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ABSTRACT
GUSTAVO DE VASCONCELLOS DIDIER: Studies in Stochastic Processes: Adaptive

Wavelet Decompositions and Operator Fractional Brownian Motions
(Under the direction of Vladas Pipiras)

The thesis is centered around the themes of wavelet methods for stochastic processes,

and of operator self-similarity. It comprises three parts. The first two parts concern partic-

ular wavelet-based decompositions of stationary processes, in either continuous or discrete

time. The decompositions are essentially characterized by uncorrelated detail coefficients

and possibly correlated approximation coefficients. This is of interest, for example, in sim-

ulation and maximum likelihood estimation. In discrete time, the focus is somewhat on

long memory time series. The last part of the thesis concerns operator fractional Brownian

motions. These are Gaussian operator self-similar processes with stationary increments,

and are multivariate analogues of the one-dimensional fractional Brownian motion. We es-

tablish integral representations of operator fractional Brownian motions, study their basic

properties and examine questions of uniqueness.
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CHAPTER 1

Introduction

The thesis is centered around the themes of wavelet methods for stochastic processes

(Chapters 2 and 3), and of operator self-similarity (Chapter 4). The wavelet analysis of

a random process involves expressing it in terms of a wavelet basis. Orthogonal wavelet

bases usually provide expansions with “almost” uncorrelated coefficients. Several other non-

orthogonal wavelet bases were constructed leading to exactly uncorrelated coefficients, for

example, for fractional Brownian motion. Contributing to this body of work, we introduce

here novel wavelet-based decompositions for stationary processes, in either continuous or

discrete time. Called Adaptive Wavelet Decompositions (AWD), their detail coefficients

are also uncorrelated but approximation coefficients are possibly correlated. Chapter 2

concerns AWD in continuous time. Approximation coefficients in these AWD have to be

taken correlated as only such will approximate a stationary process at hand, an important

property known as the “wavelet crime”. In Chapter 3, we extend AWD to discrete time

processes. Correlated approximation coefficients in these decompositions allow to have

shorter filters in the associated Fast Wavelet Transform-like algorithm. This is particularly

relevant when dealing with long memory and near unit root time series. In either continuous

or discrete time, because of uncorrelated detail coefficients, AWD can be used in simulation

of Gaussian stationary processes, and in maximum likelihood estimation.

In discrete time, AWD are especially suitable when dealing with long range dependent

time series. When exploring multivariate analogues of AWD, we found that, surprisingly,

multivariate long range dependence and related multivariate fractional Brownian motions

have been little explored. Fractional Brownian motion (FBM) is a generalization of Brow-

nian motion to the case where the increments are correlated. It is closely related to long



range dependence, since its increments are often used as discrete-time models for long range

dependent data. FBM is characterized by three properties: it is a Gaussian process; its in-

crements are stationary; and its distribution scales across time according to a (fractional)

parameter, a property called self-similarity. The appropriate multivariate version of FBM is

the so-called operator fractional Brownian motion (OFBM). This process is also Gaussian,

has stationary increments, and its distribution scales across time according to a matrix,

a property appropriately called operator self-similarity. Chapter 4 is a more systematic

study of OFBMs. We establish spectral and time-domain representations of OFBMs, and

look into the relation between the (operator) self-similarity parameter and the character-

ization of the law of the process. With a view toward the analysis of multivariate long

range dependent time series, we also study the cross spectrum of OFBMs. Finally, we an-

alyze questions of uniqueness of the representation of OFBMs, and explore the symmetry

structure of bivariate operator self-similar Gaussian processes.
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CHAPTER 2

Gaussian stationary processes: adaptive wavelet
decompositions, discrete approximations and their

convergence

2.1 Introduction

Consider a real-valued Gaussian stationary process X = {X(t)}t∈R having the integral

representation

X(t) =
∫

R
g(t− u)dB(u) =

∫

R
eitxĝ(x)dB̂(x), (2.1)

where g ∈ L2(R) is a real-valued function, called a kernel function, ĝ ∈ L2(R) is its Fourier

transform defined by convention as

ĝ(x) =
∫

R
e−ixug(u)du,

{B(u)}u∈R is a standard Brownian motion and {B̂(x)}x∈R = {B1(x) + iB2(x)}x∈R is a

complex-valued Brownian motion satisfying B1(x) = B1(−x), B2(x) = −B2(−x), x ≥ 0,

with two independent Brownian motions {B1(x)}x≥0 and {B2(x)}x≥0 such that EB1(1)2 =

EB2(1)2 = (4π)−1. (The latter conditions on B̂(x) ensure that the second integral in (2.1)

is real-valued and has the same covariance structure as the first integral in (2.1).) Many

Gaussian stationary processes, especially those of practical interest, can be represented

by (2.1). See, for example, Rozanov (1967) and others. The covariance function R(t) =

EX(t)X(0) of X and its Fourier transform are given by

R(t) = (g ∗ g∨)(t) =
1
2π
|̂ĝ|2(−t), R̂(x) = |ĝ(x)|2, (2.2)



where g∨(u) = g(−u) is the time reversion operation and ∗ stands for convolution. The

Fourier transform R̂(x) is also known as the spectral density of X. Note, however, that the

two rightmost expressions in (2.2) are not meaningful for general g ∈ L2(R) because the

function R may be neither in L2(R) nor L1(R).

Under mild assumptions on g and in a special Gaussian case, Theorem 1 of Zhang and

Walter (1994) states that a Gaussian process X in (2.1) has a wavelet-based expansion

X(t) =
∞∑

n=−∞
aJ,nθJ(t− 2−Jn) +

∞∑

j=J

∞∑
n=−∞

dj,nΨj(t− 2−jn), (2.3)

for any J ∈ Z, with convergence in the L2(Ω)-sense for each t. Here, aJ = {aJ,n}n∈Z,

dj = {dj,n}j≥J,n∈Z are independent N (0,1) random variables. The functions θj and Ψj are

defined through their Fourier transforms as

θ̂j(x) = ĝ(x) 2−j/2 φ̂(2−jx), Ψ̂j(x) = ĝ(x) 2−j/2 ψ̂(2−jx), (2.4)

where φ and ψ are scaling and wavelet functions, respectively, associated with a suitable

orthogonal Multiresolution Analysis (MRA, in short). For more information on scaling

function, wavelet and MRA, see for example Mallat (1998), Daubechies (1992), or many

others. Moreover, the coefficients aj,n and dj,n in (2.3) can be expressed as

aj,n =
∫

R
X(t)θj(t− 2−jn)dt, dj,n =

∫

R
X(t)Ψj(t− 2−jn)dt, (2.5)

with the functions θj and Ψj , “dual” to θj and Ψj , defined through

θ̂j(x) = ĝ(x)−1 2−j/2 φ̂(2−jx), Ψ̂j(x) = ĝ(x)−1 2−j/2 ψ̂(2−jx). (2.6)

Zhang and Walter (1994) call (2.3) a Karhunen-Loève-like (KL-like) wavelet-based expan-

sion. It is discussed in several textbooks, for example, Walter and Shen (2001), and Vi-

dakovic (1999). The sum
∑

n aJ,nθJ(t − 2−Jn) in (2.3) is interpreted as an approximation

term at scale 2−J , and the sums
∑

n dj,nΨj(t − 2−jn), j ≥ J , are interpreted as detail

terms at finer scales 2−j , j ≥ J . The KL-like expansion is related to the wavelet-vaguelette
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expansions of Donoho (1995), the expansions of Benassi and Jaffard (1994), and others,

where J = −∞ in (2.3) and hence the first approximation term in (2.3) is absent.

Though the approximation term
∑

n aJ,nθJ(t − 2−Jn) in (2.3) involves independent

N (0,1) random variables aJ,n which are convenient to deal with in theory, the term is

also unnatural in one important respect. It is customary with wavelet bases that not only

an approximation term but also the respective approximation coefficients, the sequence

aJ,n in this case, approximate the signal at hand. The sequence aJ,n does not have this

property because it consists of independent random variables and hence cannot approximate

a typically dependent stationary process X(t). In this work, we modify the approximation

terms as
∞∑

n=−∞
aJ,nθJ(t− 2−Jn) =

∞∑
n=−∞

XJ,nΦJ(t− 2−Jn) (2.7)

so that the new approximation coefficients XJ = {XJ,n}n∈Z now have this property, namely,

2J/2XJ,[2J t] ≈ X(t) (2.8)

in a suitable sense, as J →∞, where [x] denotes the integer part of x ∈ R.

In the relation (2.7) above,

Φ̂J(x) =
ĝ(x)

ĝJ(2−Jx)
2−J/2φ̂(2−Jx) =

θ̂J(x)
ĝJ(2−Jx)

(2.9)

with the discrete Fourier transform ĝJ(y) of a sequence gJ = {gJ,n}. (A discrete Fourier

transform of g = {gn} is defined by

ĝ(x) =
∞∑

n=−∞
gne−inx, x ∈ R,

and is periodic with the period 2π.) The random sequence XJ = {XJ,n} in (2.7) is defined

as

X̂J(x) = ĝJ(x)âJ(x) (2.10)

5



in the frequency domain. Moreover, we expect that

XJ,n =
∫

R
X(t)ΦJ(t− 2−Jn)dt, (2.11)

where

Φ̂J(x) =
(

ĝJ(2−Jx)
ĝ(x)

)
2−J/2φ̂(2−Jx). (2.12)

The relation (2.7) can be informally and easily verified by taking Fourier transforms on

both sides of the expression.

It is well-known (e.g. Daubechies (1992) in the deterministic context) that (2.8) is a

property of the corresponding wavelet basis functions. When

GJ(2−Jx) :=
ĝJ(2−Jx)

ĝ(x)
≈ 1, (2.13)

we have Φ̂J(x) ≈ 2−J/2φ̂(2−Jx) ≈ 2−J/2 for large J (typically, φ̂(0) =
∫
R φ(t)dt = 1) and

hence, by (2.11), we expect that

2J/2XJ,n =
2J/2

2π

∫

R
X̂(x)e−ix2−JnΦ̂J(x)dx

≈ 1
2π

∫

R
X̂(x)e−ix2−Jndx = X(2−Jn).

The conditions for (2.7) and (2.8) will thus involve the function GJ given in (2.13).

Though the modification (2.7) appears small, it is fundamental and important in several

ways, and surprisingly leads to many research questions. First, the convergence allows for

several applications, for example, simulation and maximum likelihood estimation, at the

reconstruction and decomposition use of (2.3) with (2.7), respectively. In this chapter, we

study only the issue of simulation. We show in Section 2.6 that there is a nonstandard

Fast Wavelet Transform algorithm relating the sequences Xj = {Xj,n} across scales. It is

nonstandard in the sense that the low- and high-pass filters entering the algorithm depend

on the scale parameter j. The algorithm is convenient in simulation since independent,

N (0, 1) random variables dj,n (the detail coefficients in (2.3)) need to be generated to

produce an approximation at finer scale. Convergence of Xj to the process X is ensured

6



by the property (2.8). In fact, as shown in Section 2.7, this convergence is exponentially

fast in j and almost sure uniformly on compact intervals. Dependence of the convergence

speed and the type of approximation involving Xj on the smoothness of X is also studied

in Section 2.7, and turns out to be quite complex.

Maximum likelihood estimation not considered here, refers to the following. The prop-

erty (2.8) is known in the wavelet literature as “wavelet crime”. It is used, in practice, to

replace the approximation coefficients Xj,n at finest scale by the normalized observations

2−j/2X(2−jn). Assuming a model for X and hence for Xj , as in maximum likelihood esti-

mation, the approximation sequence Xj can be transformed (by the corresponding wavelet

transformation) into independent, N (0, 1) detail coefficients at coarser scales and approxi-

mation coefficients at coarsest scale. This can be viewed as a factorization of the covariance

matrix of Xj and could be used in maximum likelihood estimation. For more details, see

Chapter 3, where we study analogous wavelet decompositions in discrete time. Let us also

note that none of these applications are possible having the decomposition (2.3) alone.

Second, the wavelet-based decomposition (2.3) with (2.7) can be viewed as a general-

ization to stationary Gaussian processes of a particular wavelet decomposition of fractional

Brownian motion established in Sellan (1995), Meyer et al. (1999). This extension is sig-

nificant for several reasons. Self-similarity (of fractional Brownian motion, for instance)

and wavelets have long been considered closely related, with the articles above being one

example. Our extension shows that self-similarity (though an important special case) is not

necessary to make some of these connections. Also, we work in the general framework of

Gaussian stationary processes. We formulate conditions on sequences Xj to have (2.7) and

(2.8) in general. This is quite nontrivial by itself. In particular, we want our conditions

to include some natural discrete time approximations Xj to continuous time processes X

such as AR(1) time series approximations Xj to the Ornstein-Uhlenbeck process X. Most

of the conditions used in this chapter are stated in Section 2.3 and several examples are

considered in Section 2.4.

Third, more generally, the decompositions (2.3) with (2.7) are examples of decompo-

sitions of stationary Gaussian processes with independent coefficients such as the usual

Fourier representation or the Karhunen-Loève expansion. These decompositions have a

7



convenient multiresolution structure where a process is viewed as an approximation term

superimposed by finer and finer details, and are characterized by other nice properties such

as (2.8). Such wavelet decompositions (apart from (2.3)) have largely been missing in the

literature at a fundamental level. We hope that our work will help filling in the current gap.

Comparing (2.3) to (2.3) with (2.7), we have already noted that none of the above appli-

cations are possible having (2.3) alone. In defense of (2.3), these decompositions are in the

spirit of decompositions of discrete time signals used in Signal Processing, where signals are

decomposed into subbands with uncorrelated coefficients. For example, this is a necessary

condition to achieve a suitable optimality in coding. But because the decompositions (2.3)

lack the “wavelet crime” property (2.8), they are not that useful in practice.

Fourth, we study whether the wavelet bases in (2.3) and (2.3) with (2.7) are Riesz, which

are the bases preferred in the nonorthogonal context. We show in Section 2.9 that both

bases, in fact, are Riesz under additional assumptions. This provides a partial answer to

the above question which was asked but kept open since Zhang and Walter (1994). Though

the results on Riesz bases may appear to bear little relation to Probability, we see them as

key if one has to manipulate with the decompositions (2.3) and (2.3) with (2.7).

Fifth and last, this work raises many more questions. As mentioned above, in Chapter

3 we study analogous wavelet decompositions in discrete time. Pipiras (2004) explored a

similar decomposition for a non-Gaussian self-similar process called the Rosenblatt process.

We also plan to consider multidimensional X(t), with either t ∈ Rm (or Zm) or X(t) ∈ Rn.

The decomposition (2.3) with (2.7) can be viewed as being more general than (2.3) –

becoming (2.3) when Xj = aj are independent, N (0, 1) random variables. For this reason,

both decompositions should be viewed under one framework. This is the view taken in the

following definition and in Chapter 3.

Definition 2.1.1. Decompositions (2.3) and (2.3) with (2.7) will be called Adaptive Wavelet

Decompositions.

Adaptiveness refers to the fact that the basis functions are chosen based on the depen-

dence structure of the underlying stationary Gaussian process.

The rest of the chapter is organized as follows. In Section 2.2, we briefly introduce

8



a wavelet basis to be used in wavelet-based decompositions. In Section 2.3, we state the

assumptions on the discrete deterministic approximations gJ and the functions g. In Sec-

tion 2.4, we consider several examples of Gaussian stationary processes and their discrete

approximations. The KL-like wavelet decomposition (2.3) and its modification (2.7) are

proved in Section 2.5. In particular, we reprove the decomposition (2.3) because inaccurate

assumptions were used in Zhang and Walter (1994). We show that there is a FWT-like

algorithm relating {Xj,n} across different scales in Section 2.6. In Sections 2.7 and 2.8,

we examine convergence of discrete random approximations XJ and illustrate simulation

in practice. Section 2.9 concerns questions on Riesz bases. Finally, in Appendix A, we

consider integration of stationary Gaussian processes.

2.2 Wavelet bases of L2 (R)

We specify here a scaling function φ and a wavelet ψ which will be used below. There

are many choices for these functions. We shall work with particular Meyer wavelets (Meyer

(1992), Mallat (1998)) because of their nice theoretical properties. The results of this

chapter and their proofs rely on specific nice properties of the selected Meyer wavelets.

Other wavelet bases could be taken, e.g., the celebrated Daubechies wavelets, and are being

currently investigated. Meyer wavelets are also used in Zhang and Walter (1994), Meyer

et al. (1999) and others.

Let S(R) be the Schwartz class of C∞(R) functions f that decay faster than any poly-

nomial at infinity and so do their derivatives, that is,

lim
|t|→∞

tm
dnf(t)

dtn
= 0,

for any m,n ≥ 1. We can choose a scaling function φ ∈ S(R) satisfying

φ̂(x) ∈ [0, 1], φ̂(x) = φ̂(−x),

φ̂(x) =





1, |x| ≤ 2π/3,

0, |x| > 4π/3,
φ̂(x) decreases on [0,∞).

9



The corresponding CMF u has the discrete Fourier transform

û(x) =





√
2 φ̂(2x), |x| ≤ 2π/3,

0, |x| > 2π/3.

The wavelet function ψ associated with φ is such that ψ ∈ S(R) and

ψ̂(x) =
1√
2

v̂
(x

2

)
φ̂

(x

2

)
with v̂(x) = e−ixû(x + π), (2.14)

where v is the other CMF. One can verify that, for the Meyer wavelets,

ψ̂(x) = e−
ix
2

(
φ̂

(x

2

)2
− φ̂(x)2

)1/2

. (2.15)

In particular, ψ̂(x) = 0 for |x| ≤ 2π/3 and |x| ≥ 8π/3. The collection of functions φ(t −
k), 2j/2ψ(2jt− k), k ∈ Z, j ≥ 0, makes an orthonormal basis of L2(R).

2.3 Basis functions and discrete approximations

Let g ∈ L2(R) be a kernel function appearing in (2.1), and gJ = {gJ,n}n∈Z, J ∈ Z, be

sequences of real numbers such that gJ ∈ l2(Z). Following Section 2.1 (see, in particular,

(2.13)), we shall think of gJ as a discrete (deterministic) approximation of g at scale 2−J .

A discrete approximation gJ ∈ l2(Z) induces a discrete (random) approximation XJ =

{XJ,n} defined by (2.10), that is,

XJ,n =
∞∑

k=−∞
gJ,kaJ,n−k (2.16)

in the time domain, or symbolically

X̂J(x) = ĝJ(x)âJ(x) (2.17)

in the frequency domain, where aJ = {aJ,n} are independent N (0,1) random variables

(Gaussian white noise). As J → ∞, we expect that 2J/2XJ,[2J t] approximates X(t) de-

fined by (2.1). Conversely, we may think that a random discrete approximation XJ of X

10



given by (2.1) can be represented by (2.16) with a sequence gJ . Hence, XJ also induces a

deterministic discrete approximation gJ of g.

We will make some of the following assumptions on g and gJ . Let Lp
loc(R) consist of

functions which are in Lp on any compact interval of R. Set also

GJ(x) =
ĝJ(x)
ĝ(2Jx)

, x ∈ R. (2.18)

Note that, with the notation (2.18), expressions (2.9) and (2.12) become

Φ̂J(x) = (GJ(2−Jx))−1 2−J/2φ̂(2−Jx), Φ̂J(x) = GJ(2−Jx)2−J/2φ̂(2−Jx) (2.19)

Assumption 1: Suppose that

ĝ−1 ∈ L2
loc(R). (2.20)

Assumption 2: Suppose that, for any J ∈ Z,

GJ , G−1
J ∈ L2

loc(R). (2.21)

Assumption 3: Suppose that, for any J0 ∈ Z,

max
p=−1,1

max
k=0,1,2

sup
J≥J0

sup
|x|≤4π/3

∣∣∣∣
∂k(GJ(x))p

∂xk

∣∣∣∣ < ∞. (2.22)

Assumption 4: Suppose that, for large |x|,

∣∣∣∣
∂kĝ(x)
∂xk

∣∣∣∣ ≤
const
|x|k+1

, k = 0, 1, 2. (2.23)

Assumption 5: Assume that, for large J ,

|GJ(0)− 1| ≤ const 2−J . (2.24)

As explained below, Assumptions 1 and 2 ensure that the basis functions used in decom-
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positions are well-defined. Assumptions 3, 4 and 5 will be used to establish the modification

(2.7) and to show that XJ is an approximation sequence for X in the sense of (2.8).

Observe that the functions θj and Ψj in (2.4) are well-defined pointwise through the

inverse Fourier transform since θ̂j , Ψ̂j ∈ L1(R) for ĝ ∈ L2(R). By using Assumptions 1 and

2, the functions θj and Ψj in (2.6), Φj in (2.9) and Φj in (2.12) (see also (2.19)) are well-

defined pointwise through the inverse Fourier transform as well. Moreover, θj ,Ψj ,Φj , Φj

are in L2(R) because their Fourier transforms are in L2(R).

Appendix A contains some results on defining integrals
∫

X(t)f(t)dt. See, in particular,

the definition of a related function space L2
g(R) in (A.7) of integrands f(t). Since θj , Ψj ∈

L2
g(R), the coefficients aj,n and dj,n in (2.5) are well-defined. Using properties of integrals

developed in Appendix A, it is easy to see that aj,n and dj,n are independent N (0, 1) random

variables. Since Φj ∈ L2
g(R), the integral in (2.11) is well-defined as well.

Another consequence of the above assumptions are useful bounds on the functions

Φj , Ψj . We will use these bounds several times below.

Lemma 2.3.1. Under Assumptions 3 and 4 above, we have

|2−j/2Φj(2−ju)|, |2−j/2Φj(2−ju)| ≤ C

1 + |u|2 , u ∈ R, (2.25)

|Ψj(2−ju)| ≤ C2−j/2

1 + |u|2 , u ∈ R, (2.26)

where a constant C does not depend on j ≥ j0, for fixed j0.

Proof. By definition of Φj in (2.9) (see also (2.19)) and after a change of variables, observe

that

2−j/2Φj(2−ju) =
1
2π

∫

R
eiux(Gj(x))−1φ̂(x)dx, u ∈ R. (2.27)

Since supp{φ̂} ⊂ {|x| ≤ 4π/3}, we obtain by Assumption 3 that

|2−j/2Φj(2−ju)| ≤ C, u ∈ R, (2.28)

for a constant C which does not depend on j ≥ j0, for fixed j0. Using integration by parts
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in (2.27) twice and Assumption 3, we have

2−j/2Φj(2−ju) = − 1
2πu2

∫

R
eiux ∂2

∂x2

(
(Gj(x))−1φ̂(x)

)
dx, u ∈ R.

By Assumption 3 and properties of φ̂, for any j ≥ j0,

|2−j/2Φj(2−ju)| ≤ C

|u|2
∫

|x|≤4π/3

(∣∣∣∣
∂2

∂x2
(Gj(x))−1

∣∣∣∣

+
∣∣∣∣

∂

∂x
(Gj(x))−1

∣∣∣∣ +
∣∣∣(Gj(x))−1

∣∣∣
)

dx ≤ C

|u|2 , u ∈ R.

The bound (2.25) for Φj follows from (2.28) and (2.29). The case of Φj is proved similarly.

To show the bound (2.26), observe from (2.4) that

Ψj(2−ju) =
2j/2

2π

∫

R
eiuxĝ(2jx)ψ̂(x)dx, u ∈ R. (2.29)

Since supp{ψ̂} ⊂ {2π/3 ≤ |x| ≤ 8π/3}, we obtain by Assumption 4 that

|Ψj(2−ju)| ≤ C2j/2

∫ 8π/3

2π/3

dx

1 + 2jx
≤ C ′2−j/2, u ∈ R, (2.30)

for constants C, C ′ which do not depend on j ≥ j0, for fixed j0. Using integration by parts

in (2.29) and Assumption 4, we have

Ψj(2−ju) = − 2j/2

2πu2

∫

R
eiux ∂2

∂x2

(
ĝ(2jx)ψ̂(x)

)
dx, u ∈ R. (2.31)

Hence, by using properties of ψ̂ and Assumption 4, for j ≥ j0,

|Ψj(2−ju)| ≤ C2j/2

|u|2
∫

2π/3≤|x|≤8π/3

(
22j

∣∣∣∣
∂2ĝ

∂x2
(2jx)

∣∣∣∣ + 2j

∣∣∣∣
∂ĝ

∂x
(2jx)

∣∣∣∣ + |ĝ(2jx)|
)

dx

≤ C ′2j/2

|u|2
∫ 8π/3

2π/3

(
22j

1 + 23jx3
+

2j

1 + 22jx2
+

1
1 + 2jx

)
dx

≤ C ′′ 2
−j/2

|u|2 , u ∈ R. (2.32)
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The bound (2.26) follows from (2.30) and (2.32).

2.4 Examples

We consider here several examples of Gaussian stationary processes together with their

possible discrete approximations.

Example 2.4.1. The Ornstein-Uhlenbeck (OU) process X is perhaps the best-known Gaus-

sian stationary process. It is the only Gaussian stationary process which is Markov. The

OU process can be represented by (2.1) with

g(t) = σe−λt1{t≥0}, ĝ(x) =
σ

λ + ix
, (2.33)

for some λ > 0 and σ > 0.

At this point, one can approximate either g or X. We do so for the process X because it

has a well-known discrete approximation. Observe from (2.1) and (2.33) that, for J, n ∈ Z,

X(2−J(n + 1)) = e−λ2−J
X(2−Jn) + σ

√
1− e−2λ2−J

2λ
aJ,n+1,

where {aJ,n}n∈Z is a Gaussian white noise. Therefore, since we expect 2J/2XJ,[2J t] ≈ X(t),

it appears natural to consider the discrete approximation

XJ,n = 2−J/2σ

√
1− e−2λ2−J

2λ
(I − e−λ2−J

B)−1 aJ,n, (2.34)

where B denotes the backshift operator (not to be confused with Bm) and I = B0. In other

words, XJ is an AR(1) time series (see Brockwell and Davis (1991)).

In view of (2.33) and (2.34), the deterministic discrete approximations gJ have the

discrete Fourier transforms

ĝJ(x) = 2−J/2σ

√
1− e−2λ2−J

2λ
(1− e−λ2−J

e−ix)−1. (2.35)

Furthermore, ĝ and ĝJ satisfy Assumptions 1 to 5. Indeed, Assumptions 1 and 2 hold
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because, for every J ∈ Z,

ĝ−1(x) =
λ + ix

σ
, GJ(x) = 2J/2

√
1− e−2λ2−J

2λ

2−Jλ + ix

1− e−λ2−J e−ix
(2.36)

and G−1
J are continuous functions on R, and thus square-integrable on compact sets.

To show Assumption 3, consider the domain DJ0 = {z ∈ C : 0 ≤ Re(z) ≤ 2−J0λ, |Im(z)| ≤
4π/3}. The functions

F (z) =





z
1−e−z , z ∈ C\{i2kπ, k ∈ Z},

1, z = 0,

and F (z)−1 are holomorphic and different from zero on the open set DJ0
ε = {w ∈ C :

infz∈DJ0 |z − w| < ε} ⊃ DJ0 . By setting z = 2−Jλ + ix ∈ DJ0 , we have GJ(x) = CJF (z)

for all J ≥ J0 and |x| ≤ 4π/3, where 0 < c1 ≤ CJ ≤ c2 < +∞ for some c1, c2. Hence,

Assumption 3 must hold.

Assumption 4 follows from the relation

∂kĝ(x)
∂xk

=
σ(−i)kk!

(λ + ix)k+1
, k = 0, 1, 2, ...

Finally, Assumption 5 is also satisfied because

|GJ(0)− 1| =
∣∣∣∣∣2

J/2

√
1− e−2λ2−J

2λ

(
2−Jλ

1− e−λ2−J

)
− 1

∣∣∣∣∣ =

√
λ2−J

1− e−λ2−J

∣∣∣∣∣

√
1 + e−λ2−J

2

−
√

1− e−λ2−J

λ2−J

∣∣∣∣∣ ≤ C1

(∣∣∣∣∣

√
1 + e−λ2−J

2
− 1

∣∣∣∣∣ +

∣∣∣∣∣

√
1− e−λ2−J

λ2−J
− 1

∣∣∣∣∣

)
≤ C2 2−J

for constants C1, C2 > 0.

