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ABSTRACT

NATHAN PENNINGTON: The Lagrangian Averaged Navier-Stokes equations with

rough initial data

(Under the direction of Professor Michael Taylor)

Turbulent fluid flow is governed by the Navier-Stokes equations, given in their incom-

pressible formulation as

(0.0.1) ∂tu + (u · ∇)u− ν4u = −∇p,

where the incompressibility condition requires div u = 0, ν is a constant greater than

zero due to the viscosity of the fluid and u is the velocity field of the fluid.

Because of the difficulty of working with the Navier-Stokes equations, several different

approximations of the Navier-Stokes equations have been developed. One recently derived

approxmation is the Lagrangian Averaged Navier-Stokes equations, which are given in

their incompressible, isotropic form as

(0.0.2) ∂tu + (u · ∇)u + div τα(u)− ν4u = −(1− α24)−1∇p.

This thesis will focus on three main areas. First, we seek local solutions to the

Lagrangian Averaged Navier-Stokes equations with initial data in Sobolev space Hr,p(Rn)

with the goal of minimizing r. We generate these results by following the program of [6]
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for the Navier-Stokes equations. Following results of [8], we are able to turn the local

solution into a global solution for the n = 3, p = 2 case.

Secondly, we seek solutions to the Lagrangian Averaged Navier-Stokes equations for

initial data in Besov space Br
p,q, again following the broad outline of [6]. Finally, we

get a global result for Besov spaces in the p = 2 case and a qualitatively different local

result for general p by modifying the results in [18] for the homogeneous generalized

Navier-Stokes equations.
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CHAPTER 1

Introduction



1.1. Introduction

The incompressible Navier-Stokes equations govern the motion of incompressible flu-

ids and are given by

(1.1.1) ∂tu + (u · ∇)u− νAu = 0,

where A is (essentially) the Laplacian, ν is a constant greater than zero due to the

viscosity of the fluid, and u is a velocity field, which means u(t, x) is the velocity of the

particle of fluid located at position x a time of t units after the fluid is put in motion.

These equations are derived from the Euler Equations, and setting ν = 0 would recover

the Euler Equations.

The Navier-Stokes equations govern the behavior of many physical phenomena, in-

cluding ocean currents, the weather and water flowing through a pipe. The question of

global existence for the Navier-Stokes equations is one of the most significant remain-

ing open problems in mathematics, evidenced by its naming by the Clay Mathematics

Institute in 2000 to be one of the seven Millennium Prize Problems.

Because of the intractability of the Navier-Stokes equations, several different equa-

tions that approximate the Navier-Stokes equations have been studied. A recently derived

approximating equation is the Lagrangian Averaged Navier-Stokes equations (LANS).

The LANS equations come from the Lagrangian Averaged Euler (LAE) equations in the

same way that the Navier-Stokes equations come from the Euler equations. Like the

Euler equations, the LAE equations are the geodesics of a specific functional. For the

Euler equation, this is the Energy functional. For the LAE equations, the functional is
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derived via an averaging process, with the averaging occurring at the level of the ini-

tial data. For an exhaustive treatment of this process, see [14], [15], [12] and [9]. For

the convenience of the reader, we briefly summarize a special case of the derivation in

Section 2.1. In [13] and [21], the authors describe the physical implications of the averag-

ing process that generates the LANS equations and discuss the numerical improvements

use of the LANS equation provides over more common approximation techniques of the

Navier-Stokes equations.

Like the Navier-Stokes equations, the LANS equations have both a compressible and

an incompressible formulation. The compressible LANS equations are derived and stud-

ied in [10]. The incompressible LANS equations exist most generally in the anisotropic

form, and are derived and studied in [9]. We will consider a special case of these

anisotropic equations called the isotropic incompressible LANS equations. One form

of the incompressible, isotropic LANS equations on a region without boundary is

(1.1.2)

∂tu + (u · ∇)u + div ταu = −(1− α24)−1grad p + ν4u

div u = 0, u(t, x)|t=0 = ϕ(x),

where α > 0 and ϕ is the initial data. The Reynolds stress τα is given by

(1.1.3) ταu = α2(1− α24)−1[Def(u) ·Rot(u)]

where Rot(u) = (∇u − ∇uT )/2 is the antisymmetric part of the velocity gradiant and

Def(u) = (∇u +∇uT )/2. Lastly, (1− α24) is the Helmholtz operator.

Setting ν = 1, we write (1.1.2) as

(1.1.4)

∂tu− Au + Pα(div · (u⊗ u) + div ταu) = 0,

x ∈ Rn, n ≥ 2, t ≥ 0, u(0) = ϕ = Pαϕ
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where u = u(t) : Rn → Rn, A = Pα4, u⊗ u is the tensor with jk-components ujuk and

div · (u ⊗ u) is the vector with j-component
∑

k ∂k(ujuk). Pα is the Stokes Projector

defined as

(1.1.5) Pα(w) = w − (1− α24)−1grad f

where f is a solution of the Stokes problem: Given w, there is a unique v and a unique

(up to additive constants) function f such that

(1.1.6) (1− α24)v + grad f = (1− α24)w

with div v = 0. For a more explicit treatment of the Stokes Projector, see Theorem 4 of

[15].

The averaging process has a smoothing effect on the resulting PDE. In [8], this

smoothing is exploited to show the existence of a global solution to (1.1.2) for initial

data of any size in H3,2(R3). This is in stark contrast to the case for the Navier-Stokes

equations, where discovery of such a global existence result is one of the great remaining

open problems in mathematics.

Our work here has two main goals. First, we seek local solutions to the LANS

equations outside the L2 setting, specifically by assuming our initial data is in Sobolev

space Hr,p or in Besov space Br
p,q. Secondly, we seek to minimize the assumed regularity

of the initial data. We will begin by mirroring the approach used for the Navier-Stokes

equations in [6], which will give short time solutions in the class of weighted continuous

functions in time and the class of integral norms in time. Later we will follow the work

of [18] and get similar results, but only for Besov spaces.
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The paper is organized as follows. In Chapter 2 we briefly describe the derivation of

(1.1.2), including the construction of the inner product whose geodesics satisfy (1.1.2).

Chapter 3 considers the case of initial data in Sobolev spaces Hr,p(Rn) and Chapter 4

considers initial data Besov spaces Br
p,q. In Chapter 5 we give a proof extending local

results in Besov space Br
2,q to global results, and in Chapter 6 we get additional Besov

space results that are qualitatively different from those obtained in Chapter 4.

We conclude this introduction with special cases of the theorems proven throughout

the paper. Our first two sets of results are analogous to those proven in [6]. Our first

result is a special case of Theorem 3.2.1, and comes from setting b′ = 1 in (3.4.18).

Theorem 1.1.1. For any ϕ = Pαϕ ∈ Hr,p there is a T = T (ϕ) > 0 and a unique

solution to (1.1.2) such that

(1.1.7) u ∈ Cr,p ∩ Ċa;k,c

provided the parameters (with r = n/p+ b) satisfy (3.4.19). If ‖ϕ‖r,p is sufficiently small,

T = ∞.

The function spaces C and cot C are defined in Section 3.2. We record two additional

special cases that illustrate our “best” result.

Theorem 1.1.2. Let r = n/p, n < p, and n ≥ 2. Then for any ϕ = Pαϕ ∈ Hr,p(Rn)

there is a T = T (ϕ) > 0 and a unique solution to (1.1.2) such that

(1.1.8) u ∈ Cr,p ∩ Ċ(1−n/p)/2;1,p.

This case emphasizes that we can achieve a local existence result for regularity arbi-

trarily close to zero if we allow sufficiently large p. We contrast this with the result from
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[6], which gives local existence for the standard Navier-Stokes equations with initial data

in Hn/p−1,p(Rn).

We also record the result in the special case n = 3 and p = 2, which requires a

different choice of parameters.

Theorem 1.1.3. For any ϕ = Pαϕ ∈ H3/2,2(R3) there is a T = T (ϕ) > 0 and a

unique solution to (1.1.2) such that

(1.1.9) u ∈ C3/2,2 ∩ Ċ1/4;2,2.

In Theorem 3.6.1, we extend this special case to a global existence result. For the

details, see section 3.6. We compare this with the result in [8], which holds for initial

data in H3,2.

Our next series of results generate solutions to (1.1.2) in a slightly different functional

setting. Like our previous results, we begin with a special case of the main Theorem

(Theorem 3.7.1) obtained by setting b′ = 1 in (3.9.4).

Theorem 1.1.4. For any ϕ = Pαϕ ∈ Hr,p there is a T = T (ϕ) > 0 and a unique

solution to (1.1.2) such that

(1.1.10) u ∈ BC([0, T ) : Hr,p) ∩ La((0, T ) : Hk,c)

provided the parameters (with r = n/p + b) satisfy (3.9.5). If ‖ϕ‖r,p is sufficiently small,

then T = ∞. Lastly, we have that solutions depend continuously on the initial data.

We also state a further special case.

6



Theorem 1.1.5. Let r = n/p and assume p > 5/4 and 2 ≤ n ≤ 5/4 + p. Then for

any ϕ = Pαϕ ∈ Hr,p(Rn) there is a T = T (ϕ) > 0 and a unique solution to (1.1.2) such

that

(1.1.11) u ∈ BC([0, T ) : Hr,p) ∩ La((0, T ) : Hk,n)

where k = 5p/4 + 1 and a = 8p/5.

We note that the case n = 3 and p = 2 satisfies these conditions, and that Theorem

3.6.1 extends the result in this case to a global solution.

Our next set of results are similar to the first two sets in that they are analogous to

the results in [6]. This time, in addition to changing the equation under consideration

from the Navier-Stokes equations to the LANS equations, we also change our initial data

from Sobolev spaces to Besov spaces. From Section 4.1 we have a special case of Theorem

4.3.1:

Theorem 1.1.6. With the parameters satisfying (4.4.4), for any ϕ = Pαϕ ∈ Br
p,q

there is a T = T (ϕ) > 0 and a unique solution to (1.1.2) such that

(1.1.12) u ∈ C̄r,p,q ∩ Ċa;k,b,c.

and Theorem 4.5.1:

Theorem 1.1.7. Provided the parameters satisfy (4.7.4), given u0 ∈ Br
p,q with r =

n/p + b there exists a T > 0 and a unique solution u to (1.1.2) such that

(1.1.13) u ∈ BC([0, T ) : Br
p,q) ∩ Lσ((0, T ) : Bs

p̃,q).
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In Section 5.1 we prove that local solutions in certain Besov spaces are actually global

solutions. We state Theorem 5.2.1:

Theorem 1.1.8. Let u be a solution to (1.1.2) with initial data u0 ∈ B̃r
2,q where r > 2

such that

(1.1.14) u ∈ BC([0, T ) : Br
2,q) ∩ Y,

where Y is either Lσ(B
1+n/2
2,q ) or Ca;1+n/2,2,q with 0 ≤ a < 1 and 1 ≤ σ. Then the local

solution is a global solution.

Alternatively, with X either Lσ(B
1+n/2+ε
2,q ) or Ca;1+n/2+ε,2,q and n− r − ε < 0, we get

that the local solution is a global solution with no restriction on r.

In Section 5.2, we prove another local existence result with initial data in Besov space

using an alternate construction. We record here the Theorem to be proven:

Theorem 1.1.9. Let 4 < q ≤ ∞. Let 2 ≤ p < ∞. Let r = n/p + 2/q, and let

u0 ∈ Br
p,q. Also assume 2 < r + 2/q. Then there exists a T = T (u0) > 0 and a unique

solution u of (1.1.2) such that

(1.1.15) u ∈ X ∩ Z

where

(1.1.16) X = C([0, T ) : Br
p,q), Z = Lq

(
(0, T ) : Br+2/q

p,q

)
.

We also note that for u0, v0 ∈ Br
p,q, the corresponding solutions u(t), v(t) will satisfy

‖u− v‖X∩Z ≤ C‖u0 − v0‖Br
p,q

.
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CHAPTER 2

Lagrangian Averaging



2.1. Derivation of the Lagrangian Averaged Navier-Stokes equations

For the convenience of the reader, we recall from [8], [9], [14], and references therein

the derivation of (1.1.2). Section 2.2 gives an analytic derivation the bilinear form that

defines our averaging. Section 2.3 provides the underlying geometry necessary to recast

the bilinear form as a Riemannian metric. In Section 2.4, the Lagrangian Averaged Euler

Equations are derived as geodesics of this Riemannian metric.

2.2. Lagrangian Averaging

In this section, we follow [8] and [9] in describing the Lagrangian Averaging procedure.

We begin with a bounded region M in R3 with boundary ∂M and let, for s > 5/2, Ds
µ

denote group of volume preserving diffeomorphisms of M with Hs regularity. See section

2.3 for a more thorough description of this group. We let

(2.2.1) Xs = {u ∈ Hs(M)|div u = 0, u · n = 0 on ∂M}

We let S denote the unit sphere in Xs, and for any u0 ∈ Xs, we let u(t, x) denote the

corresponding solution to the Euler equations with initial velocity u0. We define

(2.2.2) uε
0 = u0 + εw

where w ∈ S and ε ∈ [0, α] where α is a small positive number. We let uε(t, x) denote the

solution to the Euler equations with initial velocity uε
0. We remark that uε also depends

on w, but we suppress this in the notation.

Now let η(t, x) be the Lagrangian flow of u(t, x), which means for each t, η(t) = ηt :

M → M , η(0, x) = x, and η satisfies

(2.2.3) ∂tη(t, x) = u(t, η(t, x)).
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We define ηε similarly, so

(2.2.4) ∂tη
ε(t, x) = uε(t, ηε(t, x)).

We next define ξε(t, x) to be the function that satisfies

(2.2.5) ηε
t = ξε

t ◦ ηt,

which means for each t, ξε
t : M → M . Note that since η0(t, x) = η(t, x), we have that

ξ0(t, x) = x for all t ≥ 0. ξε is called the Lagrangian fluctuation volume-preserving

diffeomorphism.

We next define the Eulerian velocity fluctuation about u by

(2.2.6) u′(t, x) =
d

dε
uε(t, x)

∣∣∣∣
ε=0

and define the Lagrangian fluctuation by

(2.2.7) ξ′(t, x) =
d

dε
ξε(t, x)

∣∣∣∣
ε=0

.

We similarly define

(2.2.8) u′′(t, x) =
d2

d2ε
uε(t, x)

∣∣∣∣
ε=0

and

(2.2.9) ξ′′(t, x) =
d2

d2ε
ξε(t, x)

∣∣∣∣
ε=0

.

Lastly, we remark that by (2.2.4), we have

(2.2.10)
d

dε
ηε(t, x)

∣∣∣∣
ε=0

= ξ′(t, η(t, x)).
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Differentiating (2.2.5) with respect to t gives

(2.2.11) uε(t, ηε(t, x)) = (∂tξ
ε)(t, η(t, x)) +∇ξε(t, η(t, x)) · u(t, η(t, x))

where ∇ is the space-gradient and we used (2.2.3) and (2.2.4). Differentiating (2.2.11)

with respect to ε and evaluating at ε = 0 gives

(2.2.12)

u′(t, η(t, x)) + (∇u)(t, η(t, x)) · ξ′(t, η(t, x))

=∂tξ
′(t, η(t, x)) +∇ξ′(t, η(t, x)) · u(t, η(t, x))

where we used (2.2.10).

Writing this result in a more compact form, we get

(2.2.13) u′ = ∂tξ
′ + (u · ∇)ξ′ − (ξ′ · ∇)u.

By a similar calculation, we get

(2.2.14) u′′ = ∂tξ
′′ + (u · ∇)ξ′′ − 2(ξ′ · ∇)u′ −∇∇u(ξ′, ξ′)

where ∇∇u(ξ′, ξ′) is given in coordinates by

(2.2.15) ∇∇u(ξ′, ξ′) = ui
,jkξ

′jξ′k,

where subscripts indicate coordinate derivatives and superscripts indicate component

functions.

With this framework, we now define our averaging operators. Following [9], we have

a probability measure m on the unit sphere S in Xs, and we define

(2.2.16) < f >=
1

α

∫ α

0

∫

S

f(ε, w)µdε.

12



We call this the average of the function f . Next we define the averaged action operator

S̄ by

(2.2.17) S̄ =<
1

2

∫ T

0

∫

M

|∂tη
ε|2dxdt > .

Before making use of these averaged quantities, we note that by expanding uε about

ε = 0, we get

(2.2.18) uε(t, x) = u(t, x) + εu′(t, x) +
1

2
ε2u′′(t, x) + O(ε3).

To proceed, we make two assumptions. First, we assume

(2.2.19) ∂tξ
′ + (u · ∇)ξ′ − (ξ′ · ∇)u = 0

and secondly we assume that

(2.2.20) ∂tξ
′′ + (u · ∇)ξ′′ = 0.

These assumptions are called the generalized Taylor hypothesis to order O(ε2). See

equation 4.5 in [8] and equation (18) in [9] for a more thorough treatment of these

assumptions.

Applying the first assumption to (2.2.13) gives u′ = 0 and applying both assumptions

to (2.2.14) gives u′′ = −∇∇u(ξ′, ξ′). Combining this with the power series expansion

(2.2.18) we get

(2.2.21) uε = u(t, x)− 1

2
ε2∇∇u(ξ′, ξ′).

Recalling that ∂tη
ε = uε and using (2.2.21) to evaluate (2.2.17), we get

(2.2.22)
1

2α

∫ α

0

∫

S

∫ T

0

∫

M

|u(t, x)− 1

2
ε2∇∇u(ξ′, ξ′) + O(ε3)|2dxdtµdε.
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The integrand can be re-written as

(2.2.23)

|u(t, x)− 1

2
ε2∇∇u(ξ′, ξ′) + O(ε3)|2

=(u, u)− ε2(u, ε2∇∇u) +
ε4

4
(∇∇u,∇∇u) + O(ε3)

=(u, u)− ε2(∇∇u(ξ′, ξ′), u) + O(ε3)

where (·, ·) denotes the inner product on M . Integrating with respect to ε, we get

(2.2.24)

∫

S

∫ T

0

∫

M

[(u, u)− α2(∇∇u(ξ′, ξ′), u) + O(α3)]dxdtµ.

Next, we re-write ∇∇u(ξ′, ξ′) as ∇∇u : F , where F is defined by F = ξ′⊗ξ′. Because

F has no dependance on ε, we have

(2.2.25)

∫

S

Fµ =< F > .

We finally note that F is the only term in (2.2.24) with dependance on ω, which means

(2.2.24) becomes

(2.2.26)
1

2

∫ T

0

∫

M

[(u, u)− α2(∇∇u :< F >, u) + O(α3)]dxdt.

To derive the isotropic version of the Lagrangian Averaged Euler Equations, we make

the assumption that < F > is equal to the identity matrix, and thus

(2.2.27) ∇∇u(ξ′ξ′) :< F >= 4u.

Using (2.2.27) and truncating to O(α2), S̄ becomes

(2.2.28) S̄ =
1

2

∫ T

0

∫

M

[(u, u)− α2(4u, u)]dxdt.

In subsequent sections we will use this operator to derive the Lagrangian Averaged

Euler equations, but first we require some geometry.
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2.3. Manifold Structure on Groups of Diffeomorphisms

In this section we outline the construction of a manifold structure on subgroups of the

topological group of diffeomorphisms. Unless otherwise indicated, this construction (and

additional details) can be found in [4]. We begin with a compact Riemannian manifold

M and a vector bundle π : E → M . For s ≥ 0 we define Hs(E) to be the set of all

sections r such that r ∈ Hs(M,E), where we recall r ∈ Hs(M,E) if r ∈ Hs(U,E) for

each coordinate chart U . By the Sobolev imbedding theorem, if k ≥ 0, n is the dimension

of M and s > n/2 + k, then Hs(E) ⊂ Ck(E) which means each element r ∈ Hs(E) is

defined pointwise. Similarly, for s > n/2 + k we define Hs(M,N) to be the space of

mappings from M to N that are Hs in each coordinate chart.

