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ABSTRACT 

Srinivas Niranj Chandrasekaran: Parameter optimization on the convergence surface of PATH 
simulations 

(Under the supervision of Charles W. Carter Jr.) 
 

Computational treatments of protein conformational changes tend to focus on the 

trajectories themselves, despite the fact that it is the transition state structures that contain 

information about the barriers that impose multi-state behavior. PATH is an algorithm that 

computes a transition pathway between two protein crystal structures, along with the transition 

state structure, by minimizing the Onsager-Machlup action functional. It is rapid but depends on 

several unknown input parameters whose range of different values can potentially generate 

different transition-state structures. Transition-state structures arising from different input 

parameters cannot be uniquely compared with those generated by other methods. I outline 

modifications that I have made to the PATH algorithm that estimates these input parameters in 

a manner that circumvents these difficulties, and describe two complementary tests that validate 

the transition-state structures found by the PATH algorithm. First, I show that although the 

PATH algorithm and two other approaches to computing transition pathways produce different 

low-energy structures connecting the initial and final ground-states with the transition state, all 

three methods agree closely on the configurations of their transition states. Second, I show that 

the PATH transition states are close to the saddle points of free-energy surfaces connecting 

initial and final states generated by replica-exchange Discrete Molecular Dynamics simulations. 

I show that aromatic side-chain rearrangements create similar potential energy barriers in the 

transition-state structures identified by PATH for a signaling protein, a contractile protein, and an 

enzyme. Finally, I observed, but cannot account for, the fact that trajectories obtained for all-
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atom and 𝐶𝛼-only simulations identify transition state structures in which the 𝐶𝛼 atoms are in 

essentially the same positions. The consistency between transition-state structures derived by 

different algorithms for unrelated protein systems argues that although functionally important 

protein conformational change trajectories are to a degree stochastic, they nonetheless pass 

through a well-defined transition state whose detailed structural properties can rapidly be 

identified using PATH. In the end, I outline the strategies that could enhance the efficiency and 

applicability of PATH.  
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Chandrasekaran, S. N., Das, J, Dokholyan, N. V., & Carter C. W. (2016). A modified 

PATH algorithm rapidly generates transition states comparable to those found by other 

well established algorithms. Structural Dynamics, 3(1), p.012101.  
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CHAPTER 1: INTRODUCTION 
 

 

Enzyme catalyzed reactions form an integral part of biology and are fundamentally 

important for replication of genetic material and for the survival of life. Hence enzyme catalyzed 

reactions have been studied in great detail, starting from simple catalysis of oligosaccharides by 

lysozyme (Chipman 1971) to complex reactions like mRNA translation by Ribosomes (Fluitt et 

al. 2007). In general, enzyme catalyzed reactions often take place in two steps, the fast 

chemical reaction step and the slower, rate-limiting protein conformational change step (Watt et 

al. 2007). The former is well understood for many enzyme catalyzed reactions because the 

transition states of the reaction are well characterized. One of the common ways to study these 

transition states is to arrest the reaction at the transition state using a transition state analog 

(Secemski et al. 1972). This is possible because the structure of the chemical species at the 

transition state is well known. Also, the chemical reaction is a localized phenomenon, that is, the 

parts of the protein that are involved in the chemical reaction are in and around the reactants in 

the binding pocket 

Characterization of the other step of enzyme catalyzed reactions, the conformational 

transition of the protein, is more difficult because it is not a localized phenomenon. Many large 

scale transition events in the protein are brought about by allosteric effects where a change in 

one part of the protein affects another part, mostly the active site (Weinreb et al. 2012). Hence 

the approach of designing transition state analogs to characterize conformational transition 

states is not straightforward.  
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1.1 Conformational transition states impose multistate behavior in proteins 

Conformational transition states are the most energetic structures along the 

conformational change pathways of proteins. Understanding the nature of these transition states 

is important as they hold information regarding what causes proteins to exist in multiple states 

(Kapustina et al. 2007). The multistate behavior of proteins is fundamental to life as it provides a 

way to generate states with a free energy differential and the transition between such states 

happens as a response to stimulus. Such conformational transitions can act as molecular timers 

to help regulate amplitude and duration of cellular processes (Nicholson & Lu 2007), 

significantly enhancing function by creating the capacity for a protein to transmit time and 

ligand-dependent information and/or mechanical motion necessary for signaling and other free-

energy transduction processes. Structures of conformational transition states should therefore 

reveal valuable information about the energy barriers that separate one equilibrium structure 

from another. 

1.2 Identification of conformational transition states by computational methods 

Traditional experimental methods that are used for determination of macromolecular 

structure, like NMR and X-ray crystallography, cannot be used to identify the structures of 

conformational transition states, due to their fleeting existence. Hence computational 

methods have to be used to identify and characterize conformational transition states.  

Molecular Dynamics (MD) simulations are the most commonly used computational 

methods to study the time evolution of macromolecular structures. There are several well-

established force fields and algorithms, such as, GROMACS (Lindahl et al. 2001; Hess et 

al. 2008), CHARMM (Brooks et al. 1983; Brooks et al. 2009), AMBER (Cornell et al. 1995) 

and NAMD (Phillips et al. 2005), that are the most widely used tools for performing 

molecular dynamics simulations. MD simulations have been successful in studying domain 

motions of large proteins (Gumbart et al. 2009) and have also been an invaluable tool in 
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studying folding pathways of smaller proteins (Shaw et al. 2010). But to identify 

conformational transition states MD simulations are inefficient tools, because, the protein 

conformational changes occur on the timescale of milliseconds and it is difficult to simulate 

large proteins for that time. Also as conformational changes are very rare compared to the 

rest of the time the protein spends at the equilibrium state identifying these conformational 

transition states in a statistically significant ensemble would require several transitions 

between the equilibrium states, which is really difficult to simulate. 

In spite of these problems, MD simulations can still provide useful information about 

protein conformational changes and transition states when coupled with sampling 

algorithms. One such popular algorithm is Steered Molecular Dynamics (Baker et al. 2013) 

where a force is applied to a part of a protein so that the transition from one state to another 

is induced. This speeds up the simulation and the different conformations can be sampled 

more rapidly. Another such algorithm is the Umbrella Sampling method (Torrie & Valleau 

1977) where the energy barrier separating the two conformations is flattened such that the 

two states are sampled. Another recent, but popular, method is the replica exchange 

algorithm (Sugita & Okamoto 1999) which provides comprehensive mapping of the 

conformational free energy landscape. The replica exchange algorithm efficiently searches 

the configuration space of proteins by overcoming the sampling problem that affects single 

temperature simulations, which is that, at low temperatures the structures do not have 

enough energy to overcome conformational barriers and at high temperatures, the 

structures are unfolded and are far from the equilibrium states. In replica exchange 

simulations, multiple replicas of the starting structure are simulated at different 

temperatures and at defined time intervals, structures at different temperatures are 

exchanged. By doing this, replica exchange simulations allow systems to explore structures 

at different temperatures, thus sampling the conformational landscape, quickly and 

efficiently. 
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There are other molecular dynamics simulation algorithms that increase the speed 

of simulations by different kinds of simplification like Discrete Molecular Dynamics (DMD) 

(Ding et al. 2008; Dokholyan et al. 1998; Shirvanyants et al. 2012). DMD uses a step-wise 

potential energy function instead of the smooth functions that other force fields use, which 

decreases the frequency at which the force has to be computed. This also means that the 

forces are computed not at regular intervals of time but is event based, that is, the force is 

computed when an event occurs. Hence DMD speeds up molecular dynamics simulations 

and with the help of a sampling algorithm (Williams II et al. 2015), can rapidly generate 

conformational landscapes. 

Even though there are good sampling algorithms and quick MD simulations 

techniques, they are still time and resource intensive. Some dedicated algorithms (Fujisaki 

et al. 2010) sample transition paths in the neighborhood of the most probable pathways 

between two equilibrium states, thereby not requiring massive computational resources. 

Once such algorithm is the String method (E et al. 2002b; Ovchinnikov et al. 2011) which 

furnishes an analytical algorithm for mapping the most probable path through 

conformational free energy landscapes using intervals between nodes defined in terms of 

collective variables along the path. It describes the transition pathway as the curve that 

connects successive metastable states so as to maintain a tangential projection of the 

curvature of the collective variables with respect to Cartesian space onto the free energy 

surface defined by the collective variables. Using collective variables reduces the number of 

degrees of freedom over which MD simulations are required. The progress between 

successive states is monitored in the String method with the help of a reaction coordinate 

called the committor function, which is the fraction of molecules that complete the trajectory 

from each node. The transition state along a trajectory between the two equilibrium states is 

achieved when the committor function reaches a value of 0.5. The all-atom CHARMM 

potential and the analytical formulation of the gradient mean that the string method can be 
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considered to be the gold standard in the field. In spite of the success of the string method, 

it is nevertheless resource intensive. 

Many functional conformational changes are distinct from protein folding reactions in 

that they entail primarily large amplitude motions that are independent of individual covalent 

bond vibration. Often, these conformational changes are rigid-body motions that can be 

replicated by the superposition of a few large amplitude normal modes. Numerous 

algorithms have been introduced to exploit Elastic Network Models (ENM) (Bahar et al. 

1997) in the computation of conformational change trajectories like Plastic Network Model 

(Maragakis & Karplus 2005) and adaptive Anisotropic Network Model (aANM) (Yang et al. 

2009). In PNM, the conformational change trajectory is computed by minimizing the path 

integral of a free energy functional corresponding to the action or “resistance” along the 

path. This computed trajectory is a minimum energy path and is a differentiable curve 

through the centers of a smooth tube in pathspace containing the most probable paths 

(Durr & Bach 1978; Pinski & Stuart 2010). In aANM, the trajectory is calculated by an 

iterative method in which the intermediate state between the two equilibrium states are 

identified along the distance vector connecting the initial and the final states. Another 

related algorithm is ANMPathway (Das et al. 2014) which uses an Anisotropic Network 

Model (ANM) (Atilgan et al. 2001) to describe the potential energy wells of the two 

equilibrium states. In this method, the two structures are linearly extrapolated such that the 

energy of the two intermediates states, relative to the end states are equal. These two 

intermediate states now define a cusp hyperspace on which the lowest energy structure is 

identified by energy minimization, which is the transition state. Then by steepest descent 

energy minimization the trajectory from the transition state, back to the equilibrium states is 

computed. 

Curiously, despite the relative importance of conformational transition states, few, if 

any of the computational studies on conformational changes to date have focused on the 
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transition state structures. It can be argued that in many ways transition-state structures, 

not the exact path, may be what are most important about conformational transitions. 

Hence my project was on the investigation of the possibility that the simplified potentials 

may furnish a sufficient basis set to identify valid transition state structures for large domain 

motions. Thus, whereas most treatments focus on the trajectories; I focused on the 

transition states themselves because they contain information about the barriers that 

impose multi-state behavior on proteins. 

1.3 PATH rapidly computes the most likely path and transition state 

PATH (formerly MinActionPath (Franklin et al. 2007)) is an algorithm that rapidly 

computes conformational transition states and the associated trajectories by minimizing the 

Onsager-Machlup (OM) functional (Onsager & Machlup 1953). The probability of finding a 

stochastic system at a given position and time is given by the Fokker-Planck equation. The 

OM functional is derived from the solution to the Fokker-Planck equation (Onsager & 

Machlup 1953) such that its minimization by a variational computation, implemented using 

the Euler-Lagrange equations, furnishes equations of motion describing the most probable 

path.  

PATH defines the structures of equilibrium states using a linearized ANM potential. 

This approximation of the complex potential energy landscape works because most protein 

conformational changes are small displacements from the equilibrium states. PATH uses 

either all atom or more limited ANM models to identify the transition state. Then, it 

computes paths to and from that transition state using the OM equations of motion. PATH is 

an efficient algorithm for identifying the transition state and also the conformational change 

pathway that passes through it. 

A comparison all the computational methods discussed above is summarized in 

Appendix 1 
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1.4 Minimum action pathways depend on several input parameters 

PATH models the two equilibrium structures, between which the path has to be 

computed, as harmonic potential wells and the point of intersection of the two wells as the 

transition state. The shapes of the harmonic wells are defined by force constants 𝑘𝑙 and 𝑘𝑟 for 

the left and the right potential wells respectively (Fig. 1) 

 

Figure 1. The double well: The two states of the protein between which the transitions are 

studied, can be approximated by the double well system. 𝑎 and 𝑏 are the two equilibrium states which are 

separated by an energy barrier. Δ𝐸 is the energy difference between the two minima. The width of the 

well is given by the value of the force (spring) constants, the narrower the well, the greater the value of 

the force constants. 