Example 2.4.2. Consider a Gaussian stationary process (2.1) with a kernel function g

having the Fourier transform

ĝ(x) =
f(x)
h(x)

. (2.37)
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Here,

f(x) =
∏

k∈P1

p(ak, bk;x) p(−ak, bk; x)
∏

m∈P2

p(0, cm; x), (2.38)

h(x) =
∏

k∈Q1

p(dk, ek;x) p(−dk, ek; x)
∏

m∈Q2

p(0, fm; x) (2.39)

with

p(a, b; x) = ix + ia + b, (2.40)

where P1,P2,Q1 and Q2 are finite sets of indices. It is assumed that polynomials f(x)

and h(x) have no common roots, and also that ∀k ∈ Q1, ek 6= 0, and ∀m ∈ Q2, fm 6= 0.

Note that the polynomials f and h are Hermitian symmetric. Hence, ĝ is also Hermitian

symmetric and thus g is real-valued. Kernel functions ĝ as in (2.37) correspond to rational

spectral densities (Rozanov (1967)).

To define a discrete approximation ĝJ of ĝ, consider first p(a, b;x), which is a “building

block” of f in (2.38) and h in (2.39). Define a discrete approximation of p(a, b; x) as

pJ(a, b; x) = 2J
(
1− e−2−Jb−2−J ia−ix

)
(2.41)

and also, in analogy to (2.18), set

PJ(x) =
pJ(a, b; x)
p(a, b; 2Jx)

=
1− e−2−Jb−2−J ia−ix

ix + 2−J ia + 2−Jb
. (2.42)

The form (2.41) ensures that pJ(a, b;x)pJ(−a, b; x) and pJ(0, b; x) are Hermitian symmetric

functions. Define now a discrete approximation ĝJ of ĝ by (2.37), where p’s in (2.38) and

(2.39) are replaced by pJ ’s. The function GJ is then given by (2.37), where p’s in (2.38)

and (2.39) are replaced by PJ ’s.

We shall now verify that ĝ and ĜJ satisfy Assumptions 1-5. Assumptions 1 and 2 are

satisfied because the “building blocks” p−1, PJ and P−1
J for ĝ−1, GJ and G−1

J are continuous

functions on the real line. To show Assumption 3, it is enough to prove (2.22) for the

function PJ . Similarly to the case of the Ornstein-Uhlenbeck process, we are interested in
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the behavior of F and F−1 for z = i(x + 2−Ja) + 2−Jb, where |x| ≤ 4π/3 and J ≥ J0. So,

define the set

DJ0 =
{

z ∈ C : 0 ≤ <(z) ≤ 2−J0b, |=(z)| ≤ 4π

3
+ <(z)

∣∣∣a
b

∣∣∣
}

,

and note that z = i(x + 2−Ja) + 2−Jb ∈ DJ0 when |x| ≤ 4π/3 and J ≥ J0. Also, consider

the set DJ0
ε = {w ∈ C : infz∈DJ0 |z − w| < ε}. The functions F and F−1 are holomorphic

on DJ0
ε ⊃ DJ0 for small enough ε, and thus Assumption 3 holds.

Consider now Assumption 4. The condition (2.23) is satisfied for k = 0 by the definition

of ĝ and the implicit assumption ĝ ∈ L2(R) (that is, the polynomial h has a higher degree

than the polynomial f). When k = 1, note that

∂ĝ(x)
∂x

=
f ′(x)
h(x)

− f(x)h′(x)
(h(x))2

and the condition (2.23) follows since the difference between the degrees of f ′(x) and h(x),

and those of f(x)h′(x) and (h(x))2 increased by 1. The case k = 2 can be argued in a

similar way.

To show (2.24) in Assumption 5, it is enough to prove it for

PJ(0) =
1− e−2−Jb−2−J ia

2−J ia + 2−Jb
.

This can be done by using standard properties of exponentials and using their Taylor ex-

pansions.

Finally, let us note that the discrete approximations gJ based on (2.41) correspond to

ARMA time series XJ (Brockwell and Davis (1991)).

(Non)Example 2.4.1. Let BH(t), H ∈ (0, 1), be fractional Brownian motion (fBm, in

short), that is, a Gaussian H-self-similar process with stationary increments (see, for ex-

ample, Embrechts and Maejima (2002), Samorodnitsky and Taqqu (1994)). Consider a

stationary Gaussian process {X(t)}t∈R defined by X(t) = BH(t)−BH(t− 1) and known as
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fractional Gaussian noise (fGn). FGn has the representation (2.1) with

g(t) =
σ

C(H)

(
t
H− 1

2
+ − (t− 1)

H− 1
2

+

)
, ĝ(x) =

σΓ(H + 1
2)

C(H)

(
e−ix − 1

ix

)
(ix)

1
2
−H , (2.43)

where σ > 0, C(H)2 =
∫∞
0 ((1 + t)H−1/2 − tH−1/2)2dt + (2H)−1 and C(1/2) = 1. With this

choice of C(H), EX(1)2 = σ2.

Since ĝ(x)−1 = const(ix/e−ix−1)(ix)H−1/2 is not in L2
loc (nor in L1

loc) around the points

{2kπ, k ∈ Z\{0}}, the function ĝ in (2.43) does not satisfy Assumption 1. Hence, the

functions θj and Ψj in (2.6) cannot be computed through their Fourier transforms. This is

somewhat surprising because the wavelet-based representation analogous to (2.3) with (2.7)

has been established for fBm by Meyer et al. (1999). However, it seems that one cannot do

much about this. Assumption 1 already appears to be weak.

2.5 Adaptive wavelet decompositions

We first reestablish the decomposition (2.3) of Zhang and Walter (1994) by providing a

more rigorous proof.

Theorem 2.5.1. (Zhang and Walter (1994)) Let X be a Gaussian stationary process given

by (2.1). Suppose that Assumptions 1 and 2 of Section 2.3 hold. Then, with the notation of

Section 2.1, the process X admits the following wavelet-based decomposition: for any J ∈ Z,

X(t) =
∞∑

n=−∞
aJ,nθJ(t− 2−Jn) +

∞∑

j=J

∞∑
n=−∞

dj,nΨj(t− 2−jn) (2.44)

=
∞∑

j=−∞

∞∑
n=−∞

dj,nΨj(t− 2−jn), (2.45)

with the convergence in the L2(Ω)-sense for each t, and independent N (0, 1) random vari-

ables aJ,n, dj,n that are expressed through (2.5).

Proof. (Zhang and Walter (1994)) Under Assumptions 1 and 2, the basis functions θJ and

Ψj in (2.44) and (2.45) are well-defined pointwise (Section 2.3). The coefficients aj,n, dj,n

are well-defined, independentN (0, 1) random variables (Section 2.3). Except for more rigor,

the rest of the proof follows that of Zhang and Walter (1994). Since the proof is short, we
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provide it for the reader’s convenience.

Observe that

E

(
X(t)−

N2∑

n=−N1

aJ,nθJ(t− 2−Jn)−
K∑

j=J

M2∑

n=−M1

dj,nΨj(t− 2−jn)

)2

= E

(
X(t)2 − 2

N2∑

n=−N1

X(t)aJ,nθJ(t− 2−Jn)− 2
K∑

j=J

M2∑

n=−M1

X(t)dj,nΨj(t− 2−jn)

+

(
N2∑

n=−N1

aJ,nθJ(t− 2−Jn) +
K∑

j=J

M2∑

n=−M1

dJ,nΨj(t− 2−jn)

)2)
. (2.46)

By using Appendix A and the definition of function θj (Sections 2.1 and 2.3), we have

EX(t)aJ,n = EX(t)
∫

R
X(s)θJ(s− 2−Jn)ds

=
1
2π

∫

R
eitx|ĝ(x)|2 ̂θJ(· − 2−Jn)(x)dx =

1
2π

∫

R
ei(t−2−Jn)x|ĝ(x)|2θ̂J(x)dx

=
1
2π

∫

R
ei(t−2−Jn)x2−J/2ĝ(x)φ̂J(2−Jx)dx = θJ(t− 2−Jn). (2.47)

Similarly, we have

EX(t)dj,n = Ψj(t− 2−jn). (2.48)

Using (2.47), (2.48) and independence of aJ,n, dj,n, relation (2.46) becomes

R(0)−
N2∑

n=−N1

θJ(t− 2−Jn)2 −
K∑

j=J

M2∑

n=−M1

(Ψj(t− 2−jn))2. (2.49)

Observe from the definition of θJ that

θJ(t− 2−Jn) =
1
2π

∫

R
ei(t−2−Jn)x2−J/2ĝ(x)φ̂J(2−Jx)dx

=
1
2π

∫

R
ĝ(x)2J/2( ̂φ(2J(·+ t)− n))(x)dx =

1
2π

∫

R
g(u)2J/2φ(n− 2J(u + t))du, (2.50)

and similarly

Ψj(t− 2−jn) =
1
2π

∫

R
g(u)2j/2ψ(n− 2j(u + t))du. (2.51)
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Since the collection of functions 2J/2φ(n − 2J(u + t)), 2j/2φ(n − 2j(u + t)), j ≥ J , n ∈ Z,

makes an orthonormal basis of L2(R) for any t ∈ R, and since R(0) =
∫
R |g(t)|2dt, we

obtain from (2.50) and (2.51) that relation (2.49) converges to 0 as Ni, Mi (i = 1, 2) and

K approach infinity.

In the next result, we modify the approximation term in the decomposition (2.44) ac-

cording to (2.7).

Theorem 2.5.2. Let X be a Gaussian stationary process given by (2.1). Suppose that

Assumptions 1 and 2 of Section 2.3 hold. Then, with the notation of Section 2.1, the

process X admits the following wavelet-based decomposition: for any J ∈ Z,

X(t) =
∞∑

n=−∞
XJ,nΦJ(t− 2−Jn) +

∞∑

j=J

∞∑
n=−∞

dj,nΨj(t− 2−jn). (2.52)

The convergence in (2.52) is in the L2(Ω)-sense for each t under Assumption 3, and it is

almost sure, uniform over compact intervals of t under Assumptions 3 and 4. The sequence

XJ = {XJ,n}n∈Z is defined by either (2.11) or (2.16).

Proof. We first argue that the definitions (2.11) and (2.16) of Xj are equivalent. By using

Appendix A, observe that, for XJ,n defined by (2.11) and aJ,n defined by (2.5),

E
(
XJ,n −

N2∑

k=−N1

gJ,kaJ,n−k

)2

= E

( ∫

R
X(t)

(
ΦJ(t− 2−Jn)−

N2∑

k=−N1

gJ,kθJ(t− 2−J(n− k))

)
dt

)2

=
1
2π

∫

R

∣∣∣ĝJ(2−Jx)−
N2∑

k=−N1

gJ,ke
ix2−Jk

∣∣∣
2
2−J

∣∣∣φ̂(2−Jx)
∣∣∣
2
dx −→ 0,

as Ni →∞ (i = 1, 2), since
∑

k gJ,ke
ixk converges to ĝJ(x) in L2(−π, π) and φ̂ has a compact

support.
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To show (2.52), we start with (2.44) and modify its first sum as (2.7), that is,

∞∑
n=−∞

aJ,nθJ(t− 2−Jn) =
∞∑

n=−∞
XJ,nΦJ(t− 2−Jn). (2.53)

We first show that, under Assumption 3, the R.H.S. converges in the L2(Ω)-sense for fixed

t and, under Assumptions 3 and 4, almost surely, uniformly over compacts of t. Observe

that, by Lemma 2.3.1, |ΦJ(t − 2−Jn)| ≤ C/(1 + |t − 2−Jn|2) and, by Lemma 3 in Meyer

et al. (1999), |XJ,n| ≤ A
√

log(2 + |n|) a.s., where a random variable A does not depend on

n. The almost sure convergence uniformly on compacts t ∈ K follows since

sup
t∈K

∞∑
n=−∞

|XJ,n||ΦJ(t− 2−Jn)| ≤ A sup
t∈K

∞∑
n=−∞

√
log(2 + |n|)

1 + |t− 2−Jn|2 < ∞ a.s.

For the convergence in L2(Ω), observe that, for fixed t,

E

( ∞∑
n=−∞

|XJ,n||ΦJ(t− 2−Jn)|
)2

≤ CE

∞∑
n=−∞

|XJ,n|2
1 + |n|2

∞∑
n=−∞

1
1 + |n|2 < ∞.

We shall now prove the equality in (2.53). Observe that, for each u,

θJ(u) =
∞∑

k=−∞
gJ,kΦJ(u− 2−Jk). (2.54)

Indeed, arguing as above,

Fm(u) =
m∑

k=−m

gJ,kΦJ(u− 2−Jk) −→ F (u) =
∞∑

k=−∞
gJ,kΦJ(u− 2−Jk) (2.55)

pointwise, and

F̂m(x) =

(
m∑

k=−m

gJ,ke
−i2−Jkx

)
ĝ(x)

ĝJ(2−Jx)
2−J/2φ̂(2−Jx) −→ θ̂J(x) (2.56)

in L2(R), since
∑m

k=−m gJ,ke
−ikx converges to ĝJ(x) in L2(−π, π), and ĝ(x)/ĝJ(2−Jx) is

bounded by Assumption 3 on the compact support of φ̂(2−Jx). Hence, Fm → θJ in L2(R)

and θJ = F a.e. Since both F and θJ are continuous, we obtain (2.54).
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Set now, for m ≥ 1,

a
(m)
J,n =





aJ,n, |n| ≤ m,

0, |n| > m,
X

(m)
J,n =

∞∑

k=−∞
gJ,ka

(m)
J,n−k.

By using (2.54), we obtain that

∞∑
n=−∞

a
(m)
J,n θJ(t− 2−Jn) =

∞∑
n=−∞

X
(m)
J,n ΦJ(t− 2−Jn). (2.57)

The L.H.S. of (2.57) converges in L2(Ω) to the L.H.S. of (2.53) (and, in fact, also almost

surely by the Three Series Theorem). Let us show that the R.H.S. of (2.57) converges to

the R.H.S. of (2.53). We want to argue next that

sup
m≥1

|X(m)
J,n | ≤ A

√
log(2 + |n|) a.s. (2.58)

for a random variable A which only depends on J . By using the Lévy-Octaviani inequality

(e.g. Proposition 1.1.1 in Kwapień and Woyczyński (1992)), we have

P

(
sup

m=1,...,M
|X(m)

J,n | > a

)
≤ 2P

(
|X(M)

J,n | > a
)
, (2.59)

for any a > 0 and M ≥ 1. By the Three Series Theorem, X
(M)
J,n → XJ,n almost surely, as

M →∞. Hence, passing to the limit with M in (2.59), we have

P

(
sup
m≥1

|X(m)
J,n | > a

)
≤ 2P (|XJ,n| > a).

The bound (2.58) now follows as in the proof of Lemma 3 in Meyer et al. (1999). By using

Lemma 2.3.1 and the bound (2.58), the R.H.S. of (2.57) converges a.s. to the R.H.S. of

(2.53).

It is left to show that the second term in (2.52) converges almost surely and uniformly

on compacts. By Lemma 3 in Meyer et al. (1999),

|dj,n| ≤ A
√

log(2 + |j|)
√

log(2 + |n|) a.s.,
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where a random variable A does not depend on j, n. By Lemma 2.3.1, we have

|Ψj(t− 2−jn)| = |Ψj(2−j(2jt− n))| ≤ C2−j/2

1 + |2jt− n|2 ,

for j ≥ J . Then, as in the proof of Theorem 2 in Meyer et al. (1999),

∞∑

j=J

∞∑
n=−∞

|dj,n||Ψj(t− 2−jn)| ≤ A′
∞∑

j=J

2−j/2
√

log(2 + |j|)
∞∑

n=−∞

√
log(2 + |n|)

1 + |2jt− n|2

≤ A′′
∞∑

j=J

2−j/2
√

log(2 + |j|)
√

log(2 + |2jt|) < ∞

a.s. uniformly over compact intervals of t.

2.6 FWT-like algorithm

We show here that discrete approximation sequences Xj are related across different

scales by a FWT-like algorithm.

Proposition 2.6.1. Let Xj and dj be the sequences appearing in (2.52), and let u and v

denote the CMFs associated with the orthogonal Meyer MRA. Then, under Assumptions

1–4 of Section 2.3:

(i) (Reconstruction step)

Xj+1 = uj∗ ↑2 Xj + vj∗ ↑2 dj , (2.60)

where the filters uj and vj are defined through their discrete Fourier transforms

ûj(x) =
ĝj+1(x)
ĝj(2x)

û(x), v̂j(x) = ĝj+1(x)v̂(x); (2.61)

(ii) (Decomposition step)

Xj =↓2 (ud
j ∗Xj+1), dj =↓2 (vd

j ∗Xj+1), (2.62)

where x stand for the time reversal of a sequence x, and the filters ud
j and vd

j are defined
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through their discrete Fourier transforms by

ûd
j (x) =

(
ĝj(2x)
ĝj+1(x)

)
û(x), v̂d

j (x) =

(
1

ĝj+1(x)

)
v̂(x). (2.63)

The convergence in (2.60) and (2.62) is in the L2(Ω)-sense, and also absolute almost

surely.

Proof. Observe first that the filters uj , vj , u
d
j , v

d
j are well-defined since ûj , v̂j , û

d
j , v̂

d
j ∈ L2(−π, π).

The latter follows by writing

ûj(x) = Gj+1(x)
(
Gj(2x)

)−1
û(x), v̂j(x) = Gj+1(x)ĝ(2j+1x)v̂(x),

ûd
j (x) = Gj+1(x)−1 Gj(2x)û(x), v̂d

j (x) = Gj+1(x)−1 ĝ(2j+1x)−1v̂(x) (2.64)

(see (2.18)), and using Assumptions 1 and 3.

(i) To show (2.60), we need to prove

Xj+1,n =
∞∑

k=−∞
Xj,kuj,n−2k +

∞∑

k=−∞
dj,kvj,n−2k. (2.65)

We first prove the convergence in (2.65) in the L2(Ω)-sense. Observe that, by using (2.11),

(2.5) and Appendix A,

E

(
Xj+1,n −

(
K∑

k=−K

(
Xj,kuj,n−2k + dj,kvj,n−2k

))2

= E

(∫

R
X(t)

(
Φj+1(t− 2−j−1n)−

K∑

k=−K

Φj(t− 2−jk)uj,n−2k

−
K∑

k=−K

Ψj(t− 2−jk)vj,n−2k

)
dt

)2

=
1
2π

∫

R
|ĝ(x)|2

∣∣∣e−i2−j−1nxΦ̂j+1(x)− Φ̂j(x)
K∑

k=−K

e−i2−jkxuj,n−2k
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−Ψ̂j(x)
K∑

k=−K

e−i2−jkxvj,n−2k

∣∣∣
2
dx

=
1
2π

∫

R

∣∣∣e−i2−j−1nxĝj+1(2−j−1x)2−(j+1)/2φ̂(2−j−1x)− ĝj(2−jx)2−j/2φ̂(2−jx)·

·
K∑

k=−K

e−i2−jkxuj,n−2k − 2−j/2ψ̂(2−jx)
K∑

k=−K

e−i2−jkxvj,n−2k

∣∣∣
2
dx.

Hence, it is sufficient to prove that

ĝj(2−jx)2−j/2φ̂(2−jx)
∞∑

k=−∞
e−i2−jkxuj,n−2k + 2−j/2ψ̂(2−jx)

∞∑

k=−∞
e−i2−jkxvj,n−2k

= e−i2−j−1nxĝj+1(2−j−1x)2−(j+1)/2φ̂(2−j−1x) (2.66)

with the convergence in L2(R). We only consider the case n = 2p (the case n = 2p + 1 may

be treated in an analogous fashion). Then, relation (2.66) becomes

ĝj(2−jx) 2−j/2 φ̂(2−jx)
∞∑

m=−∞
ei2−jmxuj,2m + 2−j/2ψ̂(2−jx)

∞∑
m=−∞

ei2−jmxvj,2m

= ĝj+1(2−j−1x) 2−(j+1)/2 φ̂(2−j−1x). (2.67)

The L.H.S. of (2.67) is

ĝj(2−jx) 2−j/2 φ̂(2−jx)
ûj(2−j−1x) + ûj(2−j−1x + π)

2

+2−j/2ψ̂(2−jx)
v̂j(2−j−1x) + v̂j(2−j−1x + π)

2

= 2−12−j/2 φ̂(2−jx)
(
ĝj+1(2−j−1x) û(2−j−1x) + ĝj+1(2−j−1x + π) û(2−j−1x + π)

)

+2−12−j/2 ψ̂(2−jx)
(
ĝj+1(2−j−1x) v̂(2−j−1x) + ĝj+1(2−j−1x + π) v̂(2−j−1x + π)

)

= ĝj+1(2−j−1x)
(
2−j/2 φ̂(2−jx)

û(2−j−1x) + û(2−j−1x + π)
2

+2−j/2ψ̂(2−jx)
v̂(2−j−1x) + v̂(2−j−1x + π)

2

)
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+2−12−j/2
(
φ̂(2−jx)û(2−j−1x + π) + ψ̂(2−jx)v̂(2−j−1x + π)

)
·

·
(
ĝj+1(2−j−1x + π)− ĝj+1(2−j−1x)

)
.

This is also R.H.S. of (2.67) since

2−j/2 φ̂(2−jx)
û(2−j−1x) + û(2−j−1x + π)

2
+ 2−j/2ψ̂(2−jx)

v̂(2−j−1x) + v̂(2−j−1x + π)
2

= 2−(j+1)/2φ̂(2−j−1x)

(this is the Fourier transform of the last relation in the proof of Theorem 7.7 in Mallat

(1998)) and, with y = 2−j−1x,

φ̂(2−jx)û(2−j−1x + π) + ψ̂(2−jx)v̂(2−j−1x + π) = φ̂(2y)û(y + π) + ψ̂(2y)v̂(y + π)

= 2−1/2φ̂(y)
(
û(y)û(y + π) + v̂(y)v̂(y + π)

)
= 0,

where we used the relations φ̂(2y) = 2−1/2φ̂(y)û(y) ((7.30) in Mallat (1998)), ψ̂(2y) =

2−1/2φ̂(y)v̂(y) ((7.57) in Mallat (1998)) and û(y)û(y + π) + v̂(y)v̂(y + π) = 0 (Theorem 7.8

in Mallat (1998)).

We now show that the convergence in (2.65) is also absolute almost surely. By using

Assumptions 3, 4, and integration by parts twice, we may conclude that

|uj,k|, |vj,k| ≤ C(1 + |k|2)−1, k ∈ Z.

By Lemma 3 in Meyer et al. (1999), |Xj,k|, |dj,k| ≤ A
√

log(2 + |k|) a.s., where a random

variable A does not depend on k. The absolute convergence a.s. now follows.

(ii) The proof of (2.62) follows by similar arguments. We need to prove that

Xj,n =
∞∑

k=−∞
Xj+1,ku

d
j,k−2n (2.68)

and

dj,n =
∞∑

k=−∞
Xj+1,kv

d
j,k−2n. (2.69)
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To show (2.68) with convergence in the L2(Ω)-sense, it suffices to prove that

e−i2−jnxĝj(2−jx)2−j/2φ̂(2−jx)

= ĝj+1(2−(j+1)x)2−(j+1)/2φ̂(2−(j+1)x)
∞∑

k=−∞
e−ik2−(j+1)xud

j,k−2n. (2.70)

But the R.H.S. of (2.70) is

ĝj+1(2−(j+1)x)2−(j+1)/2φ̂(2−(j+1)x)
∞∑

m=−∞
e−i(2n+m)2−(j+1)xud

j,m

= ĝj+1(2−(j+1)x)2−(j+1)/2φ̂(2−(j+1)x)e−in2jxûd
j (2

−(j+1)x)

= 2−(j+1)/2φ̂(2−(j+1)x)e−in2jxĝj(2−jx)û(2−(j+1)x), (2.71)

which is also the L.H.S. of (2.70) by using φ̂(2y) = 2−1/2φ̂(y)û(y). The proof of the equality

(2.69) in the L2(Ω)-sense is similar. The absolute almost surely convergence of (2.68) and

(2.69) may be deduced by arguments analogous to those for the absolute almost surely

convergence of (2.65).

2.7 Convergence of random discrete approximations

We will also assume the following:

Assumption 6: Suppose that there are β ∈ N ∪ {0} and α ∈ (0, 1] such that, for any

compact K,

∣∣∣X(t)−X(s)−X(1)(s)(t− s)− . . .−X(β)(s)
(t− s)β

β!

∣∣∣ ≤ A|t− s|β+α, (2.72)

for all t ∈ R, s ∈ K, a.s., where a random variable A depends only on K. (As usual, f (k)

denotes the kth derivative of f .)

Note that (2.72) implies, for some random variable B,

|X(t)−X(s)| ≤ B|t− s|γ for all t ∈ R, s ∈ K, with γ = 1 ∧ (β + α). (2.73)
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Condition (2.72) in Assumption 6 is satisfied by many Gaussian stationary processes.

It follows, in particular, from the two conditions:

X(β) is α-Hölder a.s. (2.74)

and

|X(t)| ≤ C(1 + |t|)β+α a.s. (2.75)

By Theorem and a discussion on pp. 181-182 in Cramér and Leadbetter (1967), (2.74)

follows from ∫ ∞

0
x2β+2α log(1 + x)|ĝ(x)|2dx < ∞. (2.76)

There is also an equivalent condition in terms of the autocovariance function of a stationary

Gaussian process.

Condition (2.75) is always satisfied for stationary Gaussian processes that are bounded

on compact intervals, such as for those satisfying (2.74). In fact, a stronger condition holds:

|X(t)| ≤ C
√

log(2 + |t|) a.s., (2.77)

where C is a random variable. To see this, note that the discrete-time sequence Xk =

supt∈[k,k+1) |X(t)| is stationary. Moreover, by Theorem 2 in Lifshits (1995), p. 142, for

some m ∈ R and σ > 0,

P (X0 ≥ m + τ) ≤ 2(1− Φ(τ/σ)), τ > 0,

where Φ is the distribution function of standard normal law. In other words, the right tail

of the distribution function of Xn decays at least as fast as that of the distribution function

of standard normal law. The bound (2.77) can then be obtained as (3.15) in Lemma 3 of

Meyer et al. (1999).

We shall need some assumptions stronger than parts of Assumptions 3 and 5.
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Assumption 3*: Suppose that, for any J0 ∈ Z,

max
k=0,1,...,β+[α]+2

sup
J≥J0

sup
|x|≤4π/3

∣∣∣∣
∂kGJ(x)

∂xk

∣∣∣∣ < ∞. (2.78)

Assumption 5*: Assume that, for large J ,

|GJ(0)− 1| ≤ const 2−(β+1)J . (2.79)

As in Lemma 2.3.1, under Assumption 3*, we have

|2−j/2Φj(2−ju)| ≤ C

1 + |u|β+[α]+2
, u ∈ R, (2.80)

where a constant C does not depend on j ≥ j0, for fixed j0.

In addition, we will suppose the following:

Assumption 7: If β ≥ 1 in Assumption 6, suppose that

G
(n)
J (0) =

∂nGJ

∂xn
(0) = 0, n = 1, . . . , β. (2.81)

The next result establishes convergence of random discrete approximations.

Proposition 2.7.1. Under Assumptions 2,3,5 of Section 2.3 and Assumption 6 above, we

have

sup
t∈K

|2J/2XJ,[2J t] −X(t)| ≤ A1 2−Jγ a.s., (2.82)

where K is a compact interval and A1 is a random variable that does not depend on J . If,

in addition, Assumptions 3*,5* and 7 above hold, then

sup
t∈K

|2J/2XJ,[2J t] −X([2J t]2−J)| ≤ A2 2−J(β+α) a.s., (2.83)

where a random variable A2 does not depend on J .