Next, we assume N is compact and has no boundary. Then for any f ∈ Hs(M, N)

we define the tangent space at f by

(2.3.1) TfH
s(M, N) = {g ∈ Hs(M, TN) : π ◦ g = f}

where π : TN → N is the projection map from the tangent space of N onto N . Then

THs(M,N) is defined by

(2.3.2) THs(M, N) =
⋃

f

TfH
s(M,N).

We note that the map gf defined by gf (x) = 0 ∈ Tf(x)N is an element of TfH
s(M, N).

To give Hs(M,N) a manifold structure, we will construct an exponential map. First,

we choose a point y ∈ N . Then we have an exponential map expy : TyN → N . Because

N is compact and has no boundary, this map can be extended to a map exp : TN → N .
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Next, for any f ∈ Hs(M, N), we define expf : TfH
s(M,N) → Hs(M, N) by

(2.3.3) (expf g)(m) = exp(g(m)),

where m ∈ M . interested We note that

(2.3.4) expf gf (x) = exp(0f(x)) = f(x)

where 0f(x) indicates the origin in Tf(x)M . Thus expf provides a chart structure from

some neighborhood of gf onto a neighborhood of f . This gives Hs(M, N) a manifold

structure.

Setting M = N and defining C1 to be the set of C1 diffeomorphisms of M , we define

Ds = Hs(M, M)
⋂

C1. Ds can be shown (see [4]) to be a topological group with the

group operation being function composition on the right, and this operation is C∞.

With e defined as the identity diffeomorphism, we have that X ∈ TeD
s is equivalent

to the condition that X(m) ∈ TmM for all m ∈ M , which means TeD
s the space of all

Hs vector fields on M . Since right multiplication (function composition on the right) is

smooth, right invariant vector fields exist, and a right Lie Bracket can be defined at e by

viewing elements X ∈ TeD
s as vector fields on M .

This procedure can be extended to manifolds M that are not compact and do have

a boundary, and it can also be shown that Ds has many of the natural properties one

would expect of a Lie Group, in particular that vector fields on Ds have flows that are

one-parameter subgroups of Ds. These details can be found in [4].
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2.4. Geometric Derivation of the Lagrangian Averaged Euler Equations

In this section we construct a functional on paths through a particular subgroup of

the topological group Ds constructed in the previous section. This product will be similar

to (2.2.28), and our ultimate goal will be to derive an equation for the critical points of

this functional. We call this equation the Lagrangian Averaged Euler equation.

As in the previous section, we will assume M is a compact Reimannian manifold with-

out boundary with the metric denoted by g(·, ·). Ds is the topological group described

in the previous section. We follow the arguments used in [14] to address this issue in a

more general setting. We let Ds
µ (where µ is a volume element on M) denote the space

of volume preserving diffeomorphisms of M , and observe that this is a closed subgroup

of Ds. The volume preserving assumption gives that TeD
s
µ is the space of divergence free

vector fields on M , where e is the identity map.

We begin with some notation. For any X ∈ TeD
s
µ, we define X̃ to be the 1-form

dual to X. Next, we define the operator S̃ by S̃(ω) = (d + δ)ω, where ω is a differential

form, d is the exterior derivative, and δ is the L2 adjoint of d. Then we define S by

S(X) = S̃(X̃) where X is a vector field.

With our notation established, we let X, Y ∈ TeD
s
µ and define a bilinear form on the

fiber TeD
s
µ by

(2.4.1)

< X, Y >e =

∫

M

g(X(x), Y (x)) + g(S(X)(x), S(Y )(x))dµ

=

∫

M

g(X(x), Y (x)) + α2g((S∗S)(X)(x), Y (x))dµ.

We note that S∗ = S (where ∗ denotes the formal L2 adjoint) and we set S∗S = −4

where 4 denotes the Hodge Laplacian viewed as an operator on vector fields instead of
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on forms (see Chapter 2, section 10, of [16]). We re-write (2.4.1) as

(2.4.2) < X, Y >e=

∫

M

g((1− α24)X(x), Y (x))dµ.

Having defined the form on the fiber TeD
s
µ, we define the form on the fiber TϕDs

µ by

(2.4.3) < X, Y >ϕ=< X ◦ ϕ−1, Y ◦ ϕ−1 >e

for any φ ∈ Ds
µ. Since (1− α24) is a self-adjoint positive operator on divergence free L2

vector fields, this construction defines a right-invariant metric on Ds
µ.

Now that we have constructed a right-invariant metric, our goal is to find geodesics

for this metric. For any smooth curve v : [a, b] → Ds
µ, we define a curve u : [a, b] → TeD

s
µ

as follows. For each t,

(2.4.4)
d

dt
v(t) = v̇t : M → TM

where v̇t(x) ∈ Tvt(x)M and vt = v(t) ∈ Ds
µ. We then define u(t) = ut by

(2.4.5) ut(x) = v̇t(v
−1
t (x))

where v−1
t denotes the inverse of the diffeomorphism vt. We recall that, for each t, ut is

a vector field on M .

With this construction, the Euler-Poincare Reduction Theorem (Theorem 2.5.1) gives

that v is a geodesic of (2.4.3) if u is an extreme point of the reduced action functional L

defined by

(2.4.6) L(u) =
1

2

∫ b

a

< u(t), u(t) >e dt.

To derive a formula for the extreme points of the functional L, we begin by choosing

a fixed end-point (f.e.p.) variation f of v. We recall that an f.e.p. variation is a smooth
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map f : (−ε, ε)× [a, b] → M with the property that f(s, t) = vs(t) ∈ Ds
µ for each s and

f(0, t) = v(t). The fixed end point condition means f(s, a) = v(a) and f(s, b) = v(b) for

each s, which in turn implies

(2.4.7)
d

ds
f(s, a) =

d

ds
f(s, b) = 0

for any s. We define d
ds

f(s, t)|s=0 = δv(t) ∈ Tv(t)D
s
µ and (2.4.7) gives δv(a) = δv(b) = 0.

Then we define a variation h of u by h(s, t) = us(t) ∈ TeD
s
µ where h(0, t) = u(t).

From Proposition 5.1 and Theorem 5.2 of [7], we have

(2.4.8) δu(t) =
d

ds
h(s, t)|s=0 = ∂t(δv ◦ v−1)(t) + [u, δv ◦ v−1]e(t).

Using this framework, the reduced action functional becomes

(2.4.9) L(u(s)) =
1

2

∫ b

a

< us(t), us(t) >e dt

and we have

(2.4.10)

d

ds
L(u(s))

∣∣∣∣
s=0

=

∫ b

a

< δu(t), u(t) >e dt

=

∫ b

a

∫

M

g((1− α24)u(t, x), δu(t, x))dµdt

=

∫ b

a

∫

M

g((1− α24)u(t, x), ∂t(δv ◦ v−1)(t, x))dµdt

+

∫ b

a

∫

M

g((1− α24)u(t, x), [u, δv ◦ v−1]e(t, x))dµdt.

To deal with the first term, we use integration by parts and the properties of fixed

end point variations to get

(2.4.11)

∫ b

a

∫

M

g((1− α24)u(t, x), ∂t(δv ◦ v−1)(t, x))dµdt

=

∫ b

a

∫

M

−g(∂t(1− α24)u(t, x), (δv ◦ v−1)(t, x))dµdt.
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For the second term in (2.4.10), we use Proposition 2.6.2 and the fact that Def (X) =

1
2
∇X + (∇X)t to get

(2.4.12)

g(Bu,Luδv ◦ v−1) = g(L∗uBu, δv ◦ v−1)

= −g(LuBu + (∇u + (∇u)t + (div u)I)Bu, δv ◦ v−1)

= −g(∇uBu−∇Buu +∇Buu + (∇u)tBu, δv ◦ v−1)

where we set B = (1−α24) and we used the assumption that div u = 0. Using (2.4.11)

and (2.4.12) in (2.4.10), we get

(2.4.13)
d

ds
L(u(s))

∣∣∣∣
s=0

= −
∫ b

a

< ∂tBu +∇uBu + (∇u)tBu, δv ◦ v−1 >e dt.

This gives that u is an extreme point of the functional only if

(2.4.14) ∂tu + PαB−1[∇uBu + (∇u)tBu] = 0

which implies

(2.4.15) ∂tu + B−1[∇uBu + (∇u)tBu] = −B−1grad p

where we have used Proposition 2 of [14] in an analogous fashion to the use of the Hodge

decomposition for the classical Euler equations (see 17.1 of [16]). This is our first form

of the Lagrangian Averaged Euler equations.

In [14], this process is applied to more general M (including considering boundary

data) and several additional geometric and analytical results, including existence of the

critical points, are obtained.

Specializing to the case where M is a region in Rn, we see that the averaged action

operator S̄ (see (2.2.17)) coincides with our reduced Lagrangian L. We conclude this

section describing the form the Lagrangian Averaged Euler equations take in this context.
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Since (∇u)tu = grad(1
2
|u|2), (2.4.15) becomes

(2.4.16) ∂tu + B−1[∇uBu + grad(
1

2
|u|2)− α2(∇u)t(4u)] = −B−1grad p.

Combining the two terms involving the gradient and relabeling the pressure accordingly,

we have

(2.4.17) ∂tu + B−1[∇uBu− α2(∇u)t(4u)] = −B−1grad p,

where βα is defined by (2.6.10).

Next, we use Proposition 2.6.3 and get

(2.4.18) ∂tu + B−1[B(∇uu) + div (βα(u)) + α2grad g] = −B−1grad p.

Relabeling the pressure to include the new gradient term, this simplifies to

(2.4.19) ∂tu +∇uu + (1− α2)−1div (βα(u)) = −(1− α24)−1grad p.

Our last observation is that div ((∇u)t · (∇u)t) is (up to a constant) equal to the

gradient of the scalar function Trace((∇u)t · (∇u)t), so (2.4.19) becomes

(2.4.20) ∂tu +∇uu + div (τα(u)) = −(1− α24)−1grad p

where the pressure term has again been modified and τα is defined in Section 1.1 (ab-

sorbing the constant into α). To get the Lagrangian Averaged Navier Stokes equations

in the form of (1.1.2), we simply add the viscosity term.
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2.5. Euler-Poincare Reduction Theorem

Theorem 2.5.1. Let G be a topological group which admits smooth manifold structure

with smooth right translation and let L : TG → R be a right invariant Lagrangian. Let

g = TeG and let l : g → R be the restriction of L to g. For a curve η(t) through G,

define a curve u(t) through g by u(t) = η̇(t)◦ (η(t))−1. Then the following are equivalent:

(1) the curve η(t) satisfies the Euler-Lagrange equations on G.

(2) the curve η(t) is an extreme point of the action functional

(2.5.1) S(η) =

∫
L(η(t), η̇(t))dt

for fixed end point variations.

(3) the curve u(t) satisfies the Euler-Poincare equations

(2.5.2)
d

dt

∂l

∂u
= −ad∗u

∂l

∂u

where the coadjoint action ad∗u is defined by

(2.5.3) < ad∗uv, w >=< v, [u,w] >

where u, v and w are in g, where < ·, · > is the metric on g and the bracket is

a right lie bracket.

(4) the curve u(t) is an extremum of the reduced action functional

(2.5.4) s(u) =

∫
l(u(t))dt

for variations of the form

(2.5.5)
∂

∂ε
u(ε, t) =

d

dt
(
∂η

∂ε
◦ η−1) + [

∂η

∂ε
, u].
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2.6. Differential Geometry Computations

We begin this section with the computation of the L2 adjoint of the Levi-Civita

connection.

Proposition 2.6.1. Let X, Y be vector fields on a Riemannian manifold M with

Levi-Civita connection ∇. Then

(2.6.1) (∇X)∗Y = −∇XY − (div X)Y

where (∇X)∗ denotes the L2 adjoint of ∇X as an operator on vector fields.

To prove this, we begin with a compactly supported vector field Z, and we have

(2.6.2)

∫
g((∇X)∗Y, Z)dV =

∫
g(Y,∇XZ)dV

=

∫
Xg(Y, Z)− g(∇XY, Z)

where the last equality is the zero-torsion condition of the metric. We observe that

(2.6.3)

∫
Xg(Y, Z)dV =

∫
X(gjkY

jZk)dV = −
∫

div X(gjkY
jZk)dV

where the last equality is an application of integration by parts. Using (2.6.3) in (2.6.2),

we get

(2.6.4)

∫
g(Y,∇XZ) + g(∇XY, Z)dV = −

∫
g((div X)Y, Z)dV

which proves the Proposition.

Our next calculation is of the adjoint of the Lie Derivative on vector fields.

Proposition 2.6.2. Let X, Y be vector fields on a Riemannian manifold M . Then

(2.6.5) L∗XY = −LXY − (TX)Y
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where L∗X denotes the L2 adjoint of LX , T is the operator defined by TX = (div X)Y −

2Def (X)Y and Def (X) is a tensor of type (1, 1) given by

(2.6.6)
1

2
(LXg)(Y, Z) = g(Def (X)Y, Z).

To prove this, we will need the fact that

(2.6.7) LXg(Y, Z) = g(∇Y X, Z) + g(Y,∇ZX).

This is equation (3.31) in Chapter 2 of [16]. Using (2.6.4) and (2.6.7), we have that

(2.6.8)

∫
g(T (X)Y, Z)dV =

∫
g(−(div X)Y, Z)− g(2Def (X)Y, Z)dV

=

∫
g(Y,∇XZ) + g(∇XY, Z)− g(∇Y X, Z)− g(Y,∇ZX)dV

=

∫
g(Y,∇XZ −∇ZX) + g(Z,∇XY −∇Y X)dV

=

∫
g(Y, [X, Z]) + g([X, Y ], Z)dV =

∫
g(Y,LXZ) + g(LXY, Z)dV

which proves the proposition.

Our next set of results apply to the special case M = Rn.

Proposition 2.6.3. Let B = (1 − α24) for some α > 0 and let u : Rn → Rn such

that div u = 0. Then

(2.6.9) ∇uBu− α2(∇u)t(4u) = B(∇uu) + div (βα(u)) + α2grad f

for some function f to be specified and for

(2.6.10) βα(u) = α2(∇u∇u +∇u(∇u)t − (∇u)t∇u).
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To prove this, we begin with the observation that

(2.6.11)

B(∇uu) = ∇uu− α2(∇4uu +∇u(4u) + 2
∑

k

∇∂ku∂ku)

= ∇uBu− α2(∇4uu + 2
∑

k

∇∂ku∂ku).

In indices, the last term is

(2.6.12) −α2(
∑

j,k

ui
ju

j
kk + 2(uj

ku
i
jk))

where lower indices denote partial derivatives and upper indices denote coordinate func-

tions.

We next write div (βα(u)) in indices and get

(2.6.13) α2
∑

j,k

ui
jku

j
k + ui

ku
j
jk − uk

iju
k
j − uk

i u
k
jj + ui

jku
j
k + ui

ju
j
kk.

Since div u = 0, we have

(2.6.14) ∂kdiv u = ∂k

∑
j

uj
j =

∑
j

uj
jk = 0

which means

(2.6.15)
∑

k

ui
k

∑
j

uj
jk = 0

for any i, so (2.6.13) becomes

(2.6.16) α2
∑

j,k

2ui
jku

j
k − uk

iju
k
j − uk

i u
k
jj + ui

ju
j
kk.

Next, we define f = 1
2

∑
j |∂ju|2 and we have that the ith coordinate of grad f is

(2.6.17) ∂i(
1

2

∑
j

|∂ju|2) = ∂i(
1

2

∑
j

∑

k

(uk
j )

2) =
∑

j,k

uk
iju

k
j .
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Noting that the ith coordinate of (∇u)t(4u) is given by
∑

j,k uk
i u

k
jj, we have

(2.6.18) div (βα(u)) = α2[−grad f − (∇u)t(4u) + v]

where v is the vector with ith component

(2.6.19)
∑

j,k

2ui
jku

j
k + ui

ju
j
kk.

Adding (2.6.11) and (2.6.18) gives

(2.6.20) B(∇uu) + div (βα(u)) = ∇uBu− α2grad f − α2(∇u)t(4u)

which proves the Proposition.
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CHAPTER 3

Sobolev Space solutions to LANS



3.1. Sobolev space solutions to LANS

In this section we assume the initial data ϕ is in a Sobolev space Hr,p(Rn) and obtain

solutions in two different spaces of functions. In Section 3.2 we define the first of these

spaces and state our first theorem, a local existence result. In (3.3) we obtain several

necessary supporting results, and in (3.4) we prove the theorem. In (3.6) we extend the

local solution to a global solution in the special case of initial data in Hn/2,2(Rn) where

n ≥ 3. In (3.7) we define a new functions space and state our second theorem, which is

proven in (3.8) and (3.9).

3.2. Solutions in the class of weighted continuous functions in time

We begin with a brief reminder of the definition of Sobolev spaces. For a positive

integer k, the Sobolev space Hk,p is defined by

(3.2.1) Hk,p = {f ∈ Lp : Dαf ∈ Lp for all |α| ≤ k}.

For integers k < 0, the space Hk,p is defined as the dual to the space H−k,p′ , where p′

is the Holder conjugate exponent to p. For any non-integer s, the Sobolev space Hs,p is

defined via interpolation. See Chapter sf of [16] for a more thorough definition of Sobolev

spaces.

Now we define a more unusual space. Fixing 0 < T ≤ ∞, for any k ≥ 0, we define

the space

(3.2.2) CT
k;s,q = {f ∈ C((0, T ) : Hs,q) : ‖f‖k;s,q < ∞}

where

(3.2.3) ‖f‖k;s,q = sup{tk‖f(t)‖s,q : t ∈ (0, T )}.
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ĊT
k;s,q denotes the subspace of CT

k;s,q consisting of f such that

(3.2.4) lim
t→0+

tkf(t) = 0 (in Hs,q).

If k = 0, we write C
T

s,q for BC([0, T ) : Hs,q), the space of bounded, continuous

functions from [0, T ) to Hs,q.

We will typically write CT
k;s,q and C

T

s,q as Ck;s,q and Cs,q, respectively, suppressing the

T dependance.

We now state our first theorem in its full generality.

Theorem 3.2.1. For any ϕ = Pαϕ ∈ Hr,p there is a T = T (ϕ) > 0 and a unique

solution to (1.1.2) such that

(3.2.5) u ∈ Cr,p ∩ Ċa;k,c

provided there exist a real number b′ such that the list of conditions (3.4.18) is satisfied

(where r = n/p + b). If ‖ϕ‖r,p is sufficiently small, T = ∞.

This is similar to Theorem 2.1 in [6].

Before proving the theorem, we do some preliminary work. We begin by using

Duhamel’s principle to write (1.1.4) into the integral equation

(3.2.6) u = Γϕ−G · Pα(div · (u⊗ u + τα(u)))

with

(3.2.7) (Γϕ)(t) = etAϕ,
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where A agrees with 4 when restricted to PαHs,p, and

(3.2.8) G · g(t) =

∫ t

0

e(t−s)A · g(s)ds.

Our plan is to construct a contraction mapping based on (3.2.6), but first we prove

some results regarding Γ, G, and the Reynolds stress term τα.

3.3. Basic Results

We begin this section by examining the Reynolds stress term.

Lemma 3.3.1. Given any r ∈ [1,∞), 1 < q, p < ∞, and q = np
2n−s′p where 0 ≤ s′ ≤

r − 1 and s′p < n, we have div τα : Hr,p → Hr,q. Specifically, we have the estimate

(3.3.1) ‖div τα(u)‖r,q ≤ C‖u‖2
r,p

We begin by recalling that a differential operator P of order m satisfies

(3.3.2) P : Hs,p → Hs−m,p,

which means for any u ∈ Hr,p,

(3.3.3) ‖α2(1− α24)−1u‖r+2,p ≤ C‖u‖r,p

and

(3.3.4) ‖∇u‖r−1,p ≤ C‖u‖r,p.