The two structures are input crystal structures, 𝑎 and 𝑏, and the force constants are 

calculated from the second derivative of the potential, called the Hessian Matrix. At the point of 

intersection of the two wells, which is the transition state �̅�, the two wells have the same energy 

𝑈‡ . If the total time taken to make the full transition is considered to be 𝑡𝑓, then the time taken to 
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reach the transition state from the initial state, 𝑡̅, is a fraction of the total time and it uniquely 

identifies each minimum action path at that 𝑡𝑓. 

From Fig. 1, it can be seen that if either force constant, 𝑘𝑙 or 𝑘𝑟, the relative energy 

difference between the two wells (Δ𝐸), or 𝑡𝑓 are changed, then the minimum action path that the 

system will take would be different. This means that for different values of Δ𝐸 and 𝑡𝑓 and as 

noted previously (Pinski & Stuart 2010) there are different minimum action paths between the 

given equilibrium states, each defined by a different 𝑡̅. As previously mentioned, since 𝑡̅ uniquely 

identifies each path, when plotted against different values of Δ𝐸 and 𝑡𝑓 it gives rise to the 

surface that I call the convergence surface (Fig. 2). 

This surface represents all the possible minimum action trajectories between a given 

pair of structures and it is different for different pairs of structures. This surface also shows the 

bi-sigmoidal behavior of 𝑡̅ with respect to both Δ𝐸 and 𝑡𝑓. This surface also means that multiple, 

locally minimum action paths are possible for the same pair of structures. Appropriate values of 

both Δ𝐸 and 𝑡𝑓 must therefore be chosen to identify a single minimum action path and transition 

state that is closest to what is observed in nature. 

As mentioned earlier, the force constants are calculated from the Hessian matrix, which 

is built using a scale constant that is obtained by fitting crystallographic B values to the mean-

square fluctuations of atoms in the structure (Bahar et al. 1997). Hence their accuracy depends 

strongly on the resolution of the X-ray data. This restriction appears to limit the application of 

PATH to high resolution crystal structures. Alternately, force constants can, in principle be 

determined iteratively by perturbative methods. Parameter estimation can thus require tens of 

simulations, compromising on the relative speed of PATH simulations. An alternate method to 

calculate the force constants must be used to improve the applicability of PATH to that of a 

general method for studying protein conformational changes. 
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Figure 2. The convergence surface: From Fig. 1, it can be seen that the path must depend on 

both Δ𝐸 and 𝑡𝑓. Since 𝑡̅, at each value of 𝑡𝑓, uniquely identifies a path as a function of Δ𝐸, it gives rise to 

the convergence surface shown in this figure. The surface was obtained from simulations of the catalytic 

step of Tryptophanyl-tRNA synthetase and fitted to an empirical equation (𝑅2 = 0.99). The surface shows 

a sigmoidal dependence of 𝑡̅ on both Δ𝐸 and 𝑡𝑓. Since only positive values of 𝑡𝑓 are used in the 

simulations, only the lower half of the sigmoid is seen along the 𝑡𝑓 axis and it can be fitted approximately 

to a rectangular hyperbola.  
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CHAPTER 2: THEORY OF PATH 
 

 

2.1 Protein conformational change as a stochastic process 

Protein conformational changes are diffusive processes, which can be modeled using an 

overdamped Langevin equation. In the overdamped regime there is no acceleration which 

means that the energy gained by interaction with the random force, is also lost quickly due to 

friction. 

In one dimension, the Langevin equation can be written as 

𝑚𝛾�̇� = −
d𝑉

𝑑𝑥
+ √2𝑚𝛾𝑘𝐵𝑇𝜉 (1) 

where, 𝛾 is the diffusion coefficient, −
𝑑𝑉

𝑑𝑥
  is the force that causes the drift and 𝜉 is a 

delta-correlated Gaussian random force, with zero mean. That is, 

〈𝜉(𝑡)〉 = 0 (2) 

 

〈𝜉(𝑡)𝜉(𝑡′)〉 = 𝛿(𝑡 − 𝑡′) (3) 

In the case of proteins, the drift force arises from the interatomic interactions which are 

modeled in PATH as linearized Anisotropic Network Model (ANM). The potential in ANM is 

written as  

𝑉 =
𝑘

2
(𝑥 − 𝑎)2 (4) 

where, 𝑘 is the force constant and 𝑎 is the equilibrium state. The potential is quadratic in 

nature and displacement away from the equilibrium position results in a force that restores 

structure to the equilibrium state. Using the ANM potential the Langevin equation becomes 
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𝑚𝛾�̇� = −𝑘(𝑥 − 𝑎) + √2𝑚𝛾𝑘𝐵𝑇𝜉 (5) 

Because of the stochastic nature of the Langevin equation, only the probability of the 

states that the protein could be in, can be computed, which is in contrast to the ballistic 

equations that gives deterministic paths. The probability of these states can be calculated using 

an alternate form of the Langevin equation called the Fokker-Planck equation.  

𝜕𝑝(𝑥, 𝑡)

𝜕𝑡
=

𝜕

𝜕𝑥
(−𝑘(𝑥 − 𝑎)𝑝(𝑥, 𝑡)) −

1

2

𝜕2

𝜕𝑥
(
2𝑘𝐵 𝑇

𝑚𝛾
 𝑝(𝑥, 𝑡)) 

Then the probability of the protein to reach state 𝑥2 at time 𝑡2 given that that the system 

was at state 𝑥1 at time 𝑡1 can be written as 

𝑝(𝑥2, 𝑡2|𝑥1, 𝑡1) =
𝑒

−
𝑘

4𝑘𝐵𝑇((𝑥1−𝑎)−(𝑥2−𝑎)𝑒
𝑘Δ𝑡
𝑚𝛾)

2

(−1+coth(
𝑘Δ𝑡
𝑚𝛾

) )

(
1

4𝜋𝑘𝐵𝑇
(𝑘(1 + coth (

𝑘𝛥𝑡
𝑚𝛾)))

−
1
2

 (6) 

where, 𝑘𝐵 is the Boltzmann constant, and 𝑇 is the temperature. This is a solution to the 

Fokker-Planck equation. 

If the total path is a succession of such states, then the joint probability can be 

calculated as the product of the probabilities of the individual segments. By this method, the 

probability of each path that goes from one state of the protein to another can be calculated. 

Since in the case of PATH, only the most probable pathway is of interest, it can be calculated by 

minimizing the exponent of (6). To do this Onsager and Machlup came up an ingenious method 

(Onsager & Machlup 1953), where they were able to derive the equation of motion for the most 

probable path by writing (6) as 

𝑝 ∝ 𝑒
−

𝑆𝑂𝑀
2𝑚𝑘𝐵𝑇  (7) 
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where, 𝑆𝑂𝑀 is an integral called the Onsager-Machlup action functional and it is of the 

form 

𝑆𝑂𝑀 =
1

2𝛾
∫ (𝑚𝛾�̇� + 𝑘(𝑥 − 𝑎))

2
𝑑𝑡

𝑡

0

 (8) 

2.2 Equation of motion of the most probable path 

To understand the derivation of the resulting equation of motion for the most probable 

path from Onsager-Machlup action, it is a useful exercise to compare and calculate the ballistic 

equations of motion using classical action. 

2.2.1 Classical Action 

 

Figure 3. Toy model: The two atoms of a diatomic system interact with each other and this 

interaction is modeled as a one-dimensional spring that follows Hook’s law, 𝐹 = −𝑘𝑥, where 𝑘 is the force 

constant and 𝑥 is the displacement from the mean position. 

Consider a 1D diatomic system (Fig. 3) following Newtonian dynamics in a single 

potential well. Let the interaction between the two atoms be modeled by a 1D Hookean spring. 

On the basis of the principle of least action, the equation of motion can be derived by identifying 

the path that minimizes action. Classical action of a path is defined as the sum over the 

Lagrangian at every time instant. It has the mathematical form 

𝑆𝑐𝑙 = ∫ 𝐿. 𝑑𝑡
𝑡

0

 (9) 

The Lagrangian is the difference between the potential energy and the kinetic energy of 

the system. Hence the action can be rewritten as 
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𝑆𝑐𝑙 = ∫ (𝑇 − 𝑉)𝑑𝑡
𝑡

0

 (10) 

Hence to compute the action of any path and to identify the most probable path, it is 

required to know the kinetic and potential energies of the system. 

Since the potential energy is described by a Hookean spring, it is written as equation (4) 

𝑉 =
𝑘

2
(𝑥 − 𝑎)2  

As the kinetic energy is written as 𝑇 =
1

2
𝑚�̇�2, the Lagrangian can be written as 

𝐿 = 𝑇 − 𝑉 =
1

2
(𝑚�̇�2 − 𝑘(𝑥 − 𝑎)2) (11) 

Using (11), (10) can be written as  

𝑆𝑐𝑙 = ∫
1

2
(𝑚�̇�2 − 𝑘(𝑥 − 𝑎)2)𝑑𝑡

𝑡

0

 (12) 

Equation (12) computes the action of any given path but the path of minimum action can 

be identified by calculating the extremum of the action functional. In Lagrangian mechanics 

(using the Lagrangian to derive Newton’s equation of motion), this boils down to finding the 

solution to the Euler-Lagrange equation  

 
𝜕𝐿

𝜕𝑥
−

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�
) = 0 (13) 

The solution to the Euler-Lagrange equation is the path of least action. 

On applying the boundary conditions, 𝐵1 and 𝐵2, which are, at time 𝑡1, 𝑥(𝑡1) = 𝑥1 and at 

𝑡2, 𝑥(𝑡2) = 𝑥2, the solution to the Euler-Lagrange equation gives the following equation of 

motion 

𝑥(𝑡) = 𝑎 +
1

sin (𝜔(𝑡2 − 𝑡1)
((𝑥1 − 𝑎) sin(𝜔(𝑡2 − 𝑡)) − (𝑥2 − 𝑎) sin(𝜔(𝑡1 − 𝑡))) (14) 
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where, 𝜔 = √
𝑘

𝑚
  is the angular frequency. This is the equation of motion of a spring 

following Newtonian dynamics which also minimizes classical action with boundary conditions 

𝐵1 and 𝐵2.  

From (14) the velocity of the system can be calculated as 

�̇�(𝑡) =
1

sin (𝜔(𝑡2 − 𝑡1)
(−𝜔(𝑥1 − 𝑎) cos(𝜔(𝑡2 − 𝑡)) + 𝜔(𝑥2 − 𝑎) cos(𝜔(𝑡1 − 𝑡))) (15) 

Using (14) and (15), the classical action for a 1D diatomic system can be written as  

𝑆𝑐𝑙 =
𝑚𝜔

2 sin(𝜔(𝑡2 − 𝑡1))
(((𝑥1 − 𝑎)2 + (𝑥2 − 𝑎)2) cos(𝜔(𝑡2 − 𝑡1)) − 2(𝑥1 − 𝑎)(𝑥2 − 𝑎)) (16) 

2.2.2 Onsager-Machlup equations of motion 

Using the same approach outlined for deriving the equation of motion for the classical 

system, the Onsager-Machlup equations of motion for the most probable path can be derived 

from equation (8) 

𝑆𝑂𝑀 =
1

2𝛾
∫ (𝑚𝛾�̇� + 𝑘(𝑥 − 𝑎))

2
𝑑𝑡

𝑡

0

  

On solving the Euler-Lagrange equation and applying the same boundary conditions, 𝐵1 

and 𝐵2, the trajectory equation can be written as 

𝑥(𝑡) = 𝑎 +
1

sinh(Γ(𝑡2 − 𝑡1)) 
((𝑥1 − 𝑎) sinh(Γ(𝑡2 − 𝑡)) − (𝑥2 − 𝑎) sinh(Γ(𝑡1 − 𝑡))) (17) 

where, Γ =
𝑘

𝑚𝛾
. This is the equation of motion of the minimum action path undergoing 

stochastic dynamics, modeled by Langevin equation. 

