2. 

Kirby, E., and Whipple, K.X., in review, Expression of active tectonics in erosional 

landscapes: Journal of Structural Geology. 

Kirby, E., Whipple, K.X., Tang Wenqing, and Chen Zhiliang, 2003, Distribution of 

active rock uplift along the eastern margin of the Tibetan Plateau: Inferences from 

bedrock channel longitudinal profiles: Journal of Geophysical Research-Solid 

Earth, v. 108, p. 2217, doi:10.1029/2001jb000861. 

Kley, J., 1996, Transition from basement-involved to thin-skinned thrusting in the 

Cordillera Oriental of southern Bolivia: Tectonics, v. 15, p. 763-775, 

doi:10.1029/95tc03868. 

Kley, J., 1999, Geologic and geometric constraints on a kinematic model of the Bolivian 

orocline: Journal of South American Earth Sciences, v. 12, p. 221-235, 

doi:10.1016/s0895-9811(99)00015-2. 



46 

Kley, J., Gangui, A.H., and Kruger, D., 1996, Basement-involved blind thrusting in the 

eastern Cordillera Oriental, southern Bolivia: Evidence from cross-sectional 

balancing, gravimetric and magnetotelluric data: Tectonophysics, v. 259, p. 171-

184. 

Lague, D., and Davy, P., 2003, Constraints on the long-term colluvial erosion law by 

analyzing slope-area relationships at various tectonic uplift rates in the Siwaliks 

Hills (Nepal): Journal of Geophysical Research-Solid Earth, v. 108, p. 2129, 

doi:10.1029/2002jb001893. 

Lehner, B., Verdin, K.L., and Jarvin, A., 2008, New global hydrography derived from 

spaceborne elevation data: Eos (Transactions, American Geophysical Union), v. 

89, p. 93-94. 

Masek, J.G., Isacks, B.L., Gubbels, T.L., and Fielding, E.J., 1994, Erosion and tectonics 

at the margins of continental plateaus: Journal of Geophysical Research-Solid 

Earth, v. 99, p. 13941-13956, doi:10.1029/94jb00461. 

McQuarrie, N., 2002, The kinematic history of the central Andean fold-thrust belt, 

Bolivia: Implications for building a high plateau: Geological Society of America 

Bulletin, v. 114, p. 950-963, doi:10.1130/0016-

7606(2002)114<0950:tkhotc>2.0.co;2. 

McQuarrie, N., and Davis, G.H., 2002, Crossing the several scales of strain-

accomplishing mechanisms in the hinterland of the central Andean fold–thrust 

belt, Bolivia: Journal of Structural Geology, v. 24, p. 1587-1602, 

doi:10.1016/s0191-8141(01)00158-4. 

McQuarrie, N., and DeCelles, P., 2001, Geometry and structural evolution of the central 

Andean backthrust belt, Bolivia: Tectonics, v. 20, p. 669-692, 

doi:10.1029/2000tc001232. 

McQuarrie, N., Horton, B.K., Zandt, G., Beck, S., and DeCelles, P.G., 2005, Lithospheric 

evolution of the Andean fold–thrust belt, Bolivia, and the origin of the central 

Andean plateau: Tectonophysics, v. 399, p. 15-37, 

doi:10.1016/j.tecto.2004.12.013. 

McQuarrie, N., Barnes, J.B., and Ehlers, T.A., 2008a, Geometric, kinematic, and 

erosional history of the central Andean Plateau, Bolivia (15–17°S): Tectonics, v. 

27, p. TC3007, doi:10.1029/2006tc002054. 

McQuarrie, N., Ehlers, T.A., Barnes, J.B., and Meade, B., 2008b, Temporal variation in 

climate and tectonic coupling in the central Andes: Geology, v. 36, p. 999-1002, 

doi:10.1130/g25124a.1. 

Montgomery, D.R., Balco, G., and Willett, S.D., 2001, Climate, tectonics, and the 

morphology of the Andes: Geology, v. 29, p. 579-582, doi:10.1130/0091-

7613(2001)029<0579:ctatmo>2.0.co;2. 



47 

Müller, J.P., Kley, J., and Jacobshagen, V., 2002, Structure and Cenozoic kinematics of 

the Eastern Cordillera, southern Bolivia (21°S): Tectonics, v. 21, p. 1037, 

doi:10.1029/2001tc001340. 

Niemann, J.D., Gasparini, N.M., Tucker, G.E., and Bras, R.L., 2001, A quantitative 

evaluation of Playfair's law and its use in testing long-term stream erosion 

models: Earth Surface Processes and Landforms, v. 26, p. 1317-1332, 

doi:10.1002/esp.272. 

Norton, K., and Schlunegger, F., 2011, Migrating deformation in the Central Andes from 

enhanced orographic rainfall: Nature Communications, v. 2, p. 584, 

doi:10.1038/ncomms1590. 

Ouimet, W.B., Whipple, K.X., and Granger, D.E., 2009, Beyond threshold hillslopes: 

Channel adjustment to base-level fall in tectonically active mountain ranges: 

Geology, v. 37, p. 579-582, doi:10.1130/g30013a.1. 