So we have

(3.3.5)

‖τα(u)‖r+1,q = ‖α2(1− α24)−1[Def(u) ·Rot(u)]‖r+1,q

≤ C‖[Def(u) ·Rot(u)]‖r−1,q.
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Recalling the definitions of Def(u) and Rot(u), we have that

(3.3.6) Def(u) ·Rot(u) = (∇u∇u +∇u∇uT +∇uT∇u +∇uT∇uT )/4.

Observing that ‖∇u‖k,q = ‖∇uT‖k,q for any k, q and applying Proposition 3.10.8, we get

(3.3.7)

‖∇u∇u‖r−1,q ≤ C‖∇u‖2
r−1,p

‖∇u∇uT‖r−1,q ≤ C‖∇u‖2
r−1,p

‖∇uT∇u‖r−1,q ≤ C‖∇u‖2
r−1,p

‖∇uT∇uT‖r−1,q ≤ C‖∇u‖2
r−1,p

provided that r ≥ 1.

Using (3.3.5) and (3.3.7) we have

(3.3.8)

‖τα(u)‖r+1,q ≤ C‖[Def(u) ·Rot(u)]‖r−1,q

≤ C‖∇u‖2
r−1,p

≤ C‖u‖2
r,p.

Since the divergence is a degree one differential operator, we get from (3.3.8) that

(3.3.9) ‖div τα(u)‖r,q ≤ ‖τα(u)‖r+1,q ≤ C‖u‖2
r,p

which proves the lemma.

This immediately gives

(3.3.10) t2a‖div τα(u)‖r,q ≤ C(ta‖u‖r,p)
2

which proves the following corollary.
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Corollary 3.3.2. div τα : Ċa;r,p → Ċ2a;r,q, with the estimate ‖div τα(u)‖2a;r,q ≤

C‖u‖2
a;r,p.

Our next task is establish some properties of the operator V α defined by

(3.3.11) V α(u, v) = div u⊗ v + div τα(u, v)

where τα(u, v) = α2(1 − α24)−1(Def(u)) · (Rot(v)). Abusing notation, we will write

V α(u, u) = V α(u). We also observe that V α is linear in each of its arguments. Using

that the divergence is a degree one differential operator, we have

(3.3.12) ‖div (u⊗ v)‖b−1,q ≤ C‖u⊗ v‖b,q ≤ C‖u‖b,p‖v‖b,p

provided b ≥ 1, 1 < q, p < ∞, and q = np
2n−s′p where 0 ≤ s′ ≤ b and s′p < n. Slightly

modifying Lemma 3.10.5 and Corollary 3.3.2, we have

(3.3.13) ‖div τα(u, v)‖b−1,q ≤ C‖div τα(u, v)‖b,q ≤ C‖u‖b,p‖v‖b,p

provided b ≥ 1, 1 < q, p < ∞, and q = np
2n−s′p where 0 ≤ s′ ≤ b− 1 and s′p < m.

Replacing u in the above calculation with tau, we get the following proposition.

Proposition 3.3.3. Let a ≥ 0, b ≥ 1, 1 < q, p < ∞, and q = np
2n−s′p where 0 ≤ s′ ≤

b− 1 and s′p < n. Then

(3.3.14) V α : Ċa;b,p × Ċa;b,p → Ċ2a;b−1,q

with the estimate

(3.3.15) ‖V α(u, v)‖2a;b−1,q ≤ ‖u‖a;b,p‖v‖a;b,p.
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Next, we observe that

(3.3.16) V α(u)− V α(v) = −(V α(u, u− v) + V α(u− v, v)).

Using Proposition 3.3.3, we have

(3.3.17) ‖V α(u, u− v)‖b−1,q ≤ ‖u‖b,p‖u− v‖b,p

and

(3.3.18) ‖V α(u− v, v)‖b−1,q ≤ ‖v‖b,p‖u− v‖b,p.

These estimates give that

(3.3.19) ‖V α(u(s))− V α(v(s))‖b−1,q ≤ C (‖u(s)‖b,p + ‖v(s)‖b,p) ‖u(s)− v(s)‖b,p.

Multiplying both sides by ta and distributing through the right hand side, we get

(3.3.20) ‖V α(u)− V α(v)‖a;b−1,q ≤ C(‖u‖a/2;b,p + ‖v‖a/2;b,p)‖u− v‖a/2;b,p.

The above calculation proves the following corollary to Proposition 3.3.3.

Corollary 3.3.4. With the same assumptions on the parameters as in Proposition

3.3.3, we have that if u, v ∈ Ċa/2;b,q then

(3.3.21) ‖V α(u(s))− V α(v(s))‖a;b−1,q ≤ C(‖u‖a/2;b,p + ‖v‖a/2;b,p)‖u− v‖a/2;b,p.

Our next topic is the operator Γ.

Proposition 3.3.5. Let s′ ≤ s′′, 1 < q′ ≤ q′′ < ∞, and define k′′ = (n/q′ − n/q′′ +

s′′ − s′)/2. Then Γ : Hs′,q′ → Ċk′′;s′′,q′′, provided k′′ > 0.
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This is an immediate consequence of Lemma 3.11.3.

We now turn our attention to the operator G. Assuming s′ ≤ s′′, q′ ≤ q′′, and

u ∈ Ċk′;s′,q′ , we formally calculate

(3.3.22)

‖G · u‖s′′,q′′ = ‖
∫ t

0

e(t−s)Au(s)ds‖s′′,q′′

≤ C

∫ t

0

‖e(t−s)Au(s)‖s′′,q′′ds

≤ C

∫ t

0

(t− s)−(s′′−s′+m/q′−m/q′′)/2‖u(s)‖s′,q′ds

≤ C

∫ t

0

(t− s)zs−k′sk′‖u(s)‖s′,q′ds

≤ Ctz−k′+1‖u‖k′;s′,q′

where z = −(s′′ − s′ + n/q′ − n/q′′)/2, the third line uses Lemma 3.11.2, the fourth

that u ∈ Ċk′;s′,q′ ,and the last line uses Proposition 3.10.1. This result will hold provided

0 ≤ (s′′ − s′ + n/q′ − n/q′′)/2 < 1 and k′ < 1, and this leads to our first result involving

G.

Proposition 3.3.6. With s′ ≤ s′′, q′ ≤ q′′ and setting k′′ = k′− 1 + (s′′− s′ + n/q′−

n/q′′)/2, G continuously maps ĊT
k′;s′,q′ into ĊT

k′′;s′′,q′′ with 0 ≤ (s′′−s′+m/q′−m/q′′)/2 < 1

and k′ < 1 with the estimate

(3.3.23) ‖G · u‖k′′;s′′,q′′ ≤ C‖u‖k′;s′,q′ .

3.4. Proof of Theorem 3.2.1

To prove Theorem 3.2.1, we begin by constructing the nonlinear map

(3.4.1) Φu = Γϕ−G · Pα(div (u⊗ u) + div ταu).
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Our goal is to show that this map is a contraction on an appropriate function space.

Using (3.3.11), Φ can be re-written as

(3.4.2) Φu = Γϕ−G · Pα(V α(u)).

Beginning with initial data ϕ ∈ Hr,p(Rn) where r = n
p

+ b, we construct the space

(3.4.3) ET,M = {v ∈ C̄r,p ∩ Ċa;k,c : ‖v − Γϕ‖0;r,p + ‖v‖a;k,c ≤ M},

recalling that the definition of C̄r,p and Ċa;k,c requires a choice of T . Our goal will be to

show that Φ is a contraction on this space for appropriate choices of parameters.

To show Φ is a contraction, will will use the mapping properties of G to send each

component space of ET,M into an intermediate space, and then use Proposition 3.3.3.

Our intermediate space will be of the form Ċ2a;k−b′,c̄.

Our first task is to show that Φ maps ET,M into ET,M . To do this, we need to estimate

(3.4.4) ‖Φ(u)− Γϕ‖0;r,p = ‖G · PαV α(u)‖0;r,p

and

(3.4.5) ‖Φ(u)‖a;k,c = ‖Γϕ−G · PαV α(u)‖a;k,c.

To estimate (3.4.4), we note that by Proposition 3.3.6 and that Pα is a projection,

we have that

(3.4.6) ‖GV αu‖0;n
p
+b,p ≤ C‖V αu‖2a;k−b′,c̄
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will hold provided

(3.4.7)

0 = 2a− 1 +

(
n

p
+ b− (k − b′) +

n

c̄
− n

p

)
/2

2a < 1

0 ≤ (n/p + b− (k − b′) + n/c̄− n/p)/2 < 1

k − b′ ≤ n/p + b

c̄ ≤ p.

Proposition 3.3.3 gives

(3.4.8) ‖V αu‖2a;k−b′,c̄ ≤ C‖u‖2
a;k,c

provided

(3.4.9)

k, b′ ≥ 1,

c > 1,

c̄ =
nc

2n− s′c

0 ≤ s′ ≤ k − 1

s′c < m.

These combine to give our estimate on (3.4.4). To estimate ‖G · PαV α(u)‖a;k,c, we

have

(3.4.10) ‖GV αu‖a;k,c ≤ C‖V αu‖2a;k−b′,c̄ ≤ C‖u‖2
a;k,c
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will hold provided

(3.4.11)

a = 2a− 1 +
(
k − (k − b′) +

n

c̄
− n

c

)
/2

2a < 1

c̄ ≤ c

0 ≤ (k − (k − b′) + n/c̄− n/c)/2 < 1.

Using (3.4.6) and (3.4.10), we have

(3.4.12) ‖Φ(u)− Γϕ‖0;r,p + ‖Φ(u)‖a;k,c ≤ C‖u‖2
a;k,c + ‖Γϕ‖a;k,c.

By assumption, u ∈ ET,M , so ‖u‖2
a;k,c ≤ M2. So our last task is to estimate ‖Γϕ‖a;k,c.

From Proposition 3.3.5, we have that

(3.4.13) Γ : Ċ0;n
p
+b,p → Ċa;k,c

if a > 0, k ≥ n
p

+ b, c ≤ p, and

(3.4.14) a =

(
n

p
− n

c
+ k −

(
n

p
+ b

))
/2

which simplifies to

(3.4.15) 2a = k − n

c
− b.

Because Γϕ ∈ Ċa;k,c, there exists a T , depending only on M and the norm of the initial

data ϕ, such that ‖Γϕ‖a;k,c ≤ M/2. So by choosing a sufficiently small M and an

appropriate T , we have that Φ : ET,M → ET,M .
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Now we seek to show that Φ is a contraction map. Let u, v ∈ ET,M . Then by Corollary

3.3.4 we have

(3.4.16)

‖Φu(t)− Φv(t)‖r,p = ‖G(PαV αu− PαV α(v))‖r,p

≤ C‖V αu− V α(v)‖2a;k−b′,c̄

≤ C(‖u‖a;k,c + ‖v‖a;k,c)‖u− v‖a;k,c

≤ CM‖u− v‖a;k,c,

and similarly we have

(3.4.17)

‖Φu(t)− Φv(t)‖a;k,c = ‖G(V αu− V α(v))‖a;k,c

≤ C‖V αu− V α(v)‖2a;k−b′,c̄

≤ C(‖u‖a;k,c + ‖v‖a;k,c)‖u− v‖a;k,c

≤ CM‖u− v‖a;k,c.

So for a sufficiently small choice of M , we can choose a T such that Φ sends ET,M into

itself and is a contraction on ET,M . So by the contraction mapping principle, we have a

unique fixed point u ∈ ET,M provided our parameters satisfy all the requisite inequalities.

Combining and simplifying these inequalities, and allowing s′ = k − 2 − b + b′ to define
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s′, we get the following list of restrictions on the parameters:

(3.4.18)

1 < p ≤ c < ∞

s′ := k − 2− b + b′

k ≥ 1, b′ ≥ 1, s′c < n

0 < 2a = k − n/c− b < 1

0 ≤ s′ ≤ k − 1

1 <
nc

2n− s′c
≤ p

1 ≥ b′ − b

1 ≤ b′ +
n

c
− s′ < 2

2− 2b′ + s′ ≤ n

p
≤ 2− b′ + s′.

This is not optimal, because of the presence of the ”extra” parameter b′. However,

this version does make it easy to ascertain certain bounds on the original parameters.

For example, the second and seventh conditions require that b ≥ 0, which provides a

lower bound of n/p on the regularity of our initial data.

To eliminate the extra parameters b′, we remark that the conditions force 1 ≤ b′ < 2,

and our optimal case (b = 0) requires b′ = 1. So setting b′ = 1, we let k = 1 + b + s′
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define s′, and our list of conditions becomes

(3.4.19)

1 < p ≤ c < ∞

b ≥ 0

s′ := k − 1− b

k ≥ 1, s′c < n

0 < 2a = k − n/c− b < 1

1 <
nc

2n− s′c
≤ p

0 ≤ n

c
− s′ < 1

s′ ≤ n

p
≤ 1 + s′.

To get Theorem 1.1.2, we choose p > n, b = 0, k = 1, c = p and a = 1− n/p. To get

Theorem 1.1.3, we choose p = c = k = 2, n = 3, b = 0, and a = 1/4.

To get global existence for small initial data, we observe that the above calculations

for G · V α only required an assumption that M be small. We also note that

(3.4.20)

‖Γ(t)ϕ‖r,p ≤ ‖ϕ‖r,p

‖Γ(t)ϕ‖a;k,c ≤ ‖ϕ‖r,p

holds for any t ≥ 0. So provided ‖ϕ‖r,p is sufficiently small, Φ is a contraction on ET,M

for any T > 0, which gives global existence of the solution.

Continuous dependance on the initial data is also relatively straightforward. Given

data u0 and v0 with corresponding solutions u(t) and v(t), we have

(3.4.21) u(t)− v(t) = Γ(u0 − v0)−
∫ t

0

e(t−s)4 (V α(u(s))− V α(v(s))) ds,
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which implies

(3.4.22)

‖u− v‖0;r,p + ‖u− v‖a;k,c ≤ ‖u0 − v0‖r,p + ‖Γ(u0 − v0)‖a;k,c

+‖C(‖u‖a;k,c + ‖v‖a;k,c)‖u− v‖a;k,c.

Since ‖Γ(u0−v0)‖a;k,c +‖C(‖u‖a;k,c +‖v‖a;k,c) can be made arbitrarily small, we get that

‖u− v‖0;r,p + ‖u− v‖a;k,c is arbitrarily small provided ‖u0 − v0‖r,q is sufficiently small.

We remark that the preceding argument is easily modified to fit different functional

settings. All that is necessary is establishing supporting results similar to those of the

previous section.

3.5. Special cases of Theorem 3.2.1

We begin by remarking that with n ≥ p, choosing k = r + 1/4, c = p, a = 1/8,

b′ = 1 and s′ = n/p − 3/4 satisfies (3.4.18). Using these choices for the parameters, let

ϕ ∈ Hr,p(Rn) be our chosen initial data and let

(3.5.1) u ∈ BC([0, T ) : Hr,p) ∩ Ċ1/8;r+1/4,p

be the solution to (1.1.2) given by Theorem 3.2.1. Then, for any 0 < t′ < T , define

ϕ′ = u(t′). Viewing ϕ′ as “new” initial data, applying Theorem 3.2.1 gives the existence

of a solution v to (1.1.2) such that

(3.5.2) v ∈ BC([0, T ) : Hr+1/4,p) ∩ Ċ1/8;r+1/2,p

where v(0) = ϕ′ = u(t′). Because

(3.5.3) BC([0, T ) : Hr+1/4,p) ∩ Ċ1/8;r+1/2,p ⊂ BC([0, T ) : Hr,p) ∩ Ċ1/8;r+1/4,p,
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uniqueness of our solution gives that u and v are the same solution. Each iteration of this

process results in a “gain” of one-quarter of a derivative, and thus for any 0 < t′ < T ,

u(t′) ∈ Hs,p for any s ∈ R. We record this as a corollary of Theorem 3.2.1, but first we

remark that for n < p, choosing k = b + 1, c = p, a = (1− n/p)/2, b′ = 1 and s′ = 0 also

satisfies (3.4.18), so we have the same result for the n < p case.

Corollary 3.5.1. Let ϕ ∈ Hr,p(Rn), with n ≥ p. If n ≥ p, let

(3.5.4) u ∈ BC([0, T ) : Hr,p) ∩ Ċ1/8;r+1/4,p

be the solution to (1.1.2) given by Theorem 3.2.1. Then for any 0 < t < T , u(t) ∈

Hs,p(Rn) for any real s. If n < p, let

(3.5.5) v ∈ BC([0, T ) : Hr,p) ∩ Ċ(1−n/p)/2;b+1,p

be the solution to (1.1.2) given by Theorem 3.2.1. Then for any 0 < t < T , v(t) ∈

Hs,p(Rn) for any real s.

We conclude by remarking that Theorem 1.1.2 and Theorem 1.1.3 are special cases

of this corollary.

3.6. Global Existence in Sobolev space

In this section we extend the result from Theorem 1.1.3 to a global existence result.

We recall that Theorem 1.1.3 says that, given ϕ ∈ H3/2,2(R3), there exists a T and a

unique solution u to (1.1.2) such that

(3.6.1) u ∈ C̄3/2,2 ∩ Ċ1/4;2,2,
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where T depends only on ‖ϕ‖H3/2,2(R3) and we again recall that the definition of C implies

a choice of T . Extending this to a global existence result follows from the following result.

Theorem 3.6.1. Let φ ∈ H3/2,2(R3) and let

(3.6.2) u ∈ C̄3/2,2 ∩ Ċ1/4;2,2

be the unique solution to (1.1.2) with initial data ϕ on the time strip [0, T ). Then there

exists a real number M such that

(3.6.3) ‖u(t)‖H2,2(R3) ≤ M

for any t ∈ (0, T ).

We mimic the approach used in part (d) of Section 5 of [8]. We begin the proof by

recalling (1.1.2):

(3.6.4) ∂tu + (u · ∇)u + div ταu = −(1− α24)−1∇p + ν4

and stating an equivalent form (see Section 3 of [8])

(3.6.5)

∂t(1− α24)u +∇u[(1− α24)u]− α2(∇u)T · 4u

=− (1− α24)Au−∇p.

To start, we take the L2 product of (3.6.5) with u. We get

(3.6.6) I1 + I2 + I3 = J1 + J2
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where

(3.6.7)

I1 = (∂t(1− α24)u, u)

I2 = (∇uu, u)

I3 = −α2
(
(∇u4u, u) + ((∇u)T · 4u, u)

)

J1 = −((1− α24)(Au), u)

J2 = (∇p, u).

We start with I1, which becomes

(3.6.8)

I1 = (∂tu, u)− α2(4∂tu, u)

=
1

2
∂t(‖u‖2

L2 + α2‖A1/2u‖2
L2),

where we used integration by parts and that A = −4. Next, we have that

(3.6.9)

I2 = (∇uu, u) =

∫
uiuj∂iuj

=
1

2

∫
ui∂i(|u|2) = −1

2

∫
|u|2div u = 0,

where we again used integration by parts and the summation convention. For I3, we

begin with

(3.6.10)

∇u4u · u + (∇u)T · 4u · u = uiuj∂i4uj + uj4ui∂jui

= uiuj∂j4ui + uj4ui∂jui

= uj(∂j(ui4ui)),

so I3 becomes

(3.6.11) I3 = −α2((∇u4u, u) + ((∇u)T · 4u, u)) = α2(div u, u · 4u) = 0
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where we again used integration by parts and the fact that div u = 0. For J2, we easily

see that

(3.6.12) (∇p, u) = −(p, div u) = 0,

and for J1 that

(3.6.13) J1 = −((1− α24)(Au), u) = −(A1/2u,A1/2u)− α2(Au,Au).