From (17) the velocity equation can be calculated as 

�̇�(𝑡) =
1

sinh(Γ(𝑡2 − 𝑡1)) 
(−Γ(𝑥1 − 𝑎) cosh(Γ(𝑡2 − 𝑡)) + Γ(𝑥2 − 𝑎) cosh(Γ(𝑡1 − 𝑡))) (18) 
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Using (17) and (18) the Onsager-Machlup action for the diatomic system be written as 

𝑆𝑂𝑀 =
𝑚𝑘

2 sinh(Γ(𝑡2 − 𝑡1))
(((𝑥2 − 𝑎)2𝑒Γ(t2−𝑡1) + (𝑥1 − 𝑎)2𝑒−Γ(𝑡2−𝑡1)) − 2(𝑥2 − 𝑎)(𝑥1 − 𝑎)) (19) 

 

2.3 Using PATH for a two state system 

In the previous sections the Onsager-Machlup equations of motion were derived for a 1D 

system in one state, that is, the potential is defined by a single potential energy well. To study 

protein conformational changes, the trajectory of transition from one state to another has to be 

computed. In the case of PATH, this is done by considering that each state is defined by a 

different potential energy well and the transition from one well to another occurs at the 

intersection of the two wells. Since the equations are easier to understand for a 1D diatomic 

system, I will describe the PATH algorithm for a 1D diatomic system and then extend the 

equations to a 3D N atom system, where N is the number of atoms in the protein of interest. 

 

Figure 4. Two state of the 1D system: In a double well system, each state is represented by a 

different potential well. The width of the well is determined by the force constants and the equilibrium 

states are the minima of these wells. The force constants also determine the strength of interaction 

between the two atoms, along with the interatomic distance of separation. 

2.3.1 1D diatomic system 

Consider a double well system, where each well represents a different state of the 

diatomic systems. Let the two equilibrium states be 𝑎 and 𝑏. Then the Onsager-Machlup 

equation of motion within each well is written as 
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𝑥𝑙(𝑡) = 𝑎 + (�̅� − 𝑎) (
sinh(𝑘𝑙𝑡)

sinh(𝑘𝑙𝑡̅)
)  𝑤ℎ𝑒𝑛 𝑡 ≤ 𝑡̅ (20) 

 

𝑥𝑟(𝑡) = 𝑏 + (𝑏 − �̅�)(
sinh (𝑘𝑟(𝑡 − 𝑡𝑓))

sinh(𝑘𝑟(𝑡𝑓 − 𝑡̅)
)  𝑤ℎ𝑒𝑛 𝑡 > 𝑡̅ (21) 

where, 𝑡̅  is the time taken to reach the transition state from 𝑎, 𝑡𝑓 is the total time for 

transition from 𝑎 to 𝑏, �̅� is the transition state structure, 𝑘𝑙 and 𝑘𝑟 are the force constants for the 

initial and the final states, respectively. 

For a smooth transition from one well to the other, the paths have to satisfy 

boundary conditions based on position, velocity and energy at the transition state. These 

conditions can be expressed mathematically in the following way: 

𝑥𝑙(𝑡 → 𝑡̅) = 𝑥𝑟(𝑡̅ − 𝑡𝑓) 

�̇�𝑙(𝑡 → 𝑡̅) = �̇�𝑟(𝑡̅ − 𝑡𝑓) 

1

2
(�̅� − 𝑎)2 + Δ𝐸 =

1

2
(�̅� − 𝑏)2 

(22) 

Also, 𝑥𝑙(0) = 𝑎, 𝑥𝑟(𝑡𝑓) = 𝑏 and 𝑥(𝑡̅) = �̅�, where 𝑥𝑙 and 𝑥𝑟 are the trajectories in the 

left and right well, respectively and Δ𝐸 is the potential energy offset between the minima of the 

two energy wells. 

Using (20) and (21) the velocity continuity equation in (22) can be written as 

𝑘𝑟(�̅� − 𝑏) coth(𝑘𝑟(𝑡̅ − 𝑡𝑓)) = 𝑘𝑙(�̅� − 𝑎) coth(𝑘𝑙𝑡̅) (23) 

The above equation relates 𝑡̅, 𝑡𝑓 and Δ𝐸. But to make the relationship more explicit, 

it is necessary to compute the structure of the transition state. 
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If the initial structure is 𝑎 = (𝑎1, 𝑎2) and the final structure is 𝑏 = (𝑏1, 𝑏2), the 

structure of the transition state can be calculated by writing the energy continuity equation in 

(22) as 

1

2
(�̅� − 𝑎) (

𝑘𝑙 −𝑘𝑙

−𝑘𝑙 𝑘𝑙
) (�̅� − 𝑎)𝑇 + Δ𝐸 =

1

2
(�̅� − 𝑏) (

𝑘𝑟 −𝑘𝑟

−𝑘𝑟 𝑘𝑟
) (�̅� − 𝑏)𝑇 (24) 

The two matrices in the (23) are the Hessian matrices on the initial and final states, 

which are described in next section 

(23) can be rewritten as 

𝑘𝑙

2
(�̅� − 𝑎) (

1 −1
−1 1

) (�̅� − 𝑎)𝑇 + Δ𝐸 =
𝑘𝑟

2
(�̅� − 𝑏) (

1 −1
−1 1

) (�̅� − 𝑏)𝑇 (25) 

On simplification, the above equation becomes 

𝑘𝑙

2
((𝑥1 − 𝑥2) − (𝑎1 − 𝑎2))

2
+ Δ𝐸 =

𝑘𝑟

2
((𝑥1 − 𝑥2) − (𝑏1 − 𝑏2))

2
 (26) 

Substituting �̅� = 𝑥1 − 𝑥2, 𝐴 = 𝑎1 − 𝑎2 and 𝐵 = 𝑏1 − 𝑏2, (23) becomes 

𝑘𝑙

2
(�̅� − 𝐴)2 + Δ𝐸 =

𝑘𝑟

2
(�̅� − 𝐵)2 (27) 

Solving for �̅�, 

�̅� =
(𝑘𝑙𝐴 − 𝑘𝑟𝐵) − (𝐴 − 𝐵)√𝑘𝑟𝑘𝑙 +

2Δ𝐸(𝑘𝑟 − 𝑘𝑙)
(𝐵 − 𝐴)2

(𝑘𝑙 − 𝑘𝑟)
 

(28) 

For a diatomic system centered on the origin, 𝑥1 + 𝑥2 = 0, giving, together with �̅�, 

the transition state �̅�. 

On substituting �̅� and rearranging, the velocity continuity equation (23) can be 

rewritten as 
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sinh(𝜆𝑟𝑡𝑓 − (𝜆𝑟 + 𝜆𝑙)𝑡̅)

sinh(𝜆𝑟𝑡𝑓 − (𝜆𝑟 − 𝜆𝑙)𝑡̅)
= (

𝜆𝑟 + 𝜆𝑙

𝜆𝑟 − 𝜆𝑙
) − (

2𝜆𝑟𝜆𝑙

𝑍ΔE(𝜆𝑟 − 𝜆𝑙)
) (29) 

where, 𝑍Δ𝐸 = √𝜆𝑟𝜆𝑙 +
2Δ𝐸(𝜆𝑟−𝜆𝑙)

(𝐵−𝐴)2
, and 𝜆𝑟 and  𝜆𝑙 correspond to eigenvalues of the 

respective Hessian matrices. 

In any spring system, in one dimension, the overall motion is comprised of 𝑁 

independent modes, each with its own force constant. In the case of the diatomic system, there 

is one translational mode, whose force constant is zero and one vibrational mode. Since each 

mode behaves independently from the other, the spring constant associated with each mode is 

calculated from the eigenvalues of the respective Hessian matrices. Since 𝑡𝑓 is known, 𝑡̅ of the 

1D diatomic system can calculated, numerically. Thus, the entire landscape of path trajectories 

shown in Fig. 2 can be computed from equation (29). This equation also describes the bi-

sigmoidal behavior of the convergence surface. For the values of 𝑡𝑓, 𝑡̅ has a sigmoidal 

relationship to Δ𝐸. Similarly, at constant Δ𝐸, 𝑡̅ has a sigmoidal relationship to 𝑡𝑓, though the 

shape of the curve in Fig. 2 is that of a rectangular hyperbola. This behavior rises from the use 

of positive values of 𝑡𝑓, as negative values of 𝑡𝑓 are meaningless. 

Though equation (29) cannot be solved analytically, by calculating the structure of 

the transition state using (28), the 𝑡̅ values at different 𝑡𝑓 and Δ𝐸 can be computed numerically. 

Once the 𝑡̅ is known, using (20) and (21) the most probable path connecting the two minima, 

passing through the transition state can be computed. 

As PATH is based on stochastic dynamics, it could be argued that the velocity 

continuity equation, which forms the basis of PATH, is meaningless because velocity continuity 

imposes conservation of momentum at the transition state. Momentum is not conserved in 

stochastic systems due to the random force and friction. But this does not affect the velocity 

continuity equation in PATH because, the equation of motion in PATH is that of a single 
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trajectory, the most probable PATH, which is a continuous function. Since the equation of 

motion of this most probable is similar to that of a ballistic equation, except for the sinh term, 

using velocity continuity to establish continuity in the trajectory as it transitions from one 

potential well into another, is meaningful. 

2.3.2 3D N atom system 

The 1D toy model described in the previous section is effective in deriving the equations 

that used in PATH to generate the most probable pathway between the minima of two harmonic 

potentials. But the equations and the approach aren’t useful for any real world applications, 

especially for studying proteins because the proteins have more than two atoms and there are 

also in three dimensions. Though the equations of motion for a 3D multiatom system are similar 

to equations (20) and (21), it is not possible to derive a convergence surface equation and solve 

for 𝑡̅ numerically. Hence a different approach has to be taken, as outlined below. 

For a multiatom 3D system, the interactions between the atoms are more complex than 

in the case of the 1D diatomic system. PATH uses a linearized ANM potential to represent 

interatomic interactions where each atom pair is connected to each other in some manner via 

springs with a single force constant 𝑘. According to ANM (Atilgan et al. 2001), there is a pair 

potential between any two atoms, which is given by 

𝑈(𝑟𝑖, 𝑟𝑗) =
1

2
𝑘(𝑟𝑖𝑗 − �̅�𝑖𝑗)

2
 (30) 

where, 𝑟𝑖 is the position of the 𝑖𝑡ℎ atom, 𝑟𝑗 is the position of the 𝑗𝑡ℎ atom and �̅� is the 

equilibrium distance between the two atoms.  

A Hessian is a 3𝑁 × 3𝑁 matrix of second derivatives that basically gives the curvature of 

a surface defined by a function, where 𝑁 is the number of atoms. For example, the Hessian for 

a function 𝐹, relative to the variables 𝑥, 𝑦 and 𝑧 is written as 
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𝐻𝑒𝑠𝑠𝑖𝑎𝑛 =

(

 
 
 
 

𝜕2𝐹

𝜕𝑥𝜕𝑥

𝜕2𝐹

𝜕𝑥𝜕𝑦
 

𝜕2𝐹

𝜕𝑥𝜕𝑧

𝜕2𝐹

𝜕𝑦𝜕𝑥

𝜕2𝐹

𝜕𝑦𝜕𝑦

𝜕2𝐹

𝜕𝑦𝜕𝑧

𝜕2𝐹

𝜕𝑧𝜕𝑥

𝜕2𝐹

𝜕𝑧𝜕𝑦

𝜕2𝐹

𝜕𝑧𝜕𝑧)

 
 
 
 

 (31) 

In the case of the Hookean spring the interatomic interaction energy can be expressed 

using the Hessian as  

𝑈(𝑟𝑖, 𝑟𝑗) =
1

2
Δ𝑋𝐻Δ𝑋𝑇 (32) 

where, Δ𝑋 is the difference vector ((𝑥1 − �̅�1), (𝑦1 − �̅�1), (𝑧1 − 𝑧1̅)… (𝑥𝑁 − �̅�𝑁), (𝑦𝑁 −

�̅�𝑁), (𝑧𝑁 − 𝑧�̅�)) 

For small displacements about the equilibrium positon, the second derivative of the 

potential relative to the Cartesian coordinates can be calculated in the following way: 

From (30), the potential is written as 

𝑈 =
𝑘

2
(𝑟𝑖𝑗 − �̅�𝑖𝑗)

2
 (33) 

If 𝑟𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2
+ (𝑦𝑖 − 𝑦𝑗)

2
+ (𝑧𝑖 − 𝑧𝑗)

2
, 

Then,  

𝜕𝑉

𝜕𝑥𝑖
=

𝑘

2
. 2. (𝑟𝑖𝑗 − �̅�𝑖𝑗).