Roe, G.H., Montgomery, D.R., and Hallet, B., 2002, Effects of orographic precipitation 

variations on the concavity of steady-state river profiles: Geology, v. 30, p. 143-

146, doi:10.1130/0091-7613(2002)030<0143:eoopvo>2.0.co;2. 

Safran, E.B., Bierman, P.R., Aalto, R., Dunne, T., Whipple, K.X., and Caffee, M., 2005, 

Erosion rates driven by channel network incision in the Bolivian Andes: Earth 

Surface Processes and Landforms, v. 30, p. 1007-1024, doi:10.1002/esp.1259. 

Schlunegger, F., Norton, K.P., and Zeilinger, G., 2011, Climatic Forcing on Channel 

Profiles in the Eastern Cordillera of the Coroico Region, Bolivia: Journal of 

Geology, v. 119, p. 97-107, doi:10.1086/657407. 

Schmitz, M., and Kley, J., 1997, The geometry of the central Andean backarc crust: Joint 

interpretation of cross-section balancing and seismic refraction data: Journal of 

South American Earth Sciences, v. 10, p. 99-110, doi:10.1016/s0895-

9811(97)00009-6. 

Schoenbohm, L.M., Whipple, K.X., Burchfiel, B.C., and Chen, L., 2004, Geomorphic 

constraints on surface uplift, exhumation, and plateau growth in the Red River 

region, Yunnan Province, China: Geological Society of America Bulletin, v. 116, 

p. 895-909, doi:10.1130/b25364.1. 

Seidl, M.A., and Dietrich, W.E., 1992, The problem of channel erosion into bedrock, in 

Schmidt, K.H., and de Ploey, J., eds., Functional Geomorphology: Landform 

Analysis and Models: Cremlingen-Destedt, Germany, Catena Supplement 23, p. 

101-124. 

Selby, M.J., 1980, A rock mass strength classification for geomorphic purposes: With 

tests from Antarctica and New Zealand: Zeitschrift für Geomorphologie, v. 24, p. 

31-51. 



48 

Sklar, L.S., and Dietrich, W.E., 1998, River longitudinal profiles and bedrock incision 

models: Stream power and the influence of sediment supply, in Tinkler, J., and 

Wohl, E., eds., Rivers Over Rock: Fluvial Processes in Bedrock Channels, 

Volume 107: Washington, DC, AGU, p. 237-260. 

Sklar, L.S., and Dietrich, W.E., 2001, Sediment and rock strength controls on river 

incision into bedrock: Geology, v. 29, p. 1087-1090, doi:10.1130/0091-

7613(2001)029<1087:sarsco>2.0.co;2. 

Snyder, N.P., Whipple, K.X., Tucker, G.E., and Merritts, D.J., 2000, Landscape response 

to tectonic forcing: Digital elevation model analysis of stream profiles in the 

Mendocino triple junction region, northern California: Geological Society of 

America Bulletin, v. 112, p. 1250-1263, doi:10.1130/0016-

7606(2000)112<1250:lrttfd>2.0.co;2. 

Snyder, N.P., Whipple, K.X., Tucker, G.E., and Merritts, D.J., 2003, Channel response to 

tectonic forcing: field analysis of stream morphology and hydrology in the 

Mendocino triple junction region, northern California: Geomorphology, v. 53, p. 

97-127, doi:10.1016/s0169-555x(02)00349-5. 

Stimpson, B., 1980, Intact rock strength and fracture spacing relationships in a porphyry 

copper deposit: International Journal of Rock Mechanics and Mining Sciences & 

Geomechanics Abstracts, v. 17, p. 67-68, doi:10.1016/0148-9062(80)90008-x. 

Stock, J.D., and Montgomery, D.R., 1999, Geologic constraints on bedrock river incision 

using the stream power law: Journal of Geophysical Research-Solid Earth, v. 104, 

p. 4983-4993, doi:10.1029/98jb02139. 

Stolar, D.B., Willett, S.D., and Roe, G.H., 2006, Climatic and tectonic forcing of a 

critical orogen: Geological Society of America Special Papers, v. 398, p. 241-250, 

doi:10.1130/2006.2398(14). 

Tinkler, K.J., and Wohl, E.E., 1998, Rivers Over Rock: Fluvial Processes in Bedrock 

Channels: Washington, DC, AGU, Geophysical Monograph Series, 323 p. 

van der Beek, P., and Bishop, P., 2003, Cenozoic river profile development in the Upper 

Lachlan catchment (SE Australia) as a test of quantitative fluvial incision models: 

Journal of Geophysical Research-Solid Earth, v. 108, p. 2309, 

doi:10.1029/2002jb002125. 

VanLaningham, S., Meigs, A., and Goldfinger, C., 2006, The effects of rock uplift and 

rock resistance on river morphology in a subduction zone forearc, Oregon, USA: 

Earth Surface Processes and Landforms, v. 31, p. 1257-1279, 

doi:10.1002/esp.1326. 