Putting all of this back into (3.6.5), we get

(3.6.14)
1

2
∂t(‖u(t)‖2

L2 + α2‖u(t)‖2
Ḣ1,2) ≤ −(‖A1/2u(t)‖2

L2 + α2‖Au(t)‖2
L2),

where Ḣ denotes the homogeneous Sobolev norm. This proves that ‖u(t)‖H1,2 is decreas-

ing in time.

For our next estimate, we will apply A to (1.1.2) and take the L2 product with Au

to get

(3.6.15) (∂tAu,Au) + (A2u,Au) + (APα(∇uu + div ταu,Au) = 0.

The first piece satisfies

(3.6.16) (∂tAu,Au) =
1

2
∂t‖Au‖2

L2

and the second satisfies

(3.6.17) (A2u,Au) = (A3/2u,A3/2) = ‖A3/2‖2
L2 .

To handle the last term of (3.6.15), we write it as

(3.6.18) (APα(∇uu), Au) + (APαdiv ταu,Au) = K1 + K2.
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To proceed, we will need two inequalities. The first is the well known Sobolev em-

bedding:

(3.6.19) ‖u‖L∞ ≤ C‖u‖Hk,2

provided 2k > 3. The second is called a Ladyzhenskaya inequality, and is (5.3) in [8]:

(3.6.20) ‖u‖Ḣi ≤ C‖u‖1−i/m

L2 ‖u‖i/m

Ḣm ,

where Ḣ is the homogeneous Sobolev space.

Starting with K1, we have

(3.6.21)

(APα(∇uu), Au) = (A1/2(∇u · u), A3/2u)

≤ C‖A3/2u‖L2(‖(A1/2∇u)u‖L2 + ‖(A1/2u)∇u‖L2)

≤ C‖u‖Ḣ3(‖u‖L∞‖A1/2∇u‖L2 + ‖A1/2u‖L∞‖∇u‖L2)

≤ C‖u‖Ḣ3

(‖u‖L∞‖u‖Ḣ2 + ‖A1/2u‖L∞‖u‖Ḣ1

)
.

By Sobolev embedding and Proposition 3.10.7, we have

(3.6.22)

‖u‖L∞ ≤ C‖u‖Hk1 ≤ C(‖u‖L2 + ‖u‖Ḣk1 ) ≤ C(‖u‖H1 + ‖u‖Ḣk1 )

‖A1/2u‖L∞ ≤ C‖u‖Hk2 ≤ C(‖∇u‖L2 + ‖u‖Ḣk2 ) ≤ C(‖u‖H1 + ‖u‖Ḣk2 )

where k1 = 3/2 + ε and k2 = 5/2 + δ for positive numbers ε and δ. So (3.6.21) becomes

(3.6.23)

(APα(∇uu), Au) ≤ C‖u‖Ḣ3‖u‖Ḣ2‖u‖H1 + C‖u‖Ḣ3‖u‖Ḣ2‖u‖Ḣk1

+ C‖u‖Ḣ3‖u‖H1‖u‖Ḣk2 + C‖u‖Ḣ3‖u‖2
H1 .
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By (3.6.20), we have

(3.6.24)

‖u‖Ḣ2 = ‖∇u‖Ḣ1 ≤ C‖∇u‖1/2

L2 ‖∇u‖1/2

Ḣ2 ≤ C‖u‖1/2

Ḣ1 ‖u‖1/2

Ḣ3

‖u‖Ḣk1 = ‖∇u‖Ḣk1−1 ≤ C‖u‖1−(k1−1)/2

Ḣ1 ‖u‖(k1−1)/2

Ḣ3

‖u‖Ḣk2 = ‖∇u‖Ḣk2−1 ≤ C‖u‖1−(k2−1)/2

Ḣ1 ‖u‖(k2−1)/2

Ḣ3 .

Applying (3.6.24) to (3.6.23), we have

(3.6.25)

(APα(∇uu), Au) ≤C‖u‖1+k1/2

Ḣ3 ‖u‖2−k1/2

Ḣ1 + C‖u‖(k2+1)/2

Ḣ3 ‖u‖(k2+3)/2

Ḣ1

+ C‖u‖3/2

Ḣ3 ‖u‖3/2

H1 + C‖u‖Ḣ3‖u‖2
H1 .

Choosing ε = δ = 1/4, we get

(3.6.26)

(APα(∇uu), Au) ≤C‖u‖15/8

Ḣ3 (‖u‖9/8

Ḣ1 + ‖u‖23/8

Ḣ1 )

+C‖u‖3/2

Ḣ3 ‖u‖3/2

H1 + C‖u‖Ḣ3‖u‖2
H1 ,

which finishes our K1 estimate. For K2, we have

(3.6.27) (A(div τα)(u), Au) ≤ ‖u‖Ḣ2‖A(div τα)(u)‖L2 .

To estimate the second term, we remark that it is sufficient to consider A(1 −

α24)−1div (∇u · ∇u), and we have

(3.6.28)

‖A(1− α24)−1div (∇u · ∇u)‖L2 ≤ ‖div (∇u · ∇u)‖L2

≤ C‖∇u‖L∞‖u‖Ḣ2 .

Plugging this back into (3.6.27) and using (3.6.22) and (3.6.24) gives

(3.6.29)

(A(div τα)(u), Au) ≤ C‖u‖2
Ḣ2‖∇u‖L∞

≤ C(‖u‖2
Ḣ2‖u‖H1 + ‖u‖2

Ḣ2‖u‖Ḣk2 )

≤ C(‖u‖Ḣ3‖u‖2
H1 + ‖u‖15/8

Ḣ3 ‖u‖23/8

H1 ).
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Combining (3.6.26) and (3.6.29) gives

(3.6.30)

(APα(∇uu + div ταu), Au) ≤C‖u‖15/8

Ḣ3 (‖u‖9/8

Ḣ1 + ‖u‖23/8

Ḣ1 )

+C‖u‖3/2

Ḣ3 ‖u‖3/2

H1 + C‖u‖Ḣ3‖u‖2
H1 .

Applying Young’s inequality (Proposition 3.10.3) for products with p = 16/15 and p′ =

16, we get

(3.6.31) ‖u‖15/8

Ḣ3 (‖u‖9/8

Ḣ1 + ‖u‖23/8

Ḣ1 ) ≤ Cε‖u‖2
Ḣ3 +

C

ε
(‖u‖18

H1 + ‖u‖46
H1).

Choosing ε = (4C)−1, (3.6.31) becomes

(3.6.32) ‖u‖15/8

Ḣ3 (‖u‖9/8

Ḣ1 + ‖u‖23/8

Ḣ1 ) ≤ 1

4
‖u‖2

Ḣ3 + C(‖u‖18
H1 + ‖u‖46

H1).

Similarly, Young’s inequality gives

(3.6.33) ‖u‖3/2

Ḣ3 ‖u‖3/2

H1 + C‖u‖Ḣ3‖u‖2
H1 ≤ 1

4
‖u‖2

Ḣ3 + C(‖u‖6
H1 + ‖u‖4

H1).

Using (3.6.32) and (3.6.33) in (3.6.30) gives

(3.6.34) (APα(∇uu + div ταu), Au) ≤ 1

2
‖u‖2

Ḣ3 + C(‖u‖18
H1 + ‖u‖46

H1 + ‖u‖6
H1 + ‖u‖4

H1).

Finally, using (3.6.16), (3.6.17) and (3.6.34) in (3.6.15) gives

(3.6.35)

1

2
∂t‖u(t)‖2

Ḣ2 ≤ −1

2
‖u(t)‖2

Ḣ3 + C(‖u(t)‖18
H1 + ‖u(t)‖46

H1 + ‖u‖6
H1 + ‖u‖4

H1)

≤ −1

2
‖u(t)‖2

Ḣ3 + C(‖ϕ‖18
H1 + ‖ϕ‖46

H1 + ‖ϕ‖6
H1 + ‖ϕ‖4

H1),

where the last line used (3.6.14). So, for any t such that

(3.6.36) ‖u(t)‖Ḣ3 ≥ C(‖ϕ‖18
H1 + ‖ϕ‖46

H1 + ‖ϕ‖6
H1 + ‖ϕ‖4

H1)1/2,
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we get that ‖u(t)‖Ḣ2 is decreasing as a function of time at t. So our last task is to show

that ‖u‖Ḣ2 is bounded provided

(3.6.37) ‖u(t)‖Ḣ3 < C(‖ϕ‖18
H1 + ‖ϕ‖46

H1 + ‖ϕ‖6
H1 + ‖ϕ‖4

H1)1/2.

To handle this case, we again use (3.6.20), and get

(3.6.38) ‖u(t)‖Ḣ2 ≤ C‖u(t)‖1/3

L2 ‖u(t)‖2/3

Ḣ3 ≤ C‖ϕ‖1/3

L2 (‖ϕ‖10
H1+‖ϕ‖2

H1+‖ϕ‖6
H1+‖ϕ‖4

H1)1/3.

Since the right hand side has no time dependence, we get that ‖u(t)‖Ḣ2 is bounded

independent of time. Combining this with (3.6.14), we finally get

(3.6.39) u ∈ L∞([0, T ], C̄3/2,2 ∩ Ċ1/4;2,2),

which proves the Theorem.

3.7. Solutions in the class of integral norms in time

We now seek to solve (1.1.2) in a different space. We fix T > 0 and let M((0, T ) : E)

be the set of measurable functions defined on (0, T ) with values in the space E. Then we

define

(3.7.1) Lσ((0, T ) : Hs,q) = {f ∈M((0, T ) : Hs,q) : (

∫ T

0

‖f(t)‖σ
s,qdt)1/σ < ∞}.

We now state our second theorem.

Theorem 3.7.1. For any ϕ = Pαϕ ∈ Hr,p there is a T = T (ϕ) > 0 and a unique

solution to (1.1.2) such that

(3.7.2) u ∈ BC([0, T ) : Hr,p) ∩ La((0, T ) : Hk,c)
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provided the parameters (with r = n/p + b) satisfy (3.9.4). If ‖ϕ‖r,p is sufficiently small,

then T = ∞. Lastly, we have that solutions depend continuously on the initial data.

This is similar to Theorem 3.1 in [6].

We will use the same basic strategy as we used in the previous argument, and we

begin with some supporting results.

3.8. Supporting Results

Our first result is Lemma 3.2 in [6] and involves the operator Γ.

Proposition 3.8.1. Let 1 < q0 ≤ q1 < ∞, s0 ≤ s1, and assume 0 < (s1−s0 +n/q0−

n/q1)/2 = 1/σ ≤ 1/q0. Then Γ maps Hs0,q0 continuously into Lσ((0,∞) : Hs1,q1), with

the estimate

(3.8.1)

(∫ ∞

0

‖Γu‖σ
Hs1,q1

)1/σ

≤ C‖u‖Hs0,q0 .

To begin the proof, we first observe that (s1− s0 + n/q0− n/q1)/2 = 1/σ < 1 implies

s1− s0 < 2. So without loss of generality, we assume s0 = 0 and s1 ∈ [0, 2). To finish the

proof, we need the following Lemma.

Lemma 3.8.2. Define the quasi-linear operator T by

(3.8.2) (Tf)(t) = t−1/σq‖f‖Lq ,

where σq is defined by

(3.8.3) 0 < (s1 + n/q − n/q1)/2 = 1/σq.
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Then

(3.8.4) T : Lq(Rn) → Lσq ,∞(I),

where L1/σq ,∞ is weak-Lσq space (defined in section 3.12), and I = [0,∞).

To prove the Lemma, using results from 3.12, we have

(3.8.5) λTf (τ) = m({t : (Tf)(t) > τ}) = τ−σq‖f‖σq

Lq .

Then

(3.8.6) τσqλTf (τ) = ‖f‖σq

Lq ,

which proves the lemma.

To finish the proposition, we define the quasi-linear operator K by

(3.8.7) (Kf)(t) = ‖et4f‖Hs1,q1 .

Using the heat kernel estimate (Lemma 3.11.2), we have that

(3.8.8) (Kf)(t) = ‖et4f‖Hs1,q1 ≤ Ct−1/σq‖f‖Lq = C(Tf)(t),

so using the Lemma, we have that K is a quasi-linear map that satisfies

(3.8.9) K : Lq(Rn) → L1/σq ,∞(I).

For the last piece of the argument, we turn to interpolation. First, since q0 > 1, we

have a q′, q′′ such that 1 < q′ < q0 < q′′. Now define our interpolative variable θ by

(3.8.10) 1/q0 =
1− θ

q′
+

θ

q′′
.
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Since 1/σq = C + n/q (where C is a real number independent of q), we have

(3.8.11)
1

σ
= C +

n

q0

= (1− θ)(C + n/q′) + θ(C + n/q′′) =
1− θ

σq′
+

θ

σq′′
.

Applying Proposition 3.12.1 (and recalling that Lpp is standard Lp space) finishes the

proof.

We next establish a corollary.

Corollary 3.8.3. For any ε > 0, there exists a T which depends only on ε and

‖u‖Hs0,q0 such that

(3.8.12)

(∫ T

0

‖et4u‖σ
Hs1,q1dt

)1/σ

≤ ε,

for all 0 < t < T .

This follows from dominated convergence and Proposition 3.11.3.

Next, we consider the operator V α on our integral norm space.

Proposition 3.8.4. Let b ≥ 1, 1 < q, p < ∞, and q = np
2n−s′p where 0 ≤ s′ ≤ b − 1

and s′p < m. Then

(3.8.13) V α : Lσ((0, T ) : Hb,p) → Lσ/2((0, T ) : Hb−1,q)

with the estimate

(3.8.14)

(∫ T

0

‖V α(u(s))‖σ/2
b−1,qds

)2/σ

≤
(∫ T

0

‖u(s)‖σ
b,pds

)2/σ

.
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This follows directly from Proposition 3.3.3. We also have that

(3.8.15)

(∫ T

0

‖V α(u(s))− V α(v(s))‖σ/2
b−1,qds

)2/σ

≤
(∫ T

0

(‖v(s)‖b,p + ‖u(s)‖b,p)
σ/2(‖v(s)− u(s)‖b,p)

σ/2ds

)2/σ

≤
(∫ T

0

(‖v(s)‖b,p + ‖u(s)‖b,p)
σds

)2/σ (∫ T

0

‖v(s)− u(s)‖σ
b,pds

)2/σ

where we used Holder’s inequality and Minkowski’s inequality. This gives an analog to

Corollary 3.3.4.

Corollary 3.8.5. With the same assumptions on the parameters as in Proposition

3.8.4, we have that if u, v ∈ Lσ((0, T ) : Hb,p) then

(3.8.16)

(∫ T

0

‖V α(u(s))− V α(v(s))‖σ/2
b−1,qds

)2/σ

≤
(∫ T

0

(‖v(s)‖b,p + ‖u(s)‖b,p)
σds

)2/σ (∫ T

0

‖v(s)− u(s)‖σ
b,pds

)2/σ

.

Our next set of results involve the operator G.

Proposition 3.8.6. Let 1 ≤ q′ ≤ q′′ < ∞, s′ ≤ s′′, 1 < σ′ < σ′′ < ∞, and

let 1/σ′ − 1/σ′′ = 1 − (s′′ − s′ + n/q′ − n/q′′)/2. Then for any T ∈ (0,∞], G maps

Lσ′((0, T ) : Hs′,q′) continuously into Lσ′′((0, T ) : Hs′′,q′′).

Using Proposition 3.3.6, we observe that

(3.8.17) ‖Gu(t)‖s′′,q′′ ≤ C

∫ T

0

|t− s|(s′′−s′+m/q′−m/q′′)/2‖u(s)‖s′,q′ds = CIrf(t)

where 1/r = (s′′ − s′ + m/p′ −m/p′′)/2, Ir is defined as in Theorem 3.10.2, and f(t) =

‖u(t)‖s′,q′ . Then using the Hardy-Littlewood-Sobolev Theorem (Theorem 3.10.2) with
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n = 1 and 1/σ′ − 1/σ′′ = 1− 1/r, we have

(3.8.18) (

∫ T

0

‖Gu‖σ′′
s′′,q′′dt)1/σ′′ ≤ C‖Irf‖Lσ′′ (I) ≤ C‖f‖Lσ′ (I)

where f(t) = ‖u(t)‖s′,q′ . This completes the proof.

Our next result also involves the operator G, but its proof is significantly more com-

plicated.

Proposition 3.8.7. Let 1 < q′ ≤ q′′ < ∞, s′ ≤ s′′ and assume 1/q′′ ≤ 1/σ =

1 − (s′′ − s′ + n/q′ − n/q′′)/2 ≤ 1. Then G maps Lσ((0, T ) : Hs′,q′) continuously into

BC([0, T ) : Hs′′,q′′).

To prove this, we begin with a lemma.

Lemma 3.8.8. Define H by (Hf)(s, x) = es4f(s, x). Then

(3.8.19) H : Lσ((0, T ) : Hs′,q′ → L1((0, T ) : Hs′′,q′′),

where the parameters are as in the proposition.

Our first step is to recall that, by (3.11.3), we have

(3.8.20)

∫
f(x)es4(g(x)dx = (4πs)−n/2

∫ ∫
f(x)e|x−y|2/4sg(y)dydx

= −(4πs)−n/2

∫ ∫
f(x)e|y−x|2/4sg(y)

= −
∫

es4f(y)g(y)dy.

We remark that this property is shared by the operator (1 −4)k/2 for any real number

k.
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Next, we recall that the dual of the space Lq((0, T ) : Lp) is Lq̄((0, T ) : Lp̄) (where

q̄ and p̄ denote the conjugate exponents to q and p and 1 ≤ p, q < ∞). Then, for any

g ∈ L∞((0, T ) : H−s′′,q̄′′), we have

(3.8.21)

∫ T

0

∫

Rm

g(s, x)es4(1−4)s′′/2f(s, x)dxds

≤C

∫ T

0

∫

Rm

es4(1−4)(s′′−s′)/2g(s, x)(1−4)s′/2f(s, x)dxds

≤C

∫ T

0

‖es4g(s)‖Hs′′−s′,q̄′‖f(s)‖Hs′,q′ds

≤C(

∫ T

0

‖es4g(s)‖σ̄
Hs′′−s′,q̄′ds)1/σ̄(

∫ T

0

‖f(s)‖σ
Hs′,q′ds)1/σ

≤C sup
s
‖g(s)‖q̄′′(

∫ T

0

‖f(s)‖σ
Hs′,q′ds)1/σ,

where the last line is a slight generalization of Proposition 3.8.1. Since g is an arbitrary

element of the dual space of L1((0, T ) : Hs′′,q′′), we have

(3.8.22)

∫ T

0

‖es4f(s)‖Hs′′,q′′ds ≤ C(

∫ T

0

‖f(s)‖σ
Hs′,q′ds)1/σ

which completes the Lemma.

Returning to the proposition, making liberal use of the change of variables formula

and using (3.8.22), we have

(3.8.23)

‖G · f(t)‖s′′,q′′ = ‖
∫ t

0

e(t−s)4f(s)ds‖s′′,q′′

≤
∫ t

0

‖e(t−s)4f(s)‖s′′,q′′ds

=

∫ t

0

‖es4f(t− s)‖s′′,q′′ds

≤ C(

∫ t

0

‖f(t− s)‖σ
s′,q′ds)1/σ

≤ C(

∫ T

0

‖f(s)‖σ
s′,q′ds)1/σ,

which proves the proposition.
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3.9. Proof of Theorem 3.7.1

As in Section 3.4, we begin with the nonlinear map

(3.9.1) Φu = Γϕ−G · Pα(V α(u))

and the space FT,M defined to be the space of all

(3.9.2) v ∈ BC([0, T ) : Hr,p) ∩ La((0, T ) : Hk,c)

such that

(3.9.3) sup
0≤t≤T

‖v(t)− Γϕ‖r,p +

(∫ T

0

‖v(s)‖a
k,cds

)1/a

≤ M.