Proof. Suppose without loss of generality that K = [0, 1]. In view of Assumption 6, it is

29



enough to show (2.83) or that

sup
k=0,...,2J

∣∣∣2J/2XJ,k −X(k2−J)
∣∣∣ ≤ A2−J(β+α) a.s.

Note by Assumption 7 and the properties of the scaling function φ that

∫

R
unΦJ(u)du = (−i)−nΦ̂(n)

J (0) = (−i)−n ∂n

∂xn

(
GJ(x)2−J/2φ̂(2−Jx)

)∣∣∣
x=0

= 0,

for n = 1, . . . , β. By using Appendix A, Assumptions 5* and 6 (with (2.80)), we have

|2J/2XJ,k −X(k2−J)|

≤ 2J/2

∫

R

∣∣∣X(t)−X(k2−J)− . . .−X(β)(k2−J)
(t− k2−J)β

β!

∣∣∣|ΦJ(t− k2−J)|dt

+X(k2−J)|GJ(0)− 1| ≤ A2J/2

∫

R
|t− k2−J |β+α|ΦJ(t− k2−J)|dt + B2−(β+1)J

= A2J/2

∫

R
|u|β+α|ΦJ(u)|du + B2−(β+1)J (setting u = 2−Jv)

= A′2−J(β+α)

∫

R
|v|β+α|2−J/2ΦJ(2−Jv)|dv

≤ A′′2−J(β+α)

∫

R

|v|β+α

1 + |v|β+[α]+2
dv = A′′′2−J(β+α).

According to Proposition 2.7.1, the discrete approximations 2J/2XJ,[2J t] converge to the

process X(t). Note also that, when β ≥ 1, the convergence is faster on the dyadics than

on the whole interval. An interesting question is whether the faster convergence rate β + α

can be obtained on an interval for some other approximation based on XJ,[2J t].

For a function f , defined on either R or Z, consider the operator

(∆p
hf)(a) =

p∑

k=0

(
p

k

)
(−1)p−kf(a + kh), p ∈ N,
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where a, h are in either R or Z, respectively. When f = fk is a function on Z, we write

∆pfk = (∆p
1f)(k) and ∆pf = (∆p

1f)(0).

In view of the condition (2.72), to obtain the faster rate β + α on a whole interval, it

is natural to try an approximation which includes the terms mimicking the β derivatives in

(2.72). Thus, for β ≥ 1, consider the approximations

X̂β,J(t) = 2J/2XJ,[2J t] + 2J/2
β∑

p=1

∆pXJ,[2J t]

2−Jp

(t− [2J t]2−J)p

p!
, (2.84)

with the idea that 2J/2∆pXJ,[2J t] ≈ X(p)(t)2−Jp for large J . For example, when β = 1,

X̂1,J(t) = 2J/2XJ,[2J t] + 2J/2
XJ,[2J t]+1 −XJ,[2J t]

2−J
(t− [2J t]2−J).

When β = 0, we get X̂0,J(t) = 2J/2XJ,[2J t].

Although intuitive, the approximation X̂β,J in (2.84) may not converge to X(t) at the

faster rate β + α on compact intervals (see Remark 2.7.1 below). It turns out, though, that

a modification of (2.84) does attain that rate. In order to build such approximation, we

will make use of two auxiliary results below. For any x ∈ R, define the function sx on Z by

sx(k) = x + k, k ∈ Z.

Note that ∆psj
0 =

∑p
k=0

(
p
k

)
(−1)p−kkj , j ∈ N (recall from above that ∆psj

0 = (∆p
1s

j
0)(0)).

Lemma 2.7.1. For any x ∈ R, n ∈ N, j = 0, 1, ..., n, we have

∆nsj
x =





0 , if j < n,

n! , if j = n.

Proof. The relation (2.7.1) is trivial for j = 0 by basic combinatorics. Suppose by induction
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that it holds for j − 1 < n and consider the case of j < n. Then, with x = 0,

∆nsj
0 =

n−1∑

k=1

(
n

k

)
(−1)n−kkj +

(
n

n

)
(−1)0nj . (2.85)

The right-hand side of (2.85) is equal to

n

n−1∑

k=1

(
n− 1
k − 1

)
(−1)(n−1)−(k−1)kj−1 + nj = n

n−2∑

k=0

(
n− 1

k

)
(−1)(n−1)−k(k + 1)j−1 + nj

= n
n−1∑

k=0

(
n− 1

k

)
(−1)(n−1)−k(k + 1)j−1 = n

j−1∑

i=0

(
n− 1

i

)[
n−1∑

k=0

(
n− 1

k

)
(−1)(n−1)−kki

]
.

By the induction hypothesis, the terms in the brackets above equal 0 since i ≤ j − 1 < n.

Similarly, one can use induction and the result for j < n to show that ∆nsn
0 = n!.

For all x ∈ R, and j ≤ n ∈ N, we have

∆nsj
x =

n∑

k=0

(
n

k

)
(−1)n−k(x + k)j =

j∑

i=0

(
j

i

)
kixj−i

[
n∑

k=0

(
n

k

)
(−1)n−kki

]
.

If j < n, the term in the brackets above equals 0 when i ≤ j. If j = n, the bracketed term

equals n! for i = n, which concludes the proof.

Observe from (2.83) that replacing 2J/2∆pXJ,[2J t] by (∆p
2−J X)([2J t]/2J) in the approx-

imation (2.84) makes an error of the desired faster rate α + β. The next lemma shows

that, after suitable correction, (∆p
2−J X)([2J t]/2J) approximates X(p)([2J t]/2J) (and then

X(p)(t)) at the desired rate α + β. This correction needs to be taken into account when

considering a modification to X̂β,J . The modification is considered in the proposition below.

Lemma 2.7.2. Let β ∈ N, α ∈ (0, 1) and G ⊆ R be an open interval. If f : G → R is a

Lipschitz function of order β + α in the sense of (2.72), then, for N 3 p ≤ β, a ∈ G, we

have
∆p

hf(a)
hp

− f (p)(a) =
β−p∑

j=1

f (p+j)(a)
(p + j)!

hj ∆psp+j
0 + O(hβ+α−p), (2.86)

as h → 0.
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Proof. By using Lemma 2.7.1, we can write

∆p
hf(a) =

p∑

k=0

(
p

k

)
(−1)p−k

[
f(a + kh)− f(a)−

p∑

i=1

f (i)(a)
i!

(kh)i

]
+ f (p)(a)hp.

Thus, by (2.72),

∆p
hf(a)− f (p)(a)hp =

p∑

k=0

(
p

k

)
(−1)p−k

[
f(a + kh)− f(a)−

β∑

i=1

f (i)(a)
i!

(kh)i

]

+
p∑

k=0

(
p

k

)
(−1)p−k

β−p∑

j=1

f (p+j)(a)
(p + j)!

(kh)p+j

= O(hβ+α) +
p∑

k=0

(
p

k

)
(−1)p−k

β−p∑

j=1

f (p+j)(a)
(p + j)!

hp+j∆psp+j
0 .

Define the approximation function X̃β,J(t) by

X̃β,J(t) = X̃(0),J +
β∑

p=1

X̃(p),J(t)
p!

(t− [2J t]2−J)p, (2.87)

where

X̃(0),J := 2J/2XJ,[2J t], X̃(β),J :=
2J/2∆βXJ,[2J t]

2−Jβ

and

X̃(p),J :=
2J/2∆pXJ,[2J t]

2−J
+

β−p∑

j=1

X̃(p+j),J

(p + j)!
2−Jj ∆psp+j

0 , p = 1, 2, ..., β − 1.

Proposition 2.7.2. Under stronger assumptions of Proposition 2.7.1, we have

sup
t∈K

|X̃β,J(t)−X(t)| ≤ A2−J(β+α) a.s., (2.88)

where K is a compact interval and A is random variable that does not depend on J .

Proof. If the relation

X̃(p),J −X(p)([2J t]2−J) = O(2−J(β+α−p)) (2.89)
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holds for p = 0, 1, 2, ..., β, then, by Assumption 6,

|X̃β,J(t)−X(t)| ≤
∣∣∣∣∣X̃β,J(t)−X([2J t]2−J)−

β∑

p=1

X(p)([2J t]2−J)
p!

(t− [2J t]2−J)p

∣∣∣∣∣

+

∣∣∣∣∣X(t)−X([2J t]2−J)−
β∑

p=1

X(p)([2J t]2−J)
p!

(t− [2J t]2−J)p

∣∣∣∣∣ = O(2−J(β+α)),

which proves (2.88).

Relation (2.89) holds for p = 0 by Proposition 2.7.1. To show (2.89) for β ≥ 1, we argue

by backward induction. For p = β, by Proposition 2.7.1 and Lemma 2.7.2, we have

|X̃(β),J −X(β)([2J t]2−J)| ≤
∣∣∣∣∣
2J/2∆βXJ,[2J t]

2−Jβ
− ∆βX([2J t]2−J)

2−Jβ

∣∣∣∣∣

+

∣∣∣∣∣
∆βX([2J t]2−J)

2−Jβ
−X(β)([2J t]2−J)

∣∣∣∣∣ = O(2−J(β+α−β)).

Assume by induction that (2.89) holds for p + 1, ..., β − 1, β (with p ≥ 1). Then, by

Proposition 2.7.1 and Lemma 2.7.2, we obtain that

|X̃(p),J −X(p)([2J t]2−J)| ≤
∣∣∣∣∣
2J/2∆pXJ,[2J t]

2−Jp
− ∆pX([2J t]2−J)

2−Jp

∣∣∣∣∣

+

∣∣∣∣∣
∆pX([2J t]2−J)

2−Jp
−X(p)([2J t]2−J)−

β−p∑

j=1

X(p+j)([2J t]2−J)
(p + j)!

2−Jj∆psp+j
0

∣∣∣∣∣

+

∣∣∣∣∣
β−p∑

j=1

X(p+j)([2J t]2−J)
(p + j)!

2−Jj∆psp+j
0 −

β−p∑

j=1

X̃(p+j),J

(p + j)!
2−Jj∆psp+j

0

∣∣∣∣∣ = O(2−J(β+α−p)).

Remark 2.7.1. When β = 2, the approximation X̃β,J becomes

X̃2,J = 2J/2XJ,[2J t]

+2J/2

(
XJ,[2J t]+1 −XJ,[2J t]

2−J
+

XJ,[2J t]+2 − 2XJ,[2J t]+1 + XJ,[2J t]

2 2−J

)
(t− [2J t]2−J)
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+2J/2
XJ,[2J t]+2 − 2XJ,[2J t]+1 + XJ,[2J t]

(2−J)2
(t− [2J t]2−J)2. (2.90)

Compare (2.90) with the approximations X̂2,J given in (2.84). Observe that, if X̂2,J also

converges to X at the rate 2 + α, then

O(2−J(2+α)) = X̃2,J − X̂2,J

= 2J/2
XJ,[2J t]+2 − 2XJ,[2J t]+1 + XJ,[2J t]

2 2−J
(t− [2J t]2−J)

or, by using (2.83) in Proposition 2.7.1,

O(2−J(2+α)) =
X(([2J t] + 2)2−J)− 2X(([2J t] + 1)2−J) + X([2J t]2−J)

2−J
(t− [2J t]2−J)

or, by using Taylor expansions,

O(2−J(2+α)) = (2X ′′(t1)−X ′′(t2))2−J (t− [2J t]2−J),

with t1 = t1(J) and t2 = t2(J) that are close to t. The last relation may not be satisfied

under our assumptions, showing that one cannot expect X̂2,J to converge to X at the rate

2 + α.

Although the approximations X̃β,J converge to X at the faster rate β +α, these approx-

imations do not necessarily have continuous paths. Indeed, it can be easily verified that

X̃β,J is continuous when β = 1, 2 but not so when β = 3. For a fixed β ≥ 2, it may be

desirable to have not only a continuous but also a Cβ−1 approximation Xβ,J . Moreover,

in analogy to (2.87), in order to have the faster convergence, we would expect the p-th

derivative of the approximation Xβ,J at [2J t]2−J to approximate the p-th derivative of the

process X at t.

We generally found such Cβ−1 approximations difficult to construct. One difficulty is

the following. As in (2.87), we may seek an approximation Xβ,J which is a polynomial of

order β on an interval ([2J t]2−J , [2J t]2−J +1). Since Xβ,J is globally Cβ−1, we would require

its derivatives X
p
β,J , p = 0, 1, ..., β − 1, to be equal to prescribed values at the endpoints
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[2J t]2−J and [2J t]2−J + 1. Requiring this yields 2β equations that a polynomial Xβ,J must

satisfy. Since a polynomial of order β has only β + 1 coefficients, this is not possible in

general. Despite this difficulty, we have found the following general scheme to yield Cβ−1

approximations, at least for the first several values of β ≥ 2.

To construct a C1 approximation X2,J , we could require first that its derivative

2−J/2X
(1)
2,J(t) = 2−J/2X̂1,J(t) based on the sequence

∆XJ,[2J t]

2−J

=
∆XJ,[2J t]

2−J
+

1
2−J

(
∆XJ,[2J t]+1

2−J
− ∆XJ,[2J t]

2−J

)
(t− [2J t]2−J)

=
∆XJ,[2J t]

2−J
+

∆2XJ,[2J t]

(2−J)2
(t− [2J t]2−J). (2.91)

Observe that, by construction using continuous approximation X̂1,J , X
(1)
2,J is continuous.

Moreover, X
(1)
2,J approximates X(1)(t), and X

(2)
2,J on the interval ([2J t]2−J , [2J t]2−J + 1) ap-

proximates X(2)(t). Integrating (2.91) and requiring it to be continuous yields the following

approximation

2−J/2X2,J(t) =
XJ,[2J t]+1 + XJ,[2J t]

2
+

∆XJ,[2J t]

2−J
(t− [2J t]2−J)

+
∆2XJ,[2J t]

(2−J)2
(t− [2J t]2−J)2. (2.92)

Note that X2,J differs from X̂2,J by the constant term.

Similarly, to construct a C2 approximation X3,J , we could require that

X
(1)
3,J(t) = X2,J(t) based on the sequence

∆XJ,[2J t]

2−J
.

Integrating the resulting expression and requiring it to be continuous yields

X3,J(t) =
1
6
XJ,[2J t]+2 +

4
6
XJ,[2J t]+1 +

1
6
XJ,[2J t] +

1
2

∆2XJ,[2J t]

2−J
(t− [2J t]2−J)

+
1
2

∆2XJ,[2J t]

(2−J)2
(t− [2J t]2−J)2 +

1
6

∆3XJ,[2J t]

(2−J)3
(t− [2J t]2−J)3 (2.93)
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(the subindex 2 in ∆2XJ,[2J t] is not a typo). The approximation (2.93) is C2 and its

derivatives of orders p = 0, 1, 2, 3 approximate those of the process X.

We expect that the above scheme yields Cβ−1 approximations Xβ,J for any β ≥ 2.

However, as explained in Remark 2.7.2 below, we cannot expect these approximations to

converge at the faster rate β +α. This is perhaps not surprising, because the discontinuous

approximations in (2.87) are already nontrivial.

Remark 2.7.2. One cannot expect the approximation X2,J in (2.93) to converge to X at

the faster rate 2 + α. Indeed, if this rate were achieved, we would have (see (2.90))

O(2−J(2+α)) = X̃2,J(t)−X2,J(t)

= XJ,[2J t]+1 −XJ,[2J t] −
XJ,[2J t]+2 − 2XJ,[2J t]+1 + XJ,[2J t]

2 2−J
(t− [2J t]2−J)

or, by using (2.82),

O(2−J(2+α)) = X(([2J t] + 1)2−J)−X([2J t]2−J)

−X(([2J t] + 2)2−J)− 2X(([2J t] + 1)2−J) + X([2J t]2−J)
2−J

(t− [2J t]2−J)

or, by Taylor expansions,

O(2−J(2+α)) = X ′([2J t]2−J)2−J +
1
2
X ′′(t1)2−2J −X ′′(t2)2−J (t− [2J t]2−J),

with t1 = t1(J) and t2 = t2(J) close to t, or, by expanding X ′([2J t]2−J) further,

O(2−J(2+α)) = X ′(t)2−J +
1
2
X ′′(t1)2−2J −X ′′(t2)2−J (t− [2J t]2−J).

This relation may not be satisfied under our assumptions on X.

2.8 Simulation: the case of the OU process

We will illustrate here how the results of Sections 2.6 and 2.7 can be used to simulate

a stationary process X. We consider only the case of the OU process in Example 2.4.1.
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Recall from that example that the discrete approximations taken for the OU process are

ĝJ(x) = 2−J/2σ

√
1− e−2λ2−J

2λ
(1− e−λ2−J

e−ix)−1 (2.94)

and the corresponding discrete random approximations XJ are suitable AR(1) time series

in (2.34). With the choice (2.94) of approximations, observe that the filters uj and vj used

in reconstruction (2.60) become

ûj(x) =
2−1/2

√
1 + e−2λ2−(j+1)

(1 + e−λ2−(j+1)
e−ix)û(x), (2.95)

v̂j(x) = 2−(j+1)/2σ

√
1− e−2λ2−(j+1)

2λ
(1− e−λ2−(j+1)

e−ix)−1v̂(x). (2.96)

Suppose one wants to simulate the OU process on the interval [0, 1]. The idea is to

begin by generating a discrete approximation X0 at scale 20. This step is easy as X0 is

an AR(1) time series. Then, substituting X0 into (2.60), one may get the approximation

X1, and continuing recursively from X1 now, the approximation XJ for arbitrary fixed

J ≥ 1. Note that applying (2.60) recursively each time essentially involves just simulating

independent N (0, 1) random variables and computing filters uj and vj . Proposition 2.7.1

ensures that the properly normalized XJ approximate the OU process uniformly over [0, 1]

and exponentially fast in J .

We illustrate this in Figure 2.1 for the OU process with λ = 1, σ = 1. The plot on

the left depicts the consecutive approximations Xj from X0 at scale 20 to XJ at the finest

scale 2−J with J = 11. In the right plot, we present the sup-differences between consecutive

approximations Xj−1 and Xj , j = 2, . . . , 11, on the log scale. The decay in that plot

confirms that normalized approximations XJ converge to the OU process exponentially fast

in J .

Several comments should be made on how approximations Xj are obtained in Figure 1.

Though theoretically unjustified, we use not Meyer but the celebrated Daubechies CMFs

with N = 8 zero moments. The advantage of these CMFs is that they have finite length

(equal to 2N). In particular, the filters uj in (2.96) are then also finite (of length 2N + 2)

38



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

t

X J

Approximations to OU process

2 3 4 5 6 7 8 9 10 11
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

j

di
ff

Log sup difference between approximations

Figure 2.1: Approximations XJ and the logarithms of their sup differences.

for any j. The filters vj , however, are not finite and are truncated in practice, disregarding

those elements that are smaller than a prescribed level δ = 10−10. Let us also note that

applications of (2.60) involve more elements of Xj than those plotted in Figure 1. This is

achieved by taking the initial approximation X0 of suitable length. Some indication on how

this is done can be seen from the analogous simulation of fractional Brownian motion in

Pipiras (2005).

Finally, let us indicate another interesting feature of the above simulation. Focus on the

filters vj defined by (2.96). They have infinite length and are truncated in practice. It may

seem from the definition (2.96) that vj have to be taken of very long length as j increases

because the elements of the filter

(1− e−λ2−(j+1)
e−ix)−1 =

∞∑

k=0

e−λ2−(j+1)ke−ixk

decay extremely slowly for larger j. In fact, the opposite turns out to be true. As j increases,

the filters vj can essentially be taken of finite length 2N − 2, and things get even better for

larger j in a way!

To explain why this happens, recall (e.g. Mallat (1998), Theorem 7.4) that N zero

moments translates into the factorization

v̂(x) = (1− e−ix)N v̂0,N (x), (2.97)
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where, in the case of Daubechies CMF v, the filters v0,N have also finite length. An expla-

nation follows by observing that

1− e−ix

1− e−λ2−(j+1)
e−ix

=
∞∑

k=0

a
(j)
k e−ixk → 1,

or a
(j)
0 → 1, a

(k)
0 → 0, k ≥ 1, as j →∞. More precisely,

1− e−ix

1− e−λ2−(j+1)
e−ix

−1 =
−e−ix(1− e−λ2−(j+1)

)
1− e−λ2−(j+1)

e−ix
= −(1− e−λ2−(j+1)

)
∞∑

k=1

e−λ2−(j+1)(k−1)e−ixk,

so that the elements a
(j)
k , k ≥ 1, are bounded by 1− e−λ2−(j+1) ≤ λ2−(j+1) → 0, as j →∞.

2.9 Riesz bases

Both the decomposition (2.44) of Zhang and Walter and its modification (2.52) appear

to be ordinary decompositions of signals X into corresponding “bases”. These “bases” are

not orthogonal. We will show, however, that under quite general assumptions both of them

are Riesz bases of L2(R). Several remarks are in order at this point.

Remarks

1. Riesz bases (or frames, more generally) are often desirable because of numerical sta-

bilities associated with them (Daubechies (1992)).

2. One may ask why the space L2(R) is taken here whereas stationary processes X do not

have their sample paths in L2(R). One reason is that a basis is often Riesz not only

for L2(R) but also for other spaces. Hence, proving it for L2(R) is a good indication

of a Riesz basis in other spaces. (We avoided proving that they are Riesz bases in

suitable function spaces associated with X and opted for a direct proof for simplicity.)

3. Our result extends that of Meyer et al. (1999), who showed that the particular wavelet

bases used for fractional Brownian motion, analogous to (2.52), are Riesz. It also seems

that Zhang and Walter have already asked whether their bases in (2.44) are Riesz but

were not able to provide an affirmative answer (Zhang and Walter (1994), Walter and

Shen (2001)). Our result thus provides a partial answer to their open question.
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4. As indicated above, bases in both (2.44) and (2.52) turn out to be Riesz. This is

perhaps not surprising as wavelet functions are the same in both (2.44) and (2.52).

From the perspective of Riesz bases, the modification (2.52) therefore is not different

from (2.44).

We will focus on the bases associated with (2.52), and then discuss those associated

with (2.44). Recall also that a set {el}l∈Z is a Riesz basis of a Hilbert space H if

(i) span{el}l∈Z is dense in H;

(ii) there are constants C2 ≥ C1 > 0 such that

C1

(∑

l∈Z
|al|2

)1/2
≤

∣∣∣
∣∣∣
∑

l∈Z
alel

∣∣∣
∣∣∣
H
≤ C2

(∑

l∈Z
|al|2

)1/2
, (2.98)

for all sequences {al}l∈Z ∈ l2(Z).

We will assume some additional regularity conditions on ĝ(x), namely,

Assumption 8: Suppose that

(a) |ĝ(x)| > 0 for all x ∈ R;

(b) ĝ ∈ C(R);

(c) for any ε > 0, there are d ∈ R and constants C4 ≥ C3 > 0 such that

C3|x|−d ≤ |ĝ(x)| ≤ C4|x|−d, for |x| > ε. (2.99)

For instance, in the case of the Ornstein-Uhlenbeck process, |ĝ(x)|2 = (1 + x2)−1 satisfies

(2.99) with d = 1. But (2.99) also does not cover a seemingly simple case where ĝ(x) = e−x2
.

We consider properly normalized functions of (2.52), namely, the family of functions

{Φ0(t− k), ηj(t− 2−jk) : k ∈ Z, j ≥ 0} (2.100)

as well as their biorthogonal counterparts

{Φ0(t− k), ηj(t− 2−jk) : k ∈ Z, j ≥ 0}, (2.101)
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where

ηj(t− 2−jk) = 2jdΨj(t− 2−jk), ηj(t− 2−jk) = 2−jdΨj(t− 2−jk) (2.102)

(the exponent d in the normalization (2.102) is the same as in the condition (2.99)). To

simplify the exposition, we will focus on (2.100), but all the upcoming arguments can be

adapted for (2.101).

The proof that (2.100) is a Riesz basis of L2(R) uses some of the arguments in Meyer

et al. (1999), and whenever convenient we will refer the reader to their original paper. We

will need the following two lemmas.

Lemma 2.9.1. Under Assumption 3, the family {Φ0(t−k)}k∈Z is a Riesz basis of its closed

linear span V 0 in L2(R).

Proof. Condition (i) of the definition of a Riesz basis is immediately satisfied. As for (ii),

we have that, for any {ak}k∈Z ∈ l2(Z),

∣∣∣
∣∣∣
∑

k

akΦ̂0(t− k)
∣∣∣
∣∣∣
2

L2(R)
=

1
2π

∫

R

∣∣∣∣∣
∑

k

ake
−ikxG0(x)φ̂(x)

∣∣∣∣∣
2

dx,

and thus

0 < C inf
x∈[−π,π]

|G0(x)|2
∑

k

|ak|2 ≤
∣∣∣
∣∣∣
∑

k

akΦ̂0(t− k)
∣∣∣
∣∣∣
2

L2(R)

≤ 2 sup
x∈[−4π/3,4π/3]

|G0(x)|2
∑

k

|ak|2,

for some constant C, where the infimum and the supremum above are finite by Assumption

3 on G0.

Lemma 2.9.2. Under Assumptions 3 and 8, for j ∈ Z and {ak}k∈Z, {bk}k∈Z ∈ l2(Z), there

exists a unique sequence {ck}k∈Z ∈ l2(Z) such that

∑

k

akΦj(t− 2−jk) +
∑

k

bkη
j(t− 2−jk) =

∑

k

ckΦj+1(t− 2−(j+1)k). (2.103)

Moreover, the induced map from l2(Z)× l2(Z) to l2(Z) is an isomorphism.
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Proof. We adapt here the proof of Lemma 5.3 in Meyer et al. (1999). In terms of Fourier

transforms, (2.103) may be expressed as

â
( x

2j

)
Φ̂j(x) + b̂

( x

2j

)
η̂j(x) = ĉ

( x

2j+1

)
Φ̂j+1(x), (2.104)

where â, b̂ and ĉ are, respectively, the 2π-periodic extensions of the discrete Fourier trans-

forms of {ak}, {bk} and {ck}. Set

Φ̂j(x) = U j(x)Φ̂j+1(x), η̂j(x) = V j(x)Φ̂j+1(x),

where, for x ∈ (−π, π),

U j(x) =
ĝj+1(2−(j+1)x)

ĝj(2−jx)
û(2−(j+1)x) and V j(x) = 2jdĝj+1(2−(j+1)x)v̂(2−(j+1)x)

with the Meyer CMFs u and v. Then, the relation (2.104) may be rewritten as

â(2x)U j(2j+1x) + b̂(2x)V j(2j+1x) = ĉ(x),

which implies that ĉ can be obtained from â and b̂. Moreover, by Assumption 3, U j(2j+1x) =

Gj+1(x)Gj(2x)−1û(x) and V j(2j+1x) = 2jdGj+1(x)ĝ(2j+1x)v̂(x) are L2(−π, π) functions,

and thus so is ĉ.

Conversely, consider the family of matrices {M(x)}x∈(−π,π), where

M(x) =




U j(2j+1x) V j(2j+1x)

U j(2j+1(x + π)) V j(2j+1(x + π))




.

These matrices are invertible, since

det[M(x)] = 2jd ĝj+1(x)ĝj+1(x + π)
ĝj(2x)

(û(x)v̂(x + π)− û(x + π)v̂(x)) (2.105)

= 2jd Gj+1(x)Gj+1(x + π)
Gj(2x)

ĝ(2j+1(x + π))(−2e−ix) (2.106)
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is bounded away from zero by Assumption 3 on Gj and Assumption 8 on ĝ. Thus, â and b̂

can also be recovered from ĉ by using




â(2x)

b̂(2x)


 =




â(2(x + π))

b̂(2(x + π))


 = M(x)−1




ĉ(x)

ĉ(x + π)


 .