1

2
. 2

(𝑥𝑖 − 𝑥𝑗)

𝑟𝑖𝑗
 (34) 

which can be rewritten as 

𝜕𝑉

𝜕𝑥𝑖
= 𝑘(𝑟𝑖𝑗 − �̅�𝑖𝑗)

(𝑥𝑖 − 𝑥𝑗)

𝑟𝑖𝑗
 (35) 

Or  
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𝜕𝑉

𝜕𝑥𝑖
= 𝑘 (1 −

�̅�𝑖𝑗

𝑟𝑖𝑗
) (𝑥𝑖 − 𝑥𝑗) (36) 

Then, 

𝜕

𝜕𝑥𝑗
(
𝜕𝑉

𝜕𝑥𝑖
) = 𝑘 ((1 −

�̅�𝑖𝑗

𝑟𝑖𝑗
) . 1 + (𝑥𝑖 − 𝑥𝑗). 1.

�̅�𝑖𝑗

𝑟𝑖𝑗
.
(𝑥𝑖 − 𝑥𝑗)

𝑟𝑖𝑗
) (37) 

On simplification, 

𝜕2𝑉

𝜕𝑥𝑗𝜕𝑥𝑖
= 𝑘 (1 −

�̅�𝑖𝑗

𝑟𝑖𝑗
(1 −

(𝑥𝑖 − 𝑥𝑗)

𝑟𝑖𝑗
2

2

)) (38) 

Since �̅�𝑖𝑗 = 𝑟𝑖𝑗 at equilibrium,  

𝜕2𝑉

𝜕𝑥𝑗𝜕𝑥𝑖
= 𝑘 (

(𝑥𝑖 − 𝑥𝑗)

𝑟𝑖𝑗
2

2

) (38) 

Similarly, the other terms of the Hessian can be calculated and a single 3 × 3 block of 

the Hessian for a two atom interaction can be written as 

ℎ𝑖𝑗 =
𝑠

�̅�𝑖𝑗
2 (

(𝑥𝑖 − 𝑥𝑗)(𝑥𝑖 − 𝑥𝑗) (𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗) (𝑥𝑖 − 𝑥𝑗)(𝑧𝑖 − 𝑧𝑗)

(𝑦𝑖 − 𝑦𝑗)(𝑥𝑖 − 𝑥𝑗) (𝑦𝑖 − 𝑦𝑗)(𝑦𝑖 − 𝑦𝑗) (𝑦𝑖 − 𝑦𝑗)(𝑧𝑖 − 𝑧𝑗)

(𝑧𝑖 − 𝑧𝑗)(𝑥𝑖 − 𝑥𝑗) (𝑧𝑖 − 𝑧𝑗)(𝑦𝑖 − 𝑦𝑗) (𝑧𝑖 − 𝑧𝑗)(𝑧𝑖 − 𝑧𝑗)

) (39) 

This is the Hessian appropriate to the linearization of the spring connecting atom 𝑖 with 

atom 𝑗, but there are many such connections in general. Here, 𝑠 is a scale constant that is 

generally derived from fitting the mean square fluctuation of the atoms to the crystallographic B 

values (Bahar et al. 1997). For non-high resolution crystal structures and for computational 

mutants, the B values cannot be used to estimate the scale constants. Alternate methods have 

to be developed for evaluate the scale constants for such systems. 

The three-by-three block in (39) can be used to build the full Hessian 𝐻. By referring to 

the 3 × 3 coordinates of the 𝑖𝑡ℎ atom as 𝑥𝑖 in 𝑋 (so that 𝑋 has 𝑁 such entries), and 𝐻𝑖𝑗 gives the 
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3 × 3 block of 𝐻 at row 𝑖, column 𝑗, then the Hessian is constructed by adding ℎ𝑖𝑗 from (39) to 

𝐻𝑖𝑖 and 𝐻𝑗𝑗 and subtracting ℎ𝑖𝑗 from 𝐻𝑖𝑗 and 𝐻𝑗𝑖. 

Using this Hessian, the Onsager-Machlup equation of motion can be written as 

𝑥𝑙(𝑡) = 𝑉

[
 
 
 
 

(

 
 

𝑡

𝑡̅
0

0
sinh(𝜆𝑙

𝑖𝑡)

sinh(𝜆𝑙
𝑖𝑡̅)

)

 
 

�̅�

]
 
 
 
 

+ 𝑎  (40) 

 

𝑥𝑟(𝑡) = 𝑊

[
 
 
 
 
 

(

  
 

𝑡𝑓 − 𝑡

𝑡𝑓 − 𝑡̅
0

0 −
sinh (𝜆𝑟

𝑖 (𝑡 − 𝑡𝑓))

sinh (𝜆𝑟
𝑖 (𝑡𝑓 − 𝑡̅)))

  
 

�̅�

]
 
 
 
 
 

+ 𝑏  (41) 

 

where, �̅� = 𝑉𝑇(�̅� − 𝑎), �̅� = 𝑊𝑇(�̅� − 𝑏). 𝑉 and 𝑊 are the eigenvectors of the Hessian 

matrices of the initial and the final wells, and 𝜆𝑙
𝑖 and 𝜆𝑟

𝑖  are their eigenvalues. The eigenvalues 

replace the force constants in the trajectory equations because by diagonalizing the Hessian 

matrix, 3𝑁 normal modes are generated whose individual motion depends on the rate at which 

the structure changes, which is given by the eigenvalues. The final trajectory is generated by a 

linear combination of the normal modes. 

Unlike the 1D system where the transition state structure is identified by solving the 

energy continuity equation, the transition state is computed in the 3D case from the velocity 

continuity equation as the latter is easier to solve for a 3D system. 

From (40) and (41) the velocity continuity equation can be written as  
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𝑉

[
 
 
 
 

(

 
 

1

𝑡̅
0

0
𝜆𝑙

𝑖 cosh(𝜆𝑙
𝑖𝑡)

sinh(𝜆𝑙
𝑖𝑡̅) )

 
 

�̅�

]
 
 
 
 

= 𝑊

[
 
 
 
 
 

(

  
 

1

𝑡̅ − 𝑡𝑓
0

0
𝜆𝑟

𝑖 cosh (𝜆𝑟
𝑖 (𝑡̅ − 𝑡𝑓))

sinh (𝜆𝑟
𝑖 (𝑡𝑓 − 𝑡̅)) )

  
 

�̅�

]
 
 
 
 
 

 (42) 

Considering the matrix on the left hand side of equation (42) to be 𝐿 and the matrix on 

the right hand side to be 𝑅, equation (42) becomes 

𝑉𝐿𝑉𝑇(�̅� − 𝑎) = 𝑊𝑅𝑊𝑇(�̅� − 𝑏) (43) 

Equation (43) can be solved for �̅� to get 

�̅� =
𝑉𝐿𝑉𝑇𝑎 − 𝑊𝑅𝑊𝑇𝑏

𝑉𝐿𝑉𝑇 − 𝑊𝑅𝑊𝑇
 (43) 

Equation (42) can be used to calculate the structure of the transition state at particular 

values of 𝑡̅ and 𝑡𝑓. The following is the PATH algorithm to identify the transition state and then 

calculate the trajectory. 

 For two equilibrium structures, the Hessian for the initial and final state can be 

computed using (39) if the scaling constant 𝑠 is known from crystallographic B 

values (Bahar et al. 1997). 

 The two Hessians are diagonalized to compute the eigenvalues and the 

eigenvectors for both the Hessians. 

 For a given value of 𝑡𝑓, using equation (43) the structure of the transition state is 

identified for an assumed value of 𝑡̅. 

 Using this structure, the energy of the transition state is computed relative to both 

the equilibrium states to check for energy continuity. In the case of the 3D 

system, the energy continuity equation is written as 

1

2
(�̅� − 𝑎)𝐻𝑙(�̅� − 𝑎)𝑇 + Δ𝐸 =

1

2
(�̅� − 𝑏)𝐻𝑟(�̅� − 𝑏)2 (44) 
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 If �̅� from (43) satisfies (44), then the transition state has been identified. If not, a 

different value of 𝑡̅ is assumed and the process is repeated until the �̅� from (43) 

satisfies (44) 

 Once the transition state is identified, the most probable path connecting the two 

equilibrium states is computed from (40) and (41). 

As this algorithm shows, to compute trajectories and identify conformational 

transition states with PATH, apart from the equilibrium states, it is required to know the 

scale constant to build the Hessian matrices, the values of 𝑡𝑓 and Δ𝐸. All these affect the 

most probable paths and are not easily determinable for all protein systems. The scale 

constants can be obtained only for high resolution crystal structures. But there are so 

many systems for which this is not possible. Also, there are computationally designed 

mutants or modified proteins which also lack information about the thermal fluctuation of 

the protein. These values can be determined by running molecular dynamics simulations 

but that adds another layer of complexity to determining transition states. It is even more 

difficult to determine 𝑡𝑓 and Δ𝐸, as the former is a time like parameter whose value 

depends on the scale constant while the latter is the difference in the relative potential 

energies of the two equilibrium state which is not readily available. Thus the lack of 

knowledge of the input parameters severely limits the scope of applicability of PATH. 
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CHAPTER 3: MODIFICATION OF PATH 
 

 

PATH is a rapid algorithm for computing the most probable transition pathway between 

two equilibrium states. But for reasons outlined in last section, including the parameter 

optimization on the convergence surface, the applicability of PATH is limited. It can be used to 

obtain meaningful results only if the two equilibrium states are high resolution crystal structures 

and the time for transition and the potential energy difference between the two equilibrium 

states are known in advance, before the simulations can be performed. Therefore, the values of 

the four input parameters, 𝑘𝑙, 𝑘𝑟, 𝑡𝑓 and Δ𝐸 have to be optimized every time a new system has 

to be simulated. From the convergence surface in Fig 2, it is clear that there is a relationship 

between Δ𝐸 and 𝑡𝑓.  

Due to the relationship between Δ𝐸 and 𝑡𝑓 as seen in the convergence surface and the 

relationship between force constants and 𝑡𝑓 as seen from the equations of motion in PATH, in 

which, the product of the force constants and the time of transition determines the most 

probable pathway, I approached the problem of optimizing  𝑡𝑓 first, as its value might be useful 

to evaluate the optimum values of the other two parameters. 

3.1 Optimization of 𝒕𝒇 

All the optimization studies were performed using the 1D diatomic system, unless it is 

explicitly mentioned. As the value of 𝑡𝑓 can be any positive number, I split it into three regimes, 

small, intermediate and large. 
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3.1.1 Small values of 𝑡𝑓 

Small values of 𝑡𝑓 are those for which the ratio of the sinh terms in the equations of 

motion of PATH are such that  

sinh(𝑘𝑡)

sinh(𝑘𝑡̅)
=

𝑡

𝑡̅
 (45) 

because,  

lim
𝑥→0

sinh(𝑥) = 𝑥 (46) 

In this regime, the convergence surface equation (29) can be solved for a special case 

where 𝑡̅ =
𝑡𝑓

2
 to compute Δ𝐸. This special case is important because, the Δ𝐸 value computed at 

this 𝑡̅ is amount of energy that has to be given to the initial state of the system such that system 

spends equal amount of time in both the wells. This value of Δ𝐸 is henceforth referred to as 

Δ𝐸0.5. This particular definition of Δ𝐸0.5 is important because, the free energy difference between 

two conformations of a system can be written as  

Δ𝐺𝑐𝑜𝑛𝑓 = −𝑅𝑇 ln𝐾𝑒𝑞 (47) 

Where, 𝐾𝑒𝑞 is the equilibrium constant. When the equilibrium constant is 1, the system 

spends the same amount of time in both the conformations. In other words, there is 50% chance 

of finding the system in either conformation. Therefore, free energy can be defined the amount 

of energy that is added to one of the two conformations such that it spends equal time in both 

the wells. Since the equilibrium constant is related to the rate of conformational change and 𝑡̅ is 

a time-like parameter in PATH, which is a reciprocal of the rate, Δ𝐸0.5 can be considered to be 

indirectly related to Δ𝐺𝑐𝑜𝑛𝑓. 