Using the same argument used in Section 3.4, we get that Φ will be a contraction

mapping provided the following list of conditions is satisfied

(3.9.4)

1 < c̄ ≤ p ≤ c < ∞

s′ := k − 2 + b′ − b

k ≥ 1, b′ ≥ 1, s′c < n

0 < 2/a = k − n/c− b < 1

0 ≤ s′ ≤ k − 1

c̄ =
nc

2n− s′c

1 ≥ b′ − b

k − b′ ≤ n

p
+ b ≤ k

a/2 ≤ p ≤ a.
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We observe that as in the previous case, these conditions require that b ≥ 0. We also

record the simplified list that arises from setting b′ = 1:

(3.9.5)

1 < c̄ ≤ p ≤ c < ∞

s′ := k − 1− b

k ≥ 1, s′c < n

0 < 2/a = k − n/c− b < 1

0 ≤ k − 1− b

k = 1 + b +
2n

c
− nc̄

k − 1 ≤ n

p
+ b ≤ k

a/2 ≤ p ≤ a.

We record the result for the special case p = 2, n = 3.

Theorem 3.9.1. For any ϕ = Pαϕ ∈ H3/2,2 there is a unique global solution to

(1.1.2) such that

(3.9.6) u ∈ BC([0, T ) : H3/2,2) ∩ L5/2((0, T ) : H2,5/2).

The local solution follows by choosing p = k = c = 2, n = 3, b = 0, b′ = s′ = 1 and

a = 4.

The local result extends to a global result via an argument similar to the one used in

Section 3.6, and the continuous dependance on the initial data follows from the argument

in 3.4.
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3.10. Appendix

Our first result involves the Gamma function. Recall Γ(z) =
∫∞
0

e−ttz−1dt.

Proposition 3.10.1. Define

(3.10.1) B(x, y) =

∫ t

0

sx−1(t− s)y−1ds.

Then

(3.10.2) B(x, y) = tx+y−1 Γ(x)Γ(y)

Γ(x + y)
.

From equation (A.23) and (A.24) in appendix A of chapter 3 from [16], we get that

(3.10.3)

∫ 1

0

(1− s)x−1sy−1du =
Γ(x)Γ(y)

Γ(x + y)
.

The proposition follows from a straightforward change of variables calculation.

The next result we state is called the Hardy-Littlewood-Sobolev Theorem.

Theorem 3.10.2. If r > 1 and 1/r = 1− (1/p− 1/q) for some 1 < p < q < ∞, then

(3.10.4) ‖Ir(f)‖Lq(Rn) ≤ C‖f‖Lp(Rn)

where

(3.10.5) Irf(x) =

∫

Rn

|x− y|−n/rf(y)dy.

We also state Young’s inequality for integrals and for products.

Theorem 3.10.3. Let 1 ≤ p, q, r ≤ ∞ and r−1 +q−1 = p−1 +1. If f ∈ Lr and g ∈ Lq,

then f ∗ g ∈ Lp with the estimate

(3.10.6) ‖f ∗ g‖p ≤ ‖f‖r‖g‖q.
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This is Theorem 8.9 in [5].

Proposition 3.10.4. Let 1/p + 1/q = 1. Then if a, b are positive real numbers, we

have

(3.10.7) ab ≤ ap

p
+

bq

q
.

We remark that this also gives, for any ε > 0,

(3.10.8) (εa)
b

ε
= ab ≤ (εa)p

p
+

bq

εqq
.

We now turn our attention to Sobolev space results. Our first result is a straightfor-

ward imbedding theorem.

Lemma 3.10.5. Hk+ε,p → Hk,p for all k, 1 < p < ∞, and ε > 0.

For the case where k ≥ 0, see [16], chapter 13, equation 6.9. The proof for the

negative k case follows by viewing the space H−k,p as the dual of the space Hk,p′ , where

k > 0 and p′ is the unique real number satisfying 1
p

+ 1
p′ = 1.

Our next result is the Sobolev imbedding theorem.

Proposition 3.10.6. For sp < m where 1 ≤ p < ∞ and s > 0 we have

(3.10.9) Hs,p(Rm) ⊂ Lmp/(m−sp)(Rm).

with the estimate ‖u‖mp/(m−sp) ≤ C‖u‖s, p.

For sp > m, we have

(3.10.10) Hs,p(Rm) ⊂ L∞(Rn) ∩ C(Rn)

with the estimate ‖u‖L∞(Rn) ≤ C‖u‖Hs,p(Rn).
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For a proof, see Chapter 13, sections 2 and 6 in [16]. Our next result is another

Sobolev space result.

Proposition 3.10.7. Let s > 0. Then

(3.10.11) ‖u‖Hs,2 ≤ ‖u‖L2 + ‖u‖Ḣs,2 ,

where Ḣ denotes the homogenous Sobolev space.

To prove this, we need to bound (1 + |ξ|2)s. For |ξ| ≤ 1, we immediately have

(3.10.12) (1 + |ξ|2)s ≤ 2s ≤ C(1 + |ξ|2s),

for a sufficiently large C. For |ξ| > 1,

(3.10.13) (1 + |ξ|2)s ≤ C|ξ|2s ≤ C(1 + |ξ|2s).

So we have, for all |ξ|, that

(3.10.14) (1 + |ξ|2)s ≤ C((1 + |ξ|2)k + |ξ|2s).

Using (3.10.14), we have

(3.10.15)

∫
(1 + |ξ|2)sû2 ≤ C

(∫
û2 +

∫
|ξ|2sû2

)
,

and applying Plancherel’s theorem finishes the proposition.

We next consider a Moser-type estimate for Sobolev spaces

Proposition 3.10.8. Let u ∈ Hs,p for any s > 0, 1 < p ≤ ∞. Then

(3.10.16) ‖u2‖s,r ≤ C‖u‖2
s,p

provided r = mp
2m−s′p and s′ ≤ s, s′p < m.

60



This is a straightforward consequence of the following proposition, called the Christ-

Weinstein estimate.

Proposition 3.10.9. Let s > 0, 1 < r, p1, p2, q1, q2 < ∞, and suppose that r−1 =

p−1
i + q−1

i for i = 1, 2. Let f ∈ Lp1, Dsf ∈ Lp2, g ∈ Lq2 and Dsg ∈ Lq1. Then

(3.10.17) ‖(fg)‖s,r ≤ C‖f‖p1‖g‖s,q1 + C‖f‖s,p2‖g‖q2 .

When 0 < s < 1 this is Proposition 3.3 in [3]. The general case can be found in

Proposition 1.1 of Chapter 2 of [17].

To prove Proposition 3.10.8, we choose p1 = q2 and q1 = p2 = p in Proposition 3.10.9

and we have

(3.10.18) ‖(uv)‖s,r ≤ C‖u‖p1‖v‖s,p + C‖u‖s,p‖v‖p1 .

By Proposition 3.10.6, ‖u‖p1 ≤ C‖u‖s′,p provided p1 = mp/(m − s′p) and s′p < m. So

we have

(3.10.19) ‖(uv)‖s,r ≤ C‖u‖s′,p‖v‖s,p + C‖u‖s,p‖v‖s′,p.

So for any s′ ≤ s and s′p < m, Sobolev Imbedding gives

(3.10.20) ‖u2‖s,r ≤ C‖u‖2
s,p

provided r = mp
2m−s′p and s′ ≤ s, s′p < m.

3.11. Semigroup properties of the heat kernel

In this section we outline some properties of the the operator et4. We begin by stating

two different ways this operator can be defined. We have a pseudo-differential operator
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type definition

(3.11.1) et4u(x) =

∫
e−t|ξ|2û(ξ)eix·ξdξ

and a definition involving the “heat kernel”

(3.11.2) et4δ(x) = (4πt)−n/2 e−|x|
2/4t.

With this definition, we have

(3.11.3) et4u(x) = u ∗ et4δ(x).

These are equations 5.17 and 5.10 from Chapter 3 of [16].

Our first task is to describe the action of et4 on Lp(Rn) spaces.

Lemma 3.11.1. Let 1 ≤ q ≤ p ≤ ∞ and s ∈ R. Then

(3.11.4) ‖et4u‖s,p ≤ Ct−(n/q−n/p)/2‖u‖s,q.

Recalling that
∫
Rn et4δ(x) = 1, we calculate

(3.11.5)

‖ (4πt)−n/2 e−|x|
2/4t‖r = (4πt)−n/2

(∫

Rn

e−r|x|2/4tdx

)1/r

≤ (4πt)−n/2

(∫

Rn

e−|x|
2/4tdx

)1/r

≤ (4πt)−n/2 (4πt)n/2r

≤ (4πt)−(1−1/r)/2.

This estimate combined with Young’s inequality (Theorem 3.10.3) proves the Lemma.

Our second Lemma requires some preliminary work. We begin by considering the

operator ez4 defined on the right half of the complex plane. Then for each t > 0 on the

62



real axis, we let γt be the circle centered at t of radius at for any 0 < a < 1. By Cauchy’s

integral formula, with P (z)f = ez4f , we have

(3.11.6) 4kP (t)f(x) = P (k)(t)f(x) = C

∫

γt

1

(z − t)k+1
P (z)f(x)dz,

where P (k) denotes the kth time derivative of P . By Minkowski’s integral inequality, we

have

(3.11.7) ‖
∫

γt

1

(z − t)k+1
P (z)f(·)dz‖p ≤ C

∫

γt

1

|z − t|k+1
‖P (z)f(·)‖pdz.

For z ∈ γt, we have (1 − a)t ≤ |z| ≤ (1 + a)t, so using a calculation similar to (3.11.5)

we have

(3.11.8)

‖4kP (t)f(x)‖p ≤ Ct−(n/q−n/p)/2‖f‖q

∫

γt

1

(at)k+1
dz

≤ Ct−(n/q−n/p)/2−k‖f‖q.

So for any integer k, we have

(3.11.9) ‖et4f‖2k,p ≤ Ct−(2k+n/q−n/p)/2‖f‖q.

Interpolating between (3.11.5) and (3.11.9) we have

(3.11.10) ‖et4f‖s′′,p ≤ Ct−(s′′−s′+n/q−n/p)/2‖f‖s′,q

for 0 ≤ s′ ≤ s′′ ≤ 2k. But since this holds for any integer k, we have almost shown the

following lemma.

Lemma 3.11.2. For −∞ < s′ ≤ s′′ < ∞ and q′′ ≥ q′, we have

(3.11.11) ‖et4u‖s′′,q′′ ≤ Ct−(m/q′−m/q′′)/2−(s′′−s′)/2‖u‖s′,q′ .
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To prove the Lemma, we need to address the case where s′ and s′′ are negative. To

this end, let Js be a convolution operator whose Fourier Transform is given by

(3.11.12) Ĵs(|ξ|) = (1 + |ξ|2)s/2

and we recall that

(3.11.13) ‖Jru‖s,p = ‖u‖r+s,p.

Then for s′′ < 0, we have

(3.11.14)

‖et4u‖s′′,q′′ = ‖et4J−2s′′u‖−s′′,p

≤ Ct−(m/q′−m/q′′)/2−(−s′′−(s′−2s′′))/2‖J−2s′′u‖s′−2s′′,q′

≤ Ct−(m/q′−m/q′′)/2−(s′′−s′)/2‖u‖s′′′,q′ ,

which finishes the Lemma.

For notational convenience, we set r = (m/q′ − m/q′′)/2 + (s′′ − s′)/2 and observe

that for r ≥ 0, the previous results show that tret4 is a uniformly bounded set of linear

operators from Hs′,q′ into Hs′′,q′′ for small t. Our next task is to describe the behavior of

this operator as t tends to 0.

Proposition 3.11.3. As t tends to 0, tret4u tends to 0 in Hs′′,q′′ for any u ∈ Hs′,q′,

provided r > 0, q′′ ≥ q′ and s′′ ≥ s′. More specifically, with the parameters fixed, for any

ε > 0 there exists a T > 0 which depends only on ‖u‖s′,q′ such that for all 0 < t < T ,

(3.11.15) ‖tret4u‖s′′,q′′ < ε.

We first show this under the assumption that u ∈ S, where S is the Schwartz space

of rapidly decreasing functions. For u ∈ S we have that u ∈ Lq for all q ≥ 1, so in
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particular u ∈ Lq′′ . Using Lemma 3.11.1 we have

(3.11.16) tr‖et4u‖s′′,q′′ ≤ trt−(n/q′′−n/q′′)/2‖u‖s′′,q′′ .

Since r > ( n
q′′ − n

q′ )/2, this proves the result for u ∈ S.

Now let ϕ ∈ Hs′,q′ be arbitrary. Since S is dense in Hs′,q′ we choose an approximating

sequence ϕn ∈ S and get

(3.11.17)

‖tret4ϕ‖s′′,q′′ ≤ ‖tret4(ϕ− ϕn)‖s′′,q′′ + ‖tret4ϕn‖s′′,q′′

≤ ‖ϕ− ϕn‖s′,q′ + ‖tret4ϕn‖s′′,q′′ .

Since ϕn approximates ϕ in the Hs′,q′ norm, the first term can be made arbitrarily small

by choosing a sufficiently large n. By (3.11.16), |tret4ϕn‖s′′,q′′ can be made arbitrarily

small by choosing a sufficiently small t, which finishes the proof of Proposition 3.11.3.

3.12. Lorentz spaces and Weak-Lp

We begin by defining Lorentz spaces. Given a measure µ and a measurable function

f , we define

(3.12.1) m(σ, f) = µ({x : |f(x)| > σ}).

We next define the decreasing rearrangement of f , denoted f ∗, by

(3.12.2) f ∗(t) = inf{σ : m(σ, f) ≤ t}.

Then we say f is in the Lorentz space Lpr if and only if

(3.12.3) ‖f‖Lpr :=

(∫ ∞

0

(t1/pf ∗(t))rdt/t

)1/r

< ∞

where 1 ≤ p ≤ ∞ and 1 ≤ r < ∞ with the usual modification if r = ∞. We remark that

Lpp = Lp, in the sense of equivalent norms.

65



We next recall the definition of weak-Lp space. For a function f defined on an interval

I, the distribution function of f is defined by

(3.12.4) λf (τ) = m({t ∈ I : |f(t)| > τ}).

Then we say f is in weak-Lp if

(3.12.5) λf (τ) ≤ C/τ p.

We remark that Weak-Lp space is a special case of Lorentz space Lpq where q = ∞, and

that, if 0 ≤ f(t) ≤ g(t) for all t ∈ I, then

(3.12.6) ‖f‖Lq,∞ ≤ ‖g‖Lq,∞

where ‖ · ‖Lq,∞ is the weak-Lq norm.

The following is Theorem 5.3.1 in [1].

Theorem 3.12.1. Let p0, p1, q0, q1 and q be positive, possibly infinite numbers and let

1/p = (1− θ)/p0 + θ/p1 where 0 < θ < 1. Then, if p0 6= p1,

(3.12.7) (Lp0q0 , Lp1q1)θ,q = Lpq.
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CHAPTER 4

Besov Space solutions to LANS



4.1. Solutions to LANS in Besov Spaces

In this section we mirror the results of the previous section. Instead of assuming our

initial data is in a Sobolev space, we assume it is in a Besov space Br
p,q. In (4.2) we give

a brief derivation of Besov spaces and list some foundational results. In (4.3) we define

Continuous-in-time Besov spaces, state our existence theorem, and prove some supporting

results necessary. In 4.4) we prove the theorem stated in the previous subsection. In (4.5)

we define the Integral-in-time Besov spaces and state our second local existence theorem.

In (4.6) we prove supporting results and in (4.7) we prove the Theorem 4.5.1.

4.2. Besov Space

We now turn our attention to finding solutions of (1.1.2) with initial data in inhomo-

geneous Besov Spaces. The inhomogeneous Besov space Bs
p,q (with s ≥ 0) is a Banach

space with the norm

(4.2.1) ‖f‖Bs
p,q

= ‖f‖Lp + ‖f‖Ḃs
p,q

where Ḃs
p,q is the homogeneous Besov space, which we now define. Starting with a

positive function φ := φ0 ∈ S(Rn) supported on the annulus 1/2 ≤ |ξ| ≤ 2, we define,

for j ∈ Z, φj(ξ) = φ0(2
−jξ) and observe that φj is supported on the annulus Aj, where

Aj = {ξ ∈ Rn : 2j−1 < |ξ| < 2j+1}. Our next step is to define ψj ∈ S by

(4.2.2) ψ̂j(ξ) =
φj(ξ)∑
k φk(ξ)

.

Since the Fourier Transform is invertible on S, this uniquely identifies ψj.
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Lemma 4.2.1. With ψj and φj defined as above, we have that

(4.2.3)

ψ̂j(ξ) = ψ̂0(2
−jξ),

supp ψ̂j ⊂ Aj,

|Dβψ̂j(ξ)| ≤ Cβ2−j|β|,

ψj(x) = 2jnψ0(2
jx),

∞∑

k=−∞
ψ̂k(ξ) = 1 for ξ 6= 0.

The proof of the first relation follows the construction of φ0 and that

(4.2.4)
∑

k

φk(ξ) =
∑

k

φk(2
jξ)

holds for any j. The second follows from the fact that φj is supported on Aj, the third

is an immediate consequence of the first, and to get the fourth relation we note that

(4.2.5)

ψ(2jx) = F−1(ψ̂0(2
jx)) =

∫
φ0(ξ)∑
k φk(ξ)

e2jix·ξdξ

= 2−jn

∫
φ0(2

−jξ)∑
k φk(2−jξ)

eix·ξdξ

= 2−jnψj(x).

To get the last relation, we observe that Aj and Ak are disjoint if |j − k| ≥ 2. So for

ξ ∈ Ai, we have by the second relation that

(4.2.6)

∞∑

k=−∞
ψ̂k(ξ) =

i+2∑

k=i−2

ψ̂k(ξ)

=

∑i+2
k=i−2 φk(ξ)∑∞
k=−∞ φk(ξ)

= 1.

With the Lemma finished, we define the operator 4j by

(4.2.7) 4jf = ψj ∗ f
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and define

(4.2.8) Sj =

j−1∑

k=−∞
4j.

We record some useful facts about these operators.

Lemma 4.2.2. With 4jf = ψj ∗ f and Sj =
∑j−1

k=∞4j we have

(4.2.9)

4j4k = 0 if |j − k| ≥ 2,

4j(4kf4ig) = 0 if |j − k| ≥ 4 and |i− k| ≤ 1,

4j(Sk−1f4kg) = 0 if |j − k| ≥ 3.

To show the first equality, we have

(4.2.10) F(4j4kf) = ψ̂jψ̂kf̂ .

Because ψ̂j is supported on Aj and ψ̂k is supported on Ak, we get that F(4j4kf) ≡ 0

provided Aj∩Ak is empty, which holds provided |j−k| ≥ 2. To show the second equality,

we have

(4.2.11) F(4j(4kf4ig))(x) = ψ̂j(x)(ψ̂kf̂ ∗ ψ̂iĝ)(x).

We have

(4.2.12) ψ̂j(x)(ψ̂kf̂ ∗ ψ̂iĝ)(x) =

∫
ψ̂j(x)ψ̂k(x− y)f̂(x− y)ψ̂i(y)ĝ(y)dy.

We note that the integrand of (4.2.12) is supported on

(4.2.13)

2j−1 ≤ |x| ≤ 2j+1

2i−1 ≤ |y| ≤ 2i+1

2k−1 ≤ |x− y| ≤ 2k+1.
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Since |i− k| ≤ 1, this support is empty if |j − k| ≥ 4.

With these properties in hand, we now define the homogeneous Besov spaces. For

s ∈ R and 1 ≤ p, q ≤ ∞ we define the homogeneous Besov space Ḃs
p,q to be the Banach

space with norm

(4.2.14) ‖f‖Ḃs
p,q

=

( ∞∑
j=−∞

(2js‖4jf‖p)
q

)1/q

with the usual modification when q = ∞. As stated in the beginning of this section,

Besov spaces are the normed Banach spaces defined be the norm

(4.2.15) ‖f‖Bs
p,q

= ‖f‖p + ‖f‖Ḃs
p,q

,

for s ≥ 0. For s > 0, we define B−s
p′,q′ to be the dual of the space Bs

p,q, where p′, q′ are the

Holder-conjugates to p, q.