Equivalently, for example,

â(2x) = Gj(2x)(−2e−ix)
(
Gj+1(x)−1v̂(x + π)ĉ(x) + Gj+1(x + π)−1v̂(x)ĉ(x + π)

)

and thus by Assumptions 3 and 8, ĉ ∈ L2(−π, π), we get that â ∈ L2(−π, π). Similarly,

b̂ ∈ L2(−π, π).

The following proposition is the main result of this section.

Proposition 2.9.1. Under Assumptions 3 and 8, the family (2.100) is a Riesz basis of

L2(R).

Proof. For j ∈ Z, denote by V j the closure of span{Φj(t − 2−jk), k ∈ Z} and by W j the

closure of span{ηj(t− 2−jk), k ∈ Z}. By Lemma 2.9.2,

V j ⊕W j = V j+1, (2.107)

which is a direct but not orthogonal sum. By using the fact that Φ̂j(x) 6= 0 for |x| ≤ 2π
3

and Φ̂j(x) = 0 for |x| ≥ 4π
3 , and by proceeding exactly as in Meyer et al. (1999), Lemma

5.3, we have that

V j ⊆ V j+1,
∞⋂

j=0

V j = V 0, and
∞⋃

j=0

V j is dense in L2(R). (2.108)

Therefore, from (2.107) and (2.108), the space V 0
⊕

j≥0 W j is dense in L2(R), which gives

us part (i) of the definition of a Riesz basis.
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Suppose at the moment that there exist constants C2 ≥ C1 > 0 such that

C1

( ∑

k

∑

j≥0

b2
j,k

)1/2
≤

∣∣∣
∣∣∣
∑

k

∑

j≥0

bj,kη
j(t− 2−jk)

∣∣∣
∣∣∣ ≤ C2

(∑

k

∑

j≥0

b2
j,k

)1/2
(2.109)

for any sequence {bj,k} ∈ l2(Z), where for simplicity we write ‖·‖ instead of ‖·‖L2(R). Then,

since the family {Φ0(t− k), k ∈ Z} is a Riesz basis of V 0 by Lemma 2.9.1, we have

∣∣∣
∣∣∣
∑

k

akΦ0(t− k) +
∑

k

∑

j≥0

bj,kη
j(t− 2−jk)

∣∣∣
∣∣∣

≤
√

2
(∣∣∣

∣∣∣
∑

k

akΦ0(t−k)
∣∣∣
∣∣∣
2
+

∣∣∣
∣∣∣
∑

k

∑

j≥0

bj,kη
j(t−2−jk)

∣∣∣
∣∣∣
2)1/2

≤ C
(∑

k

a2
k +

∑

k

∑

j≥0

b2
j,k

)1/2
,

for some constant C, which establishes the R.H.S. inequality of (2.98). The L.H.S. inequality

of (2.98) may be shown in the following way. As proved in Zhang and Walter (1994), Lemma

1, {θ0(t−k), k ∈ Z} with θ0 in (2.4) is a Riesz basis of the space U0 it generates. Moreover,

the functions {θ0(t−k), θ0(t−k), ηj(t−2−jk), ηj(t−2−jk), k ∈ Z, j ≥ 0} satisfy the relations

∫

R
θ0(t− k)θ0(t− k′)dt = δ{k=k′},

∫

R
ηj(t− 2−jk)ηj′(t− 2−j′k′)dt = δ{j=j′}δ{k=k′},

∫

R
θ0(t− k)ηj(t− 2−jk′)dt = 0 and

∫

R
ηj(t− 2−jk)θ0(t− k′)dt = 0, j ≥ 0.

Then, for any sequences {ak}, {bj,k} ∈ l2(Z), we can write

∑

k

a2
k +

∑

k

∑

j≥0

b2
j,k =

∫

R

(∑

k

akθ
0(t− k) +

∑

k

∑

j≥0

bj,kη
j(t− 2−jk)

)
·

.

(∑

k

akθ0(t− k) +
∑

k

∑

j≥0

bj,kηj(t− 2−jk)

)
dt

≤
∣∣∣
∣∣∣
∑

k

akθ
0(t− k) +

∑

k

∑

j≥0

bj,kη
j(t− 2−jk)

∣∣∣
∣∣∣ ·

∣∣∣
∣∣∣
∑

k

akθ0(t− k) +
∑

k

∑

j≥0

bj,kηj(t− 2−jk)
∣∣∣
∣∣∣

≤ C
∣∣∣
∣∣∣
∑

k

akθ
0(t− k) +

∑

k

∑

j≥0

bj,kη
j(t− 2−jk)

∣∣∣
∣∣∣
(∑

k

a2
k +

∑

k

∑

j≥0

b2
j,k

)1/2
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for some constant C > 0, and hence

1
C

(∑

k

a2
k +

∑

k

∑

j≥0

b2
j,k

)1/2
≤

∣∣∣
∣∣∣
∑

k

akθ
0(t− k) +

∑

k

∑

j≥0

bj,kη
j(t− 2−jk)

∣∣∣
∣∣∣. (2.110)

Consider now a sequence {rk} ∈ l2(Z) and define

â(x) = r̂(x)ĝ−1
0 (x), x ∈ (−π, π).

Since

||â||L2(−π,π) = ||r̂ ĝ−1
0 ||L2(−π,π) = ||r̂ G−1

0 ĝ−1||L2(−π,π),

Assumptions 3 and 8 imply that there exist constants C and C ′ such that

C||r̂||L2(−π,π) ≤ ||â||L2(−π,π) ≤ C ′||r̂||L2(−π,π) (2.111)

(in particular, the R.H.S. inequality shows that the corresponding sequence {ak} is in l2(Z)).

Consider now the extensions of â, r̂ and ĝ0 to R by 2π-periodicity. From the equality

â = r̂ ĝ−1
0 and Assumption 8, we get r̂ Φ̂0 = â θ̂0, and thus

∑

k

rkΦ0(t− k) =
∑

k

akθ
0(t− k), (2.112)

where the above equality is in the L2(R) sense. So, from (2.110), (2.111) and (2.112), we

have
∣∣∣
∣∣∣
∑

k

rkΦ0(t− k) +
∑

k

∑

j≥0

bj,kη
j(t− 2−jk)

∣∣∣
∣∣∣ ≥ C

(∑

k

r2
k +

∑

k

∑

j≥0

b2
j,k

)

for some constant C > 0, and thus we have established (2.98).

It remains to prove (2.109). Observe that

∣∣∣
∣∣∣
∑

k

∑

j≥0

aj,kη
j(t− 2−jk)

∣∣∣
∣∣∣
2

=
1
2π

∫

R

∣∣∣
∑

k

∑

j≥0

aj,k2−jde−ik2−jx2−j/2ψ̂(2−jx)
∣∣∣
2
|ĝ(x)|2dx,
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which, by using (2.99), can be bounded from above and below (up to a constant) by

1
2π

∫

R

∣∣∣
∑

k

∑

j≥0

aj,k2−jde−ik2−jx2−j/2ψ̂(2−jx)
∣∣∣
2
|(ix)−d|2dx

=
1
2π

∫

R

∣∣∣
∑

k

∑

j≥0

aj,ke
−ik2−jx2−j/2ψ̂−d(2−jx)

∣∣∣
2
dx =

∣∣∣
∣∣∣
∑

k

∑

j≥0

aj,k2j/2ψ−d(2jt− k)
∣∣∣
∣∣∣
2
,

where ψ̂−d(x) = (ix)−dψ̂(x). Then, (2.109) follows from the relation (5.9) in Meyer et al.

(1999).

Proposition 2.9.2. Under Assumptions 3 and 8, the family

{θ0(t− k), ηj(t− 2−jk), k ∈ Z, j ≥ 0}

is a Riesz basis of L2(R).

Proof. In the proof of Proposition (2.9.1), we have already established part (ii) of the

definition of Riesz basis. Part (i) is given in Zhang and Walter (1994), Lemmas 1-3.
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CHAPTER 3

Adaptive wavelet decompositions of stationary time
series

3.1 Introduction

Wavelet methods generally refer to an array of concepts, ideas and techniques that are

used in Signal Processing, Pure Mathematics, Theoretical Physics, and many other areas.

Initially developed under various names and by different research communities, these meth-

ods started to converge in the 1980’s producing a genuine revolution in their understanding,

use and applications (Daubechies (1992), Mallat (1998), Akansu and Haddad (2001)). These

developments were also greatly intertwined with those in Statistics where wavelet shrinkage

of Donoho and Johnstone (1994, 1995) and others has become commonplace in problems of

denoising.

Time Series Analysis, viewed rather as a subdiscipline of Statistics than a part of Signal

Processing, has benefitted from wavelet methods as well (see a nice monograph on the

subject by Percival and Walden (2000)). Despite a lengthy wavelet theory of treating

time series as general signals, truly successful applications of wavelets oriented to Time

Series Analysis are not many. Several studies examine the wavelet variance of stationary or

stationary increments time series (Section 8 in Percival and Walden (2000)). Wavelets also

proved useful to analyze and synthesize long memory time series (Section 9 in Percival and

Walden (2000), as well as Abry et al. (2003), Pipiras (2005), Moulines et al. (2006)) and

in connection to unit roots (Fan and Gençay (2006)). Other applications but in continuous

time, concern locally stationary time series (Mallat et al. (1998), Nason et al. (2000)),

multifractal processes (Ossiander and Waymire (2000), Resnick et al. (2003), Jaffard et al.



(2005)). Wavelet analysis of quite general stationary and nonstationary random processes

can be found in Cambanis and Masry (1994), Cambanis and Houdré (1995), Krim and

Pesquet (1995), Averkamp and Houdré (1998).

An appealing property when using wavelets in Time Series Analysis is the decorrelation

property of detail (wavelet) coefficients. Though this fact has by now become an integral

part of the “folklore” (and can be formalized to some degree), there are not too many

statistical studies exploring it in depth. The most studied is probably the case of long

memory time series. See, for example, Dijkerman and Mazumdar (1994), Craigmile and

Percival (2005). But even this case, as seen from these references, is not quite simple. A

related difficulty with decorrelation is that dependence, though weak(er), is still present

and needs to be taken into account in rigorous studies. For example, for a continuous-

time stationary process {X(t)}t∈R and orthogonal wavelets ψj,k(t) = 2j/2ψ(2jt − k), the

correlation structure of detail coefficients dj,k =
∫
RX(t)ψj,k(t)dt can be expressed (under

mild assumptions) as

Edj,kdj′,k′ =
∫

R

∫

R
R(t− s)ψj,k(t)ψj′,k′(t)dtds =

1
2π

∫

R
R̂(x)ψ̂j,k(x)ψ̂j′,k′(x)dx,

where R(u) = EX(u)X(0) is the autocovariance function and f̂(x) =
∫
R e−iuxf(u)du is the

Fourier transform of f . Dealing with such covariance structures exactly is generally quite

difficult and hence one often opts for assuming complete decorrelation (see, for example,

Veitch and Abry (1999)).

In this chapter, we introduce and examine here particular wavelet-based decompositions

of time series where detail coefficients are uncorrelated. We focus on stationary times series

in discrete time. As in Chapter 2, the resulting decompositions will generally be called

Adaptive Wavelet Decompositions (AWD, in short). The adaptiveness refers to the fact

that the wavelet basis (or associated filters) is chosen based on the correlation structure

of a time series. In particular, we suppose in this work that the correlation structure of a

time series is known. This is also reflected in our applications, namely, Maximum Likelihood

Estimation (MLE) and Simulation based on AWD. In MLE, the known correlation structure

is that of a fitted time series model. Knowing the correlation structure, however, may be
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too restrictive for other applications.

MLE, in particular, has greatly motivated this chapter. Several authors have previously

considered wavelet-based MLE for stationary or stationary increment time series (Section 9

in Percival and Walden (2000), Jensen (1999), Moulines et al. (2006)). These MLE (except

Moulines et al. (2006)) use orthogonal wavelet decompositions, and are approximate in

the sense that a complete decorrelation of detail coefficients is assumed, and the variance

of detail coefficients at a scale (octave) is taken approximate. We sought to provide a

wavelet-based MLE which removes these assumptions or such that

� detail coefficients are decorrelated,

� their variance is taken exact

and also, as in the previous cases, MLE such that it is

� practical to implement,

� computationally efficient,

� not affected by polynomial trends.

MLE based on AWD is a step toward obtaining such MLE. It is not totally satisfactory yet

because dealing with polynomial trends and some types of stationary time series presents

difficulties. (Difficulties with polynomial trends result from the boundary effect when ap-

plying AWD to finite data.)

The idea of seeking particular wavelet or other bases with uncorrelated coefficients is

obviously not new. The classical, non-wavelet example is that of the Karhunen-Loève (KL)

bases, possessing other optimal properties as well. But except special cases, the KL bases

are not found explicitly and they do not annihilate polynomial trends. The Signal Pro-

cessing literature offers a number of alternative decompositions in both wavelet (subband)

and other contexts. It is typically assumed that all coefficients in these decompositions are

uncorrelated because this is generally considered a necessary condition for coding optimal-

ity. (With uncorrelated coefficients, coding gain is no longer possible.) See, for example,

Vaidyanathan and Akkarakaran (2001) and the references therein. Similar decompositions
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oriented to Statistics and Probability, and in continuous time can also be found in Zhang

and Walter (1994), Benassi and Jaffard (1994), Donoho (1995), Ruiz-Medina et al. (2003),

Meyer et al. (1999).

As in Chapter 2, AWD considered here have uncorrelated detail coefficients but also

allow approximation coefficients to be correlated. This extension appears to be particularly

relevant in at least two situations of interest, namely,

1. long memory,

2. near unit roots.

It is quite intriguing that these are exactly the two situations where orthogonal wavelet

decompositions were found particularly useful (see the discussion with the references above).

Correlated approximation coefficients allow, in particular, to have associated low and high

pass filters (which can be thought of as AWD basis in discrete time) of practically small

length. The number of zero moments of the underlying orthogonal wavelet basis plays

here a fundamental role. Having small filter length is important at the boundary (border)

when dealing with finite data. The gain in length is minimal, if any, in other situations

that we know of (explaining perhaps why AWD were not considered earlier, since the above

situations have gained increased attention fairly recently). The extension provided by AWD

is also interesting for several other reasons discussed below. In its approach, this study is

also closest to our parallel work on AWD in continuous time in Chapter 2. Despite some

similarities, however, the focus and contents of this work are very different from those in

Chapter 2.

Another conspicuous example of representations with uncorrelated coefficients are spec-

tral (Fourier) representations. We were also motivated by the question of what their ap-

propriate counterparts in the “wavelet domain” are. AWD introduced here offer one such

possibility.

The rest of the chapter is organized as follows. In Section 3.2, we gather some basic

notions and facts on time series and wavelets that will be used throughout the chapter.

In Section 3.3, we introduce and examine Adaptive Wavelet Decompositions (AWD) of

stationary time series. Examples are considered in Section 3.4. Applications of AWD and
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proofs can be found in Sections 3.5 and 3.6, respectively.

3.2 Preliminaries on time series and wavelets

We focus throughout on stationary time series X = {Xn}n∈Z in discrete time. Sta-

tionarity refers to the 2nd order (wide-sense) stationarity, that is, the case when, for any

h ∈ Z,

EXk+hXh = EXkX0 =: r(k), k ∈ Z, (3.1)

where r is the autocovariance function. We suppose, in addition, that a time series X is

Gaussian. (In this case, decorrelation is equivalent to independence.) This assumption is

not restrictive. Since the law of a Gaussian time series is determined by second moments,

our arguments can be based only on the second moment considerations. After removing

Gaussianity, the same arguments then apply to 2nd order stationary time series. Most of

our applications, however, assume Gaussianity.

We will also work only with linear time series

Xn =
∞∑

k=−∞
akεn−k = (a ∗ ε)n, n ∈ Z, (3.2)

where a = {ak} ∈ l2(Z) and ∗ denotes the usual convolution. In the Gaussian case, ε = {εn}
are independent, N (0, 1) random variables. We will refer to such ε as a Gaussian white noise

(sequence). One of the main tools we will use is the spectral representation of X in (3.2)

(see e.g. Brockwell and Davis (1991)):

Xn =
∫ 2π

0
einwdW (w) =

∫ 2π

0
einwâ(w)dZ(w), n ∈ Z, (3.3)

where W (w), w ∈ (0, 2π), is a Gaussian, orthogonal (independent) increment, complex-

valued process such that EdW (w)dW (w′) = |â(w)|2dw1{w=w′}/2π, Z(w), w ∈ (0, 2π),

is a Gaussian, orthogonal (independent) increment process such that EdZ(w)dZ(w′) =

dw1{w=w′}/2π, and

â(w) =
∞∑

k=−∞
ake

−ikw, w ∈ (0, 2π), (3.4)
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is the discrete Fourier transform of a sequence a ∈ l2(Z). The quantity |â(w)|2/2π is known

as a spectral density of X. Observe also that

r = a ∗ a, r̂(w) = |â(w)|2,

where {xk} = {x−k} stands for reversal in time of a sequence {xk}.
In regard to wavelets, since we work in discrete time, we will use the so-called Conjugate

Mirror Filters (CMF) associated with an orthogonal Multiresolution Analysis (MRA). See,

for example, Mallat (1998). These are a low pass filter u = {un} and a high pass filter

v = {vn} satisfying a number of properties. In particular, for any w ∈ R,

|û(w)|2 + |û(w + π)|2 = 2, (3.5)

v̂(w) = e−iwû(w + π) (3.6)

and hence

|v̂(w)|2 + |v̂(w + π)|2 = 2, (3.7)

û(w)v̂(w) + û(w + π)v̂(w + π) = 0. (3.8)

Popular CMF are those of Daubechies with N zero moments, N ≥ 1. For fixed N , these

filters are of finite length 2N . It is also known (e.g., Mallat (1998), p. 241) that, with N

zero moments and finite length CMF,

û(w) = (1 + e−iw)N û0,N (w), v̂(w) = (1− e−iw)N v̂0,N (w), (3.9)

with u0,N , v0,N of finite length as well.

CMF u and v appear in the (orthogonal) Fast Wavelet Transform (FWT) of a deter-

ministic sequence x = {xn}. Setting a0 = x, at the decomposition step, one defines the

approximation and detail coefficients as

aj =↓2 (u ∗ aj−1), dj =↓2 (v ∗ aj−1), j = 1, 2, . . . , (3.10)
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where (↓2 x)k = x2k is the downsampling (decimation) by factor 2 operation. At the

reconstruction step, one has

aj = u∗ ↑2 aj+1 + v∗ ↑2 dj+1, j = 0, 1, . . . , (3.11)

where (↑2 x)k = xk/21{even k} + 01{odd k} is the upsampling by factor 2 operation. One can

easily verify that

(̂↓2 x)(w) =
1
2

(
x̂
(w

2

)
+ x̂

(w

2
+ π

))
, (̂↑2 x)(w) = x̂(2w). (3.12)

The time series and wavelet decompositions are considered above on the index set Z.

We shall also consider below the case of a finite index set 0, 1, . . . , T − 1, with T = 2J . In

this case, the convolution ∗ above is often replaced by the circular convolution ~, and the

discrete Fourier transform of x = {x0, x1, . . . , xT−1} becomes

x̂(w) =
T−1∑

k=0

xke
−ikw, at w =

2πj

T
, j = 0, . . . , T − 1. (3.13)

In particular, with these modifications, (3.10) is considered for j = 1, . . . , J , and (3.11)

continues to hold for j = 0, 1, . . . , J − 1. When x and y are of arbitrary (possibly infinite)

length, the circular convolution is defined as

x ~ y = xper ~ yper with, e.g., xper
k =

∑
n

xk+nT .

One has ̂(x ~ y)(w) = x̂(w)ŷ(w), where x and y can be of arbitrary length.

The time series vectors Y = {Y0. . . . , YT−1} that are natural in the context of circular

convolutions, are

Yn = (b ~ ε)n, n = 0, . . . , T − 1, (3.14)

where ε = {ε0, . . . , εT−1} are independent, N (0, 1) random variables and b = {b0, . . . , bT−1}
is a vector. These time series vectors are also stationary (in the sense that EYiYj = EY0Yj−i

with 0 ≤ i ≤ j ≤ T − 1) but not every stationary vector can be written this way. The
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covariance matrix (E(YiYj), i, j = 0, . . . , T − 1) is, in fact, circular. Conversely, under

mild assumptions, a Gaussian vector Y with a circular covariance matrix can be written as

(3.14). If rY is the autocovariance function of Y , observe also that

rY = b ~ b, r̂Y (w) = |̂b(w)|2. (3.15)

3.3 Definition and basic properties of AWD

We shall use below the following general result of its own interest. See Section 3.6 for a

proof.

Proposition 3.3.1. Let a, b ∈ l2(Z) be arbitrary filters and u, v ∈ l2(Z) be CMF. Define

Ûd(ω) =

(
b̂(2ω)
â(ω)

)
û(ω), V̂d(ω) =

(
1

â(ω)

)
v̂(ω), (3.16)

and

Ûr(ω) =
â(ω)

b̂(2ω)
û(ω), V̂r(ω) = â(ω)v̂(ω). (3.17)

Suppose that Ûd, V̂d, Ûr, V̂r ∈ L2(0, 2π) and the corresponding filters

Ud, Vd, Ur, Vr ∈ l1(Z). (3.18)

(i) (Decomposition step) If X = a ∗ ε is a stationary time series with a Gaussian white

noise ε, then

Y =↓2 (Ud ∗X), η =↓2 (V d ∗X), (3.19)

are such that Y = b ∗ ξ is a stationary Gaussian time series with a Gaussian white noise ξ,

and η is a Gaussian white noise, independent of ξ and hence of Y .

(ii) (Reconstruction step) If Y and η are the independent time series obtained in (i)

above, then

X = Ur∗ ↑2 Y + Vr∗ ↑2 η. (3.20)

Remark 3.3.1. The results (i) and (ii) can be informally explained as follows. Writing
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X̂(w) = â(w)ε̂(w), observe that

Ûd(w)X̂(w) = b̂(2w)û(w)ε̂(w), V̂d(w)X̂(w) = v̂(w)ε̂(w).

Hence, by using (3.12), the Fourier transforms of the R.H.S. of (3.19) are

̂↓2 (Ud ∗X)(w) = b̂(w) ̂↓2 (u ∗ ε)(w), ̂↓2 (V d ∗X)(w) = ̂↓2 (v ∗ ε)(w). (3.21)

Similarly, the Fourier transform of the R.H.S. of (3.20) is

Ûr(w)Ŷ (2w) + V̂r(w)η̂(2w) = â(w)
(
û(w)ξ̂(2w) + v̂(w)η̂(2w)

)

= â(w)
(
û∗ ↑2 ξ + v̂∗ ↑2 η

)
(w).

If ε is a Gaussian white noise, it is easy to verify that its discrete (orthogonal) wavelet

transform leads to approximation coefficients ξ =↓2 (u∗ε) and detail coefficients η =↓2 (v∗ε)
which are two independent Gaussian white noise sequences. The equation u∗ ↑2 ξ + v∗ ↑2 η

is just the usual reconstruction of ε.

Remark 3.3.2. Another interpretation of Proposition 3.3.1 is to say that the set of filters

(Ud, Vd, Ur, Vr) form a perfect reconstruction filter bank (see, for example, Brockwell and

Davis (1991), p. 259). Indeed, by Theorem 7.8 in Mallat (1998), this is so if and only if

Ûd(w)Ûr(w + π) + V̂d(w)V̂r(w + π) = 0,

Ûd(w)Ûr(w) + V̂d(w)V̂r(w) = 0.

The L.H.S. of the first relation is

â(w + π)
â(w)

(
û(w)û(w + π) + v̂(w)v̂(w + π)

)
,

which is 0, since the term in the parentheses is 0. The second relation can be proved

similarly. Note also that Proposition 3.3.1 is not a consequence of perfect reconstruction
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because filtering involves (random) time series.

The following result is a simple consequence of Proposition 3.3.1.

Corollary 3.3.1. Let X0 = a0 ∗ ε0 be a Gaussian, stationary time series with a0 ∈ l2(Z)

and a Gaussian white noise ε0. For j ≥ 1, let also

aj ∈ l2(Z) (3.22)

and

Û j
d(ω) =

(
âj(2ω)
âj−1(ω)

)
û(ω), V̂ j

d (ω) =
(

1
âj−1(ω)

)
v̂(ω), (3.23)

where u, v are CMF. Suppose that Û j
d , V̂ j

d ∈ L2(0, 2π) and the corresponding filters

U j
d , V j

d ∈ l1(Z), j ≥ 1. (3.24)

(i) (Decomposition step) For j ≥ 1, let

Xj =↓2 (U j
d ∗Xj−1), ξj =↓2 (V j

d ∗Xj−1). (3.25)

Then, for j ≥ 1,

Xj = aj ∗ εj (3.26)

with a Gaussian white noise εj, and ξj, j ≥ 1, are independent, Gaussian white noise

sequences, and εJ (hence XJ) and ξj, j ≤ J , are independent.

(ii) (Reconstruction step) If, in addition,

Û j
r (ω) =

âj(ω)
âj+1(2ω)

û(ω), V̂ j
r (ω) = âj(ω)v̂(ω) (3.27)

are such that Û j
r , V̂ j

r ∈ L2(0, 2π) and the corresponding filters

U j
r , V j

r ∈ l1(Z), (3.28)
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then

Xj = U j
d∗ ↑2 Xj+1 + V j

r ∗ ↑2 ξj+1, j ≥ 0. (3.29)

Definition 3.3.1. The decomposition of a stationary time series X = X0 into the series

Xj , ξj , j ≥ 1, in Corollary 3.3.1 will be called Adaptive Wavelet Decomposition (AWD, in

short) of a stationary time series X. We will refer to Xj as approximations and to ξj as

details.

Remark 3.3.3. AWD can be easily extended to cyclic time series Y = Y 0 = a0 ~ ε0 given

by (3.14) of length 2J . Consider

Y j =↓2 (U j
d ~ Y j−1), ξj =↓2 (V j

d ~ Y j−1), j = 1, . . . , J, (3.30)

at decomposition, and

Y j = U j
r ~ ↑2 Y j+1 + V j

r ~ ↑2 ξj+1, j = 0, . . . , J − 1, (3.31)

at reconstruction. Then, ξj are independent, Gaussian white noise sequences of length 2J−j ,

and Y j = aj ~ εj are circular time series with Gaussian white noise sequences εj of length

2J−j .

In practice, only finite data X0, X1, . . . , XT−1 are available and hence AWD cannot be

applied (supposing also that a is known). For finite data X̃0 = (X0, X1, . . . , XT−1) with

T = 2J , consider the following time series vectors:

X̃j =↓2 (U j
d ~ X̃j−1), ξ̃j =↓2 (V j

d ~ X̃j−1), j = 1, . . . , J. (3.32)

These relations differ from those in (3.25) by the presence of circular convolution ~. In

particular, observe that the series X̃j , ξ̃j have now length 2J−j . Observe also that X̃j , ξ̃j

are well-defined as long as U j
d , V j

d ∈ l1(Z) which is the assumption (3.24). Moreover, it can

be verified that

X̃j = U j
r ~ ↑2 X̃j+1 + V j

r ~ ↑2 ξ̃j+1, j = 0, . . . , J − 1. (3.33)
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The idea behind (3.32) is the following. If U j
d , V j

d have short length (or decay fast to

0), and the length T is large, then most elements of X̃1, ξ̃1 are computed as in AWD (and

hence those of X̃1 are akin to a1 ∗ ε1, and those in ξ1 are independent). Only those few

coefficients that are at the end of the time series vector X̃0 (affected by the border, or under

the border effect) are different from those in AWD. More generally, the elements of X̃j , ξ̃j

unaffected by the border are computed as in AWD.

Definition 3.3.2. The decomposition of a stationary vector X̃0 = (X0, X1, . . . , XT−1) with

T = 2J into the vectors X̃j , ξ̃j , j = 1, . . . , J , in (3.32) will be called approximate AWD.