Solving the convergence surface equation (29) for the special case, the equation for 

Δ𝐸0.5 is derived to be 
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Δ𝐸0.5 =
(𝑘𝑟 − 𝑘𝑙)(𝑏 − 𝑎)2

8
 (48) 

or  

Δ𝐸0.5 =
𝐸𝑟𝑖𝑔ℎ𝑡 − 𝐸𝑙𝑒𝑓𝑡

4
 (48) 

Where, 𝐸𝑟𝑖𝑔ℎ𝑡 is the energy of the initial state relative to the potential energy function of 

the final states and 𝐸𝑙𝑒𝑓𝑡 is the energy of the final state relative to the potential energy function 

of the initial state. 

Though in the small 𝑡𝑓 regime Δ𝐸0.5, can be calculated, the trajectories that are 

generated are unrealistic. This is because the equation of motion in this regime is linear with 

respect to time. For example, the equation of motion in the left well becomes, 

𝑥𝑙(𝑡) = 𝑎 + (�̅� − 𝑎)
𝑡

𝑡̅
 𝑤ℎ𝑒𝑛 𝑡 ≤ 𝑡̅ (49) 

This means that the trajectory is only a linear interpolation between the initial and final 

states. Also, there is no dependence on Δ𝐸. This is demonstrated in Fig. 5, where the similarity 

of a state on the trajectory with respect to the initial state, 𝑄1, is plotted as a function of time. It 

can be seen that the line is almost a straight line connecting the initial and the final states. Also, 

trajectories at different values of Δ𝐸 are exactly the same which means that the trajectory is 

independent of the potential energy wells. 
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Figure 5. 𝑸𝟏 vs. t at small 𝒕𝒇: 𝑄1 of a frame of the trajectory is the similarity of that frame to the 

initial state of the trajectory. These trajectories were generated by simulating the PreTS to Pdt transition 

of the TrpRS system (described later) at 𝑡𝑓=0.0003 at a range of Δ𝐸 values. The similarity metric 

increases almost linearly with respect to time. This figure shows that the trajectory is a linear extrapolation 

of the initial state. Also there is no dependence on Δ𝐸. 

This behavior at low values of 𝑡𝑓 arises from the fact the system doesn’t have enough 

time to undergo motion based on the potential and the equations of motion. Since the system is 

forced to reach the final state at 𝑡𝑓 and yet not enough time to given, the system changes its 

conformation by a linear interpolation method. This linear interpolation is called morphing. 

3.1.2 Intermediate values of 𝑡𝑓 

The problem with small values of 𝑡𝑓 doesn’t affect the system in the intermediate regime 

as seen from the 𝑄1 plot (Fig. 6). But the problem with the intermediate regime is that it is hard 
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to define the boundaries of this regime. There is no special value of 𝑡𝑓 which works better than 

others. But what is clear from the plot is that the dependence of the trajectory on the equations 

of motion and on Δ𝐸 reappears in this regime. The value of 𝑘𝑡 at which the ratio is the sinh 

terms is greater than the ratio of the time values is about 0.3. Since there is no special value of 

𝑡𝑓, even though the trajectories are more reasonable than those in the small 𝑡𝑓 regime, this 

regime is not particularly useful in identifying the optimum values of the PATH parameters. 

 

Figure 6. 𝑸𝟏 vs. 𝒕 at intermediate values of 𝒕𝒇: 𝑄1 of a frame of the trajectory is the similarity of 

that frame to the initial state of the trajectory. These trajectories were generated by simulating the PreTS 

to Pdt transition of the TrpRS system (described later) at 𝑡𝑓=30 at a range of Δ𝐸 values. The trajectories 

at intermediate regime show dependence on Δ𝐸 and the 𝑄1 values have a sigmoidal dependence on 

time. Tis behavior arises from the sinh terms in the trajectory equations. 
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3.1.3 Large values of 𝑡𝑓 

As shown by Figs. 5 and 6, with increase in 𝑡𝑓 the dependence on Δ𝐸 and on the sinh 

terms of the equations of motion reappear. 

 

Figure 7. 𝑸𝟏 vs. 𝒕 at large values of 𝒕𝒇: 𝑄1 of a frame of the trajectory is the similarity of that 

frame to the initial state of the trajectory. These trajectories were generated by simulating the PreTS to 

Pdt transition of the TrpRS system (described later) at 𝑡𝑓=300 at a range of Δ𝐸 values. The sigmoidal 

curves that were observed in the intermediate regime become steeper in the large 𝑡𝑓 regime. Also at Δ𝐸 

values that are farther away from 0, the sigmoidal curves start to resemble a step function. This happens 

because in the large regime, the step size used in plotting the curve might be too large and the entire 

transition could take place within a single step. 
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 In this regime, the system has enough time to undergo transition under the influence of 

the equations of motion and the potential. Also, the convergence surface equation can be 

solved at 𝑡̅ =
𝑡𝑓

2
 to get Δ𝐸0.5 as 

Δ𝐸0.5 = (𝐸𝑟𝑖𝑔ℎ𝑡 − 𝐸𝑙𝑒𝑓𝑡) (
−𝑘𝑟𝑘𝑙

(𝑘𝑟 + 𝑘𝑙)
2
) (50) 

It is interesting to note that when 𝑘𝑟 = 𝑘𝑙, 

lim
𝑡𝑓→∞

Δ𝐸0.5  = − lim
𝑡𝑓→0

Δ𝐸0.5 (51) 

Another observation that lends support to the hypothesis that using a large value of 𝑡𝑓 to 

compute the trajectories is the correct approach, comes from the values of action. Since PATH 

is based on the minimization of the Onsager-Machlup action to derive the equations of motion, it 

is not surprising that the values of action might provide useful information for the optimization of 

PATH input parameters on the convergence surface. 

For a double well system, the action of the most probable path in both the wells can be 

written as 

𝑆 =
1

2𝛾
(∫ (𝑚𝛾�̇� + 𝑘𝑙(𝑥 − 𝑎))

2
𝑑𝑡 + ∫ (𝑚𝛾�̇� + 𝑘𝑟(𝑥 − 𝑏))

2
𝑑𝑡

𝑡𝑓

𝑡̅

𝑡̅

0

) (52) 

Integrating the above equation for the left well is straight forward. On assuming that at 

time 𝑡 = 0, 𝑥 = 𝑎 and at 𝑡 = 𝑡̅, 𝑥 = �̅� then the equation for the action in the left well is 

𝑆𝑙 =
Γl

2
(�̅� − 𝑎)2

𝑒Γl�̅�

sinh(𝛤𝑙𝑡̅)
 (53) 

The above equation was derived assuming that the system starts at the equilibrium state 

and ends up at the transition state in the left well.  
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In the right well, when the reaction is moving forward in time, the assumption that is 

made is that at time 𝑡 = 𝑡̅, 𝑥 = �̅� and at 𝑡 = 𝑡𝑓, 𝑥 = 𝑏. This assumption leads to the following 

equation 

𝑆𝑟 =
Γr

2
(�̅� − 𝑏)2

𝑒−Γr(𝑡𝑓−�̅�)

sinh (𝛤𝑟(𝑡𝑓 − 𝑡̅))
 (54) 

At large 𝑡𝑓 the two action equations give rise to Fig. 8. It can be seen from the figure that 

the right action has a tendency to go to 0 even when the values of Δ𝐸 are such that the 

transition state is close to the initial state and most of the trajectory is in the right well. This 

would mean that, in a case where the transition state falls on the initial state, the total action will 

be 0, which gives rise to a deterministic path with probability 1. This result is counter-intuitive 

and would mean that the value of Δ𝐸 has no effect on the trajectory in the right well. 
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Figure 8. Action vs. 𝚫𝑬 with the old equation for right action: Simulations of transition from 

rigor state to the prepowerstroke state of myosin VI converter domain (described later) were performed at 

𝑡𝑓 = 300000 at a range of Δ𝐸 values. Left, right and total action plotted as a function of Δ𝐸 at this constant 

large value of 𝑡𝑓. The left action goes to zero at large positive Δ𝐸 values because the initial state has 

almost the same energy as the transition state and most of the trajectory is in the right well. But right 

action also goes to 0 which is not the expected behavior. 

The reason behind this behavior of the right action arises from the nature of the 

Onsager-Machlup equations of motion. Unlike the classical equations of the motion, which are 

periodic in nature, that is, the time dependence of the equation arises from the sine term in the 

equation, OM equations of motion are dependent instead on sinh terms, which are exponential 

functions. Hence, the trajectory is always a displacement away from the equilibrium when the 
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direction of time is forward. The system can move from the transition state towards the 

equilibrium state only when time is reversed. 

This consideration of the direction of time and displacement from the equilibrium state 

means that the trajectory and action in the right well have to be computed from state 𝑏 to the 

transition state and then the time is reversed so that the overall reaction goes from state 𝑎 to 𝑏. 

This modification in the assumptions gives rise to following equation for the right action 

𝑆𝑟 =
Γr

2
(�̅� − 𝑏)2

𝑒Γr(𝑡𝑓−�̅�)

sinh (𝛤𝑟(𝑡𝑓 − 𝑡̅))
 (55) 

This modification gives rise to Fig. 9 which shows that a particular value of Δ𝐸, the total 

action goes through a minimum and this Δ𝐸 value is the same as Δ𝐸0.5. 
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Figure 9. Action vs. 𝚫𝑬 with the new equation for right action: Simulations of transition from 

rigor state to the prepowerstroke state of myosin VI converter domain (described later) were performed at 

𝑡𝑓 = 300000 at a range of Δ𝐸 values. Left, right and total action plotted as a function of Δ𝐸 at this constant 

large value of 𝑡𝑓. The modified right action gives rise to a minimum in total action at Δ𝐸0.5. 

The minimum of action, when plotted as a function of 𝑡𝑓 exponentially decays and 

reaches an asymptotic value (Fig. 10). This is the global minimum of action that occurs at large 

values of 𝑡𝑓 and at Δ𝐸0.5. As the value of action is related to the probability of a path, the global 

minimum of action would mean that it is the most probable path. 
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Figure 10. Minimum of action vs. 𝒕𝒇: Simulations of transition from rigor state to the 

prepowerstroke state of myosin VI converter domain (described later) were performed at different values 

of 𝑡𝑓 and Δ𝐸. The minimum of action at each value of 𝑡𝑓 behaves asymptotically with respect to 𝑡𝑓. This 

curve also fits to an exponential equation with a 𝑅2 of 0.99 

Based on Fig. 10, it is clear that running simulations at large values of 𝑡𝑓 is beneficial 

and it also gives the value of Δ𝐸 at which the simulation has to be performed. But there is still no 

informational generated by the PATH method about the values of the force constants. It could 

be argued that since the product of 𝑘𝑡 is what determines whether the value of 𝑡𝑓 used is 

sufficiently large, it is only the product that matters and the value of the force constant 

independent of 𝑡𝑓 is not. Also, simulations of several systems using PATH indicate that the 
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structure of the transition state becomes invariant at large values of 𝑡𝑓. This means that when 

the action is at its global minimum, the structure of the transition state converges. 

Even though large values of 𝑡𝑓 generate the global minimum of action and invariant 

transition state structures, it gives rise to a new problem. At extremely large values of 𝑡𝑓, the 

path spends most of its time near the equilibrium structures and uses only a fraction of the total 

time to change the conformation of the protein. Also, the system spends more time in the 

narrower (more energetic) well than in the wider well. This behavior contradicts statistical 

mechanics. But, at the same time, once the conformational change starts, the system takes less 

time to climb up the potential well in the narrower well than in the wider well, which is consistent 

with statistical mechanics. 