We conclude by remarking that by switching the order of the Lp and lq norms in the

definition of Besov spaces, we get a new space called the Triebel-Lizorkin spaces F s
p,q.

Explicitly, for s ≥ 0, the Tribel-Lizorkin norm is defined by

(4.2.16) ‖f‖F s
p,q

= ‖f‖p + ‖
( ∞∑

j=−∞
2jsq|4ju(·)|q

)1/q

‖p.

For s < 0, the space F s
p,q is defined to be the dual of the space F−s

p′,q′ . We also remark

that Hs,p = F s
p,2.

4.3. Weighted continuous in time Besov Spaces

Fixing 0 < T ≤ ∞, for any k ≥ 0, we define the space

(4.3.1) CT
k;s,p,q = {f ∈ C((0, T ) : Bs

p,q) : ||f ||k;s,p,q < ∞}
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where

(4.3.2) ‖f‖k;s,p,q = sup{tk‖f(t)‖Bs
p,q

: t ∈ (0, T )}.

ĊT
k;s,p,q denotes the subspace of CT

k;s,p,q consisting of f such that

(4.3.3) lim
t→0+

tkf(t) = 0 (in Bs
p,q).

If k = 0, we write C
T

s,p,q for BC([0, T ) : Bs
p,q), the space of bounded, continuous

functions from [0, T ) to Bs
p,q.

We will typically write CT
k;s,p,q and C

T

s,p,q as Ck;s,p,q and Cs,p,q, respectively, suppressing

the T dependance. We finish this section by stating the existence result and proving some

supporting results.

Theorem 4.3.1. For any ϕ = Pαϕ ∈ Br
p,q there is a T = T (ϕ) > 0 and a unique

solution to (1.1.2) such that

(4.3.4) u ∈ C̄r,p,q ∩ Ċa;k,b,c,

provided there exist real numbers b′ and s′ such that (4.4.3)

Our first calculation is an analog of Lemma 3.3.1.

Lemma 4.3.2. Given r ≥ 1, 1 ≤ q < ∞ and p, p′ ∈ (1,∞) where

(4.3.5)

p′ =
np

2n− s′p

s′ = n(2/p− 1/p′)

0 ≤ s′ ≤ r − 1

p ≤ 2p′,
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we have div τα : Br
p,q → Br

p′,q. Specifically, we have the estimate

(4.3.6) ‖div τα(u)‖Br
p′,q
≤ C‖u‖2

Br
p,q

.

We have by Proposition 4.8.3 that

(4.3.7)

‖div τα(u)‖Br
p′,q
≤ C‖τα(u)‖Br+1

p′,q

≤ C‖Def(u) ·Rot(u)‖Br−1
p′,q

≤ C‖∇u‖2
Br−1

p,q
≤ C‖u‖2

Br
p,q

.

This Lemma has an immediate corollary.

Corollary 4.3.3. div τα : Ċa;r,p,q → Ċ2a;r,p′,q, with the estimate

(4.3.8) ‖div τα(u)‖2a;r,p′,q ≤ C‖u‖2
a;r,p,q.

Next, we record some results for the operator V α.

Proposition 4.3.4. With the parameters as in Lemma 4.3.2, we have

(4.3.9) V α : Ċa;s,p,q × Ċa;s,p,q → Ċ2a;s−1,p′,q

with the estimate

(4.3.10) ‖V α(u, v)‖2a;s−1,p′,q ≤ ‖u‖a;s,p,q‖v‖a;s,p,q.

This follows from a calculation parallel to the one used to prove Proposition 3.3.3

with Proposition 4.8.1 replacing the Sobolev embedding results.
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Corollary 4.3.5. With the same assumptions on the parameters as in Proposition

4.3.4, we have that

(4.3.11)

‖V α(u(s))− V α(v(s))‖a;s−1,p′,q

≤ C(‖u‖a/2;s,p,q + ‖v‖a/2;s,p,q)‖u− v‖a/2;s,p,q.

This proof also directly follows the proof for Corollary 3.3.4.

For the remainder of the section, we impose the following list of restrictions on our

parameters. We have

(4.3.12)

−∞ < s0 ≤ s1 < ∞

1 ≤ q ≤ ∞

1 ≤ p0 ≤ p1 < ∞

σ = s1 − s0 + n(1/p0 − 1/p1).

The following proposition is an immediate consequence of Corollary 4.9.3.

Proposition 4.3.6. Provided the parameters satisfy (4.3.12), we have that Γ : Bs0
p0,q →

Ċσ/2;s1,p1,q.

Lastly, we turn our attention to the operator G. Using Proposition 4.8.4 and Propo-

sition 4.9.1, we have

(4.3.13)

‖G · u‖B
s1
p1,q

≤ C

∫ t

0

(t− s)−σ/2‖u‖B
s0
p0,q

ds

≤ C‖u‖k;s0,p0,q

∫ t

0

(t− s)−σ/2t−k

≤ Ct−σ/2−k+1‖u‖k;s0,p0,q

where the last inequality used Proposition 3.10.1. We record this as a proposition.

74



Proposition 4.3.7. With parameters as specified in (4.3.12), 0 < σ/2 < 1, 0 ≤ k0 <

1, and k1 = k0 + σ/2− 1, we have

(4.3.14) ‖G · u‖k1;s1,p1,q ≤ C‖u‖k0;s0,p0,q.

4.4. Proof of Theorem 4.3.1

As usual, we begin with the nonlinear map

(4.4.1) Φu = Γϕ−G · Pα(V α(u)),

initial data u0 ∈ Br
p,q and define

(4.4.2) ET,M = {v ∈ C̄r,p,q ∩ Ċa;s,p̃,q : ‖v − Γϕ‖0;r,p,q + ‖v‖a;s,p̃,q ≤ M}.

To proceed, we observe that the restrictions on our parameters forced by the results of

the previous section are identical to those from Section 3.3. So as in Section 3.4, we will

use an intermediate space Ċ2a;s−b′,p′,q, and using our now standard argument, we get that

Theorem 4.3.1 will hold provided the parameters satisfy the following list of conditions:
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(4.4.3)

1 < p′ ≤ p ≤ p̃

1 ≤ q ≤ ∞

s ≥ 1, b′ ≥ 1, s′p̃ < n

0 < 2a = s− n/p̃− b < 1

0 ≤ s′ ≤ s− 1

1 <
np̃

2n− s′p̃c
< ∞

s = 2− b′ + b + s′

1 ≥ b′ − b

1 ≤ b′ +
n

p̃
− s′ < 2

2− 2b′ + s′ ≤ n

p
≤ 2− b′ + s′,

76



and the case where we fix b′ = 1:

(4.4.4)

1 < p′ ≤ p ≤ p̃

s′ = s− 1 + b

1 ≤ q ≤ ∞

s ≥ 1, s′p̃ < n

0 < 2a = s− n/p̃− b < 1

0 ≤ s′ ≤ s− 1

1 <
np̃

2n− s′p̃c
< ∞

0 ≤ n

p̃
− s′ < 1

s′ ≤ n

p
≤ 1 + s′.

4.5. Integral-in-time Besov spaces

We now consider the integral norms in time with Besov spaces instead of Sobolev

spaces defining the “inside” space. We fix T > 0 and let M((0, T ) : E) be the set of

measurable functions defined on (0, T ) with values in the space E. Then we define

(4.5.1) Lσ((0, T ) : Bs
p,q) = {f ∈M((0, T ) : Bs

p,q) : (

∫ T

0

‖f(t)‖σ
Bs

p,q
dt)1/σ < ∞}.

We will prove the following Theorem.

Theorem 4.5.1. Given u0 ∈ Br
p,q with r = n/p + b there exists a T > 0 and a unique

solution u to (1.1.2) such that

(4.5.2) u ∈ BC([0, T ) : Br
p,q) ∩ Lσ((0, T ) : Bs

p̃,q),
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provided there exist real numbers b′ and s′ (4.7.3) holds.

4.6. Besov Integral-in-time results

Our first result is similar to Proposition 3.8.1.

Proposition 4.6.1. Let 1 < p0 ≤ p1 < ∞, 1 ≤ q < ∞, −∞ < s0 ≤ s1 < ∞, and

assume 0 < (s1 − s0 + n/p0 − n/p1)/2 = 1/σ. Then Γ maps Bs0
p0,q0

continuously into

Lσ((0,∞) : Bs1
p1,q1

) with the estimate

(4.6.1) ‖Γu‖Lσ((0,∞):B
s1
p1,q1

) ≤ C‖u‖B
s0
p0,q0

.

The proof is similar to Proposition 3.8.1. The two main distinctions are that, because

of Theorem 4.10.1, we interpolate using s0 instead of p0. Also from Theorem 4.10.1, we

do not require p0 ≤ σ, as we did in Proposition 3.8.1.

Our next result is analogous to Proposition 3.8.6.

Proposition 4.6.2. Given 1 ≤ p0 ≤ p1 < ∞, 1 ≤ q < ∞, −∞ < s0 ≤ s1 < ∞,

1 < σ0 < σ1 < ∞ and 1/σ0 − 1/σ1 = 1− (s1 − s0 + n/p0 − n/p1)/2, for any T ∈ (0,∞],

G sends Lσ0((0, T ) : Bs0
p0,q0

) into Lσ1((0, T ) : Bs1
p1,q1

) with the estimate

(4.6.2) ‖G · u‖Lσ1 ((0,T ):B
s1
p1,q1

) ≤ C‖u‖Lσ0 ((0,T ):B
s0
p0,q0

).

The proof is similar to the proof of Proposition 3.8.6 and is omitted.

Proposition 4.6.3. 1 < p0 ≤ p1 < ∞, 1 ≤ q < ∞, −∞ < s0 ≤ s1 < ∞, and

assume 1/p1 ≤ 1/σ = 1− (s1 − s0 + n/p0 − n/p1)/2 =. Then G maps Lσ((0, T ) : Bs0
p0,q0

)

continuously into BC([0, T ) : Bs1
p1,q1

) with the estimate

(4.6.3) sup
t∈[0,T )

‖G · u(t)‖B
s1
p1,q1

≤ C‖u‖Lσ((0,T ):B
s0
p0,q0

).
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Using notation established in proof of Proposition 3.8.7, we first seek to show that

(4.6.4) H : Lσ((0, T ) : Bs0
p0,q0

) → L1((0, T ) : Bs1
p1,q1

).

The proof follows the proof of Proposition 3.8.7.

We conclude this section with results involving the operator V α. The proofs directly

follow the techniques used to prove Proposition 3.8.4 and Corollary 3.8.5.

Proposition 4.6.4. With the parameters s, p, p′ and q as in Proposition 4.3.4, we

have

(4.6.5) V α : Lσ((0, T ) : Bs
p,q) → Lσ/2((0, T ) : Bs−1

p,q )

with the estimate

(4.6.6)

(∫ T

0

‖V α(u(s))‖σ/2

Bs−1
p′,q

ds

)2/σ

≤
(∫ T

0

‖u(s)‖σ
Bs

p,q
ds

)2/σ

.

Corollary 4.6.5. If u, v ∈ Lσ((0, T ) : Bs
p,q), then

(4.6.7)

(∫ T

0

‖V α(u(s))− V α(v(s))‖σ/2

Bs−1
p,q

ds

)2/σ

≤
(∫ T

0

‖v(s) + u(s)‖σ
Bs

p,q
ds

)2/σ (∫ T

0

‖v(s)− u(s)‖σ
Bs

p,q
ds

)2/σ

.

4.7. Proof of Theorem 4.5.1

As usual, we begin by defining a Banach space XT,M to be the set of all u ∈ BC([0, T ) :

Br
p,q) ∩ Lσ((0, T ) : Bs

p̃,q) such that

(4.7.1) sup
t
‖u(t)− Γu0‖Br

p,q
+ ‖u‖σ;s,p̃,q ≤ M

and we define the operator Φ by

(4.7.2) Φu(t) = Γϕ + G(V α(u(t)))
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where ϕ ∈ Br
p,q.

Again, we have the same restrictions on our parameters as in the previous integral in

time situation. We record these parameters in this situation:

(4.7.3)

1 < p′ ≤ p ≤ p̃ < ∞

1 ≤ q ≤ ∞

s ≥ 1, b′ ≥ 1, s′p̃ < n

0 < 2/σ = s− n/p̃− b < 1

0 ≤ s′ ≤ s− 1

p′ =
np̃

2n− s′p̃

s = 2− b′ + b + s′

1 ≥ b′ − b

s− b′ ≤ n

p
+ b ≤ s

σ/2 ≤ p ≤ σ,
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and as usual we record the case where b′ = 1:

(4.7.4)

1 < p′ ≤ p ≤ p̃ < ∞

1 ≤ q ≤ ∞

s ≥ 1, s′p̃ < n

0 < 2/σ = s− n/p̃− b < 1

0 ≤ s′ ≤ s− 1

p′ =
np̃

2n− s′p̃

s′ = s− 1− b

s− 1′ ≤ n

p
+ b ≤ s

σ/2 ≤ p ≤ σ.

4.8. Besov Space Results

We list here several results involving Besov Spaces. Our first is an embedding result.

Proposition 4.8.1. Assume that β ∈ R and p, q ∈ [1,∞]. Then if 1 ≤ q1 ≤ q2 ≤ ∞

we have that Ḃβ
p,q1

⊂ Ḃβ
p,q2

with the estimate

(4.8.1) ‖f‖Ḃβ
p,q2

≤ C‖f‖Ḃβ
p,q1

.

If 1 ≤ p1 ≤ p2 ≤ ∞ and β1 = β2 + n(1/p1 − 1/p2), then Ḃβ1
p1,q(Rn) ⊂ Ḃβ2

p2,q(Rn) with the

estimate

(4.8.2) ‖f‖
Ḃ

β2
p2,q

≤ C‖f‖
Ḃ

β1
p1,q

.
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These results, with the same restrictions on the parameters, hold for the inhomogeneous

case. In addition, we have that if β1 ≤ β2 then Bβ2
p,q ⊂ Bβ1

p,q, with the estimate

(4.8.3) ‖f‖
B

β1
p,q
≤ C‖f‖

B
β2
p,q

.

Lastly, we note from the definition of the inhomogeneous Besov space that

(4.8.4) ‖f‖Lp ≤ ‖f‖Bs
pq

for any 1 ≤ p, q ≤ ∞, s ≥ 0. The last two results do not hold for the homogeneous case.

We also have the following Moser-type estimate. This is Lemma 2.2 in [2].

Proposition 4.8.2. Let s > 0 and q ∈ [1,∞]. Then we have

(4.8.5) ‖fg‖Ḃs
p,q
≤ C(‖f‖Lp1‖g‖Ḃs

p2,q
+ ‖g‖Lr1‖f‖Ḃs

r2,q
)

and

(4.8.6) ‖fg‖Bs
p,q
≤ C(‖f‖Lp1‖g‖Bs

p2,q
+ ‖g‖Lr1‖f‖Bs

r2,q
)

where pi, ri ∈ [1,∞] and 1/p = 1/p1 + 1/p2 = 1/r1 + 1/r2.

Using Proposition 4.8.2 and Proposition 4.8.1, we have

(4.8.7)

‖u2‖Bs
p,q
≤ C‖u‖Lp2‖u‖Bs

p1,q

≤ C‖u‖B0
p2,q
‖u‖Bs

p1,q

≤ C‖u‖Bs′
p1,q
‖u‖Bs

p1,q

≤ C‖u‖2
Bs

p1,q

where s′ ≥ 0 satisfies p = np1

2n−s′p1
and n(2/p1−1/p) ≤ s. We record this as a proposition.
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Proposition 4.8.3. Let s > 0 and p, p1, q ∈ [1,∞]. Then

(4.8.8) ‖u2‖Bs
p,q
≤ C‖u‖2

Bs
p1,q

where p1 ≤ 2p, s ≥ n(2/p1 − 1/p) = s′, and p = np1

2n−s′p1
.

Our next Proposition is reminiscent of the Minkowski integral inequality.

Proposition 4.8.4. Let f(s) ∈ Bs
p,q for all s ∈ (0, t) for some t > 0. Then

(4.8.9) ‖
∫ t

0

f(·, s)ds‖Bs
pq
≤ C

∫ t

0

‖f(·, x)‖Bs
pq

ds.

Showing this for the homogeneous Besov space follows immediately from applying

Minkowski’s integral and summation inequalities. It then follows for the inhomogeneous

Besov norm by applying Minkowski’s integral inequality to the Lp component of the

Besov norm.

Next, we formally establish an isometry result. This is Theorem 8 on page 67 of [11]

Theorem 4.8.5. Let Ir = (1−4)r/2. Then

(4.8.10) Ir : Bs
pq → Br−s

pq

is an isomorphism.

We conclude this section by stating the Bernstein inequality.

Theorem 4.8.6. Let α ≥ 0 and 1 ≤ p ≤ q ≤ ∞. Then if supp f̂ ⊂ {ξ ∈ Rn : |ξ| ≤

K2j} for some K > 0 and some integer j, then

(4.8.11) ‖Λαf‖q ≤ C2jα+jn(1/p−1/q)‖f‖p.
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In addition, if supp f̂ ⊂ {ξ ∈ Rn : K12
j ≤ |ξ| ≤ K22

j} for some K1, K2 > 0 and some

integer j, then

(4.8.12) C̃2jα+jn(1/p−1/q)‖f‖p ≤ ‖Λαf‖q ≤ C2jα+jn(1/p−1/q)‖f‖p.

This is Proposition 2.3 in [18].

4.9. Heat Kernel in Besov Space

We recall that the heat kernel is defined by

(4.9.1) et4f = f ∗ et4δ

where

(4.9.2) et4δ(x) = (4πt)−n/2 e−|x|
2/4t.

Our task is to determine the action of the heat kernel on inhomogeneous Besov spaces.

We begin with an alternate construction of Besov spaces. This can be found in Chapter

3 of [11].

We let φj ∈ S be a sequence of “test functions” such that φ̂j(ξ) 6= 0 if and only if

ξ ∈ Rj = {2j−1 ≤ |ξ| ≤ 2j+1},

(4.9.3) |Dβφ̂j(ξ)| ≤ Cβ2−j|β|

for any multi-index β, and for small ε,

(4.9.4) |φ̂j(ξ)| ≥ Cε > 0

for ξ ∈ Rjε where

(4.9.5) Rjε = {(2− ε)−12j ≤ |ξ| ≤ (2− ε)2j}.
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Equations (4.9.3) and (4.9.4) are the main distinctions between our two constructions of

Besov spaces. We also require

(4.9.6)
∞∑

j=−∞
φ̂j(ξ) = 1

for ξ 6= 0.

We define another test function φ ∈ S such that φ̂(ξ) 6= 0 if ξ ∈ {|ξ| ≤ 1} and for

small ε,

(4.9.7) |φ̂(ξ)| ≥ Cε > 0

for ξ ∈ {|ξ| ≤ 1− ε}.

We remark that φ can be chosen such that

(4.9.8) φ̂(ξ) =
−1∑

j=−∞
φ̂j(ξ)

We define the Besov space Bs
pq to be the normed space defined by the (quasi)-norm

(4.9.9) ‖f‖Bs
pq

= ‖φ ∗ f‖Lp +

( ∞∑
j=0

(2js‖φj ∗ f‖Lp)q

)1/q

where s ∈ R, 1 ≤ p ≤ ∞, and 0 < q ≤ ∞. For 1 ≤ q ≤ ∞, this is a Banach space.

We also have the homogeneous Besov space Ḃs
pq defined by the (quasi-) norm

(4.9.10) ‖f‖Ḃs
pq

=

( ∞∑
j=−∞

(2js‖φj ∗ f‖Lp)q

)1/q

.