Remark 3.3.4. Using circular convolutions in (3.32) at decomposition can be viewed as

one way of dealing with the boundary when having finite data. More precisely, approximate

AWD of X = X̃0 = (X0, X1, . . . , XT−1) is the usual AWD applied to the infinite time series

obtained by extending observations periodically outside the boundary. Other ways are, for

example, to consider observations outside the boundary as zero, or to extend periodically the

vector (X0, X1, . . . , XT−2, XT−1, XT−2, . . . , X1). Using circular convolutions is convenient

analytically.

Remark 3.3.5. Another perspective on approximate AWD concerns covariance factoriza-

tion. If X̃0 = (X0, X1, . . . , XT−1) with T = 2J is a Gaussian stationary sequence, let

Ỹ = (ξ̃1, ξ̃2, . . . , ξ̃J , Ỹ J) (3.34)

be a 1× T vector consisting of details ξ̃j and last approximation Ỹ J in approximate AWD.

Write

Ỹ = X̃0M (3.35)

for an invertible matrix M . Most of the details ξ̃j are approximately independent, N (0, 1)

random variables. Hence,

EỸ ′Ỹ ≈ Id,

where Id is the identity matrix, and the variance of Ỹ J is ignored for simplicity. By using
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(3.35),

EX̃0′X̃0 = (M−1)′
(
EỸ ′Ỹ

)
M−1 ≈ (M−1)′M−1, (3.36)

which is an approximate factorization of the covariance matrix of X̃0. Observe also that

the matrix M is not orthogonal.

Note from Definition 3.3.1 that AWD are quite general in the choice of moving average

filters aj , and hence the corresponding time series Xj . In fact, AWD can be defined for

many different choices of aj ’s but only some of them will have desired properties. These

properties can be suggested by an application at hand or other considerations, for example,

(a) XJ and ξj , j ≥ J ≥ 1, consisting of uncorrelated (independent) variables,

(b) U j
d , V j

d , U j
r , V j

r decaying to zero fast, or

(c) Xj being natural approximations to X0 at scale 2j .

The property (a) is important in Signal Processing as it is typically associated with opti-

mality in coding (see Section 3.1). In the applications considered here, we were motivated

by (b), in view of approximate AWD (see the discussion preceding Definition 3.3.2). In

regard to (c), one natural approximation of a series X0 at scale 2j is

Xj = {X0
2jk}k∈Z. (3.37)

In particular, if â0(w) = â(w) enters the spectral representation (3.3) of X0, then

âj(w) =
1
2

(
âj−1

(w

2

)
+ âj−1

(w

2
+ π

))
(3.38)

is associated with the spectral representation of Xj . See Example 3.4.2 below for further

discussion on (c).

An important property of any AWD is that details ξj ignore polynomial trends up to

the order of the number of zero moments. Analogous fact is well-known for orthogonal

wavelet decompositions. (In discrete time, this follows immediately from Theorem 7.4, (iv),

in Mallat (1998).) We show that it continues to hold here as well (see Section 3.6 for a

proof).
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Proposition 3.3.2. Suppose that the underlying orthogonal MRA has N zero moments

with factorization (3.9). Let pn = p(n) where a polynomial p is of degree D < N . Consider

AWD with decomposition filters U j
d , V j

d such that |U j
d,n|, |V j

d,n| ≤ Cj |n|−D−2, where Cj is a

constant. Then, for any j ≥ 1,

ξj(p) = 0, (3.39)

where ξj(p) are details in AWD when applied to the polynomial p.

3.4 Examples of AWD

We provide here several examples of AWD. We would like the associated set of filters

U j
d , V j

d , U j
r , V j

r to decay to zero fast (see (b) following Remark 3.3.5). For some time series,

this turns out to be possible when the number of zero moments of the underlying MRA

increases. Note from the examples below that we use the term “decay” in a rather loose

sense.

Example 3.4.1. (FARIMA(0,s,0)) Let X be a Gaussian FARIMA(0,s,0) time series with

s ∈ (−1/2, 1/2) (s 6= 0), that is, X = a ∗ ε with a Gaussian white noise ε and

â(w) = (1− e−iw)−s (3.40)

(see, for example, Brockwell and Davis (1991), p. 520, or Beran (1994)). The case s ∈
(0, 1/2) corresponds to the so-called long memory, generally considered more difficult to

deal with.

Consider AWD with

âj(w) = â(w), (3.41)

for any j ≥ 1, and focus on the definition (3.27) of U j
r , V j

r . Note that

â(w)
â(2w)

=
(1− e−iw)−s

(1− e−i2w)−s
= (1 + e−iw)s =

∞∑

k=0

f
(s)
k e−iwk, (3.42)

â(w) = (1− e−iw)−s =
∞∑

k=0

g
(−s)
k e−iwk (3.43)

are the two filters entering (3.27). These filters, in fact, decay extremely slowly: one can
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show by using the Stirling’s formula that, as k →∞,

f
(s)
k ∼ (−1)k k−s−1

Γ(−s)
, g

(−s)
k ∼ ks−1

Γ(s)
. (3.44)

(For example, when s ∈ (0, 1/2), the second filter is not even summable.)

It is therefore quite surprising that, in fact, the resulting filters U j
r , V j

r may decay to

0 very rapidly. As mentioned above, this results from the number of zero moments of the

underlying orthogonal MRA. Letting N denote the number of zero moments and using

(3.9), observe that

Ûr(w) ≡ Û j
r (w) = (1 + e−iw)s+N û0,N (w), V̂r(w) ≡ V̂ j

r (w) = (1− e−iw)−s+N v̂0,N (w).

(3.45)

By (3.42)–(3.44), we now have

(1 + e−iw)s+N =
∞∑

k=0

f
(s+N)
k e−iwk with f

(s+N)
k ∼ (−1)k k−s−N−1

Γ(−s−N)
,

(1− e−iw)−s+N =
∞∑

k=0

g
(−s+N)
k e−iwk with g

(−s+N)
k ∼ ks−N−1

Γ(s−N)
, (3.46)

as k →∞. Comparing (3.46) with (3.44), we see that these filters now decay rapidly when

N is large.

The latter observation by itself does not show that the resulting filters Ur, Vr in (3.45)

decay faster as N increases because u0,N and v0,N also grow in size (not length). To see

that Ur, Vr indeed decrease faster with N , consider Table 3.1. In this table, we provide

lengths of Ur, Vr truncated at a priori specified cutoff levels δ for various choices of N and

Daubechies CMF. The value s = 0.25 is considered. The filters u0,N can be found in Table

6.2 of Daubechies (1992), p. 196. Observe from Table 1 that the effect of increasing N is

really substantial. For example, when δ = 10−7, the length of truncated Vr goes from 4066

with N = 1 to 40 when N = 10. It should also be noted that the results of Table 3.1 are not

sensitive to the value of s. In particular, the change in the results is small as s approaches

1/2.
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Length of truncated filters
Filters Cutoff ε N = 1 N = 3 N = 6 N = 10

10−7 706 77 38 35
Ur 10−10 ≈ 1.5× 104 375 89 56

10−15 ≈ 2.5× 106 5577 440 140
10−7 4066 114 44 40

Vr 10−10 ≈ 2× 105 696 108 63
10−15 ≈ 1.5× 108 ≈ 1.4× 104 557 160

Table 3.1: Lengths of truncated filters Ur and Vr at cutoff δ
with s = 0.25 and the Daubechies MRA with N zero moments.

We discussed above the decay of reconstruction filters U j
r , V j

r . Similar conclusions can

be reached for decomposition filters U j
d , V j

d in (3.23) by writing, for example, in the case of

U j
d , (

â(2w)
â(w)

)
(1 + e−iw)N = (1 + eiw)s(1 + e−iw)N = (1 + eiw)s+Ne−iwN .

In conclusion, if fast decaying filters U j
d , V j

d , U j
r , V j

r are needed, the AWD with (3.40) appears

to be a suitable choice for FARIMA(0, s, 0) time series.

Remark 3.4.1. The faster decay in (3.46) has also the following simple explanation that

is useful more generally. According to (3.42)–(3.44), the elements f
(s)
k of (1 + e−iw)s =

â(w)/â(2w) decay as

f
(s)
k ∼ (−1)k k−s−1

Γ(−s)
.

Application of the filter (1 + e−iw)N to (1 + e−iw)s corresponds to taking sums in blocks of

size N . Since f
(s)
k oscillates and decays, the sums will become smaller. A similar explanation

with difference instead of sums applies to the elements g
(−s)
k of (1− e−iw)−s.

Example 3.4.2. (AR(1),MA(1)) Let X be a Gaussian AR(1) time series, that is, X = a∗ ε

with a Gaussian white noise ε and

â(w) = (1− a1e
−iw)−1, (3.47)

where −1 < a1 < 1 (a1 6= 0). The case of a1 = ±1, not considered here, corresponds to unit

roots, and the case of a1 close to ±1 (−1 < a1 < 1) is referred to as near unit roots.

If only the decomposition of X is of interest (as, for example, in maximum likelihood
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estimation), consider AWD with

aj(w) ≡ 1, j ≥ 1. (3.48)

Then,

Û1
d (w) = (1− a1e

iw)û(w), V̂ 1
d (w) = (1− a1e

iw)v̂(w) (3.49)

and

Û j
d(w) = û(w), V̂ j

d (w) = v̂(w), j ≥ 2. (3.50)

Hence, the corresponding filters U j
d , V j

d are of short and finite length (supposing that u and

v are such). Note also that, in this case, all approximations Xj and details ξj are Gaussian

white noise sequences.

Suppose now that the reconstruction of X is also of interest. With the choice (3.48),

Û0
r (w) =

û(w)
1− a1e−iw

, V̂ 0
r (w) =

v̂(w)
1− a1e−iw

(3.51)

and

Û j
r (w) = û(w), V̂ j

r (w) = v̂(w), j ≥ 1. (3.52)

When a1 is close to 0, the elements of (1−a1e
−iw)−1 =

∑∞
k=0 ak

1e
−iwk decay to zero rapidly

and hence the filters U0
r , V 0

r can be taken of short length in practice. When a1 is close to ±1,

however, the decay of ak
1 is much slower, resulting in longer filters U0

r , V 0
r . Zero moments

are not helpful for U0
r when 0 < a1 < 1, and for V 0

r when −1 < a1 < 0 (see Remark 3.4.1

above).

When 0 < a1 < 1, the decay of U0
r can be improved by considering a different AWD.

Take AWD with

âj(w) = (1− a2j

1 e−iw)−1 (3.53)

so that

Û j
r (w) = (1 + a2j

1 e−iw)û(w), V̂ j
r (w) =

v̂(w)
1− a2j

1 e−iw
, j ≥ 0. (3.54)

In this case, U j
r are also of finite and short length. The larger number of zero moments
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make the filter V j
r decay faster, especially when a1 is close to 1. We illustrate this in Table

3.2 in the following way. Let v be the Daubechies CMF with N zero moments so that its

length is 2N . The filter V 0
r is obtained by convolving the sequence (1, a1, a

2
1, . . .) with the

filter v. Note that the (2N + j)th nonzero element of the convolution is

aj
1c := aj

1(1, a1, . . . , a
2N−1
1 )v′, j ≥ 0,

and decays as a geometric sequence. In Table 3.2, we provide the absolute values of the

(2N)th nonzero element of the filter V 0
r for various choices of the parameter a1 and the

number of zero moments N . In parentheses, we provide the value of a2N
1 for comparison.

Note that, when a1 is closer to 1, the filter V 0
r indeed decays much faster (in the sense

of being closer to 0 overall) with the increasing number of zero moments. For smaller a1

(a1 = 0.5 in Table 3.2), this effect is no longer present.

Note also that, with the choice (3.53) for AWD, the approximations Xj become AR(1)

time series with the parameters a2j

1 . The decomposition filters associated with (3.53) are

Û j
d(w) =

û(w)
1 + a2j

1 eiw
, V̂ j

d (w) = (1− a2j

1 eiw)v̂(w). (3.55)

When a1 is close to 1, the filters U j
d can also be seen to decay faster with the increasing

number of zero moments.

When −1 < a1 < 0 and especially when a1 is close to −1, the AWD with (3.53) is not

helpful because the decay of V 0
r (V j

r with j = 0) is not affected by the increasing number

of zero moments. This occurs because, in simple terms, the elements of (1− a1e
−iw)−1 =

∑∞
k=1(−1)k|a1|ke−iwk oscillate and the difference operator (1− e−iw)N does not make them

decrease to 0 faster (see Remark 3.4.1). In this case, the AWD with (3.48) is probably the

best one can do. Note that, with (3.48), increasing the number of zero moments make the

filters U0
r decay faster. This does not affect V 0

r and, the closer a1 is to −1, the longer V 0
r

should be taken in practice.

We discussed above the case of AR(1) time series. Suppose now that X is an MA(1)
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Size of the (2N)th nonzero element
a1 N = 1 N = 3 N = 6 N = 10
0.5 0.3535 0.0267 0.0007 7.9× 10−6

(0.25) (0.0156) (0.0002) (9.5× 10−7)
0.7 0.2121 0.0089 0.0001 2.8× 10−7

(0.49) (0.1176) (0.0138) (0.0007)
0.9 0.0707 0.0004 3.2× 10−7 8.5× 10−11

(0.81) (0.5314) (0.2824) (0.1215)
0.999 0.0007 5.5× 10−10 3.9× 10−15 3.8× 10−10

(0.998) (0.994) (0.988) (0.9801)

Table 3.2: The (2N)th nonzero element of the filter V 0
r for various choices of

a1 and the Daubechies MRA with N zero moments.

time series, that is, X = a ∗ ε with

â(w) = 1 + b1e
−iw, (3.56)

where −1 < b1 < 1 (b1 6= 0). Since â(w) in (3.56) is reciprocal to that in (3.47), our discus-

sion above also covers the case of MA(1) time series. For example, reconstruction filters for

AR(1) time series now become decomposition filters for MA(1) time series. Equivalently,

AWD for MA(1) time series is applied at decomposition with either

âj(w) ≡ 1, j ≥ 1,

or

âj(w) = 1− (−b1)2
j
e−iw, j ≥ 1.

It is also clear that our discussion can be extended to more general ARMA(p, q) time series.

Remark 3.4.2. If X0 is an MA(1) time series with â(w) = 1 + b1e
−iw, −1 < b1 < 1

(b1 6= 0), or X0
n = εn + b1εn−1 with a Gaussian white noise {εn}, then Xj in (3.37) are all

(up to a constant) Gaussian white noise sequences or

âj(w) ≡ 1. (3.57)

If X0 is an AR(1) time series with â(w) = (1 − a1e
−iw)−1, −1 < a1 < 1 (a1 6= 0), or
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X0
n = εn + a1εn−1 + a2

1εn−2 + . . ., then Xj in (3.37) are associated with

âj(w) = (1− a2j

1 e−iw)−1. (3.58)

Observe that (3.57) and (3.58) are exactly what was proposed for AWD at reconstruction

for MA(1) and AR(1) time series in Example 3.4.2 above.

3.5 Applications of AWD

We consider here applications of AWD to simulation (Section 3.5.1) and MLE (Section

3.5.2). Simulation uses AWD at reconstruction and MLE uses AWD at decomposition.

3.5.1 Simulation

Suppose that the time series X of length 2J is desired. It can be simulated using AWD

through the following steps:

1. For j = 0, 1, . . . , J − 1, determine the largest length LJ of the reconstruction filters

U j
r , V j

r truncated at a chosen cutoff level δ > 0. Let Ũ j
r , Ṽ j

r , j = 0, 1, . . . , J − 1, be the

reconstruction filters U j
r , V j

r truncated to have length LJ each.

2. Use some simulation method to generate the time series vector XJ of length LJ + 1.

3. Apply the reconstruction scheme (3.29) recursively J times with the truncated recon-

struction filters Ũ j
r , Ṽ j

r and taking into account the border effect to obtain the time

series X0 of length 2J .

Several observations regarding these steps are in order. Implementation of the first step

depends on the time series to simulate. For example, in the case of (3.45), the reconstruction

filters are the same for all j. The second step refers to the fact that the application of

the reconstruction scheme (3.29) requires some initial approximation Xj . We take j = J

because XJ can be taken of the smallest possible length LJ + 1 in order to apply the

simulation scheme (3.29). The time series XJ can be simulated by a popular Circular

Matrix Embedding (CME) method (Dietrich and Newsam (1997)) or, since LJ is often

small, by the Durbin-Levinson algorithm (Brockwell and Davis (1991)). For the third step,
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observe that applying the scheme (3.29) with ŨJ−1
r , Ṽ J−1

r to XJ of length LJ +1, we obtain

2(LJ +1)−1−LJ = LJ +2 observations of the time series XJ−1 which are unaffected by the

border. Here, 2(LJ +1)− 1 is the number of observations after the operation ↑2 and (−LJ)

takes into account the border effect. By repeating this argument, the number of observations

of the resulting time series X0 which are unaffected by the border, is LJ + 2J > 2J .

Simulation based on AWD is of interest because it is very fast. Modulo computation

of the truncated reconstruction filters Ũ j
r , Ṽ j

r and simulation of the initial time series XJ ,

the simulation algorithm based on AWD is of the computational order O(2J). The CME

method based on FFT is of the slower order O(2J log 2J). This obviously is relevant only

for simulation of really long time series.

In simulation above, however, it is necessary to generate a time series at initial coarsest

scale (by some other method) and to deal with boundary in a quite nontrivial way. This

could be avoided at the expense of making an approximation if convolutions in AWD are

replaced by circular convolutions. In other words, consider a time series X̃0 of length 2K

defined recursively by (3.31), that is,

X̃k = Uk
r ~ ↑2 X̃k+1 + V k

r ~ ↑2 ξ̃k+1, k = 0, . . . , K − 1, (3.59)

where ξ̃k are independent, Gaussian white noise sequences of length 2K−k, and X̃K =

aK ~ ε̃K = (
∑

n aK
n )ε̃K

0 is of length 1. The scheme (3.59) is easy to implement. But is X̃0

close to the desired time series X = X0 in any way?

To answer this question, note by Remark 3.3.3 that X̃0 can, in fact, be represented as

X̃0 = a0 ~ ε̃0 with a Gaussian, white noise sequence ε̃0 of length 2K . As X̃0 is a cyclic time

series, it does not approximate a stationary time series X0. Observe also by (3.15) that

̂̃r0(w) = |â0(w)|2, w =
2πm

2K
, m = 0, . . . , 2K − 1,

and

r̃0(n) =
1

2K

2K−1∑

m=0

e
i 2πmn

2K

∣∣∣â0
(2πm

2K

)∣∣∣
2
, (3.60)

where r̃0 is the autocovariance function of X̃0.
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It may appear from (3.60) that, as K →∞,

r̃0(n) ≈ 1
2π

∫ 2π

0
einw|â0(w)|2dw = r0(n), (3.61)

where r0 is the autocovariance function of X0. The approximation (3.61) indeed occurs but

only at n sufficiently smaller than 2K . For example, if n < T and |â0(w)|2 is smooth in w,

then

|r0(n)− r̃0(n)| ≤ 1
2π

∫ 2π

0

2K−1∑

m=0

∣∣∣|â0(w)|2 −
∣∣∣â0

(2πm

2K

)∣∣∣
2∣∣∣1

[ 2πm

2K ,
2π(m+1)

2K )
(w)dw

+
1
2π

∫ 2π

0

2K−1∑

m=0

∣∣∣eiwn − e
i 2πmn

2K

∣∣∣
∣∣∣â0

(2πm

2K

)∣∣∣
2
1
[ 2πm

2K ,
2π(m+1)

2K )
(w)dw

≤ sup
w∈(0,2π)

∣∣∣∂|â
0(w)|2
∂w

∣∣∣ 2π

2K
+ sup

w∈(0,2π)
|â0(w)|2 2πT

2K
, (3.62)

which is small when T/2K is small. This suggests that the first T values of X̃0 can be

used to approximate X0, with the resulting error in autocovariance being of the order

T/2K by (3.62). The use of the first generated values in the context of orthogonal wavelet

decompositions can also be found in Percival and Walden (2000), Section 9.2, but without

the explicit connection to circular time series and the resulting error (3.62) above.

As we expect âj(0) =
∑

n aj
n = ∞ for long memory time series (this is the case, for

example, for FARIMA(0, s, 0) time series in Example 3.4.1), the discussion and arguments

above need to be modified. One way to do this is to set âj(0) = 1. Application of (3.59)

then yields X̃0 with

â0(w) =





1, w = 0,

â0(w), otherwise.

The error (3.62) could be studied in a similar way though, because |â0(w)|2 is no longer

smooth at w = 0, its decay would be slower than T/2J .

3.5.2 Maximum likelihood estimation

The approximate covariance factorization (3.36) discussed in Remark 3.3.5 naturally

leads to the following Gaussian MLE based on AWD. Given the vector of observations
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X̃0 = (X0, X1, . . . , XT−1), the negative log-likelihood is (up to additive and multiplicative

constants)

log |Σ̃θ|+ X̃0Σ̃−1
θ X̃0′, (3.63)

where Σ̃θ is the covariance matrix of the model with unknown parameters θ, and | · | denotes

the determinant. As in Remark 3.3.5, a vector Ỹθ of detail coefficients in approximate AWD

can be written as

Ỹθ = X̃0Mθ (3.64)

for a matrix Mθ which depends on the model parameters θ. By (3.36), Σ̃−1
θ ≈ MθM

′
θ and

hence the expression (3.63) is approximately equal to

log |Σ̃θ|+ ỸθỸ
′
θ . (3.65)

Observe that |Σ̃θ| cannot be immediately simplified because the matrices Mθ are not orthog-

onal. To simplify this determinant, one can make a classical approximation of Grenander

and Szego (1958), and consider

T

π

∫ 2π

0
log |âθ(w)|dw + ỸθỸ

′
θ . (3.66)

MLE based on AWD is achieved by minimizing this expression with respect to unknown

parameters θ.

In Tables 3.3–3.4, we present MLE results based on AWD in several time series mod-

els, namely, AR(1), FARIMA(0, s, 0), FARIMA(1, s, 0) and MA(1). In the Model column,

we indicate the AWD used for MLE through âj(w), and the type of optimization method

used (grid search or the Matlab functions fminsearch , fminbnd ). We tried different

optimization methods because some results were sensitive to their choice, in particular, for

FARIMA(1, s, 0) models when using AWD (Table 3.3). We also consider a non-Gaussian,

exponential distribution for the generated error terms in the MA(1) case (Table 3.4) and,

for FARIMA(0, s, 0) model, we report results with a superimposed linear trend −1 + 0.5t

(Table 3.3). The results are reported throughout in terms of the bias and the square root
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of the mean squared error of the estimators. (These are computed based on 1000 Monte

Carlo replications.) For comparison, we also present MLE results based on standard Whit-

tle approximations (Chapter 6 in Beran (1994)) and orthogornal wavelet decompositions

(Percival and Walden (2000), Jensen (1999)). In the latter case, in particular, the variance

of the detail terms at scale 2j , j = 1, . . . , J , is approximated by

2j+1

2π

∫ 2π/2j+1

2π/2j

|â(w)|2dw. (3.67)

The sample size T is the length of the considered time series, and N denotes the number

of zero moments of the underlying Daubechies MRA.

The results of Tables 3.3–3.4 suggest that MLE based on AWD works quite well. It

is generally comparable to Whittle MLE and is superior to it in the AR(1) case with

a1 = ±0.9. It is generally superior to MLE based on OWD which is likely to be the result

of the approximation (3.67). Note also that increasing the number of zero moments (from

2 to 6) have generally made little difference in the results for AWD. Observe from Table

3.4 that trend is not ignored by MLE based on AWD. This occurs because of the boundary

effect. We have tried several other ways of dealing with the boundary (mentioned in Remark

3.3.4) but the results did not lead to improvement. We are presently exploring finer MLE

based on AWD where only coefficients unaffected by the boundary are considered, or where

proper adjustments to the coefficients at the boundary are made.

3.6 Proofs of the main results

Proof of Proposition 3.3.1: The condition (3.18) ensures that the time series in

(3.19) and (3.20) are well-defined (Theorem 4.10.1 and Remark 1 in Brockwell and Davis

(1991), p. 154-155).

(i) We shall use the spectral representation (3.3) of the time series X. By Theorem

4.10.1 in Brockwell and Davis (1991), we obtain that

(
↓2 (Ud ∗X)

)
n

=
∫ 2π

0
ei2nw b̂(2w)û(w)dZ(w) =

(∫ π

0
+

∫ 2π

π

)
ei2nw b̂(2w)û(w)dZ(w)
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=
∫ 2π

0
einwb̂(w)û

(w

2

)
dZ

(w

2

)
+

∫ 2π

0
einw b̂(w + 2π)û

(w

2
+ π

)
dZ

(w

2
+ π

)

=
∫ 2π

0
ei2nw b̂(w)dZ1(w)

with

dZ1(w) = û
(w

2

)
dZ

(w

2

)
+ û

(w

2
+ π

)
dZ

(w

2
+ π

)
, w ∈ (0, 2π).

Similarly,
(
↓2 (V d ∗X)

)
n

=
∫ 2π

0
ei2nwdZ2(w)

with

dZ2(w) = v̂
(w

2

)
dZ

(w

2

)
+ v̂

(w

2
+ π

)
dZ

(w

2
+ π

)
, w ∈ (0, 2π).

To prove (i), it is enough to show that Z1 and Z2 are orthogonal increment processes with

E|dZ1(w)|2 = E|dZ2(w)|2 = dw/2π and satisfying EdZ1(w)dZ2(w′) = 0. This follows by

using the properties (3.5), (3.7) and (3.8) and orthogonal increments of Z as

EdZ1(w)dZ1(w′)

= û
(w

2

)
û
(w′

2

)
EdZ

(w

2

)
dZ

(w′

2

)
+ û

(w

2
+ π

)
û
(w′

2
+ π

)
EdZ

(w

2
+ π

)
dZ

(w′

2
+ π

)

=
(∣∣∣û

(w

2

)∣∣∣
2
+

∣∣∣û
(w

2
+ π

)∣∣∣
2
)

dw

4π
1{w=w′} =

dw

2π
1{w=w′},

EdZ2(w)dZ2(w′) =
dw

2π
1{w=w′},

by similar arguments, and

EdZ1(w)dZ2(w′) =
(

û
(w

2

)
v̂
(w′

2

)
+ û

(w

2
+ π

)
v̂
(w′

2
+ π

))
dw

4π
1{w=w′} = 0.

(ii) We establish (3.20) only at even times n = 2s. (The case n = 2s + 1 can be proved

in a similar way.) Using the spectral representation of Y above, we obtain that

(Ur∗ ↑2 Y )n = (↓2 Ur ∗ Y )s =
1
2

∫ 2π

0
eisw

(
Ûr

(w

2

)
+ Ûr

(w

2
+ π

))
b̂(w)dZ1(w)

72



=
1
2

∫ 2π

0
eisw

(
â
(w

2

)
û
(w

2

)
+ â

(w

2
+ π

)
û
(w

2
+ π

))
dZ1(w)

=
1
2

∫ π

0
ei2swâ(w)û(w)dZ1(2w) +

1
2

∫ π

0
ei2swâ(w + π)û(w + π)dZ1(2w)

=
1
2

∫ 2π

0
einwâ(w)û(w)dZ1(2w).

Similarly,

(Vr∗ ↑2 Y )n =
1
2

∫ 2π

0
einwâ(w)v̂(w)dZ2(2w).

Hence,

(Ur∗ ↑2 Y )n + (Vr∗ ↑2 Y )n =

∫ 2π

0
einwâ(w)

(
1
2
û(w)dZ1(2w) +

1
2
v̂(w)dZ2(2w)

)
=

∫ 2π

0
einwâ(w)û(w)dZ(w) = Xn,

since

û(w)dZ1(2w) + v̂(w)dZ2(2w) = |û(w)|2dZ(w) + û(w)û(w + π)dZ(w + π)

+|v̂(w)|2dZ(w) + v̂(w)v̂(w + π)dZ(w + π) = 2dZ(w).