The origin of these behaviors can be understood in the following way. As described 

earlier, converting the equations of motion from those defined by classical action to those 

defined by OM action changes the fractional increment in position, 𝑥(𝑡), from an oscillatory 

motion to the hyperbolic sine function. As a consequence, the system invariably spends most of 

its time at the origin (i.e., at 𝑥(𝑡) = 𝑎) and commences its climb to the transition state after an 

inordinately long time. This problem of the system spending most of the time in the initial state 

has previously been observed (Faccioli et al. 2006; Ghosh et al. 2002; Pinski & Stuart 2010). A 

solution to this problem can be obtained by transforming the Lagrangian from the time-

dependent Newtonian description to the dual, energy-dependent Hamilton-Jacobi description 

(Faccioli 2008). This transformation changes the reaction coordinate into an energy based one 

where even a small change in the energy has to be accompanied by changes in structure. That 

elegant coordinate transformation affords a more complete solution to the problem. It is possible 

that for complex dynamic processes like ab initio protein folding, where important structural 

changes may occur at the level of bond vibration, neglecting part of the trajectory may entail the 

loss of relevant information. 
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For protein conformational changes, like domain motions that depend on large frequency 

rigid-body motions, I describe multiple lines of evidence that no essential information is lost by 

truncating the initial, invariant portion of the trajectory during which the structure does not 

change. To solve this problem, the system must be given just enough time for the transition 

state to converge and no more. Thus, the PATH trajectory must be truncated by beginning only 

when the system has moved away from a by at least 10% of the total distance between the 

equilibrium state and the transition state. This is an arbitrary choice; using 1% of the distance 

from the equilibrium state would change the resulting transition state almost imperceptibly. 

An appropriate value of 𝑡𝑓 can be calculated for the 1D diatomic system in the following 

way. Using the equation of motion in 1D in the left well, a general OM trajectory can be written 

as 

𝑥(𝑡) = 𝑎 + (�̅� − 𝑎)
sinh(𝑘𝑡)

sinh(𝑘𝑡̅)
 (56) 

when 𝑡𝑓 → ∞, (55) becomes 

𝑥(𝑡) = 𝑎 + (�̅� − 𝑎)𝑒−𝑘(𝑡̅−𝑡) (57) 

Since the time of interest is the one at which the system has changed by at least 10%, 

𝑒−𝑘(𝑡̅−𝑡) = 0.1 (58) 

which gives, 

𝑡̅𝑜𝑝𝑡 = 𝑡̅ − 𝑡 =
2.302

𝑘
 (59) 

There is a 𝑡̅𝑜𝑝𝑡 for each well and 𝑡𝑓
𝑜𝑝𝑡

 is the sum of the two. Thus from (59) the optimum 

value of 𝑡𝑓 can be solved. By using this value of 𝑡𝑓 and 𝑡̅ in the velocity continuity equation the 

invariant �̅� can be identified and the Δ𝐸0.5 can also be calculated. Since (59) relates the force 

constant to 𝑡𝑓, it is not necessary to compute the exact value of the force constant for each well 
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as errors in the values can be compensated by the use of 𝑡𝑓 that is appropriate for the chosen 

force constant. 

This equation directly computes 𝑡̅ for a 1D diatomic system but for multiatom systems in 

3D, there are multiple interatomic interactions, and hence multiple force constants associated 

with the diagonalized Hessian matrix. Hence, the average force constant for a structure can 

calculated which is the average of the trace of the Hessian 

�̅� =
𝑡𝑟(𝐻)

3𝑁
 (60) 

where, 𝑁 is the number of atoms. And (59) becomes 

𝑡̅𝑜𝑝𝑡 = 𝑡̅ − 𝑡 =
2.302

�̅�
 (61) 

 

  



40 
 

 

 

CHAPTER 4: VALIDATION AND RESULT FROM PATH SIMULATIONS 
 

 

To validate the new PATH algorithm, I compared the results from PATH with those from 

other simulation algorithms, namely the String Method (E et al. 2002a; Ovchinnikov et al. 2011) 

and ANMPathway (Das et al. 2014). I also performed Discrete Molecular Dynamics (DMD) 

simulations (Dokholyan et al. 1998; Ding et al. 2008; Shirvanyants et al. 2012) using the replica 

exchange algorithm (Sugita & Okamoto 1999) to see if the PATH transition states are at the 

saddle points of the conformational free energy landscapes. Finally, I compared the transition 

states from a signaling protein, a contractile protein, and an enzyme and found similar structural 

elements contributing to the energy barrier at the transition state. 

4.1 PATH, ANMPathway and the String trajectories agree most closely with each other at 
their transition states 
 

I compared trajectories from the simulations of the converter domain from myosin VI 

performed using the string method (E et al. 2002a; Ovchinnikov et al. 2011) ANMPathway (Das 

et al. 2014), and PATH. Since the reaction coordinates of the three trajectories are different, it 

would be difficult to compare them at every instant. In Fig. 11, I compare the structural similarity 

and energetic properties of the string transition state as evaluated according to the linearized 

ANM force field used by PATH. For both comparisons, the subset of structures in the string 

trajectory that was structurally most similar to the PATH transition state (Fig 11(a)) was the 

same subset for which the absolute potential energy difference, calculated using the PATH 

energy function, between those calculated with respect to the initial and final states, was closest 
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to zero (Fig. 11(b)). In the context of PATH, the structure whose corresponding potential energy 

difference is zero is, by definition, the transition state. 

 

Figure 11. PATH vs. ANMPathway and String: The ANMPathway trajectory and the string 

trajectories were compared with the PATH trajectory. In (a), I calculated the RMSD between the transition 

state from the PATH trajectory and all the states along the ANMPathway trajectory. States 28–31 are 

structurally similar to the PATH transition state. In (b), I calculated the potential energy (PE) of each state 

in the ANMPathway trajectory with respect to the potential energy well of the initial and the final state and 

their absolute difference was plotted. States 27–30 have the lowest potential energy difference, which 

coincides with the states in (a). I performed a similar comparison between the string trajectory (G3c) and 

the PATH transition states in (c) and (d). States 18–23 are structurally similar to PATH transition state, 
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and the same states also have the lowest potential energy difference, implying their proximity to the same 

transition state. 

I performed a similar analysis with the myosin conformational change trajectory from the 

ANMPathway method (Das et al. 2014). I found that when the PATH transition state is 

compared with the ANMPathway trajectory the structures are the closest [root mean squared 

deviation (RMSD) 0.52 Å] near the transition state of the ANMPathway trajectory (Fig 11(c)). 

Similarly, the same group of structures have the absolute potential energy difference closest to 

zero (Fig 11(d)). 

4.2 Discrete molecular dynamics replica exchange simulations verify that transition 
states identified by path are close to saddle points in the free energy surface connecting 
initial and final states 

 

Previous work in the lab (Kapustina et al. 2007) has established that Bacillus 

Stearothermophilus Tryptophanyl-tRNA synthetase (TrpRS) passes through three distinct 

structural states: 

 an Open state that can be stabilized either by stoichiometric amounts of 

tryptophan or by substoichiometric amounts of Mg•ATP (adenosine triphosphate) 

 a closed, Pre-TS, stabilized by stoichiometric amounts of Mg•ATP and a 

tryptophan analog 

 a closed, Product state (Pdt), stabilized either by the bound intermediate 

adenylate product, tryptophanyl-5’AMP, or by stable analogs thereof 

As the ligands bind to the Open state, the protein undergoes an induced fit 

conformational change and goes to the Pre-TS state. At the Pre-TS state, a subsequent 

catalytic step takes the Pre-TS state to the Pdt state. Both induced-fit and catalysis are slow, 

relative to the chemical transformation of the substrates; each is therefore associated with a 
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different conformational transition state. Preliminary analysis with the PATH program had given 

us descriptive accounts of the two transitions. 

 Induced-fit proceeds by and early and higher energy barrier that matches the 

behavior seen by MD simulations of the TrpRS monomer (Laowanapiban et al. 

2009) 

 Catalysis proceeds by a later, lower barrier transition state in which the volume of 

the tryptophan binding pocket assumes a minimum value immediately after the 

conformational transition state identified by PATH (Weinreb et al. 2014) 

The earlier MD calculations relating to the Induced-fit transition were short, 10 ns 

simulations, and represented what appeared to be a slower conformational change. As MD 

simulations led to a confirmation of the results PATH had given for the Induced-Fit transition 

(Laowanapiban et al. 2009), I decided to see whether similar, but more detailed simulations 

might allow a more stringent test of results the PATH algorithm had given for the catalytic 

transition. As the catalytic transition represents what is likely a more rapid conformational 

change with a lower barrier, I carried out replica exchange calculations using DMD (Dokholyan 

et al. 1998; Shirvanyants et al. 2012; Ding et al. 2008) with sufficiently long equilibrations to 

appropriately sample the free energy surface connecting the Pre-TS and Pdt states. 

DMD simulations were set up with the same configuration of ligands that I had used for 

PATH: AMP (adenosine monophosphate), Tryptophan, and Pyrophosphate. These ligands were 

configured as before (Weinreb et al. 2014) to allow an approximation to the actual chemical 

reaction displacing pyrophosphate from ATP with tryptophan. From the resulting snapshots, I 

computed the internal coordinates used previously to describe the Induced-Fit transition (Twist 

and Hinge (Kapustina & Carter 2006)). Sufficiently many steps were computed to visualize the 

relative populations centered on the two states. For each case, I identified representative 

structures for the two different distributions. Free energy surfaces were then computed by fitting 

an empirical equation, built using two 2D Gaussian curves for the equilibrium states and a bi-
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variate quadratic for the transition state, to the points between the two equilibrium states. These 

representative structures reflect the stable, equilibrium structures of the two states in the DMD 

force field (Ding & Dokholyan 2006; Shirvanyants et al. 2012) as obtained from the DMD 

simulations. They were then input as initial and final states to PATH.  

 

Figure 12. Free energy surface from Replica exchange DMD: Free energy surfaces for the 

fully liganded TrpRS monomer derived from DMD replica exchange computations and plotted as a 

function of the two conformational angles, Twist and Hinge, which represent collective variables for the 

catalytic conformational change derived by Kapustina (Kapustina & Carter 2006). The structures (2000 

snapshots) generated at the lowest DMD temperature (~175 K) were used in the analysis. (A) 
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Distributions of the TrpRS Pre-transition state and Product derived from simulations initiated from the 

Product state in the (harmonically restrained) presence of AMP, tryptophan, and pyrophosphate. (B) 

Distributions of these two states in similar simulations without pyrophosphate and without restraining 

potentials. In (A) and (B), the dark blue circles represent the free energy minima of the less populated 

state fitted to a bivariate quadratic response surface. Light blue circles represent free energy minima 

computed using the same approach for the more highly populated states. (C) Free energy surface 

derived from (A). (D) A similar plot derived from (B). Blue spheres represent the initial and final states 

input to PATH computations; red spheres represent the coordinates of the transition states produced by 

PATH. 

These calculations produced two notable results: 

 The apparent free energy difference between the Pre-TS and Product states 

depends strongly on the presence of the bound product, pyrophosphate (PPi). If 

the PPi was retained in the binding pocket by a harmonic potential, the 

equilibrium was far on the side of the Pre-TS state (Fig 12 (a)). On the other 

hand, if this potential (or constraints) mimicking PPi binding was relaxed or 

omitted, rapid PPi release is observed and the distribution of states exhibits 

higher probability towards product state (Fig. 12(B)). This behavior is especially 

interesting in view of the possibility that early release of orthophosphate following 

actin binding triggers the myosin V powerstroke (Ovchinnikov et al. 2010). 

 Transition states for the transitions with and without the harmonic potential 

restraining the PPi output by PATH fall close to the coordinates of the saddle 

points of the respective energy surfaces (Figs. 12(C) and 12(D)). 

4.3 Transition states identified by PATH display comparable rate-limiting structures in 
three different systems 
 

I began these studies to access structural information about the transient conformational 

transition state(s) that appear to be rate-limiting for TrpRS catalysis (Kapustina et al. 2007). In 
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the course of the work, I found it useful also to investigate PATH behaviors of other model 

systems, including the 1D system described above. Two well-defined protein conformational 

transitions – Ca2+ release by the Ca2+-binding domain of calmodulin and the converter domain of 

myosin VI. These studies reveal a remarkable similarity in all three transition-states (Fig. 13). In 

each case, the rate-limiting conformational change involves re-packing of multiple aromatic side 

chains (Burley & Petsko 1985; Burley & Petsko 1986; Lanzarotti et al. 2011) associated with 

subtle rearrangements of the surrounding backbone chains. Such rearrangements are known to 

occur on a far slower timescale (𝜇𝑠 to ms (Skalicky et al. 2001)) than rotamer exchanges of 

aliphatic side chains in hydrophobic core regions. 