Proposition 4.9.1. Let 1 ≤ p′ ≤ p′′ < ∞, −∞ < s′ ≤ s′′ < ∞, and let 0 < q < ∞.

Then

(4.9.11) ‖et4u‖Bs′′
p′′,q

≤ Ct−(s′′−s′+n/p′−n/p′′)/2‖u‖Bs′
p′,q

.

We start with the following lemma.
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Lemma 4.9.2. Let Is = (1−4)s/2. Then, for any j > 0, we have

(4.9.12) 2jsφj ≡= Isφj,

where f ≡ g means that there exists a C1, C2 such that

(4.9.13) C1f ≤ g ≤ C2f.

Since φj ∈ S, where S denotes the Schwarz space of rapidly decreasing functions, we

know that F∗(F(φj)) = φj, where F denotes the Fourier transform and F∗ denotes the

inverse Fourier Transform. Because Is : S → S, we have the same result for Isφj. To

exploit this, we begin by computing F(Isφj), and we get

(4.9.14) F(Isφj)(ξ) = (1 + |ξ|2)s/2φ̂j.

Applying F∗, we have

(4.9.15) F∗(F(Isφj))(x) =

∫
(1 + |ξ|2)s/2φ̂j(ξ)e

ix·ξdξ.

Since φ̂j is supported on the annulus 2j−1 ≤ ξ ≤ 2j+1, we have

(4.9.16)

∫
(1 + |ξ|2)s/2φ̂j(ξ)e

ix·ξdξ ≡
∫

2jsφ̂j(ξ)e
ix·ξdξ = 2jsφj.

Combining these results, we get

(4.9.17) Isφj = F∗(F(IsφJ)) ≡ 2jsφj,

which finishes the Lemma.
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To prove the proposition, we use the Lemma and Sobolev space heat kernel estimates

to get

(4.9.18)

‖et4u‖Bs′′
p′′,q

= ‖φ ∗ et4u‖Lp′′ +
(∑

(2js′‖2j(s′′−s′)φj ∗ et4u‖Lp′′ )q
)1/q

≤ t(n/p′−n/p′′)/2‖φ ∗ u‖Lp′ +
(∑

(2js′‖φj ∗ et4u‖Hs′′−s′,p′′ )q
)1/q

≤ t−(n/p′−n/p′′)/2‖φ ∗ u‖Lp′ + tσ
(∑

(2js′‖φj ∗ u‖Lp′ )q
)1/q

≤ tσ‖u‖Bs′
p′,q

.

where σ = −(s′′ − s′ + n/p′ − n/p′′)/2.

We have an immediate corollary, similar to Proposition 3.11.3.

Corollary 4.9.3. With the parameters as in Proposition 4.9.1, we have

(4.9.19) lim
t→0

tγ/2‖et4f‖Ḃα+β
r,q1

= 0

provided σ > 0.

The proof is analogous to the proof of Proposition 3.11.3.

4.10. Besov Interpolation Results

We have the following Besov space interpolation result. This is part of Theorem 6.4.5

in [1].

Theorem 4.10.1. Let 0 < θ < 1 and

(4.10.1)

s∗ = (1− θ)s0 + θs1,

1/p∗ =
(1− θ)

p0

+
θ

p1

,

1/q∗ =
(1− θ)

q0

+
θ

q1

.
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Then we have

(4.10.2) (Bs0
p,q0

, Bs1
p,q1

)θ,r = Bs∗
p,r

where s0 6= s1, 1 ≤ p ≤ ∞, and 1 ≤ r, q0, q1 ≤ ∞. We also have

(4.10.3) (Bs0
p0,q0

, Bs1
p1,q1

)θ,p∗ = Bs∗
p∗,q∗

where s0 6= s1, p∗ = q∗, and 1 ≤ p0, p1, q0, q1 ≤ ∞.

We conclude this section with Theorem 3.11.8 from [1], but first we recall a definition.

If A,B are quasi-normed spaces, we say T : A → B is a quasi-normed linear operator if

‖T (a0 + a1)‖B ≤ c(‖a0‖A + ‖a1‖A) where c ≥ 1.

Theorem 4.10.2. Let Ai, Bi be quasi-normed spaces where i = 0, 1. Suppose that

there exists a quasi-linear operator T such that T : Ai → Bi. Then

(4.10.4) T : (A0, A1)θ,r → (B0, B1)θ,r

where 0 < θ < 1.
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CHAPTER 5

A Global Existence Result in Besov space



5.1. Global Existence with arbitrary initial data when p = 2

In our previous work with initial data in Sobolev spaces, we were able to get a global

existence result in the p = 2 case to the LANS equations. This was accomplished via

higher regularity energy estimates. To get a similar result in the Besov setting requires

significantly more work, and the goal of this section is to prove the necessary results.

This argument is inspired by the work of [18]. In Section asf, we will modify the results

of [18] in a setting more closely aligned with that paper’s original intent.

5.2. An alternate construction of Besov spaces

Our goal in this section is to follow the approach of [18] to get solutions to (1.1.2) in

the integral norm space. We begin by stating the Theorem we wish to prove.

Theorem 5.2.1. Let u be a local solution to (1.1.2) with initial data u0 ∈ B̃r
2,q such

that

(5.2.1) u ∈ BC([0, T ) : Br
2,q) ∩ Y,

where r > 2 and Y is either Lσ(B
1+n/2
2,q ) or Ca;1+n/2,2,q with 0 ≤ a < 1 and 1 ≤ σ. Then

the local solution is a global solution.

Alternatively, assuming n < r+ε, a local solution of (1.1.2) with initial data u0 ∈ B̃r
2,q

such that

(5.2.2) u ∈ BC([0, T ) : Br
2,q) ∩X,

where X is either Lσ(B
1+n/2+ε
2,q ) or Ca;1+n/2+ε,2,q, can be extended to a global solution.
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To prove the theorem, we begin with a priori estimates. We start by recalling aspects

of our construction of Besov spaces from Section 4.2. We have that our functions ψj

satisfy

(5.2.3)

ψ̂j(ξ) = ψ̂0(2
−jξ),

supp ψ̂j ⊂ Rj,

where Rj = {2j−1 < ξ < 2j+1}. We also have that

(5.2.4)
∞∑

j=−∞
ψ̂j(ξ) = 1,

provided ξ 6= 0. Our first new function is Ψ, defined by

(5.2.5) Ψ̂(ξ) = 1−
∞∑

k=0

ψ̂j(ξ).

We remark that Ψ̂(ξ) = 1 for ξ = 0, and Ψ̂(ξ) = 0 for ξ > 2. Next, we define 4ju by

(5.2.6) 4ju = ψ ∗ u,

and for notational convenience, we define Sk =
∑k

j=04j. Finally, we define the inhomo-

geneous Besov space by the norm

(5.2.7) ‖u‖Bs
p,q

= ‖Ψ ∗ u‖Lp +

( ∞∑
j=0

(2js‖4ju‖q
Lp

)1/q

,

for s ∈ R, 1 ≤ p, q ≤ ∞.

In analogy with the definition of homogenous Besov spaces, we denote the second

term in the sum by B̃s
p,q, and define the notation

(5.2.8) ‖u‖B̃s
p,q

=

( ∞∑
j=0

(2js‖4ju‖q
Lp

)1/q

.
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Recalling that homogenous Besov spaces are defined by

(5.2.9) ‖u‖Ḃs
p,q

=

( ∞∑
j=−∞

(2js‖4ju‖q
Lp

)1/q

,

we remark that we can regard our new spaces as “half” of the homogenous Besov space

Ḃr
p,q.

We pause here to comment on our strategy. To achieve our global existence argument,

we need bounds on the two separate pieces of the Besov norm. We will begin working with

the more complicated piece, which is B̃r
p,q. We use arguments inspired by the calculations

in [18].

With our notation established, we record two facts.

Lemma 5.2.2. There exists an M > 0 such that if |j − k| ≥ M , then

(5.2.10)

4j4kf ≡ 0

4j(Sk−5f4k+1g) ≡ 0.

These two facts follow from applying the Fourier Transform and recalling that ψ̂j is

supported on 2j−1 ≤ |ξ| ≤ 2j+1. We mention another result with the opposite emphasis.

Lemma 5.2.3. If k and l are close together, and j is much greater than k, then

(5.2.11) 4j(4kf4lg) ≡ 0.

Applying the Fourier Transform, we have

(5.2.12) F4j(4kf4lg)(x) = ψ̂j(x)

∫
ψ̂k(y)f̂(y)ψ̂l(x− y)ĝ(x− y)dy.

The expression

(5.2.13) ψ̂j(x)ψ̂k(y)f̂(y)ψ̂l(x− y)ĝ(x− y)
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will be equal to zero provided any of the following conditions are not satisfied:

(5.2.14)

2j−1 ≤ |x| ≤ 2j+1

2k−1 ≤ |y| ≤ 2k+1

2l−1 ≤ |x− y| ≤ 2l+1.

If k and l are close together and if j is much larger than k, then |x − y| will be of an

order similar to 2j, which will violate the third condition. This proves the Lemma.

Next, we recall Bony’s notion of paraproduct (see 0.17 in Chapter 2 of [17]). We have

that fg = Tfg + Tgf + R(f, g), where

(5.2.15) Tfg =
∑

k

(Sk−5f)4k+1g

and

(5.2.16) R(f, g) =
∑

k

(
k+5∑

l=k−5

4lf)(4kg).

Using Bony’s paraproduct and Lemmas 5.2.2 and 5.2.3, for some M , we have that

(5.2.17)

4j(fg) ≤
∑

|j−k|≤M

4j(Sk−5f4k+1g) +
∑

|j−k|≤M

4j(Sk−5g4k+1f)

+
∑

k≥j−M

4j(4kg

k+5∑

l=k−5

4k+lf)

= I + II + III.

Applying Young’s inequality and then Holder’s inequality, we have

(5.2.18)

‖I‖p ≤ C
∑

|j−k|≤M

‖ψj‖1‖Sk−5f4k+1g‖p

≤ C
∑

|j−k|≤M

‖Sk−5f‖∞‖4k+1g‖p,

93



and similarly

(5.2.19) ‖II‖p ≤ C
∑

|j−k|≤M

‖Sk−5g‖∞‖4k+1f‖p.

(5.2.20) ‖III‖p ≤ C
∑

k≥j−M

(
k+5∑

l=k−5

‖4kg‖p‖4lf‖∞).

We end this section with the statement of our main Proposition.

Proposition 5.2.4. Any solution u to 1.1.2 satisfies

(5.2.21)
d

dt
‖u‖q

B̃r
2,q

≤ C‖u‖
B̃

1+n/2
2,q

‖u‖q

B̃r
2,q

,

provided r > 2 or

(5.2.22)
d

dt
‖u‖q

B̃r
2,q

≤ C‖u‖
B̃

1+n/2+ε
2,q

‖u‖q

B̃r
2,q

,

provided 2 < r + ε < 0.

We remark that the r > 2 restriction is due to the sum in I3 not being finite. See

(5.5.6) for the technical necessity of r > 2.

This proposition is very complicated, and its proof will be broken up over the next

several sections. We begin with a statement of the LANS equations:

(5.2.23)

∂t(1− α24)u +∇u(1− α24)u− α2(∇u)T · 4u

=− ν(1− α24)Au−∇p.

Applying 4j to both sides and taking the L2 inner product with 24ju, we get

(5.2.24) I1 + I2 + I3 + I4 = I5
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where

(5.2.25)

I1 = (∂t(1− α24)4ju,4ju)L2 ,

I2 = (4j(∇u(1− α24)u,4ju)L2 ,

I3 = −α2(4j((∇u)T · 4u,4ju)L2 ,

I4 = ν((1− α24)A4ju,4ju)L2 ,

I5 = −(∇4jp,4ju)L2 .

Applying integration by parts to I1 gives that

(5.2.26) I1 =
1

2
∂t(‖4ju‖2

L2 + α2‖A1/24ju‖2
L2).

Since div u = 0, applying integration by parts to I5 gives that I5 = 0. We also have that

(5.2.27) I4 = ν[(A1/24ju,A1/24ju) + α2(A4ju,A4ju)] ≥ 0.

Plugging these results back into 5.2.24, we have

(5.2.28)
1

2

d

dt
(‖4ju‖2

L2 + α2‖A1/24ju‖2
L2) ≤ |I2|+ |I3|.

To proceed, we need to estimate I2 and I3.

5.3. I2 and I3 estimates

We begin with I2, and we have by Holder’s inequality that

(5.3.1) |I2| ≤ C‖4ju‖2‖4j(∇u(1− α24)u)‖2.

To estimate the second term, we use (5.2.18), (5.2.19), and (5.2.20) to write

(5.3.2) 4j(∇u(1− α24)u) = J1 + J2 + J3
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where

(5.3.3)

J1 =
∑

|j−k|≤M

4j((Sk−5u · ∇)4k+1u)− α2
∑

|j−k|≤M

4j((Sk−5u · ∇)4k+14u)

J2 =
∑

|j−k≤M

4j((4k+1u · ∇)Sk−5u)− α2
∑

|j−k|≤M

4j((4k+1u · ∇)Sk−54u)

J3 =
∑

k≥j−M

4j

(
4ku

l=5∑

l=−5

∇4k+lu

)
− α2

∑

k≥j−M

4j

(
4ku

l=5∑

l=−5

∇4k+l4u

)
.

For notational convenience, we define Ji,j, with j = 1, 2, to be the jth of the two summa-

tions in Ji. We begin with J1,2. Recalling that ψj is the convolution kernel for 4j, we

have by integration by parts and the incompressibility condition that

(5.3.4)

∫
ψj(x− y)((Sk−5u(y))∇ (44k+1u(y)) dy

=

∫
− (∇(ψj(x− y))(Sk−5u(y)) + ψj(x− y)div (Sk−5u(y)))44k+1u(y)dy

=

∫
−∇(ψj(x− y))(Sk−5u(y))44k+1u(y)dy

=

∫
−4(∇ψj(x− y) · (Sk−5u(y)))4k+1u(y)dy.

Next, we use the product rule to distribute the Laplacian through the product, apply

Young’s inequality, and then take the L∞ norm of the pieces involving Sk−5u and its

derivatives. Recalling that the L1 norm of ψj and its derivatives are independent of j,

we have

(5.3.5)

‖
∑

|j−k|≤M

4j((Sk−5u · ∇)4k+14u)‖L2

≤C
∑

|j−k|≤M

(‖Sk−5u‖L∞ + ‖∇Sk−5u‖L∞ + ‖4Sk−5u‖L∞)‖4k+1u‖L2 .

96



Recalling the definition of Sk−5 and using Bernstein’s inequality (Theorem 4.8.6) we

get

(5.3.6)

‖
∑

|j−k|≤M

4j((Sk−5u · ∇)4k+14u)‖L2

≤C
∑

|j−k|≤M

‖4k+1u‖L2

∑

m<k−5

2(2+n/2)m‖4mu‖L2 .

For J1,1, a similar computation gives

(5.3.7)

‖4j((Sk−5u · ∇)4k+1u)‖L2

≤C‖Sk−5u‖L∞‖4k+1u‖L2

≤C‖4k+1u‖L2

∑

m<k−5

2nm/2‖4mu‖L2 .

So we finally get that J1 satisfies

(5.3.8) |J1| ≤ C
∑

|j−k|≤M

‖4k+1u‖L2

∑

m<k−5

2(2+n/2)m‖4mu‖L2 .

J2 satisfies the same estimate, so we turn to J3. Using integration by parts and

Young’s inequality, we have

(5.3.9) ‖4j((4ku)∇4k+l4u)‖L2 ≤ C‖4ku‖L2‖44k+lu‖L∞ .

Bernstein’s inequality gives

(5.3.10) ‖4j((4ku)∇4k+l4u)‖L2 ≤ C2(2+n/p)(k+l)‖4ku‖L2‖4k+lu‖L2 .

Applying this to J3,2, we get

(5.3.11) ‖J3,2‖L2 ≤ C
∑

k≥j−M

‖4ku‖L2

l=5∑

l=−5

2(2+n/p)(k+l)‖4k+lu‖L2
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Similar calculations on J3,1 gives

(5.3.12) ‖J3,1‖L2 ≤ C
∑

k≥j−M

‖4ku‖L2

l=5∑

l=−5

2(n/p)(k+l)j‖4k+lu‖L2 .

So J3 satisfies

(5.3.13) |J3| ≤ C
∑

k≥j−M

‖4ku‖L2

l=5∑

l=−5

2(2+n/p)(k+l)‖4k+lu‖L2 .

So we finally estimate I2 by

(5.3.14)

|I2| = C‖4ju‖L2‖J1 + J2 + J3‖L2

≤ C‖4ju‖L2

∑

|j−k|≤M

‖4k+1u‖L2

∑

m<k−5

2(2+n/2)m‖4mu‖L2

+C‖4ju‖L2

∑

k≥j−M

‖4ku‖L2

l=5∑

l=−5

2(2+n/p)(k+l)‖4k+lu‖L2 .

The estimation of I3 is similar, so the details will be omitted. The key difference

between the two estimates is that, in the case of I2, integrating the gradient term by

parts and applying the incompressibility condition essentially removed one of the three

derivatives from I2. Because the gradient term in I3 is (∇u)T instead of ∇u, this does

not work when estimating I3, and the result is the presence of an extra derivative. The

estimate for I3 is

(5.3.15)

|I3| ≤ C‖4ju‖L2

∑

|j−k|≤M

‖4k+1u‖L2

∑

m<k−5

2(3+n/2)m‖4mu‖L2

+C‖4ju‖L2

∑

k≥j−M

‖4ku‖L2

l=5∑

l=−5

2(3+n/p)(k+l)‖4k+lu‖L2 .
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Using (5.3.14) and (5.3.15) in (5.2.28) we get

(5.3.16)

d

dt

(‖4ju‖2
L2 + α2‖A1/24ju‖2

L2

)

≤ C‖4ju‖L2

∑

|j−k|≤M

‖4k+1u‖L2

∑

m<k−5

2(3+n/2)m‖4mu‖L2

+C‖4ju‖L2

∑

k≥j−M

‖4ku‖L2

l=5∑

l=−5

2(3+n/p)(k+l)‖4k+lu‖L2 .

In the next section, we work on the left-hand side of (5.3.16).

5.4. Exploiting the LANS term

We remark that

(5.4.1) F(A1/24ju)(ξ) = |ξ|ψ̂j(ξ)û(ξ).

On the support of ψ̂j, we have that C2j ≤ |ξ| ≤ C ′2j, so by Plancherel’s Theorem we

have

(5.4.2) C22j‖4ju‖L2 ≤ ‖A1/24ju‖2
L2 ≤ C ′22j‖4ju‖L2 .

Applying this to (5.3.16), we get

(5.4.3)

(1 + 22j)
d

dt

(‖4ju‖2
L2

)

≤ C‖4ju‖L2

∑

|j−k|≤M

‖4k+1u‖L2

∑

m<k−5

2(3+n/2)m‖4mu‖L2

+C‖4ju‖L2

∑

k≥j−M

‖4ku‖L2

l=5∑

l=−5

2(3+n/2)(k+l)‖4k+lu‖L2 .

If d
dt

(‖4ju‖2
L2

) ≤ 0, then (vacuously) 22j d
dt

(‖4ju‖2
L2

)
is smaller than the right hand side

of (5.4.3). Alternatively, if d
dt

(‖4ju‖2
L2

)
> 0, then we still have that 22j d

dt

(‖4ju‖2
L2

)
is
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smaller than the right hand side of (5.3.16). So we have

(5.4.4)

22j d

dt

(‖4ju‖2
L2

)

≤ C‖4ju‖L2

∑

|j−k|≤M

‖4k+1u‖L2

∑

m<k−5

2(3+n/2)m‖4mu‖L2

+C‖4ju‖L2

∑

k≥j−M

‖4ku‖L2

l=5∑

l=−5

2(3+n/2)(k+l)‖4k+lu‖L2 .