¤

Proof of Proposition 3.3.2: We will establish first that approximations Xj = Xj(p)

and details ξj = ξj(p) are well-defined. In fact, we will show that

|Xj
n| ≤ C(1 + |n|)D, (3.68)

where a constant C may depend on j. This bound is trivial for j = 0 since X0 = p is a

polynomial of degree D. Suppose that (3.68) holds for j − 1 and consider it with j. Then,

|Xj
n| ≤

∑

k

|U j
d,kX

j−1
n−k| ≤ C1

∑

k

(1 + |k|)−D−2(1 + |n− k|)D

≤ C2

∑

k

(1 + |k|)−D−2(1 + |n|D + |k|D) ≤ C3(1 + |n|)D,
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where constants Ci may depend on j. Using (3.68) and the assumed bound for V j
d,n, the

argument above also shows that ξj is well-defined.

To prove (3.39), we will first establish the formula

X̂j(ω) =
1
2j

2j−1∑

n=0

{
j∏

k=1

Ûk
d

( ω

2j+1−k
+ bn,k

)}
p̂
( ω

2j
+

nπ

2j−1

)
, (3.69)

where bn,k ∈ [0, 2π). Since p is not in l2(R), the use of p̂ has to be clarified. Here and below,

equations in the “spectral domain” should be interpreted through the “time domain” where,

in particular, all products of Fourier transforms should be regarded as convolutions. The

relation (3.69) is trivial for j = 1. Assume it holds for j − 1 and consider it for j. Then,

̂↓2 (U j
d ∗Xj−1)(w) =

1
2

(
Û j

d

(ω

2

)
X̂j−1

(ω

2

)
+ Û j

d

(ω

2
+ π

)
X̂j−1

(ω

2
+ π

))

=
1
2j

2j−1−1∑

n=0

j∏

k=1

(
Ûk

d

( ω

2j+1−k
+ bn,k

)
p̂
( ω

2j
+

nπ

2j−2

)
+

Ûk
d

( ω

2j+1−k
+ b

′
n,k

)
p̂
( ω

2j
+

π

2j−1
+

nπ

2j−2

))

=
1
2j

2j−1−1∑

n=0

j∏

k=1

(
Ûk

d

( ω

2j+1−k
+ bn,k

)
p̂
( ω

2j
+

2nπ

2j−1

)

+Ûk
d

( ω

2j+1−k
+ b

′
n,k

)
p̂
( ω

2j
+

(2n + 1)π
2j−1

))

=
1
2j

2j−1∑

n=0

j∏

k=1

Ûk
d

( ω

2j+1−k
+ cn,k

)
p̂
( ω

2j
+

nπ

2j−1

)
.

Since

ξ̂j(ω) =
1
2

(
V̂ j

d

(ω

2

)
X̂j−1

(ω

2

)
+ V̂ j

d

(ω

2
+ π

)
X̂j−1

(ω

2
+ π

))

and

V̂ j
d (ω) =

( 1
âj−1(ω)

)
v̂(ω),

it suffices to prove that, for n = 0, 1, ..., 2j−1 − 1,

v̂
(ω

2

)
p̂
( ω

2j
+

2nπ

2j−1

)
= 0 (3.70)
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and

v̂
(ω

2
+ π

)
p̂
( ω

2j
+

(2n + 1)π
2j−1

)
= 0. (3.71)

Observe that, by using (3.69), the relation (3.70) follows from

v̂
(
2j−1

( ω

2j
+

2nπ

2j−1

))
p̂
( ω

2j
+

2nπ

2j−1

)
= v̂(2j−1ω′)p̂(ω′) = v̂(2j−1ω′)p̂(ω′)

= v̂0,N (2j−1ω′)
j∏

k=2

(1 + ei2j−kw′)N (1− eiω′)N p̂(ω′) = 0,

since (1− e−iω′)N p̂(ω′) = 0. A similar argument applies to (3.71). ¤
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CHAPTER 4

On operator fractional Brownian motions

4.1 Introduction

Fractional Brownian motion (FBM), denoted BH = {BH(t)}t∈R with H ∈ (0, 1), is a

stochastic process characterized by the following three properties:

(i) Gaussianity;

(ii) self-similarity with parameter H;

(iii) stationarity of the increments.

By self-similarity, it is meant that the law of BH scales as

{BH(ct)}t∈R
d= {cHBH(t)}t∈R, (4.1)

where c > 0. By stationary increments, it is meant that the process

{BH(t + h)−BH(h)}t∈R

has the same distribution for any increment size h ∈ R. It may be shown that these three

properties actually characterize FBM in the sense that it is the unique (up to a constant)

such process for a given H ∈ (0, 1). FBM plays an important role in both theory and

applications, especially in connection to long range dependence (Embrechts and Maejima

(2002), Doukhan et al. (2003)).

We are interested here in multivariate counterparts of FBM, called operator fractional

Brownian motions (OFBMs). In the multivariate context, OFBM BH = (B1,H , ..., Bn,H)∗



= {(B1,H(t), ..., Bn,H(t))∗ ∈ Rn, t ∈ R} is a collection of random vectors. It is also Gaussian

and has stationary increments. But self-similarity is now replaced by

(ii’) operator self-similarity.

A multivariate process BH is called operator self-similar (o.s.s.) if (4.1) holds, where H is an

invertible operator (for a general discussion, see Subsection 4.2.3). Operator self-similarity

extends the usual self-similarity and was first studied thoroughly in Laha and Rohatgi (1982)

and Hudson and Mason (1982). The theory of operator self-similarity bears a resemblance

to that of operator stable measures (see Jurek and Mason (1993) and Meerschaert and

Scheffler (2001)).

Examples of OFBMs have been studied in the past. They arise and are used in the con-

text of multivariate time series and long range dependence (see, for example, Chung (2002),

Marinucci and Robinson (1999, 2000)). Another context is that of queueing systems, where

reflected OFBMs model the size of multiple queues in particular classes of queueing models,

and are studied in problems related to, for example, large deviations (see Konstantopou-

los and Lin (1996), Delgado (2007), Majewski (2003, 2005)). Other related papers study

particular classes of OFBMs from a theoretical perspective (see, for example, Mason and

Yimin (2002), Maejima (1994)).

Despite a growing interest in OFBMs, there is not a work that examines the general

class of OFBMs, and a number of questions for OFBMs remain open. We address some

of these questions here. More specifically, we establish integral representations of OFBMs

(Section 4.3) and study their basic properties. In the multivariate case, the three properties

(i), (ii’) and (iii) do not characterize the distribution of OFBM. The derivation of integral

representations of OFBMs is therefore quite different from the univariate case. We prove

that OFBMs have a rigid dependence structure among components which we call Dichotomy

Principle (Section 4.4). Finally, we also study questions of uniqueness for OFBMs (Section

4.5). It is known since the fundamental work of Hudson and Mason (1982) that the exponent

H for the same o.s.s. process is typically not unique. We will examine here the results of

Hudson and Mason (1982) for particular classes of OFBMs. Appendix A contains some

known results on commutativity of operators, and Appendix B concerns the exponential of
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a matrix in Jordan normal form.

4.2 Preliminaries

We begin by introducing some notation and by considering some preliminaries on the

exponential map and operator self-similarity that are used throughout the paper.

4.2.1 Some notation

In this paper, the notation and terminology for finite-dimensional operator theory will

be prevalent over their matrix analogues. However, whenever convenient the latter will be

used.

All with respect to the field R, M(n) or M(n,R) is the vector space of all n×n operators

(endomorphisms), GL(n) or GL(n,R) is the general linear group (invertible operators, or

automorphisms), O(n) is the orthogonal group of operators O such that OO∗ = I = O∗O

(i.e., the adjoint operator is the inverse), SO(n) ⊆ O(n) is the special orthogonal group

of operators with determinant equal to 1, and so(n) is the vector space of skew-symmetric

operators (i.e., A∗ = −A). The sign * always indicates the adjoint operator, regardless of

whether the underlying field is R or C. Matrix-wise, it should be interpreted as transposition

or Hermitian transposition, accordingly. Otherwise, the notation will indicate the change to

the field C. For instance, M(n,C) is the vector space of complex endomorphisms. Whenever

it is said that A ∈ M(n) has a complex eigenvalue or eigenspace, one is considering the

operator embedding M(n) ↪→ M(n,C). We will say that two endomorphisms A,B ∈ M(n)

are conjugate (or similar) when there exists P ∈ GL(n) such that A = PBP−1. In this

case, P is called a conjugacy. The expression diag(λ1, ..., λn) denotes the operator whose

matrix expression has the values λ1, ..., λn on the diagonal and zeros elsewhere. An operator

U ∈ M(n,C) is said to be unitary when UU∗ = U∗U = I. An operator A ∈ M(n,C) is

said to be normal if it commutes with its adjoint, that is, AA∗ = A∗A. By the Spectral

Theorem, an operator A ∈ M(n,C) is normal if and only if there exists an orthonormal

basis of eigenvectors of A for the underlying vector space. If the normal operator A ∈ M(n)

is self-adjoint, then such basis can be written with purely real coordinates.
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4.2.2 The exponential map

The meaning of the expression cH in (4.1) with c > 0 and H ∈ M(n) is given through

the notion of exponential map by setting cH := exp(log(c)H), where

exp(A) =
∞∑

k=0

Ak

k!
,

and this infinite series converges for all A ∈ M(n) (see also Hausner and Schwartz (1968),

pp. 59-60). A few remarks about the exponential map are of importance here.

(R1) Loosely speaking, an exponential map

exp : g → G

takes a vector space of operators g ⊆ M(n) into a closed subgroup G ⊆ GL(n) of

operators. In this sense, it de-linearizes the vector space. For example,

exp(M(n)) ⊆ GL(n), exp(so(n)) = SO(n). (4.2)

In other words, the exponential of any operator is invertible, and the exponential of

any skew-symmetric operator is an orthogonal operator with det = 1 (and vice-versa).

Whenever well-defined (as in (4.2)), the inverse of the exponential map, appropriately

called log map, may be considered.

(R2) More precisely, let G be a closed (sub)group of operators. Denote by g = T (G) the

tangent space of G, i.e., the set of A ∈ M(n) such that

A = lim
n→∞

Gn − I

dn
, for some {Gn} ⊆ G and some 0 < dn → 0.

In this sense, g is, in fact, a linearization of G in a vicinity of I.

It can be shown (Jurek and Mason (1993), pp. 15-16) that the exp map takes g

into G. The relation between G and g may be pictured as a hyperplane (the latter)

touching a manifold (the former) at I. The group operations on GL(n) are infinitely
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differentiable, so GL(n) is a Lie group. The tangent space M(n) endowed with the

Lie Bracket [A,B] = AB −BA is a Lie Algebra.

(R3) It is not true in general that exp(A + B) = exp(A) exp(B). This relation holds if

A and B commute; however, commutativity is not a necessary condition (Horn and

Johnson (1991), p. 435).

(R4) It is easily seen that, for invertible P , ePAP−1
= PeAP−1.

4.2.3 Operator self-similar processes

The definition of operator self-similarity is as follows.

Definition 4.2.1. A stochastic process {X(t)}t∈R on a finite-dimensional vector space V

(typically, Rn) is said to be operator self-similar (o.s.s.) if it is continuous in law at each

t 6= 0 and if for every c > 0 there exists a linear operator A(c) on V and a vector a(c) in V

such that

{X(ct)}t∈R
d= {A(c)X(t) + a(c)}t∈R. (4.3)

Throughout the paper, we will assume all processes to be proper, i.e., for each t the

distribution is not contained in a proper subspace of V . Furthermore, we will only consider

what is called strictly o.s.s. processes, in the sense that a(c) ≡ 0 (see Corollary 3, Hudson

and Mason (1982)).

Theorems 1, 2 and 3 in Hudson and Mason (1982) give the general relation between

A(c) in (4.3) and an (operator) exponent H for the o.s.s. process X. They provide the

conditions for the existence, the non-uniqueness and the restrictions on such operator H.

For the reader’s convenience, we will state and briefly relate them here.

The first theorem says that, just like in the univariate case, A(c) in (4.3) can be inter-

preted in terms of a scaling law.

Theorem 4.2.1. (Hudson and Mason (1982): Existence of H) Let {X(t)}t∈R be a proper

o.s.s. process. Then, there exists an operator H such that, for each c > 0, (4.1) holds.

An operator H that satisfies (4.1) is called an exponent of the process X, and the set

of all such H is denoted by E(X).
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The non-uniqueness of H satisfying (4.1) depends on the symmetry group G1 of X,

which is defined as follows.

Definition 4.2.2. The symmetry group of an o.s.s. process X is the set G1 of operators

A ∈ GL(n) such that

{X(t)}t∈R
d= {AX(t)}t∈R (4.4)

Theorem 4.2.2. (Hudson and Mason (1982): Non-uniqueness of H) Let {X(t)}t∈R be a

proper o.s.s. process. Then, for any H ∈ E(X),

E(X) = H + T (G1), (4.5)

where T (G1) = WL0W
−1 for some positive-definite operator W and some subspace L0 of

so(n). Consequently, X has a unique exponent if and only if G1 is finite.

It turns out that the symmetry group G1 is always compact, which implies that there

exists a positive definite self-adjoint operator W and a closed subgroup O0 of O(n) such

that G1 = WO0W
−1 (see, for instance, Hudson and Mason (1982) pp. 285, 289). A process

X that has maximal symmetry, i.e., such that G1 = WO(n)W−1, is called elliptically

symmetric.

Theorem 4.2.3. (Hudson and Mason (1982): Admissibility of H) H ∈ M(n) is an expo-

nent for some o.s.s. process X if and only if

(i) every eigenvalue of H has non-negative real part;

(ii) every eigenvalue of H having null real part is a simple root of the minimal polynomial

of H.

If H ∈ M(n) satisfies the conditions in Theorem 4.2.3, it is called admissible.

4.3 Integral representations of OFBMs

In the univariate case, for fixed H ∈ (0, 1), the law of FBM is unique up to a constant.

This follows in a standard way by using H-self-similarity and stationarity of the increments
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as

EX(s)X(t) =
1
2
(EX(t)2 + EX(s)2 − E(X(t)−X(s))2)

=
EX(1)2

2
{|t|2H + |s|2H − |t− s|2H}.

The same arguments cannot be applied in the case of OFBM. In fact, for OFBM,

EX(t)X(s)∗ + EX(s)X(t)∗

= EX(t)X(t)∗ + EX(s)X(s)∗ −E(X(t)−X(s))(X(t)−X(s))∗

= |t|HΓ(1, 1)|t|H∗
+ |s|HΓ(1, 1)|s|H∗ − |t− s|HΓ(1, 1)|t− s|H∗

,

and it is not true in general that EX(t)X(s)∗ = EX(s)X(t)∗. In this sense, a given operator

H does not characterize the law of OFBM. This also does not exclude the case where two

different Hs lead to the same OFBM, and we will see in Section 4.5 below that this may

happen.

Even though a fixed H does not determine the law of OFBM, an alternative character-

ization can be sought through integral representations of OFBMs. In the univariate case,

it is well-known that FBM has the spectral representation

BH(t) =
1

C2(H)

∫

R

eixt − 1
ix

|x|−(H−1/2)B̃(dx), (4.6)

where B̃(x) = B̃1(x) + iB̃2(x) is a complex-valued Brownian motion such that B̃1(−x) =

B̃1(x) and B̃2(−x) = −B̃2(x), and C2(H) is a normalizing constant (see, for instance,

Samorodnitsky and Taqqu (1994), p. 328). The representation (4.6) also yields the law of

FBM, and sheds light on its structure (that is, it says how it can be built from the usual

BM). It is therefore natural to try to obtain integral representations for OFBMs. This is

done through a number of results given next.

Definition 4.3.1. We will say a function f : R → Cn is operator-homogeneous of degree

K ∈ M(n) if, for c > 0,

f(cx) = cKf(x), x ∈ R. (4.7)
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As with ordinary homogeneity, all operator-homogeneous functions of the same degree

differ only by an operator constant, which is their value on the sphere. In fact, from (4.7),

f(c) = cKf(1) =: cKA, c > 0, A ∈ M(n,C),

f(c) = (−c)Kf(−1) =: (−c)KB, c < 0, B ∈ M(n,C).

For our purposes, the value of f at zero is defined arbitrarily. Consequently, any operator-

homogeneous function of degree K can be written in the form

f(x) = xK
+A + xK

−B. (4.8)

In Theorem 4.3.1 below, we establish integral representations of OFBMs in the spectral

domain. Before that, we state a technical lemma.

Lemma 4.3.1. Let {Ỹ (x)}x∈R ∈ Cn be an orthogonal-increment process, and set Fij(dx) =

EỸi(dx)Ỹj(dx), where i, j = 1, ..., n and Ỹi is a component of Ỹ . If Fii(dx) and Fjj(dx) are

absolutely continuous with respect to the Lebesgue measure over a given interval, then so is

Fij(dx).

Proof. A consequence of the Cauchy-Schwartz Inequality.

Theorem 4.3.1. Let {BH(t)}t∈R be OFBM with o.s.s. exponent H, where the real parts of

the characteristic roots of H are in the interval (0, 1). Then,

{BH(t)}t∈R
d=

{∫

R

eitx − 1
ix

(x−D
+ A + x−D

− A)dB̃(x)
}

t∈R
, (4.9)

where D = H − I(1/2), A ∈ GL(n,C), A is the matrix whose entries are the complex

conjugates of the entries of A, and B̃(x) := B̃1(x)+ iB̃2(x) is a complex-valued multivariate

Brownian motion satisfying B̃1(−x) = B̃1(x), B̃2(−x) = −B̃2(x) and EdB̃(x)dB̃(x)∗ = dx.

Proof. For notational simplicity, set X = BH . Since X has stationary increments, we have

X(t)−X(s) =
∫

R

eitx − eisx

ix
Ỹ (dx), (4.10)

87



where Ỹ (dx) is an orthogonal-increment random measure in Cn (see Doob (1990)). Since

Re(hk) > 0 for all k = 1, ..., n, then X(0) = 0 a.s. (see Maejima and Mason (1994)).

Therefore, X can be represented as

X(t) =
∫

R

eitx − 1
ix

Ỹ (dx). (4.11)

Moreover, since X is Gaussian, Ỹ (dx) is a Gaussian random measure. Let

FX(dx) = EỸ (dx)Ỹ (dx)∗

be the multivariate spectral distribution of Ỹ (dx). The rest of the proof goes in three steps:

(i) showing the existence of a spectral density function,

(ii) decorrelating the measure Ỹ (dx) by finding a filter based upon the spectral density

function,

(iii) showing that the filter is an operator-homogeneous function.

Step (i): Since X is o.s.s. with exponent H,

X(ct) d= cH

∫

R

eitx − 1
ix

Ỹ (dx). (4.12)

On the other hand, through a change of variables v = cx,

X(ct) d=
∫

R

eitv − 1
iv

cỸ (c−1dv). (4.13)

In differential form, this means that

cH Ỹ (dx) d= cỸ (c−1dx) (4.14)

or, equivalently,

Ỹ (cdx) d= cI−H Ỹ (dx). (4.15)
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Thus, FX([0, c]) can be written as

EỸ ([0, c])Ỹ ([0, c])∗ = cI−HFX([0, 1])(cI−H)∗, (4.16)

for c > 0 without loss of generality. By Lemma 4.3.1, it suffices to prove that the individual

Fii are absolutely continuous. By the explicit formula for cI−H , the individual entries

FX([0, c])ij in the expression on the right-hand side of (4.16) are linear combinations (with

complex weights) of terms of the form

(log(c))l

l!
c1−hk , k = 1, ..., n, l ∈ N (4.17)

(or their respective conjugate), or identically zero for c > 0. Thus, FX(c) is differentiable

in c over (0,∞) since FX([0, c])ij = FX(c)ij − FX(0)ij .

We want to prove that Ỹ (0) = 0 a.s. We now proceed as in Maejima and Mason

(1994). Since the real part of the eigenvalues of I −H are strictly greater than zero, then

by Proposition 2.1.(ii) in Maejima and Mason (1994) we have ‖ tI−H ‖ → 0 as t → 0, where

‖ . ‖ is the (complex) operator norm. Thus, by equation (4.15),

‖ Ỹ (0) ‖ d= ‖ cI−H Ỹ (0) ‖ ≤ ‖ cI−H ‖ ‖ Ỹ (0) ‖ → 0 as t → 0.

So, Ỹ (0) = 0 a.s., as claimed.

Now note that

Ỹ (c) d= cI−HY (1), (4.18)

and since

‖ cI−H Ỹ (1) ‖≤‖ cI−H ‖ ‖ Ỹ (1) ‖ → 0 as c → 0,

we also have

cI−H Ỹ (1) → 0 as c → 0 (4.19)

(the same argument holds for Ỹ (−c)). Thus, (4.18), (4.19) and the fact that Ỹ is Gaussian
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imply that

Ỹ (c) L2→ 0 = Ỹ (0) as c → 0

(i.e., Ỹ is L2-stochastically continuous at zero). Therefore,

FX([−c, c]) → 0 as c → 0,

because

FX([−c, c]) = E
(∫ c

−c
dỸ (x)

)(∫ c

−c
dỸ (x)

)∗

= E
(∫ 0

−c
dỸ (x) +

∫ c

0
dỸ (x)

)( ∫ 0

−c
dỸ (x) +

∫ c

0
dỸ (x)

)∗

= E
(∫ 0

−c
dỸ (x)

)(∫ 0

−c
dỸ (x)

)∗
+ E

(∫ c

0
dỸ (x)

)( ∫ c

0
dỸ (x)

)∗
→ 0 as c → 0,

where the third equality follows by the orthogonal increments of Ỹ . This implies that

FX(0)− FX(0−) = lim
c→0

FX(c)− FX(−c) = lim
c→0

FX([−c, c]) = 0.

As a consequence, for all i = 1, ..., n we have that Fii(c) is differentiable for c 6= 0 and

continuous at zero. Thus, a multivariate spectral density function fX(x) exists.

Step (ii): Since fX(x) is positive definite Hermitian-symmetric for every x, the Spectral

Theorem yields a square root â(x) of fX(x). Let dB̃(x) be a complex-valued multivariate

Brownian motion as in the statement of the theorem. The random measure â(x)dB̃(x) is

equal (in distribution) to Ỹ (dx), since

E(â(x)dB̃(x)dB̃(x)∗â(x)∗) = â(x)â(x)∗dx = fX(x)dx = FX(dx).

This implies that X can also be represented as

X(t) d=
∫

R

eitx − 1
ix

â(x)dB̃(x). (4.20)
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Step (iii): By rewriting (4.14) with â(x)dB̃(x), we obtain that

cH â(x)dB̃(x) d= â
(x

c

)
cI(1/2)dB̃(x),

whence

â(cx) = c−Dâ(x). (4.21)

This means that â is operator-homogeneous of degree K = −D, which implies it has the

form (4.8) and representation (4.9) holds.

We next obtain integral representations of OFBMs in the time domain. We will use

the following elementary result. We write f ∈ L2(R,Rn2
) for a matrix-valued function f

when
∫
R[f(u) ◦ f(u)]du < +∞, where A ◦ B := trace(A∗B). The Fourier transform of

f ∈ L2(R,Rn2
) is defined as f̂(x) =

∫
R e−ixuf(u)du.

Lemma 4.3.2. Let f, g ∈ L2(R,Rn2
). Then, the Plancherel identity holds, i.e.,

∫

R
f(u)g(u)∗du =

1
2π

∫

R
f̂(x)ĝ(x)∗dx, (4.22)

where f̂ and ĝ are the component-wise Fourier transforms of f and g.

Theorem 4.3.2. Let {BH(t)}t∈R be OFBM with o.s.s. exponent H. Then,

{BH(t)}t∈R
d=

{∫

R

(
((t− u)D

+ − (−u)D
+)M + ((t− u)D

− − (−u)D
−)N

)
dB(u)

}
t∈R

, (4.23)

where D = H − I(1/2), (M, N) ∈ (GL(n) ∪ {0}) × (GL(n) ∪ {0})\{(0, 0)} and B(u) is a

real-valued, multivariate Brownian motion.

Proof. Let X and X̃ denote the processes on the right-hand side of (4.9) and (4.23), re-

spectively. It suffices to show that the covariance structures of X and X̃ are the same. For

simplicity, we only consider X̃ in (4.23) with N = 0 and show that it has the representation

(4.9).
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As in the univariate case, one can show that

∫

R

(
(t− u)D

+ − (−u)D
+

)
e−iuxdu = (e−itx − 1)|x|−(D+I)Γ(D + I)eisign(x)π(D+I)/2,

where

Γ(K) =
∫ ∞

0
e−xxK−Idx

converges absolutely if the characteristic roots of the operator K are greater than zero.

Then, by Lemma 4.3.2,

EX̃(s)X̃(t)∗ =
∫

R
((s− u)D

+ − (−u)D
+)MM∗((t− u)D∗

+ − (−u)D∗
+ )du

=
1
2π

∫

R

(e−isx − 1)(eitx − 1)
|x|2 (|x|−DΓ(D + I)eisign(x)π(D+I)/2)MM∗·

·(e−isign(x)π(D∗+I)/2Γ(D + I)∗|x|−D∗)dx.

This is also the covariance structure for X in (4.9) with A := Γ(D + I)eiπ(D+I)/2M .

Note also that for X̃ to take values in Rn, it is necessary that (M,N) ∈ (GL(n) ∪
{0}) × (GL(n) ∪ {0})\{(0, 0)}. In fact, any operators M̃, Ñ ∈ M(n,C) have the form

M̃ = M1 + iM2, Ñ = N1 + iN2, where M1, M2, N1, N2 ∈ M(n) (actually, we must have

M1 or N1 ∈ GL(n), otherwise X̃ cannot be a proper process in Rn). By considering the

expression (4.23) with M := M̃ , N := Ñ , it follows that X̃(t) ∈ Rn for a given t if and only

if
∫
R

(
((t− u)D

+ − (−u)D
+)M2 + ((t− u)D− − (−u)D−)N2

)
dB(u) = 0, which does not hold a.s.

unless M2 = N2 = 0.

Remark 4.3.1. For what operators H is the time domain representation (4.23) of OFBM

well-defined? Let D = H − (1/2)I. The integral (4.23) is well-defined as long as the

integrand is in L2(R). Using the Jordan form of D = PJP−1, where P ∈ GL(n,C) and J

is in Jordan normal form with the eigenvalues dl, l = 1, ..., n of D, the square-integrability

follows if |t−u|J − |−u|J is in L2(R). By Appendix B.2, it is enough to have the functions

(log |t− u|)m|t− u|dl − (log | − u|)m| − u|dl (4.24)
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in L2(R), where m = 1, ..., nJdl
and nJdl

is the size of the Jordan block Jdl
of D. The

functions (4.24) are in L2(R) when dl ∈ (−1/2, 1/2).

4.4 Dichotomy principle

As in the univariate case, increments of OFBM are stationary and have a special name.

Definition 4.4.1. Let {BH(t)}t∈R be an OFBM. The increment process

{YH(t)}t∈T
d= {BH(t + 1)−BH(t)}t∈T , where T = Z or R,

is called Operator Fractional Gaussian Noise (OFGN).

From Theorem 4.3.1, the spectral representation of OFGN in continuous time is

{YH(t)}t∈R
d=

{∫

R
eitx eix − 1

ix
(x−D

+ A + x−D
− A)dB̃(x)

}
t∈R

, (4.25)

where D = H − (1/2)I. Then, the spectral density of {YH(t)}t∈R is

fH(x) =
|eix − 1|2
|x|2 (x−D

+ AA∗x−D∗
+ + x−D

− AA∗x−D∗
− ), x ∈ R, (4.26)

since the cross terms are zero.