 

Figure 13. Transition states of three different systems: Conformational transition state 

structures for Calmodulin Ca2+-binding domain (A), Myosin VI converter domain rigor to Prepowerstroke 

(B), and the TrpRS induced-fit (C) transition states. Aromatic residues that flip at the transition state are 

highlighted in red. The initial state is 50% transparent, to distinguish the states before and after the rate-

limiting step. 
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CHAPTER 5: MATERIALS AND METHODS 
 

 

5.1 Structures 

Three TrpRS structures were used in these studies. These structures were derived from 

the crystal structures of the three conformations of TrpRS, namely, Open (1MAW,1MB2), Pre-

TS (1MAU) and Pdt (1I6L). The terminal aminoacid (R328) was excised from the structures as it 

is not observed in most of the crystal structures. I believe that its absence would not affect the 

conformational change of the rest of the protein. The ligands in the binding pockets are different 

for the different states of TrpRS. To make the ligands consistent in all the three structures, I 

used Tryptophan, AMP, PPi as separate molecules in the binding pocket; the distance between 

these molecules changes, depending on the state and the chemical species that they represent. 

The arrangement has been used previously (Laowanapiban et al. 2009; Weinreb et al. 2014) 

and this allows approximating the chemical reaction without requiring the use of quantum 

calculations. The myosin VI structures for the rigor state and the prepowerstroke state were 

derived from 2BKH and 2V26, respectively. As described in (Ovchinnikov et al. 2011), only 

residues 703–788, which form the converter domain, were used in the simulations. The 

equilibrium structures for calmodulin were derived from 1CMF and 1FW4, which are carboxy-

terminal domains of calmodulin. 

5.2 PATH simulations 

To run PATH simulations, the number of atoms in the two equilibrium states and their 

relative order in the two PDB files must be the same. Only the heavy atoms are used. The 

modified algorithm requires no input parameters other than the two equilibrium states, because 
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the force constants are assumed to be 0.01 for both states, and errors in this assumption are 

compensated by the evaluation of 𝑡̅ for the forward and reverse reactions from equation (61).  

5.3 ANMPathway simulations 

The ANMPathway calculations were set up on the ANMPathway server. Default input 

force constants = 0.1 were used for both the energy wells. All the other parameters were set to 

their default values – Cutoff – 15 Å, Energy offset - 0, Step size (on cusp) - 0.8, Step size (slide 

down) - 0.04 and Target RMSD - 0.1 Å. 

5.4 DMD simulations 

Replica Exchange Discrete Molecular Dynamics (REX/DMD) simulations were set up 

with the Pdt state structure described previously. A harmonic potential was applied between the 

atoms of the ligands and all the surrounding atoms within 3.5 Å to retain the ligands within the 

binding pocket. In general, replica exchange simulations are used for efficient sampling of the 

conformational landscape of a given system. However, I was only interested in monitoring the 

transition between the Pdt and Pre-TS state. To facilitate the exploration of this particular 

transition event as well as to expedite the sampling, I introduced weak harmonic constraints to 

guide the system progressing from Pdt to Pre-TS state. By comparing the native contacts within 

the two systems (as obtained from their crystal structures), I extracted the unique contacts that 

were present in the Pre-TS and not the Pdt state. Those contacts were used as experimental 

constraints. The DMD force field is currently equipped to work only with Cu2+ or Zn2+. Since ATP 

is complexed with Mg2+ in the Pre-TS state, it was replaced with Zn2+. I believe that this 

replacement would not affect the conformational change of the protein in a significant way. I 

simulated parallel replicas at 24 temperatures ranging from ~175 K to ~405 K for a total 

duration of 2.5 million steps (~125 ns) as described in (Williams II et al. 2015). As the system 

requires 500 000 steps to equilibrate, all our analyses were performed with the remaining 2 
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million steps. Snapshots were generated every 1000 steps, hence all our analyses (Fig. 12) 

include 2000 snapshots 

5.5 Fitting the Free energy surfaces 

Each of the 2000 snapshots from the lowest temperature replica exchange DMD 

simulation was segregated in 225 bins of equal size, based on their Hinge and Twist angles. 

Based on the distribution of structures within these bins, the free energy surface is computed 

using the formula 

Δ𝐺 = −𝑘𝐵𝑇 ln (100 ∗ [
𝑛𝑖

𝑁
]) (62) 

where, 𝑛𝑖 is the number of structures in the 𝑖𝑡ℎ bin and 𝑁 is the total number of 

structures. 

Then, these free energy values are fitted to the following equation to generate the free 

energy surface in Fig 12, 

Δ𝐺 = 𝐶 + 𝐴𝑒
−(

(𝑋−𝑇𝑤1)2

2𝑆𝑖𝑔𝑇𝑤1
+

(𝑌−𝐻1)2

2𝑆𝑖𝑔𝐻1
+

𝐽(𝑋−𝑇𝑤1)(𝑌−𝐻1)

2√𝑆𝑖𝑔𝑇𝑤12+𝑆𝑖𝑔𝐻12
)

+ 𝐵𝑒
−(

(𝑋−𝑇𝑤2)2

2𝑆𝑖𝑔𝑇𝑤2
+

(𝑌−𝐻2)2

2𝑆𝑖𝑔𝐻2
+

𝐿(𝑋−𝑇𝑤2)(𝑌−𝐻2)

2√𝑆𝑖𝑔𝑇𝑤22+𝑆𝑖𝑔𝐻22
)

+ 𝐷(𝑋 − 𝑇𝑤𝑡) + 𝐹(𝑋 − 𝑇𝑤𝑡)2

+ 𝐺(𝑌 − 𝐻𝑡) + 𝐻(𝑌 − 𝐻𝑡)2 

(63) 

where, X and Y are the Twist and Hinge angles and the constants Tw1, H1, Tw2, and 

H2 are the twist and hinge, respectively, of the Pdt and Pre-TS structures and Twt and Ht are 

coordinates of the saddle point. 

5.6 Design of computational mutants 

Computational mutants of TrpRS were designed using Rosetta Backrub server (Lauck et 

al. 2010). The backrub algorithm perturbs the structure minimally in the neighborhood of the 

mutation site, hence the overall structure of the protein doesn’t change significantly. In order to 
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maintain the consistency of the structure I generated the wild-type structure by mutant one of 

the single point mutants back to the wild-type residue. 
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CHAPTER 6: CONCLUSION AND FUTURE DIRECTIONS 
 

 

The modified PATH algorithm generates transition states comparable to those generated 

by other well established methods like ANMPathway and the String method. Also, in the case of 

TrpRS, myosin and Calmodulin, it generates transition states that have similar structural 

features that contribute to the energy barrier at the transition state, which is the conformation of 

aromatic side chains. The rearrangement of these aromatic sidechains causes the switch from 

one conformation to another. 

Because of these predications made by PATH, I wanted to explore other areas where 

the PATH algorithm could be useful to understanding the nature of protein conformational 

changes. One such area is the study of kinetics of mutants of TrpRS. TrpRS contains a region 

of four residues (I4, F26, Y33 and F37) which were previously identified (Kapustina et al. 2007) 

as the fulcrum of motion that caused TrpRS to undergo conformational change. These are the 

same residues which are far away from the active site of the protein but undergo a significant 

rearrangement during the catalytic cycle of TrpRS. Previous experimental kinetics studies in the 

lab (Weinreb et al. 2012) have shown that mutation at each of the sites affect the protein in a 

different manner and alter the rate of catalysis by TrpRS. The action of the quadruple mutant 

along with Mg2+ contributes ΔΔ𝐺~ − 6 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙  of transition state stabilization. Since there is 

data available on every interaction possible between the mutational sites, this system provides 

an opportunity for simulation algorithms like PATH to predict the effect of the mutants. I used 

this system to test if the parameters output by the modified PATH program could predict these 

experimentally determined kinetic values. 
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6.1 Output parameters from PATH can be used to model experimentally determined 
kinetic 𝚫𝚫𝑮 values for TrpRS mutants 

 

From the kinetics experiments performed using the mutants of TrpRS, the rate of 

catalysis 𝑘𝑐𝑎𝑡 were calculated (Weinreb et al. 2012). These kinetic rate constants were 

converted into a free energy term Δ𝐺𝑘𝑐𝑎𝑡 using the equation, 

Δ𝐺𝑘𝑐𝑎𝑡 = −𝑘𝐵𝑇 ln(𝑘𝑐𝑎𝑡) (64) 

These Δ𝐺𝑘𝑐𝑎𝑡 can then be compared with the PATH parameters using regression 

models.  

Of the several parameters that can be calculated from PATH, the one that closely 

represents the rate of the reaction is 𝑡̅, as it is the time taken to reach the transition state from 

the first equilibrium state, which in a way can be considered to be the inverse of the reaction 

rate. From this rate, a theoretical Δ𝐺𝑘𝑐𝑎𝑡 can be calculate using equation (64). Similarly, a free 

energy term related to the reverse reaction can also be calculated from the time to the transition 

state in the right well, 𝑡�̅�. 

Apart from 𝑡̅, there are two energy parameters that can also determine the rate of the 

reaction, namely, the energy of the transition state relative to both the equilibrium states (𝑈𝑙
‡ and 

𝑈𝑟
‡) and the difference in energy between the two equilibrium states Δ𝐸0.5. It should be noted 

that even though the value of Δ𝐸0.5 computed by the new algorithm is the same as the one 

computed by the old algorithm, the definition of Δ𝐸0.5 has since changed. In the new algorithm, 

since evaluation of 𝑡̅ does not require an iterative procedure, unlike the old algorithm where the 

velocity and energy continuity equations were used in tandem to identify 𝑡̅, the transition state 

structure is calculated from the velocity continuity equation (43) directly. The energy continuity 

equation (44) is then rearranged to evaluate the value Δ𝐸 associated with this 𝑡̅ and 𝑡𝑓. That is. 



53 
 

Δ𝐸 =
1

2
(�̅� − 𝑏)𝐻𝑟(�̅� − 𝑏)2 −

1

2
(�̅� − 𝑎)𝐻𝑙(�̅� − 𝑎)𝑇 (65) 

As mentioned earlier, this Δ𝐸 is still equivalent to the Δ𝐸0.5 computed using the old 

algorithm, the value of Δ𝐸 at which the action is at global minimum, but 𝑡�̅� and 𝑡�̅� are not equal. 

Hence the value of Δ𝐸 computed from the new algorithm (equation (65)) will henceforth be 

mentioned only as Δ𝐸. 

Using these PATH parameters, the experimental kinetic free energy was fitted and the 

fitting had a correlation coefficient, 𝑅2 of 0.59 

 

Figure 14. Prediction of experimentally determined kinetic free energy using PATH: The 

experimental free energy values of 16 TrpRS mutants are predicted using different parameters from 

PATH. The variables used in this fit were 𝑈𝑟
‡
, Δ𝐸 and ln (

1

𝑡̅𝑟
) and their higher order terms. The correlation 

coefficient for the fit was found to be  𝑅2 = 0.59.  
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Term Estimate Standard Error Prob.>|t| 

(𝑈𝑟
‡ − 64.7969)

∗ (ln (
1

𝑡�̅�
) + 2.12779) 

162.6334 46.46563 0.0057 

(Δ𝐸 − 1.35413)

∗ (𝑈𝑟
‡ − 64.7969) 

1.3417523 0.399572 0.0073 

Δ𝐸 -1.019092 0.593475 0.1167 

𝑈𝑟
‡ 0.1484907 0.08906 0.1264 

ln (
1

𝑡�̅�
) -31.50726 48.11258 0.5273 

 

Table 1: The estimates, standard error in the estimation and the significance of The PATH 

parameters used to fit the experimental kinetic values are tabulated here. The PATH simulations were 

performed on 16 TrpRS mutants which alter the kinetics of the proteins in different ways. 

Though the correlation coefficient, 𝑅2 is 0.59, the fit is not particularly good and also, as 

it can be seen from the table, apart from the two second order interaction terms, the individual 

parameters are not significant. Hence either a different set of parameters or a different way to 

estimate the parameters have to be used for this correlation. 