Walsh, L.S., Martin, A.J., Ojha, T.P., and Fedenczuk, T., 2012, Correlations of fluvial 

knickzones with landslide dams, lithologic contacts, and faults in the 

southwestern Annapurna Range, central Nepalese Himalaya: Journal of 



49 

Geophysical Research-Earth Surface, v. 117, p. F01012, 

doi:10.1029/2011jf001984. 

Whipple, K.X., 2004, Bedrock Rivers and the Geomorphology of Active Orogens: 

Annual Review of Earth and Planetary Sciences, v. 32, p. 151-185, 

doi:10.1146/annurev.earth.32.101802.120356. 

Whipple, K.X., 2009, The influence of climate on the tectonic evolution of mountain 

belts: Nature Geoscience, v. 2, p. 97-104, doi:10.1038/ngeo413. 

Whipple, K.X., and Tucker, G.E., 1999, Dynamics of the stream-power river incision 

model: Implications for height limits of mountain ranges, landscape response 

timescales, and research needs: Journal of Geophysical Research-Solid Earth, v. 

104, p. 17661-17674, doi:10.1029/1999jb900120. 

Whipple, K.X., Kirby, E., and Brocklehurst, S.H., 1999, Geomorphic limits to climate-

induced increases in topographic relief: Nature, v. 401, p. 39-43, 

doi:10.1038/43375. 

Whipple, K.X., Hancock, G.S., and Anderson, R.S., 2000a, River incision into bedrock: 

Mechanics and relative efficacy of plucking, abrasion, and cavitation: Geological 

Society of America Bulletin, v. 112, p. 490-503, doi:10.1130/0016-

7606(2000)112<490:riibma>2.0.co;2. 

Whipple, K.X., Snyder, N.P., and Dollenmayer, K., 2000b, Rates and processes of 

bedrock incision by the Upper Ukak River since the 1912 Novarupta ash flow in 

the Valley of Ten Thousand Smokes, Alaska: Geology, v. 28, p. 835-838, 

doi:10.1130/0091-7613(2000)28<835:rapobi>2.0.co;2. 

Whipple, K.X., DiBiase, R.A., and Crosby, B., in review, Bedrock Rivers, Treatise in 

Fluvial Geomorphology, Volume 9.29. 

Whittaker, A.C., 2012, How do landscapes record tectonics and climate?: Lithosphere, v. 

4, p. 160-164, doi:10.1130/rf.l003.1. 

Whittaker, A.C., Attal, M., Cowie, P., Tucker, G., and Roberts, G., 2008, Decoding 

temporal and spatial patterns of fault uplift using transient river long profiles: 

Geomorphology, v. 100, p. 506-526, doi:10.1016/j.geomorph.2008.01.018. 

Willett, S.D., 1999, Orogeny and orography: The effects of erosion on the structure of 

mountain belts: Journal of Geophysical Research-Solid Earth, v. 104, p. 28957-

28981, doi:10.1029/1999jb900248. 

Wobus, C.W., Whipple, K.X., Kirby, E., Snyder, N.P., Johnson, J., Spyropolou, K., 

Crosby, B., and Sheehan, D., 2006a, Tectonics from topography: Procedures, 

promise, and pitfalls, in Willett, S.D., Hovius, N., Brandon, M.T., and Fisher, 

D.M., eds., Tectonics, Climate, and Landscape Evolution: Boulder, Colorado, 

Geological Society of America Special Paper 398, p. 55-74. 



50 

Wobus, C.W., Tucker, G.E., and Anderson, R.S., 2006b, Self-formed bedrock channels: 

Geophysical Research Letters, v. 33, p. L18408, doi:10.1029/2006gl027182. 

Wobus, C.W., Whipple, K.X., and Hodges, K.V., 2006c, Neotectonics of the central 

Nepalese Himalaya: Constraints from geomorphology, detrital 40Ar/39Ar 

thermochronology, and thermal modeling: Tectonics, v. 25, p. TC4011, 

doi:10.1029/2005tc001935. 

Wobus, C.W., Tucker, G.E., and Anderson, R.S., 2010, Does climate change create 

distinctive patterns of landscape incision?: Journal of Geophysical Research-Earth 

Surface, v. 115, p. F04008, doi:10.1029/2009jf001562. 

Zaprowski, B.J., Pazzaglia, F.J., and Evenson, E.B., 2005, Climatic influences on profile 

concavity and river incision: Journal of Geophysical Research-Earth Surface, v. 

110, p. F03004, doi:10.1029/2004jf000138. 


	20120808_Syrek_Thesis_UNC_pt
	All_Figs_2
	01_20120627_precipeffect
	02_20120716_Intro_fieldsites
	03_20120716_XC_topo_cut_UNC
	04_20120715_SHresults3
	05_20120715_FSSH_plot
	06_20120601_Poster_knick
	07_20120601_Rivers
	08_20120601_ksn_hs_geol
	09_ksn_rock
	10_20120701_tributary_analyses
	11_20120527_Long_profiles_precip_ksn2

	20120808_Syrek_Thesis_UNC_pt