In discrete time, observe that

EYH(0)YH(n) =
∫ 2π

0
einx

∞∑

k=−∞
fYH

(x + 2πk)dx, n ∈ Z. (4.27)

Then, the spectral density {YH(n)}n∈R is

gYH
(x) = 2(1− cos(x))

∞∑

k=−∞

1
|x + 2πk|2

(
(x + 2πk)−D

+ AA∗(x + 2πk)−D∗
+

+ (x + 2πk)−D
− AA∗(x + 2πk)−D∗

−
)
, x ∈ (0, 2π). (4.28)

The form (4.28) of the spectral density leads to the following result.
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Theorem 4.4.1. Let H be a normal operator with eigenvalues hl, l = 1, ..., n, such that

1/2 < Re(hl) < 1, l = 1, ..., n. (4.29)

Let gYH
(x) = {gYH

(x)ij} be the spectral density (4.28) of OFGN in discrete time. Then,

either

(i) gYH
(x)ij diverges as x → 0, or

(ii) gYH
(x)ij ≡ 0, x ∈ (0, 2π).

Proof. Let D = H − (1/2)I and denote the eigenvalues of D by d1, ..., dn ∈ C. By the

assumption, 0 < Re(dl) < 1/2. Since D is normal,

x−D = P diag(x−d1 , ..., x−dn) P ∗,

where P ∈ U(n). Therefore, each term of the summation in (4.28) involves the matrix

expression

P diag((x + 2πk)−d1 , ..., (x + 2πk)−dn) P ∗AA∗P diag((x + 2πk)−d1 , ..., (x + 2πk)−dn) P ∗,

whose entries are linear combinations of products of the complex power functions (x +

2πk)−d1 , ..., (x + 2πk)−dn and their complex conjugates. The behavior of gYH
(x) as x → 0+

is governed by the term

2(1− cos(x))
x2

P diag(x−d1 , ..., x−dn) P ∗AA∗P diag(x−d1 , ..., x−dn) P ∗.

As x → 0+, 2(1−cos(x))
x2 → 1. Therefore, since Re(dl) > 0 for l = 1, ..., n, gYH

(x)ij diverges as

a power function as x → 0+ unless it is identically zero over the entire spectral domain.

Remark 4.4.1. We expect Theorem 4.4.1 to hold in the general case where the character-

istic roots h1, ..., hn of H all have real parts between 1/2 and 1. Indeed, using the explicit

form for xJ , where J is a Jordan block (see (B.9)), each term in the summation (4.28) is a

linear combination of functions of the form (log |x|)m|x|−dl , where dl = hl − 1/2.
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The range 1/2 < hl < 1 is known as that of long range dependence. Theorem 4.4.1 thus

states that, if OFGN is long range dependent in the sense of (4.29), then cross correlation

between any two components is characterized by the following dichotomy: it is either long

range dependent (with diverging cross spectra at zero) or identically equal to zero. From

a practical perspective, this means that the class of OFGN may not be flexible enough to

capture multivariate long range dependence structures.

4.5 On the non-uniqueness of exponents

Theorem 4.2.2 states that the class E(X) of exponents of an o.s.s. process X may contain

more than one operator, and that this depends on the symmetry group G1 of X through

its tangent space T (G1). We examine here G1 and related questions of (non-)uniqueness

for particular classes of OFBMs (Section 4.5.2). We start with some preliminary remarks.

4.5.1 Preliminary remarks

The idea that operator exponents are not unique can be understood from at least two

inter-related perspectives: properties of operator (matrix) exponents and distributional

properties of o.s.s. processes. From the first perspective, consider for example matrices of

the form 


0 s

−s 0


 ∈ so(2),

where s ∈ R. Being normal, these operators can be diagonalized as Ls = PΛsP
∗, where

P ∈ O(2) and Λs = diag(is,−is). In particular, exp{L2πk} = I, since exp{i2πk} = 1. Since

Ls and Ls′ commute for any s, s′ ∈ R, this yields

exp (Ls) = exp (L2πk) exp (Ls) = exp (L2πk + Ls), (4.30)

and shows the potential non-uniqueness of operator exponents from purely operator (matrix)

properties. Note also that the situation here is quite different from the 1-dimensional case:

in one dimension, the same is possible but only with complex exponents, whereas here the

operators L2πk have all real entries.

From the perspective of distributional properties, we illustrate several ideas through the
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following simple example.

Example 4.5.1. (Single parameter OFBM) Consider OFBM BH with exponent H =

diag(h, ..., h), h ∈ (0, 1), and M = I, N = 0 in the representation (4.23). It will be called

a single parameter OFBM. Note that, in this case, EBH(t)BH(s) =: Γ(t, s) = Γh(t, s)I,

where Γh(t, s) is the covariance structure of a univariate FBM with parameter h. Since BH

is Gaussian, O ∈ G1 if and only if OΓ(t, s)O∗ = Γ(t, s). In the case of single parameter

OFBM, this is equivalent to OO∗ = I or, since O has an inverse (BH is assumed proper),

OO∗ = O∗O = I. In other words, G1 = O(n), that is, single parameter OFBM is elliptically

symmetric, and

E(BH) = H + so(n).

Thus, the exponents for a single parameter OFBM are not unique. From another angle,

for a given c > 0 and L ∈ so(n), we have L log(c) ∈ so(n) and hence exp{L log(c)} = cL ∈
O(n) = G1. Then,

{BH(ct)}t∈R
d= {cHBH(t)}t∈R

d= {cHcLBH(t)}t∈R
d= {cH+LBH(t)}t∈R,

which also shows that the exponents are not unique.

4.5.2 Symmetry group and non-uniqueness of exponents in the case n = 2

We study here questions of non-uniqueness in the case n = 2. This case is natural to

consider first because G1 ⊆ WO(n)W−1 (see Section 4.2.3) and orthogonal operators in

O(n) can be quasi-diagonalized in terms of 1- and 2-dimensional orthogonal operators. The

case n = 2 has also been studied separately in a related work on operator stable measures

(Hudson and Mason (1981)).

We have already remarked that the symmetry group G1 of o.s.s. processes is contained

in a set WO(n)W−1 for some positive definite self-adjoint operator W . This implies that

the symmetry group of the o.s.s. process

X̃(t) := W−1X(t) (4.31)
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is contained in O(n). Theorems 4.5.1, 4.5.2 and Lemmas 4.5.1, 4.5.2 below shed light on

the structure of Gaussian o.s.s. processes of the form X̃ or, equivalently, for the cases where

W = I. In particular, these results also apply to OFBMs, which are Gaussian. The proofs

of the results below often use Appendix B.1 on commutativity of operators. Note also that,

for a Gaussian process X̃ with G1 ⊆ O(n), we have O ∈ G1 if and only if OΓ(t, s) = Γ(t, s)O

for s, t ∈ R, where

Γ̃(t, s) = EX̃(t)X̃(s)

is the covariance structure of X̃.

Theorem 4.5.1. For a 2-dimensional, Gaussian, o.s.s. process X̃ as in (4.31), SO(2)∩G1

is:

(i) {I,−I}, or

(ii) SO(2).

Proof. Note that the eigenvectors of any rotation SO(2)\{I,−I} must be of the form

u =
√

2
2

eiτ




1

−i


 , v =

√
2

2
eiβ




1

i


 , (4.32)

where τ and β are arbitrary angles in [0, 2π). Assume there is a rotation O ∈ SO(2)\{I,−I}
such that O ∈ G1. This O must commute with Γ̃(t, s) for every s, t ∈ R. Since the eigen-

values of O are different, then by Corollary B.1.2 in Appendix B.1.2, Γ̃(t, s) must have the

same Jordan canonical form structure as O. Therefore, Γ̃(t, s) = Udiag(Γ̃1(t, s), Γ̃2(t, s))U∗,

for U := (u, v) and two univariate functions Γ̃1(t, s) and Γ̃2(t, s). This shows that Γ̃(t, s)

commutes with any other rotation in SO(2).

Theorem 4.5.2. For a 2-dimensional, Gaussian, o.s.s. process X̃ as defined in (4.31),

(O(2)\SO(2)) ∩G1 is:

(i) ∅, or

(ii) {R1, R2}, where R1, R2 are the reflections around two given orthogonal axes, or
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(iii) O(2)\SO(2).

Proof. Assume Γ̃(t, s) commutes with a reflection R1. Then, it also commutes with the

corresponding reflection R2. If Γ̃(t, s) commutes with a third reflection R3, it must commute

with all O(2)\SO(2), since R3 must have different (real, orthonormal) eigenspaces.

Lemma 4.5.1. There is no 2-dimensional, Gaussian, o.s.s. process X̃ as in (4.31) such

that G1 = SO(2) ∪ {R1, R2}, where R1, R2 ∈ O(2)\SO(2).

Proof. If G1 = SO(2) ∪ {R1, R2}, then Γ̃(t, s) must have the same eigenspaces as SO(2).

If Γ̃(t, s) also commutes with R1, then it must also commute with all O(2)\SO(2), since in

this case it must be diagonalizable with two equal real eigenvalues.

Lemma 4.5.2. There is no 2-dimensional, Gaussian, o.s.s X̃ as in (4.31) such that G1 =

{I,−I} ∪O(2)\SO(2).

Proof. If G1 = {I,−I} ∪ (O(2)\SO(2)), then Γ(t, s) cannot have more than two reflections

R1, R2 without being diagonalizable with two equal eigenvalues. This implies G1 = O(2).

Theorems 4.5.1, 4.5.2 and Lemmas 4.5.1, 4.5.2 combined give the following theorem on

the classification of 2-dimensional, Gaussian, o.s.s. processes.

Theorem 4.5.3. 2-dimensional, Gaussian, o.s.s. processes can be classified according to

the symmetry group G1 under four types, namely, the ones whose G1 is conjugate by a

positive definite operator W to

(I.a) {I,−I};

(I.b) SO(2);

(II.a) {I,−I, R1, R2}, where R1 and R2 are the two reflection operators associated with a

pair of orthogonal eigenspaces;

(II.b) O(2).

Only processes of types (I.b) and (II.b) have non-unique exponents.
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Definition 4.5.1. When a symmetry group G1 is of the type (I.a), (I.b), (II.a) or (II.b),

we will say that it (or the corresponding o.s.s. process) is minimal, rotational, trivial or

maximal, respectively.

The next results will provide additional insight into the structure of exponents of Gaus-

sian, o.s.s. process X. We shall use the following theorem due to Maejima (1998).

Theorem 4.5.4. (Maejima (1998)) There exists H0 ∈ E(X) such that

H0A = AH0

for all A ∈ G1.

The following simple result will also be useful.

Lemma 4.5.3. If E(X) is not unique, then T (G1) = Wso(2)W−1 for some positive definite

operator W .

Proof. If E(X) is not unique, Theorem 4.5.3 implies that WSO(2)W−1 ⊆ G1 for some

positive definite W . Therefore, T (G1) = WLW−1 is a non-trivial subspace of Wso(2)W−1.

The only subspaces of Wso(2)W−1 are {0} and Wso(2)W−1 itself, which implies the result.

The next result clarifies the structure of exponents when E(X) is not unique.

Theorem 4.5.5. Let H0 be the commuting operator in Theorem 4.5.4, and let W be a

positive definite operator G1 such that G1 = WOW−1 for some O ⊆ O(2). If E(X) is not

unique, then

H0 = WUdiag(h, h)U∗W−1, (4.33)

where the columns of U ∈ U(2) are eigenvectors of SO(2). In particular,

E(X) = W (Udiag(h, h)U∗ + so(2))W−1. (4.34)

Moreover, for any H ∈ E(X), W−1HW is normal, and H = Re(h)I ∈ E(X).
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Proof. If E(X) is not unique, then by Theorem 4.5.3, H0 commutes with WSO(2)W−1. In

particular, H0 commutes with WOW−1 for O ∈ SO(2)\{I,−I}. Such O is diagonalizable

with two complex conjugate eigenvalues, which implies that the eigenspaces of WOW−1

have dimension one. By Corollary B.1.2 in Appendix B.1.2, the eigenspaces of WOW−1

are also eigenspaces of the operator H0. Thus, H0 can be written as WUdiag(h1, h2)U∗W−1.

Note that W−1H0W ∈ GL(2,R). Therefore, since h1, h2 are also the characteristic roots of

the operator Udiag(h1, h2)U∗, we have h1 = h2, and thus (4.33) holds. Since E(X) is not

unique, Lemma 4.5.3 yields T (G1) = Wso(2)W−1, which gives (4.34).

For H ∈ E(X), W−1HW is normal by using (4.33). In particular, we may choose the

operator exponent H := H0 + WL−Im(h)W
−1 = Re(h)I, where

L−Im(h) =




0 −Im(h)

Im(h) 0


 .

The unique exponent of the trivial case is described next.

Theorem 4.5.6. Let H0 be the commuting operator in Theorem 4.5.4, and let W be a

positive definite operator G1 such that G1 = WO0W
−1 for some O ⊆ O(2). If G1 is trivial,

then

H0 = WOdiag(h1, h2)O∗W−1.

where O ∈ SO(2), and h1, h2 are the two eigenvalues of H0. In particular, W−1H0W is

normal.

Proof. As in the proof of Theorem 4.5.5, H0 must commute with WR1W
−1 and WR2W

−1,

where R1 and R2 are two reflections as in Theorem 4.5.3. Finally, note that R1 and R2 can

both be diagonalized with the same real orthonormal eigenvectors, and eigenvalues 1 and

-1.

The following proposition and several examples specifically concern OFBM.
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Proposition 4.5.1. Up to a positive definite operator, every maximal symmetry 2-dimensional

OFBM is a single-parameter OFBM.

Proof. Let X be a maximal OFBM and Γ(t, s) = EX(t)X(s)∗. We may suppose without

loss of generality that G1 = O(2). Since Γ(t, s) commutes with all O(2), there is γ(t, s) ∈ R
such that

Γ(t, s) = γ(t, s)I. (4.35)

Observe next that

Γ(ct, cs) = cH0Γ(t, s)cH∗
0 ,

where H0 is the operator given by Theorem 4.5.4. Since H0 must commute with all O(2),

it must be of the form H0 = hI for some h ∈ R. As a consequence, cH0cH∗
0 = c2H0 ,

γ(ct, cs) = c2hγ(t, s) and γ(t, t) = t2hγ(1, 1) =: t2hσ2. By using the symmetry of Γ(t, s) and

the stationarity of the increments, when (without loss of generality) t > s > 0,

(t− s)2hσ2I = E[X(t− s)X(t− s)∗] = E[(X(t)−X(s))(X(t)−X(s))∗]

= EX(t)X(t)∗ −EX(s)X(t)∗ −EX(t)X(s)∗ + EX(s)X(s)∗

= Γ(t, t)− Γ(s, t)− Γ(t, s) + Γ(s, s) = t2hσ2I − 2Γ(s, t) + s2hσ2I.

This yields

γ(t, s) =
σ2

2
(|t|2h + |s|2h − |t− s|2h), s, t ∈ R,

which proves the result in view of (4.35).

Example 4.5.2. If the covariance structure Γ(t, s) of OFBM can be diagonalized as

diag(γ1(t, s), γ2(t, s)),

where γ1(t, s) 6= γ2(t, s) for some s, t ∈ R, then G1 is of trivial type. Indeed, for A ∈ GL(2),

the equation Adiag(γ1(t, s), γ2(t, s))A∗ = diag(γ1(t, s), γ2(t, s)) gives the solutions G1 =

{I,−I,diag(1,−1),diag(−1, 1)}. We obtain this kind of Γ(t, s), for example, by taking the
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time-domain representation of OFBM with M = I, N = 0, and H = diag(h1, h2) ∈ GL(2),

h1 6= h2, and 0 < hl < 1, l = 1, 2.

Theorems 4.5.5 and 4.5.6 show that if G1 is trivial, rotational or maximal, then there

exists positive definite W such that W−1HW is normal, where H is any operator in E(X).

This can be used in the construction of a simple example of OFBM with minimal symmetry

group.

Example 4.5.3. If

H =




h 0

1 h


 ,

then OFBM has the minimal symmetry group. Indeed, if there exists positive definite W

such that WHW−1 = A, where A is normal, then H = W−1AW is diagonalizable over C

(contradiction).

Observe that OFBMs in Examples 4.5.3, 4.5.2 and 4.5.1 are of minimal, trivial and

maximal types, respectively. The next example provides OFBM of rotational type. Thus,

classes of all four types of o.s.s. processes in Theorem 4.5.3 are non-empty.

Example 4.5.4. Consider OFBM given by the integral representation (4.23) with H =

diag(h, h), M ∈ SO(2) and N = I. Let fh,+(t, u) = (t − u)h−1/2
+ − (−u)h−1/2

+ , fh,−(t, u) =

(t− u)h−1/2
− − (−u)h−1/2

− and

g1(t, s) =
∫

R
fh,+(t, u)fh,+(s, u)du =

∫

R
fh,−(t, u)fh,−(s, u)du,

g2(t, s) =
∫

R
fh,+(t, u)fh,−(s, u)du.

Note that, for suitable constants Ch, C̃h, and s, t > 0,

g1(t, s) = Ch(t2h + s2h − |t− s|2h), g2(t, s) = C̃h(−t2h + |t− s|2h1{t>s}).

The covariance structure of such OFBM can be expressed as

Γ(t, s) = 2g1(t, s)I + g2(t, s)M + g2(s, t)M∗.
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Then, Õ ∈ G1 if and only if ÕΓ(t, s)Õ∗ = Γ(t, s), or

2g1(t, s)(ÕÕ∗ − I) + g2(t, s)(ÕMÕ∗ −M) + g2(s, t)(ÕM∗Õ∗ −M∗)∗ = 0. (4.36)

For t > s, ∂
∂tg2(s, t) = 0. Then,

2
∂

∂t
g1(t, s)(ÕÕ∗ − I) +

∂

∂t
g2(t, s)(ÕMÕ∗ −M) = 0.

By integrating this back from 0 to t, we obtain that

2g1(t, s)(ÕÕ∗ − I) + g2(t, s)(ÕMÕ∗ −M) = 0. (4.37)

In particular, comparing (4.36) and (4.37), M∗ = ÕM∗Õ∗. This yields M = ÕMÕ∗, and

hence, in view of (4.36), ÕÕ∗ = I. The last relation implies that Õ ∈ O(2). Hence,

MÕ = ÕM and, since M ∈ SO(2), this happens only with Õ ∈ SO(2). Thus, G1 = SO(2).
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APPENDIX A

On the integration of continuous-time stationary Gaussian
processes

Let {X(t)}t∈R be a Gaussian stationary process given by (2.1). We define here the

integral ∫

R
X(t)f(t)dt, (A.1)

for suitable functions f and state its properties as used throughout the paper. Our strategy

will be to define (A.1) both pathwise and as an L2(Ω) limit and to show that the two

definitions coincide in relevant cases. In the pathwise case, the integral (A.1) will be denoted

by Iω(f) (i.e. defined ω-wise), and, in the L2(Ω) case, it will be denoted by I2(f).

For simplicity, we assume that the sample paths of X are continuous. Path continuity

is not a stringent assumption since, by Belayev’s alternative (Belayev (1960)), either the

sample paths of a Gaussian stationary process are continuous or very badly-behaved in the

sense of possessing discontinuities of the second type.

Assume first that f(t) =
∑n

i=1 fi1[ai,bi)(t) is a step function. For such function, the

stochastic integral (A.1) may be defined pathwise as the ordinary Riemann integral

Iω

( n∑

i=1

fi1[ai,bi]

)
=

n∑

i=1

∫ bi

ai

X(t)dt. (A.2)

Lemma A.0.4. The integral (A.2) has the following properties: for step functions f, f1

and f2, and with the notation I(f) = Iω(f):

(P1) I(f) is a Gaussian random variable with mean zero.

(P2) The following moment formulae hold:

EI(f)2 =
1
2π

∫

R
|ĝ(x)|2|f̂(x)|2dx; (A.3)

E
[
I(f1)I(f2)

]
=

1
2π

∫

R
|ĝ(x)|2f̂1(x)f̂2(x)dx; (A.4)

104



E
[
I(f)X(t)

]
=

1
2π

∫

R
eitx|ĝ(x)|2f̂(x)dx. (A.5)

(P3) For real c and d, I(cf1 + df2) = cI(f1) + dI(f2).

Proof. Property (P3) is elementary. It is enough to prove properties (P1) and (P2) in the

case of indicator functions f = 1[a,b), f1 = 1[a1,b1) and f2 = 1[a2,b2). By using Lemma A.0.6

below, we have

Iω(1[a,b]) =
∫

R

[∫ b

a
g(t− u)dt

]
dB(u) a.s. (A.6)

Property (P1) is immediate since Iω(1[a,b)) is an integral with respect to Brownian motion.

We now turn to property (P2) and show first (A.4), of which (A.3) is a special case. By

using (A.6) and the notation f1 = 1[a1,b1), f2 = 1[a2,b2), (A.4) follows from

EIω(1[a1,b1))Iω(1[a2,b2)) =
∫

R

( ∫ b1

a1

g(t− u)dt

)(∫ b2

a2

g(t− u)dt

)
du

=
∫

R
(f1 ∗ g∨)(u)(f2 ∗ g∨)(u)du =

1
2π

∫

R
f̂1(x)f̂2(x)|ĝ(x)|2dx.

To show (A.5), note that, by using (2.1), (A.6) and the notation f = 1[a,b),

EX(t)Iω(1[a,b)) =
∫

R
g(t− u)

(∫ b

a
g(s− u)ds

)
du

=
∫

R
g(t− u)(f ∗ g∨)(u)du =

1
2π

∫

R
eitxf̂(x)|ĝ(x)|2dx.

An extension of the integral (A.1) to more general functions f can be achieved by an

argument of approximation in L2(Ω). Consider the space of deterministic functions

L2
g :=

{
f ∈ L2(R) :

∫

R
|f̂(x)|2|ĝ(x)|2dx < ∞

}
(A.7)

with the inner product

〈f1, f2〉L2
g

:=
1
2π

∫

R
f̂1(x)f̂2(x)|ĝ(x)|2dx. (A.8)
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Denote also

Is
X =

{
Iω(f) : f is a step function

}
, (A.9)

equipped with the ordinary L2(Ω) inner product

EIω(f1)Iω(f2). (A.10)

The space Is
X and the restriction of L2

g to step functions are isometric since, for elementary

functions f1 and f2,

EIω(f1)Iω(f2) =
1
2π

∫

R
f̂1(x)f̂2(x)|ĝ(x)|2dx = 〈f1, f2〉L2

g
. (A.11)

Thus, a natural way to define the integral I2 for a given f ∈ L2
g is to take a sequence of

step functions ln that approximate f in the L2
g norm, and set I2(f) as the corresponding

L2(Ω) limit of Iω(ln). We address the question of the existence of such a sequence of step

functions in the following lemma.

Lemma A.0.5. For every function f ∈ L2
g(R), there is a sequence {ln} of step functions

such that ‖f − ln‖L2
g
−→ 0.

Proof. This result can be proved as Lemma 5.1 in Pipiras and Taqqu (2000). For the

reader’s convenience, we indicate here the main steps of the proof. Moreover, the proof of

Lemma 5.1 in Pipiras and Taqqu (2000) contains a small error (see the argument before

Case 2 on p. 274 in that paper) and needs to be modified slightly.

As in Pipiras and Taqqu (2000), it is enough to show the result in Case 1: f is an even

function and, more specifically, such that f̂(x) = 1[−1,1](x), and Case 2: f is an odd function

and, more specifically, such that f̂(x) = i(1[0,1](x)− 1[−1,0](x)). We briefly consider Case 1

only.

In Case 1, write first

2π‖f − ln‖2
L2

g
=

∫

R
|x1[−1,1](x)− xl̂n(x)|2 |ĝ(x)|2

x2
dx.

Let U(x) be the function on x ∈ R such that U(x) = x1[−1,1](x) for x ∈ [−k, k] and U(x) is
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periodic with period 2k, where k ≥ 2. Suppose ε > 0 is arbitrarilly small. Since ĝ ∈ L2 and

|U(x)| ≤ 1, we can fix k such that

∫

|x|>k
|U(x)|2 |ĝ(x)|2

x2
dx < ε.

Then,

2π‖f − ln‖2
L2

g
≤

∫

R
|U(x)− xl̂n(x)|2 |ĝ(x)|2

x2
dx + ε. (A.12)

The functions ln are now constructed as follows. As shown in Pipiras and Taqqu (2000),

there is a sequence of trigonometric functions Un(x) =
∑n

j=−n uje
iπjx/k such that

(i) supn,x |Un(x)| ≤ const,

(ii) supn |Un(x)| ≤ const |x|, for small |x|,
(iii) Un(x) → U(x) except at discontinuity points of U(x).

Then, by the Dominated Convergence Theorem, we obtain

∫

R
|U(x)− Un(x)|2 |ĝ(x)|2

x2
dx → 0. (A.13)

In view of (A.12) and (A.13), it is enough to observe that Un(x) = xl̂n(x) for some step

functions ln.

Given f ∈ L2
g, we may use Lemma A.0.5 to define (A.1) as

I2(f) = lim(L2(Ω))Iω(ln), (A.14)

where {ln} is a sequence of step functions such that ‖f−ln‖L2
g
→ 0. This definition does not

depend on the approximating sequence of f . The integral I2(f) has the following properties.

Theorem A.0.7. The map I2 : f −→ I2(f) defined by (A.14) is an isometry between the

spaces L2
g and IX = {I2(f) : f ∈ L2

g}. Moreover, I2(f) = Iω(f) a.s. for step functions

f , and the integral I2(f) satisfies the properties (P1), (P2) and (P3) of Lemma A.0.7 with

I(f) = I2(f) and f, f1, f2 ∈ L2
g.

Proof. The proof is omitted as being standard once we have Lemma A.0.5.
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Remark. Relation (A.5) in property (P2) can be seen as a particular case of (A.4) with

f2(u) := δt(u), where the latter stands for the Dirac delta at u = t. For such f2, f̂2(x) =

δ̂t(x) = e−itx and note that
∫
R |f̂2(x)|2|ĝ(x)|2dx =

∫
R |ĝ(x)|2dx < ∞.

It is possible to define (A.1) also pathwise for more general integrand functions. As

discussed in Section 2.7, for a Gaussian stationary process {X(t)}t∈R, we have, almost

surely,

|X(t)| ≤ C
√

log(2 + |t|), t ∈ R, (A.15)

where C is a random variable. Consider the space

L := {f ∈ L2(R) :
∫

R

√
log(2 + |t|)|f(t)|dt < ∞}. (A.16)

For f ∈ L, in view of (A.15) we may define

Iω(f) =
∫

R
X(t)f(t)dt

pathwise as an improper Riemann integral. It is reasonable to expect the integrals Iω(f)

and I2(f) to coincide a.s. at least for suitable integrands f .

Proposition A.0.2. For f ∈ L ∩ L2
g, I2(f) = Iω(f) a.s.

Proof. Note that I2(f) = Iω(f) for a step function f . Take a sequence of step functions

{ln} such that ‖f − ln‖L2
g
→ 0. We know that ‖I2(f) − I2(ln)‖L2(Ω) → 0. It is therefore

enough to show that ‖Iω(f)−Iω(ln)‖L2(Ω) → 0 as well. This follows by using Lemma A.0.6

below since

‖Iω(f)− Iω(ln)‖L2(Ω) = E

[∫

R
X(t)(ln(t)− f(t))dt

]2

= E
(∫

R

(∫

R
g(t− u)dB(u)

)
(ln(t)− f(t))dt

)2

= E
(∫

R

(∫

R
g(t− u)(ln(t)− f(t))dt

)
dB(u)

)2

=
∫

R

(∫

R
g(t− u)(ln(t)− f(t))dt

)2
du =

∫

R

(
g∨ ∗ (ln − f)(u)

)2
du
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=
1
2π

∫

R
|ĝ(x)|2|(l̂n − f)(x)|2dx = ‖ln − f‖L2

g
→ 0.

The next lemma was used several times in the appendix above.