6.2 Modifying the PATH Hessian 

Use of appropriate spring constants is essential for generating PATH parameters than 

could be used for correlation studies with experimental parameters. The importance of the force 

constant cannot be understated because all the three parameters used in the above correlation, 

are derived from the force constants. I have argued previously that it is reasonable to use a 

constant value of the force constants for both the wells for all the systems and any error in the 
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force constants will be compensated by the estimation of 𝑡𝑓 as it is the product of these two 

quantities which is important and not the actual values. But if it is possible to evaluate more 

accurate force constants, it could improve the trajectories and also generate parameters that 

agree better with experiments. 

One general approach to deriving the values of force constants comes from the group of 

Konrad Hinsen (Hinsen et al. 2000). They evaluate the force constant for an ANM potential by 

using an empirical equation that was derived by fitting the motion of 𝐶𝛼 atoms in the AMBER 

force field (Cornell et al. 1995). There is one equation for 𝐶𝛼 atoms that are within 0.4 nm and 

another equation for atoms that are farther away. The following is the equation 

𝑘 = 8.6 × 105 𝑘𝐽 𝑚𝑜𝑙−1𝑛𝑚−3. 𝑟 − 2.39 × 105 𝑘𝐽 𝑚𝑜𝑙−1𝑛𝑚−2 𝑓𝑜𝑟 𝑟 < 0.4 𝑛𝑚 

𝑘 = 128 𝑘𝐽 𝑛𝑚4𝑚𝑜𝑙−1. 𝑟−6 𝑓𝑜𝑟 𝑟 ≥ 0.4 𝑛𝑚 

(66) 

In both the regimes, the force constant is dependent on the distance of separation 

between the atoms. 

Another parameter that can be evaluated differently is 𝑡̅. Currently, in the new PATH 

algorithm, it is calculated from equation (61) where the denominator is the average force 

constant calculated from the mean of the trace of the Hessian, or in other words the mean of the 

Hessian. The reason behind this approach is make sure that the system has converged, that is 

the product of the force constant and the time parameter is large enough that any increase in 

this product does not change the estimated structure of the transition state. If each mode of a 

vibrating molecule is considered separately, the vibrational mode which has the most significant 

effect on the PATH is the smallest vibrational mode. This means that if the smallest mode 

converges then all the other modes will also converge. Hence equation (61) can rewritten as 

𝑡̅𝑜𝑝𝑡 = 𝑡̅ − 𝑡 =
2.302

𝜆𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 
 (67) 
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Using equation (66) to calculate the force constants, and (67) to calculate the time to the 

transition state on both the wells, the PATH parameters that are generated for the TrpRS 

mutants are different and the correlation with experimental parameters increases significantly, 

with a 𝑅2 value of 0.76 

 

Figure 15. Prediction of experimentally determined kinetic free energy using a modified 

Hessian: The experimental free energy values of 16 TrpRS mutants are predicted using different 

parameters from PATH. The variables used in this fit were 𝑈𝑟
‡
, Δ𝐸 and ln (

1

𝑡̅𝑙
) and their higher order terms. 

The correlation coefficient for the fit was found to be  𝑅2 = 0.76.   
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Term Estimate Standard Error Prob.>|t| 

𝑈𝑟
‡ 1.8057062 0.525875 0.0064 

(Δ𝐸 + 0.53131)

∗ (𝑈𝑟
‡ − 5.14956) 

-74.67219 25.94635 0.0164 

ln (
1

𝑡�̅�
) 274.54033 106.1404 0.0271 

Δ𝐸 -13.28052 6.094605 0.0543 

(Δ𝐸 + 0.53131)

∗ (ln (
1

𝑡�̅�
) + 7.54065) 

15967.629 7987.513 0.0735 

 

Table 2. The estimates, standard error in the estimation and the significance of The PATH 

parameters used to fit the experimental kinetic values are tabulated here. The PATH simulations were 

performed on 16 TrpRS mutants which alter the kinetics of the proteins in different ways. There are more 

significant parameters in this fit than in the one above. 

Comparing Table 1 and Table 2 shows that the parameters are more significant when 

the Hessian is modified. Also there are more parameters that are significant in Table 2 than in 

Table 1. Added to the fact the 𝑅2 is higher, it can be argued that the second model is much 

better than the first one and this improvement is because of the modified Hessian. Thus a better 

estimation of the force constants results in significant improvement of the PATH parameters. An 

interesting observation in this context is that, even though the modified Hessian is only based 

on 𝐶𝛼 atoms, it still behaves differently for different mutants. Though the backbone trace of the 

transition states generated by both Hessians are very similar, yet the results are quite different. 

It has been shown previously (England 2011) that simple backbone based potentials along with 

information about the hydropathy of each aminoacid can be used for ab initio folding of proteins. 
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Since the dynamics in the case of domain conformational changes is much simpler, maybe a 

backbone based potential is still sufficient to capture the dynamics. 

6.3 Including potential to constrain the torsional angles 

One of the problems with the modified Hessian described in the previous section is that 

it cannot provide information about the side chains of aminoacids and their conformations at the 

transition state. Hence analysis like what is shown in Fig. 13 cannot be reproduced using this 

approach. One solution to this problem is to use an all atom potential to build the Hessian. 

There have been such approaches taken previously (Hinsen & Kneller 1999) but an empirical 

like equation (66) hasn’t be derived. 

An interesting approach taken by Hyuntae Na and Guang Song (Na & Song 2014) to 

connect ANM to more complete techniques for studying protein dynamics like full potential 

Normal Mode Analysis (NMA) provides a partial solution to this problem. In their paper, they 

start with a simple ANM potential, just like the one used in PATH, and compare the trajectory to 

that of a full potential NMA. They find that the correlation coefficient is 0.41. Then they add a 

term for the torsional angle to the potential and the correlation increases to 0.79 immediately. 

Adding more terms for bond angle, van der Waals interaction, Urey-Bradley and improper 

increases the correlation coefficient to 0.88. Thus the correlation between ANM and NMA 

almost doubles just with an additional torsional term. Hence the PATH Hessian could be 

modified to include the torsional potential, which could increase the correlation with 

experimental parameters and at the same time, also provide information about the aminoacid 

sidechains. 

The new Hessian can be built by adding the Hessian for ANM, which was described 

earlier to a new Hessian for the torsional potential. The process of building the torsional Hessian 

is similar to that of the ANM Hessian. The following is the derivation of the single 12 × 12 block 

of the Hessian. 



59 
 

The torsional angle is calculated between 4 atoms are connected by three consecutive 

covalent bonds. Let’s consider these 4 atoms be 𝑎 = (𝑥1, 𝑦1, 𝑧1), 𝑏 = (𝑥2, 𝑦2, 𝑧2), 𝑐 = (𝑥3, 𝑦3, 𝑧3) 

and 𝑑 = (𝑥4, 𝑦4, 𝑧4). The difference vectors connecting the 4 atoms then are 𝑙 = (𝑥2 −

𝑥1, 𝑦2 − 𝑦1, 𝑧2 − 𝑧1), 𝑚 = (𝑥3 − 𝑥2, 𝑦3 − 𝑦2, 𝑧3 − 𝑧2) and 𝑛 = (𝑥4 − 𝑥3, 𝑦4 − 𝑦3, 𝑧4 − 𝑧3). The 

torsional angle between the 4 atoms is then written as 

 𝜙 = cos−1 (
𝑢.𝑣

|𝑢||𝑣|
) (68) 

where, 𝑢 and 𝑣 are normal to the places of the vectors 𝑙,𝑚 and 𝑚, 𝑛 respectively. 

The potential arising from the torsional angle constraint is written as 

𝑉(𝜙) = 𝐾𝜙(1 − cos(𝑛(𝜙 − 𝜙0))) (69) 

where, 𝜙0 is the torsional angle of the four atoms in the equilibrium state and 𝐾𝜙 is the 

force constant associated with the torsional potential and 𝑛 is a multiplicity factor. If 𝐾𝜙 and 𝑛 

are assumed to be 1 (Na & Song 2014), then (69) becomes, 

𝑉(𝜙) = (1 − cos((𝜙 − 𝜙0))) (70) 

The Hessian, as described above is a matrix of second derivatives of the potential. 

Hence the second derivative of (70) has to be computed. 

By Taylor expansion, (70) can be rewritten as 

𝑉(𝜙) =
(𝜙 − 𝜙0)

2

2
 (71) 

The first derivative of (71) relative to the first coordinate of the 4 atoms, 𝑥!, is 

𝜕𝑉(𝜙)

𝜕𝑥1
= (𝜙 − 𝜙0).

𝜕𝜙

𝜕𝑥1
 (72) 

And the second derivative is 
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𝜕2𝑉(𝜙)

𝜕𝑥1
2 = (𝜙 − 𝜙0).

𝜕2𝜙

𝜕𝑥1
2 + (

𝜕𝜙

𝜕𝑥1
)
2

 (72) 

At equilibrium, since 𝜙 = 𝜙0, 

𝜕2𝑉(𝜙)

𝜕𝑥1
2 = (

𝜕𝜙

𝜕𝑥1
)
2

 (72) 

For a general coordinate 𝑋, the above equation can be written as 

𝜕2𝑉(𝜙)

𝜕𝑋𝑖𝜕𝑋𝑗
=

𝜕𝜙

𝜕𝑋𝑖

𝜕𝜙

𝜕𝑋𝑗
 (73) 

There are 78 unique combinations of 
𝜕𝜙

𝜕𝑋
 which make up the 12 × 12 Hessian matrix and 

each of these terms can be calculated as the derivative of the angle (68) relative to the 

coordinates. 

Considering, 

𝑅 =
𝑢. 𝑣

|𝑢||𝑣|
 (74) 

𝜕𝜙

𝜕𝑋
 can be calculated as 

𝜕𝜙

𝜕𝑋
= −

1

√1 − 𝑅2
.
𝜕𝑅

𝜕𝑋
 

 

(75) 

A potential defined in this manner, if added to the ANM potential could improve the 

trajectories and at the same time generate PATH parameters that correlate better with 

experimental methods. PATH can then be used to study the effects of mutations on protein 

conformational changes and protein stability. 

6.4 Conclusion 

PATH was originally developed as a rapid algorithm (Franklin et al. 2007) for computing 

conformational changes between equilibrium states of proteins if several input parameters were 
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known before the simulations can be set up. With the modifications to the algorithm that I have 

made, PATH now requires only the crystal structures for perform the calculations. Also, since 

the new algorithm does not require to check for energy continuity by an iterative method, it is 

considerably faster than the original algorithm. 

Previously, the results generated from PATH had not been compared with those 

generated by other methods. Simulations of Adenylate Kinase were performed and most of the 

validation of PATH was based on qualitative tests of this trajectory (Franklin et al. 2007). But 

now, there are two quantitative tests showing that the transition states generated by PATH 

agree with those from the String method and ANMPathway and also with a more general 

purpose algorithm like DMD. 

PATH also generates several parameters whose significance haven’t been fully 

understood yet. Though the use of parameters from PATH to predict experimentally determined 

kinetic parameters is a good first step towards understanding these parameters, using PATH on 

several other well characterizing enzymes will be essential to understand these parameters 

fully. 

The current version of PATH, even though it is efficient and correctly predicts 

conformational transition states, still leaves scope for improvement. As outlined above, the 

potential functions can be modified to generate better results without compromising on the 

speed of PATH or its efficiency. 

  



62 
 

APPENDIX 1: COMPARISON OF COMPUTATIONAL METHODS 

 

 
Method 

 

 
Pros 

 

 
Cons 

Molecular Dynamics 

simulation 

 Provides information about the 

dynamics of the protein at an 

atomistic level 

 Time and resource 

intensive 

Replica exchange 

Discrete Molecular 

Dynamics simulation 

and other MD simulation 

methods coupled with a 

sampling algorithm 

 Faster than traditional MD 

simulations 

 Provides information about the 

dynamics of the protein at an 

atomistic level 

 Time and resource 

intensive 

String Method 

 Much faster than MD simulations 

 Provides information about the 

dynamics of the protein at an 

atomistic level 

 Gold standard 

 Still dependent on MD 

simulations. 

 Resource intensive 

 Not readily accessible 

ANMPathway 
 Fast 

 Accessible 

 Not dependent on time 

hence the method does 

not provide any kinetic 

information about the 

conformation change 

process 

 Backbone only 
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PATH 

 Fast 

 All atom simulations 

 Time dependent; kinetic 

information available 

 Accessible 

 Dynamics of the 

sidechain is not 

available 
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