Lemma A.0.6. Let {X(t)}t∈R be as in (2.1) with continuous sample paths and f ∈ L be

an a.e. continuous bounded function, where L is defined in (A.16). Then,

Iω(f) =
∫

R
X(t)f(t)dt =

∫

R

(∫

R
g(t− u)dB(u)

)
f(t)dt

=
∫

R

(∫

R
g(t− u)f(t)dt

)
dB(u) a.s. (A.17)

Proof. Suppose first that f is bounded. From the definition of improper integral, Iω(f) =

lima→+∞ Iω(f1[−a,a]) a.s. We will first show that (A.17) holds for f1[−a,a], where a > 0 is

fixed. Let Π = {−a = t0 ≤ t1 ≤ ... ≤ tn = a} denote a partition of the interval [−a, a]. By

the a.e. sample path continuity of X(t)f(t), the discretization
∑

tk∈Π X(tk)f(tk)(tk+1− tk)

converges to Iω(f1[−a,a]) a.s. as ‖Π‖ → 0. The discretization is an L2(Ω) random variable,

and it suffices to prove that it also converges in L2(Ω) to the integral on the R.H.S. of

(A.17). Write
∑

tk∈Π

X(tk)f(tk)(tk+1 − tk) =
∫

R
GΠ(u)dB(u),

where GΠ(u) =
∑

tk∈Π g(tk − u)f(tk)(tk+1 − tk). Observe that

ĜΠ(x) =
∑

tk∈Π

e−itkxĝ(−x)f(tk)(tk+1 − tk). (A.18)

As ‖Π‖ → 0, ĜΠ(x) converges pointwise to ĝ(−x) ̂(f1[−a,a])(x), which is the Fourier trans-

form of (g∨ ∗ (f1[−a,a]))(u) =
∫
R g(t− u)f(t)1[−a,a]dt =: G(u). Furthermore,

∣∣∣ĜΠ(x)
∣∣∣ ≤

∣∣∣ĝ(−x)
∑

tk∈Π

e−itkxf(tk)(tk+1 − tk)
∣∣∣ ≤ C |ĝ(x)| , (A.19)

since f is bounded. Since ĝ ∈ L2(R) by assumption, the Dominated Convergence Theorem

implies that ĜΠ(x) converges to Ĝ(x) in L2(R). This yields that
∫
RGΠ(u)dB(u) converges
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to
∫
RG(u)dB(u) in L2(Ω), and proves (A.17) for f1[−a,a]. To show (A.17) in general, it is

enough to prove that

∫

R

( ∫ a

−a
g(t− u)f(t)dt

)
dB(u)

L2(Ω)−→
∫

R

(∫

R
g(t− u)f(t)dt

)
dB(u). (A.20)

Taking Fourier transforms, this is equivalent to

∫

R
|ĝ(x)|2|(f̂1[−a,a] − f̂)(x)|2dx → 0.

The convergence follows from the Dominated Convergence Theorem since ̂f1[−a,a](x) →
f̂(x) for all x ∈ R (use L ⊆ L1(R)) and |f̂1[−a,a](x)| ≤ ‖f‖L1 .

For the case of unbounded f , just consider a sequence of truncated integrands fn :=

f1{|f |≤n} and apply again the Dominated Convergence Theorem.
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APPENDIX B

Supplementary material on linear operators

B.1 On the commutativity of operators

The characterization of the commutativity of operators is a well-known problem in

Linear Algebra (see, for instance, MacDuffee (1946), p. 89, or Taussky (1953)). More

precisely, given an operator A, the problem is to find the set C(A) of operators that commute

with A. C(A) is called the centralizer of A.

From now on, E represents an n-dimensional vector space with field F, and L(E,F) is

the space of endomorphisms on E (F is included in the notation to stress what particular

field is taken). In particular, L(E,R) is isomorphic to M(n). A vector v ∈ E\{0} is said

to be an eigenvector for A ∈ L(E,F) if there exists λ ∈ F such that Av = λv. λ ∈ F is said

to be an eigenvalue when there exists a vector v ∈ E\{0} such that Av = λv. For a given

eigenvalue λ ∈ F, the subspace Eλ := {v ∈ E; Av = λv} is said to be the eigenspace of A

corresponding to λ.

Note that sufficient conditions for commutativity are usually easy to obtain.

Example B.1.1. Assume A,X ∈ M(n) are two diagonalizable operators with (individu-

ally) distinct eigenvalues. A and X commute if they have the same eigenspaces, since, in

this case,

A = PDAP−1, X = PDXP−1 (B.1)

for diagonal DA and DX , and diagonal matrices commute. Note that P in (B.1) is not

unique.

Eigenvalues with multiplicity greater than 1 introduce the multi-dimensionality of eigen-

spaces. For instance, the Identity commutes with every (e.g., diagonalizable) operator A

because it can be diagonalized through any basis of Rn, and in particular, the eigenvector

basis of A.

Still in the context of diagonalizable operators, the sharing of eigenvectors - equivalently,
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of 1-dimensional invariant subspaces - is also a necessary condition, as Theorem B.1.3 below

shows. The intuition behind it is clear: the order of the application of operators does not

matter if and only if they act as scalars - which are algebraic entities that commute - upon

the same 1-dimensional (invariant) subspaces of Rn.

In the general case of any two operators A,X ∈ M(n), the complexity of the matter

increases, because the dimensions of the eigenspaces may not add up to n (see Subsection

B.1.2). The next proposition give a general necessary condition for commutativity.

Proposition B.1.1. Let A, X ∈ L(E,F). If X commutes with A, then each eigenspace of

A is invariant by X.

Proof. Let Eλ be an eigenspace of A associated with the eigenvalue λ ∈ F. Then, Av = λv

implies that

A(Xv) = X(Av) = X(λv) = λ(Xv),

i.e., Xv ∈ Eλ.

A case of particular interest is when the eigenspace of A is 1-dimensional. Then, one

can immediately obtain an eigenvector for X, which, depending on the context, may be

used in the construction of an eigenvector basis of X (as in Section 4.5).

Corollary B.1.1. Under the assumptions of Proposition B.1.1, if the eigenspace Eλ of A

is 1-dimensional, then there exists η such that Xw = ηw for all w ∈ Eλ.

Proof. Since Eλ is unidimensional, then X(Eλ) has dimension either zero or one. In the

former case, Eλ is an eigenspace of X with eigenvalue η = 0. In the latter case, choose

some arbitrary v in Eλ. The vector Xv can be written as ηv for some η 6= 0. Likewise, any

other vector w ∈ Eλ can be written as α(w)v for some α(w) ∈ F. Therefore,

Xw = Xα(w)v = α(w)Xv = α(w)ηv = ηα(w)v = ηw.
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Note, however, that the subspace Eλ in Corollary B.1.1 may not be the eigenspace of

the operator X associated with the eigenvalue λ. For instance, if X = Identity, the entire

E is the eigenspace associated with the eigenvalue 1.

In Subsection B.1.1, necessary and sufficient conditions for commutativity are obtained

in the classical setting of self-adjoint operators. This case is of interest not only because

it is familiar to most readers but also because the discussion of commutativity can be

carried out directly in terms of eigenvectors and eigenspaces, a fact related to the Spectral

Theorem. In Subsection B.1.2, necessary and sufficient conditions for the commutativity of

any two operators are obtained. The matrix perspective is predominant because it facilitates

understanding of the issues involved. Subsection B.1.1 is based on Lima (1996), chapters

12 and 13, whereas Subsection B.1.2 is based on Gantmacher (1959), chapter 8, and Lima

(1996), appendix.

B.1.1 The case of self-adjoint operators

Since our general discussion of commutativity involves the use of invariant subspaces,

we opted for not directly using the Spectral Theorem in this subsection. This will make

more clear at what point self-adjointness is indeed necessary (see also Remark B.1.2).

We begin by showing (Proposition B.1.2) that every A ∈ L(E,R) has an invariant

subspace of dimension 1 or 2. Equivalently, either there exists a non-null vector u ∈ E such

that Au = λu or there exist linearly independent u, v ∈ E such that Au and Av are both

linear combinations of u and v, i.e., Au = αu + βv, Av = γu + δv.

To show this, we first prove Lemma B.1.1, which states there exists an irreducible monic

polynomial p of degree 1 or 2 such that the Ker(p(A)) is non-empty (a monic polynomial is

a polynomial whose coefficient of the highest order term is 1). The proof of Lemma B.1.1

makes use of the Fundamental Theorem of Algebra, which implies that every monic real

polynomial is decomposable as the product of irreducible monic polynomials of the first and

second degrees. Here, one should remember that an irreducible second degree polynomial

does not have real roots.

Denote p(x) = a0 + a1x + ... + anxn, and p(A) = a0I + a1A + ... + anAn.

Lemma B.1.1. Let A ∈ L(E,R). There exists an irreducible monic polynomial p of degree
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1 or 2 and a non-null vector v such that p(A)v = 0.

Proof. The space L(E,R) has dimension n2, and therefore the operators I,A, ..., An2
are

linearly dependent. This means there exist α0, α1, ..., αn2 , of which at least one is not zero,

such that

α0I + α1A + ... + αn2An2
= 0.

Let αm be the highest-indexed non-zero coefficient. If we set βi = αi/αm, we obtain a monic

polynomial

q(x) := β0 + β1x + ... + βm−1x
m−1 + xm

such that q(A) = 0. By the Fundamental Theorem of Algebra, we can factor q(x) =

q1(x)...qk(x), where each qi(x) is a monic irreducible polynomial of degree 1 or 2. Therefore,

q(A) = q1(A)... qk(A) = 0,

which implies there exists i ∈ {1, ..., k} such that qi(A) is not invertible. Therefore, there

exists a non-null v such that qi(A)v = 0. To finish the proof, just set p = qi.

Proposition B.1.2. Any A ∈ L(E,R) has an invariant subspace of dimension 1 or 2.

Proof. Let p be the polynomial given by Lemma B.1.1. If p(x) = x − λ, then p(A)v =

(A− Iλ)v = 0, and thus we obtain a 1-dimensional invariant subspace.

Alternatively, if p is of degree 2, then we can write it as p(x) = x2 + ax + b, a, b ∈ R.

This means that p(A)v = A2v + aAv + bv = 0, and thus, A(Av) = −a(Av) − bv. Thus,

the subspace generated by v and Av is invariant by A. Furthermore, this subspace must

be 2-dimensional. In fact, assume by contradiction that v and Av are linearly dependent.

Then, there exists λ ∈ R such that Av = λv, and thus

0 = A2v + aAv + bv = λ2v + aλv + bv = (λ2 + aλ + b)v,

which implies λ2 + aλ + b = 0. This is impossible, since the irreducible second-degree

polynomial p has no real root.
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Although Proposition B.1.2 proves the existence of a 1- or 2-dimensional invariant sub-

space for an operator A, it is not clear whether A has an eigenvector basis. This is where

self-adjointness comes into play. We now prove a simple fact about self-adjoint operators.

Lemma B.1.2. Let E be a vector space with inner product, and let A ∈ L(E,R) be self-

adjoint. If λ and λ′ are two distinct eigenvalues of A, their respective eigenvectors v and v′

are orthogonal.

Proof. This follows by self-adjointness and the fact that λ− λ′ 6= 0, since

(λ− λ′)〈v, v′〉 = 〈λv, v′〉 − 〈v, λ′v′〉 = 〈Av, v′〉 − 〈Av, v′〉 = 0.

The next proposition shows the existence of an orthonormal basis of eigenvectors for a

self-adjoint A in the case where E is 2-dimensional. Note that the existence of an invariant

subspace as stated in Proposition B.1.2 is, in fact, necessary for the argument to work.

Proposition B.1.3. Let E be a 2-dimensional vector space with inner product, and let

A ∈ L(E,R) be a self-adjoint operator. There exists an orthonormal basis {u1, u2} ⊆ E of

eigenvectors of A.

Proof. Let {v, w} be an arbitrary orthonormal basis of E. Due to the symmetry of the

matrix representation of A, we have

Av = av + bw and Aw = bv + cw.

Thus, the eigenvalues of A are the roots of the polynomial p(λ) = λ2−(a+c)λ+(ac−b2). If

the discriminant is zero, then b = 0, a = c and thus A = aI, which implies that every non-

null vector in E is an eigenvector of A. If the discriminant is greater than zero, then λ1 and

λ2 are real and distinct roots. Thus, A−λ1I and A−λ2I are both non-invertible. Therefore,

there exist eigenvectors u1, u2 of A, i.e., Au1 = λ1u1 and Au2 = λ2u2 (without loss of

generality, we can assume u1 and u2 have norm 1). Since the eigenvectors corresponding to

distinct eigenvalues of a self-adjoint operator are orthogonal (Lemma B.1.2), {u1, u2} ⊆ E
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is an orthonormal basis of eigenvectors of A.

Proposition B.1.4. Let E be a vector space with inner product. Every self-adjoint operator

A ∈ L(E,R) has an eigenvector.

Proof. By Proposition B.1.2, there exists a 1- or 2-dimensional subspace V ⊆ E which is

invariant by A. If dim(V ) = 1, then every non-null vector v ∈ V is an eigenvector of A. If

dim(V ) = 2, then by applying Proposition B.1.3 to the restriction A : V → V of A to the

invariant subspace V , we obtain an eigenvector of A.

Remark B.1.1. What Proposition B.1.4 ensures is the existence of an eigenvector when we

are restricted to the field R (for instance, in this context a rotation in SO(2)\{I,−I} does

not have an eigenvector, although Proposition B.1.2 still holds). Over the field C, the exis-

tence of an eigenvector is an immediate consequence of applying the Fundamental Theorem

of Algebra to the polynomial det(A− λI), and does not depend on specific assumptions on

A such as self-adjointness.

Proposition B.1.5. Let E be a vector space with inner product. If the subspace V ⊆ E is

invariant by the linear operator A ∈ L(E,F), then V ⊥ is invariant by the adjoint A∗.

Proof. Let u ∈ V , v ∈ V ⊥. Note that 〈A∗v, u〉 = 〈v, Au〉 = 0, since V is invariant by A.

Thus, A∗v ∈ V ⊥.

Proposition B.1.5 yields the following result.

Proposition B.1.6. Let E be a vector space with inner product, and let A ∈ L(E,R) be a

self-adjoint operator. If the subspace V is invariant by A, then so is V ⊥.

We can now prove the main result of this subsection.

Theorem B.1.1. Let E be a vector space with inner product, and let A,X ∈ L(E,R)

be self-adjoint, linear operators. A and X commute if and only if there exists a basis of

common eigenvectors.
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Proof. Let u1, ..., un be a basis of common eigenvectors of A and X. Let λA
1 , ..., λA

n be their

respective (possibly repeated) A eigenvalues, and let λX
1 , ..., λX

n be their respective (possibly

repeated) X eigenvalues. Take a vector v =
∑n

i=1 αiui ∈ E, αi ∈ R, and write

XAv = XA
( n∑

i=1

αiui

)
=

( n∑

i=1

αiλ
X
i λA

i ui

)
=

( n∑

i=1

αiλ
A
i λX

i ui

)

= AX
( n∑

i=1

αiui

)
= AXv.

For the converse, as a consequence of Proposition B.1.4, there exists an eigenspace Eλ1

of A with associated eigenvalue λ1. Now assume A and X commute. By Proposition B.1.1,

Eλ1 is invariant by X. By Proposition B.1.4, X has an eigenvector w ∈ Eλ1 , which must

also be an eigenvector of A. Thus, w is a common eigenvector of A and X. By Proposition

B.1.6, the subspace span(w)⊥ ⊆ E is invariant by both A and X, so the argument can

repeated to obtain a new common eigenvector in this subspace. So, by repeatedly applying

Proposition B.1.6, we obtain a basis of common eigenvectors.

From the matrix perspective, Theorem B.1.1 states that two self-adjoint linear operators

A, X commute if and only if there is a basis from which we can construct a matrix O ∈ O(n)

that simultaneously diagonalizes A and X, i.e.,

A = ODAO∗ and X = ODXO∗.

As in the more general case of diagonalizable operators, the commutativity of A and X is

related to the fact that diagonal matrices commute.

Remark B.1.2. The Spectral Theorem for E with inner-product and field R states that

A ∈ L(E,R) is self-adjoint if and only if there exists an orthonormal basis of eigenvectors of

A. So, one could have proved Theorem B.1.1 by directly employing the Spectral Theorem

in place of Proposition B.1.4.

Remark B.1.3. All the discussion in this subsection may be easily extended to the case
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of normal operators. Of course, this involves dealing with complex vector spaces. See, for

instance, Gantmacher (1959), chapter 9.

B.1.2 The general case

Over complex vector spaces, eigenvalues and eigenvectors always exist (see Remark

B.1.1; in particular, 1-dimensional invariant subspaces always exist, as an extension of

Proposition B.1.2). However, the dimensions of the eigenspaces of A ∈ M(n,C) do not gen-

erally add up to n since the geometric dimension of a characteristic root (i.e., the dimension

of the associated eigenspace) may be less than its algebraic dimension (i.e., its multiplic-

ity). This implies that in general operators are not diagonalizable and the Spectral Theorem

(even for normal operators) does not hold. The closest one can get to diagonalization is

the so-called Jordan canonical form (also known as Jordan normal form; see, for instance,

Lima (1996), p. 340, or Lang (1987), p. 262). Every matrix A ∈ M(n,C) is conjugate to a

matrix J whose diagonal is made up of so-called Jordan blocks. Each Jordan block Jλi has

the form

Jλi =




λi 0 0 . . . 0

1 λi 0 . . . 0

0 1 λi . . . 0
...

...
...

. . .
...

0 0 . . . 1 λi




, (B.2)

where λi is a root of the characteristic polynomial of A, and there can be more than one

block with the same value λi on the diagonal. Jordan blocks commute, since they are lower

triangular Toeplitz operators. This already points to the general form of C(A), in the sense

that this set must encompass more matrices than only those that can be reduced to Jordan

canonical form through the same conjugacy P ∈ GL(n,C) as A. For instance, for

A :=




λ 0 0

1 λ 0

0 1 λ




,
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C(A) must include all 3× 3 lower-triangular Toeplitz matrices




a 0 0

b a 0

c b a




, a, b, c ∈ C.

The problem of finding commuting matrices is a particular case of that of finding the

non-trivial solutions X ∈ M(m,n,C) to the equation

AX = XB, A ∈ M(m,C), B ∈ M(n,C). (B.3)

We can write the elementary divisors of A and B as

(λ− λ1)p1 , (λ− λ2)p2 , ..., (λ− λu)pu , p1 + p2 + ... + pu = m,

(λ− µ1)q1 , (λ− µ2)q2 , ..., (λ− µv)qv , q1 + q2 + ... + qv = n

(for the definition of elementary divisors, see Gantmacher (1959), p. 193). Let I(k) denote

the k-dimensional Identity, and H(k) denote the (nilpotent) matrix with ones on the first

subdiagonal and zeros elsewhere. The reduction to Jordan canonical form yields

A = UÃU−1, B = V B̃V −1 (B.4)

for conjugacies U ,V , where

Ã = diag(λ1I
(p1) + H(p1), ..., λuI(pu) + H(pu)),

B̃ = diag(µ1I
(q1) + H(q1), ..., µvI

(qv) + H(qv)).

If we set

X̃ = U−1XV,
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then (B.3) can be written as

ÃX̃ = X̃B̃, (B.5)

which is simpler to deal with, since Ã and B̃ are in Jordan canonical form. Now, X̃ can be

partitioned into blocks Xαβ (without the “∼” for notational simplicity), α = 1, ..., u, β =

1, ..., v, corresponding to the quasi-diagonal form of Ã and B̃. Accordingly, Xαβ is of

dimension pα× qβ, since it right multiplies a Jordan block of dimension pα× pα on the left-

hand side of (B.5), and left multiplies a Jordan block of dimension qβ×qβ on the right-hand

side of (B.5).

By block multiplication, we obtain

(λαI(pα) + H(pα))Xαβ = Xαβ(µβI(qβ) + H(qβ)), α = 1, ..., u, β = 1, ..., v.

Equivalently,

(µβ − λα)Xαβ = HαXαβ −XαβGβ, (B.6)

where Hα := H(pα), Gβ := H(qβ).

Thus, for given α, β, there are two cases to consider.

(i) λα 6= µβ: By iterating equation (B.6) r − 1 times, we get

(µβ − λα)rXαβ =
∑

σ+τ=r

(−1)τ

(
r

τ

)
Hσ

αXαβGτ
β.

By the nilpotence of Hα and Gβ, if we take r ≥ pα+qβ−1, then each term of the summation

has either Hσ
α = 0 or Gτ

β = 0. Since λα 6= µβ, then Xαβ = 0.

(ii) λα = µβ: In this case, we can rewrite (B.6) as

HαXαβ = XαβGβ. (B.7)

Set Xαβ = [xik], i = 1, ..., pα, k = 1, ..., qβ. For the sake of illustration, assume without

loss of generality that pα > qβ. Since
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Hα =




0 0 . . . 0 0

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0




pα×pα

, Gβ =




0 0 . . . 0 0

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0




qβ×qβ

,

we have

HαXαβ =




0 0 . . . 0

x11 x12 . . . x1,qβ

x21 x22 . . . x2,qβ

...
...

. . .
...

xpα−1,1 xpα−1,2 . . . xpα−1,qβ




pα×qβ

,

XαβGβ =




x12 x13 . . . x1,qβ
0

x22 x23 . . . x2,qβ
0

...
...

. . .
...

...

xpα,2 xpα,3 . . . xpα,qβ
0




pα×qβ

and hence

Xαβ =




x11 0 0 . . . 0

x21 x11 0 . . . 0

x31 x21 x11 . . . 0
...

...
...

. . .
...

xpα,1 xpα−1,1 . . . x21 x11

0 0 . . . 0 0
...

...
...

...
...

0 0 . . . 0 0




pα×qβ

.

In particular, when pα = qβ,

Tpα := Xαβ =




cαβ 0 . . . 0

c′αβ cαβ . . . 0
...

...
. . .

...

c
(pα−1)
αβ . . . c′αβ cαβ




.
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Therefore, for pα 6= qβ we can write

Xαβ :=




Tqβ

0


 when pα > qβ, and Xαβ := (Tpα , 0) when pα < qβ.

We will say that in any of these cases Xαβ is in regular triangular form.

As for the count of number of arbitrary parameters, let dαβ(λ) be the greatest common

divisor of the elementary divisors (λ − λα)pα , (λ − µβ)qβ . Also, let δαβ be the degree of

dαβ(λ). In the case λα 6= µβ, δαβ = 0, and in the case λα = µβ, δαβ = min(pα, qβ).

Therefore, δαβ gives the number of arbitrary parameters in Xαβ. Thus, the number N of

arbitrary parameters in X is
∑u

α=1

∑v
β=1 δαβ. We proved the following theorem.

Theorem B.1.2. Let

A := UÃU−1 = Udiag(λ1I
(p1) + H(p1), ..., λuI(pu) + H(pu))U−1,

B := V B̃V −1 = V diag(µ1I
(q1) + H(q1), ..., µvI

(qv) + H(qv))V −1.

The general solution of AX = XB is given by

X = UX
ÃB̃

V −1,

where X
ÃB̃

is the general solution to the equation

ÃX̃ = X̃B̃.

X
ÃB̃

is decomposed into blocks Xαβ of size pα × qβ, where α = 1, ..., u, β = 1, ..., v.

If λα 6= µβ, then Xαβ = 0. If λα = µβ, then Xαβ is a lower triangular matrix.

X
ÃB̃

, and therefore also X, depends linearly on N =
∑u

α=1

∑v
β=1 δαβ arbitrary param-

eters c1, ..., cN , where δαβ is the degree of the greatest common divisor of (λ − λα)pα and

(λ− µβ)qβ . In particular,

X =
N∑

j=1

cjXj .
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Each matrix Xj is a solution to AX = XB by setting cj to 1 and the remaining terms c to

0.

Note that if A and B do not have common characteristic roots, i.e., if the polynomials

det(λI−A) and det(λI−B) are co-prime, then N = 0, and thus the only solution is X = 0.

We now apply the theorem to an example in the case A = B.

Example B.1.2. Assume A has the elementary divisors

(λ− λ1)4, (λ− λ1)3, (λ− λ2)2, (λ− λ2), λ1 6= λ2. (B.8)

Then, C(A) is made up of operators conjugate to




a 0 0 0 | 0 0 0 | 0 0 | 0

b a 0 0 | h 0 0 | 0 0 | 0

c b a 0 | k h 0 | 0 0 | 0

d c b a | l k h | 0 0 | 0

− − − − | − − − | − − | −
e 0 0 0 | m 0 0 | 0 0 | 0

f e 0 0 | p m 0 | 0 0 | 0

g f e 0 | q p m | 0 0 | 0

− − − − | − − − | − − | −
0 0 0 0 | 0 0 0 | r 0 | 0

0 0 0 0 | 0 0 0 | s r | w

− − − − | − − − | − − | −
0 0 0 0 | 0 0 0 | t 0 | z




by some conjugacy P ∈ GL(n,C), where the blocks on the diagonal above correspond to

the Jordan blocks of A = PJP−1 in the block diagonal matrix J .

The general form of C(A) is given in the theorem below.

Theorem B.1.3. Let A be an operator in M(n,C) whose representation in Jordan form
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contains m Jordan blocks, with conjugacy P ∈ GL(n,C). Then, C(A) is made up of opera-

tors P -conjugate to

Ã = [Ãi,j ]i,j=1,...,m,

where Ãi,j is either the null matrix or an arbitrary regular lower triangular matrix depending

on whether λi 6= λj or λi = λj.

Remark B.1.4. The cases described in Example B.1.1 and Theorem B.1.1 follow from

Theorem B.1.3 by imposing the pertinent restrictions both on A and on the set of solutions

X.

The following result - an immediate consequence of Theorem B.1.3 - complements Ex-

ample B.1.1 and Corollary B.1.1.

Corollary B.1.2. Assume A ∈ M(n,C) has pairwise different characteristic roots. Then,

if we denote by P ∈ GL(n,C) the matrix whose columns are non-null eigenvectors p1, ..., pn

of A, we have

C(A) = {X ∈ M(n,C); X = Pdiag(λ1, ..., λn)P−1, λi ∈ C}.

B.2 The closed form of the exponential of a matrix in Jordan

canonical form

We develop here the expression for

zJ = exp(J log z) =
∞∑

k=0

Jk(log z)k

k!
,
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where J is a matrix in Jordan canonical form. Let Jλ be a Jordan block of size nλ, whose

expression is given in (B.2). It can be shown that

Jk
λ =




λk 0 0 0 . . . 0
(
k
1

)
λk−1 λk 0 0 . . . 0

(
k
2

)
λk−2

(
k
1

)
λk−1 λk 0 . . . 0

(
k
3

)
λk−3

(
k
2

)
λk−2

(
k
1

)
λk−1 λk . . . 0

...
...

...
. . . . . . 0

(
k

nλ−1

)
λk−nλ+1

(
k

nλ−2

)
λk−nλ+2 . . . . . .

(
k
1

)
λk−1 λk




,

where, by convention,
(
k
j

)
= 0 when k < j (see, for instance, Lütkepohl (1993), p. 460).

Now, note that

∞∑

k=0

(
k

j

)
λk−j(log z)k

k!
=

∞∑

k=j

(
k

j

)
λk−j(log z)k

k!
=

(log z)j

j!

∞∑

k=j

λk−j(log z)k−j

(k − j)!

=
(log z)j

j!
zλ.

Therefore,

zJλ =




zλ 0 0 0 . . . 0

(log z)zλ zλ 0 0 . . . 0
(log z)2

2! zλ (log z)zλ zλ 0 . . . 0
(log z)3

3! zλ (log z)2

2! zλ (log z)zλ zλ . . . 0
...

...
...

. . . . . . 0
(log z)nλ−1

(nλ−1)! zλ (log z)nλ−2

(nλ−2)! zλ . . . . . . (log z)zλ zλ




. (B.9)

.
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