Computing the time derivative, this becomes

(5.4.5)

22j d

dt
(‖4ju‖L2) ≤ C

∑

|j−k|≤M

‖4k+1u‖L2

∑

m<k−5

2(3+n/2)m‖4mu‖L2

+C
∑

k≥j−M

‖4ku‖L2

l=5∑

l=−5

2(3+n/p)(k+l)‖4k+lu‖L2 .

Next, we multiply both sides by q2rjq‖4ju‖q−1
L2 and sum over j, which gives

(5.4.6)
d

dt
‖u‖q

B̃r
2,q

≤ K1 + K2,

where

(5.4.7) K1 = Cq
∑
j≥0

2rjq2−2j‖4ju‖q−1
L2

∑

|j−k|≤M

‖4k+1u‖L2

∑

m<k−5

2(3+n/2)m‖4mu‖L2 ,

and

(5.4.8) K2 = Cq
∑
j≥0

2rjq2−2j‖4ju‖q−1
L2

∑

k≥j−M

‖4ku‖L2

l=5∑

l=−5

2(3+n/p)(k+l)‖4k+lu‖L2 .

We remark that the 2−2j term in K1 and K2 is the result of applying this procedure

to the LANS equations instead of the Navier-Stokes equations.
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5.5. Estimating K1 and K2

We begin by re-writing K1 as

(5.5.1) K1 = Cq
∑
j≥0

2rjq‖4ju‖q−1
L2

M∑

k=−M

‖4j+k+1u‖L2

∑

m<j+k−5

2(3+n/2)m−2j‖4mu‖L2 .

We start by working on the last summation. We have by Holder’s inequality that

(5.5.2)

∑

m<j+k−5

2(1+n/2)m22m−2j‖4mu‖2

≤ C

( ∑

m<j+k−5

2(1+n/2)qm‖4mu‖q
2

)1/q ( ∑

m<j+k−5

22q′(m−(j+k−5)22(k−5)q′
)1/q′

≤ C‖u‖
B̃

1+n/2
2,q

,

where q′ is the Holder conjugate exponent to q.

Returning to K1, we have

(5.5.3) |K1| ≤ C‖u‖
B̃

1+n/2
2,q

∑
j≥0

2rjq‖4ju‖q
L2

M∑

k=−M

‖4j+k+1u‖L2 .

For the remaining summation, we have

(5.5.4)
∑
j≥0

2rjq‖4ju‖q−1
L2

M∑

k=−M

‖4j+k+1u‖L2

=
∑
j≥0

2rj(q−1)‖4ju‖q−1
L2

M∑

k=−M

2r(j+k+1)2−r(k+1)‖4j+k+1u‖L2

≤ C

(∑
j≥0

2rj(q−1)q′‖4ju‖q′(q−1)

L2

)q′ (∑
j

(
M∑

k=−M

2r(j+k+1)2−r(k+1)‖4j+k+1u‖L2)q

)q

≤ C‖u‖q−1

B̃r
2,q

‖u‖ ˜Br
2,q
≤ C‖u‖q

B̃r
2,q

,

where q′ is again the Holder conjugate exponent to q. So we finally bound K1 by

(5.5.5) K1 ≤ C‖u‖q

B̃r
2,q

‖u‖
B̃

1+n/2
2,q

.
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Now we bound K2. We have

(5.5.6)

K2 = Cq
∑
j≥0

2rjq2−2j‖4ju‖q−1
L2

∑

k≥j−M

‖4ku‖L2

l=5∑

l=−5

2(3+n/p)(k+l)‖4k+lu‖L2

≤
∑

j

2rj(q−1)‖4ju‖q−1
L2

∑

k>−M

5∑

l=−5

2(r−2)j2(3+n/2)(j+k+l)‖4j+ku‖L2‖4j+k+lu‖L2 .

Using Holder’s inequality, we get

(5.5.7) |K2| ≤ C‖u‖q−1
Br

2,q
K̃,

where

(5.5.8) K̃ =

(∑
j

( ∑

k>−M

5∑

l=−5

2(r−2)j2(3+n/2)(j+k+l)‖4j+ku‖L2‖4j+k+lu‖L2

)q)1/q

.

Working on the exponents of 2, we have

(5.5.9)

2(r−2)j2(3+n/2)(j+k+l) = 2r(j+k)2−rk2−2(j+k+l)22(k+l)2(3+n/2)(j+k+l)

= 2r(j+k)2(1+n/2)(j+k+l)2k(2−r)22l.

Since the l-summation is finite, we replace the 22l term with a constant, and we have

(5.5.10)

K̃ ≤ C

(∑
j

( ∑

k>−M

2k(2−r)

5∑

l=−5

(2r(j+k)‖4j+ku‖2)(2
(1+n/2)(j+k+l)‖4j+k+lu‖L2)

)q)1/q

≤ C‖u‖
B

1+n/2
2,q

(∑
j

( ∑

k>−M

2k(2−r)

5∑

l=−5

(2r(j+k)‖4j+ku‖2)

)q)1/q

.

Applying Minkowski’s inequality, we get

(5.5.11)

|K̃| ≤ C‖u‖
B

1+n/2
2,q

∑

k>−M

2k(2−r)

(∑
j

(2r(j+k)‖4j+ku‖2)
q

)1/q

≤ C‖u‖
B

1+n/2
2,q

‖u‖Br
2,q

∑

k>−M

2k(2−r).
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This last sum will be finite provided r > 2. We remark that the restriction that r > 2

could be lifted by allowing for additional regularity in the B
1+n/2
2,q term. Specifically, by

choosing ε such that 2 < r + ε, then we would have

(5.5.12) |K̃| ≤ ‖u‖
B

1+n/2+ε
2,q

‖u‖Br
2,q

.

So finally plugging back into the K2 estimate, we get that

(5.5.13) |K2| ≤ C‖u‖q
Br

2,q
‖u‖

B
1+n/p
2,q

provided r > 2 and

(5.5.14) |K2| ≤ C‖u‖q
Br

2,q
‖u‖

B
1+n/2+ε
2,q

provided 2 < r + ε.

Plugging the K1 and K2 estimates into (5.4.6), we finally get

(5.5.15)
d

dt
‖u‖q

B̃r
2,q

≤ C‖u‖q

B̃r
2,q

‖u‖
B̃

1+n/2
2,q

for r > 2 and

(5.5.16)
d

dt
‖u‖q

B̃r
2,q

≤ C‖u‖q

B̃r
2,q

‖u‖
B̃

1+n/2+ε
2,q

for 2− r − ε < 0. This proves Proposition 5.2.4.

5.6. Proof of Global Existence

In this section, we will work under the assumption that r > 2, which allows the use

of the first relation in Proposition 5.2.4. The proof for the case with the other restriction

is similar.
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First, we re-write (5.5.16) as

(5.6.1)
d

dt
‖u‖B̃r

2,q
≤ C‖u‖B̃r

2,q
‖u‖

B̃
1+n/2
2,q

.

Applying Gronwall’s inequality to (5.6.1), we get

(5.6.2) ‖u(t)‖B̃r
2,q
≤ C‖u0‖B̃r

2,q
exp(C

∫ T

0

‖u(s)‖
B̃

1+n/2
2,q

ds).

If 0 ≤ a < 1, then

(5.6.3)

∫ T

0

t−ata‖u(s)‖
B̃

1+n/2
2,q

ds) ≤ C‖u‖a;1+n/2,2,q.

Similarly, if σ ≥ 1, then

(5.6.4)

∫ T

0

‖u(s)‖
B̃

1+n/2
2,q

ds) ≤ C‖u‖
Lσ(B

1+n/2
2,q )

.

Allowing Y to represent either Lσ(B
1+n/2
2,q ) or Ca;1+n/2,2,q, equation (5.6.2) gives

(5.6.5) ‖u(t)‖B̃r
2,q
≤ C‖u0‖Br

2,q
eC‖u‖Y .

This calculation leads is the hardest part of the following Proposition..

Proposition 5.6.1. Let u be a solution to (1.1.2) with initial data u0 ∈ B̃r
2,q where

r > 2 such that

(5.6.6) u ∈ BC([0, T ) : Br
2,q) ∩ Y,

where Y is either Lσ(B
1+n/2
2,q ) or Ca;1+n/2,2,q. Then

(5.6.7) ‖u(t)‖Br
2,q
≤ M

where M = C‖u0‖Br
2,q

exp(C‖u‖Y ).
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Alternatively, with X either Lσ(B
1+n/2+ε
2,q ) or Ca;1+n/2+ε,2,q and n− r − ε < 0, we get

(5.6.8) u ∈ BC([0, T ) : Br
2,q) ∩X,

with no restriction on r.

By our construction of Besov spaces, we need to show that

(5.6.9) ‖Ψ ∗ u(t)‖L2 ≤ M

and

(5.6.10) ‖u(t)‖
B̃

n/2
2,q

≤ M.

To prove this, we begin by using results from Section 3.6 to get that

(5.6.11) ‖Ψ ∗ u(t)‖L2 ≤ ‖u(t)‖L2 ≤ M,

which proves (5.6.9). We get (5.6.10) as an immediate consequence of (5.6.2). This

Proposition immediately gives Theorem 5.2.1.
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CHAPTER 6

An alternative approach to Besov space



6.1. Alternative approach to Besov spaces

In this chapter, we consider an alternative approach to a local existence result in Besov

spaces. This method modifies the work of [18], where the author considered generalized

Navier-Stokes equations in homogenous Besov spaces. Because our non-linearity is the

sum of a degree one operator and a degree zero operator, the LANS equation is ill-suited

to homogeneous solution space methods. Thus, our work here is to adapt [18] to the

LANS equation and to adapt homogeneous results to inhomogeneous ones.

6.2. Supporting results for arbitrary data

In this section we establish some supporting results for the existence result in the

next section.

Proposition 6.2.1. Let 4 < q ≤ ∞ and 2 ≤ p < ∞. Let r = n/p + 2/q and

2 < r + 6/q. Assume u0 ∈ B̃r
p,q, and let u be a solution to 1.1.2 with initial datum u0.

Set

(6.2.1) B(t) = ‖u‖q

Lq((0,t):B̃
r+2/q
p,q )

.

Then for any T > 0,

(6.2.2) B(t) ≤ C
∑

j

(1− Ej(qT ))2rjq‖4ju0‖q
p + C

∫ T

0

B2(t)dt

where Ej(t) = exp(−C22jt).
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To prove this, we begin by recalling equation (6.5.17), namely,

(6.2.3)

d

dt
‖4ju‖p + C22j‖4ju‖p

≤C
∑

|j−k|≤M

2k+1‖4k+1u‖p

∑

m<k−5

2(1+n/p)m‖4mu‖p

+C
∑

k>j−M

2(1+n/p)k‖4ku‖p

5∑

l=−5

2k+l‖4k+lu‖p.

Converting this into an integral equation, we get

(6.2.4)

‖4ju(·, t)‖p ≤CEj(t)‖4ju0‖p

+C

∫ t

0

Ej(t− s)N1ds

+C

∫ t

0

Ej(t− s)N2ds,

where

(6.2.5)

Ej(t) = exp(−C22jt),

N1 =
∑

|j−k|≤M

2k+1‖4k+1u‖p

∑

m<k−5

2(1+n/p)m‖4mu‖p,

N2 =
∑

k>j−M

2(1+n/p)k‖4ku‖p

5∑

l=−5

2k+l‖4k+lu‖p.

Multiplying both sides by 2(r+2/q)j, raising both sides to the qth power, summing over

j and integrating over (0, T ), we get

(6.2.6) B(t) ≤ M1 + M2 + M3
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where

(6.2.7)

M1 ≡ C

∫ T

0

∑
j

Eq
j (t)2

(r+2/q)jq‖4ju0‖q
pdt

M2 ≡ C

∫ T

0

∑
j

2(r+2/q)jqM21(t)dt

M3 ≡ C

∫ T

0

∑
j

2(r+2/q)jqM31(t)dt

and

(6.2.8)

M21(t) =

(∫ t

0

Ej(t− s)N1

)q

M31(t) =

(∫ t

0

Ej(t− s)N2ds

)q

.

Our task is to estimate M1, M2 and M3. We begin with M1, and observe that by

direct computation

(6.2.9)

∫ T

0

Eq
j (t)dt = C

∫ T

0

exp(−C22jt)dt = C2−2j(1− Ej(qT )).

Using this, we bound M1 by

(6.2.10)

M1(t) ≤ C
∑

j

2(r+2/q)jq(2−2j(1− Ej(qT ))‖4ju0‖q
p

≤ C
∑

j

(1− Ej(qT ))2rjq‖4ju0‖q
p.

To estimate M2, we begin with M21. For q > 2, since q−2
q

+ 2
q

= 1, Holder’s inequality

gives

(6.2.11)

(∫ t

0

Ej(t− s)N1ds

)q

≤
(∫ t

0

E
q

q−2

j (t− s)ds

)q−2 (∫ t

0

N
q/2
1 ds

)2

≤ C2−2j(q−2)

(
1− Ej(

qt

q − 2
)

)q−2 (∫ t

0

N
q/2
1 ds

)2

≤ C2−2j(q−2)

(∫ t

0

N
q/2
1 ds

)2
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where in the last line we used that Ej(t) ≤ 1 for t ≥ 0. Applying Holder’s inequality to

the remaining integral, we get

(6.2.12)

2−2j(q−2)

(∫ t

0

N
q/2
1 ds

)2

≤ 2−2j(q−2)C

∫ t

0

(
5∑

k=−5

2j+k‖4j+ku‖p

)q

ds

∫ t

0

( ∑

m<j+k−5

2(1+n/p)m‖4mu‖p

)q

ds

≤ C

∫ t

0

(
5∑

k=−5

‖4j+ku‖p

)q

ds

∫ t

0

( ∑

m<j+k−5

2(1+n/p)m2(j+k)(4/q−1)‖4mu‖p

)q

ds.

Working on the last integral, we have

(6.2.13)

∑

m<j+k−5

2(1+n/p)m2(j+k)(4/q−1)‖4mu‖p

=
∑

m<j+k−5

2(4/q+n/p)m2(j+k)(4/q−1)2(1−4/q)m‖4mu‖p

≤C‖u‖
B̃

4/q+n/p
p,q

( ∑

m<j+k−5

2(1−4/q)(m−j+k−5)q′
)1/q

≤ C‖u‖
B̃

4/q+n/p
p,q

.

We remark that this requires q > 4. Plugging this back into (6.2.12), we have

(6.2.14) 2−2j(q−2)

(∫ t

0

N
q/2
1 ds

)2

≤ C

∫ t

0

‖u‖q

B̃
4/q+n/p
p,q

∫ t

0

(
5∑

k=−5

‖4j+ku‖p

)q

ds,

and we use this to bound M21 by

(6.2.15) M21 ≤ CB(t)

∫ t

0

(
5∑

k=−5

‖4j+ku‖p

)q

ds,

where we set r = n/p + 2/q. Using (6.2.15), we bound M2 by

(6.2.16)

M2 ≤ C

∫ T

0

B(t)

(∑
j

2(r+2/q)jq

∫ t

0

(
5∑

k=−5

‖4j+ku‖p

)q

ds

)
dt

≤ C

∫ T

0

B(t)2dt.
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Now we consider M3, and we start with M31. As in the computation of M21, we have

(6.2.17) M31(t) ≤ C2−2j(q−2)

(∫ t

0

N
q/2
2 ds

)2

.

Then

(6.2.18)

N2 ≤ C
∑

k>j−M

2k‖4ku‖p

5∑

l=−5

2(r+2/q)(j+k)2(1−4/q)(j+k)‖4k+lu‖p

≤ C
∑

k>j−M

2k2(1−4/q)k‖4ku‖p

5∑

l=−5

2(r+2/q)(k+j)‖4k+lu‖p

≤ C‖u‖
B̃

r+2/q
p,q

∑

k>j−M

2k2(1−4/q)k‖4ku‖p.

Applying this to (6.2.17) and applying Holder’s inequality, we have

(6.2.19) M31 ≤ C2−2j(q−2)B(t)

∫ t

0

( ∑

k>j−M

2k2(1−4/q)k‖4ku‖p

)q

ds.

With this, we bound M3 with

(6.2.20)

M3 ≤ C

∫ T

0

(∑
j

2(r+2/q)jq2−2j(q−2)B(t)

∫ t

0

( ∑

k>j−M

2k2(1−4/q)k‖4ku‖p

)q

ds

)
dt

≤ C

∫ T

0

(
B(t)

∫ t

0

(∑
j

2(r+2/q−2+4/q)j
∑

k>j−M

2k2(1−4/q)k‖4ku‖p

)q

ds

)
dt

≤ C

∫ T

0

(
B(t)

∫ t

0

( ∑

k>−M

2k(2−r−6/q)
∑

j

2(r+2/q)(j+k)‖4j+ku‖p

)q

ds

)
dt

≤ C

∫ T

0

(
B(t)

∫ t

0

‖u‖q
B̃

r+2/q
p,q

ds

( ∑

k>−M

2k(2−r−6/q)

)q)
dt

≤ C

∫ T

0

B(t)2dt,

provided

(6.2.21)
∑

k

2k(2−r−6/q)
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is finite, which will hold provided 2 < r + 6/q.

Combining (6.2.10), (6.2.16), and (6.2.20) gives the Proposition. Next, we do a similar

calculation, this time for the operator Ψ.

Proposition 6.2.2. Let 2 ≤ p < ∞ and 1 ≤ q < ∞. Define r = n/p + 2/q, and

assume 2 < r + 6/q. Then if u solves (1.1.2), then

(6.2.22) ‖Ψ ∗ u(t)‖p ≤ C‖Ψ ∗ u0‖p + C‖u‖2

Lq(B
r+2/q
p,q )

.

We mirror the construction used in the proof of Proposition 6.5.1, only instead of

applying 4j to both sides of (1.1.2), we apply Ψ. We get

(6.2.23)
d

dt
‖Ψ ∗ u‖p ≤ C

∑

k

2(1+n/p)k‖4ku‖p

5∑

l=−5

2k+l‖4k+lu‖p.

This expression is simpler than the one found in (6.5.17) because the application of

Ψ annihilates the paraproduct pieces (5.2.18) and (5.2.19).

Integrating both sides we get

(6.2.24) ‖Ψ ∗ u(t)‖p ≤ C‖Ψ ∗ u0‖p + C

∫ T

0

∑

k

2(1+n/p)k‖4ku‖p

5∑

l=−5

2k+l‖4k+lu‖pdt.

Working on the summations, we have

(6.2.25)

∑

k

2(1+n/p)k‖4ku‖p

5∑

l=−5

2k+l‖4k+lu‖p

≤C
∑

k

2(1+n/(2p))k‖4ku‖p

5∑

l=−5

2(1+n/(2p))(k+l)‖4k+lu‖p

≤‖u‖
B

1+n/(2p)
p,q

∑

k

2k(1+n/(2p))‖4ku‖p.

We observe that, by basic algebra, 2 < n/p+8/q implies 1+n/(2p) < n/p+4/q. So, using

Besov Embedding, Young’s inequality, and the requirement that r+6/q = n/p+8/q > 2,
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we have

(6.2.26)

∑

k

2(1+n/p)k‖4ku‖p

5∑

l=−5

2k+l‖4k+lu‖p

≤C‖u‖
B

r+2/q
p,q

∑

k

2k(1+n/(2p)−r−2/q)2k(r+2/q)‖4ku‖p

≤C‖u‖2

B
r+2/q
p,q

.

Applying this to (6.2.24), and again applying Young’s inequality, we have

(6.2.27)

‖Ψ ∗ u(t)‖p ≤ C‖Ψ ∗ u0‖p + C

∫ T

0

‖u‖2

B
r+2/q
p,q

dt

≤ C‖Ψ ∗ u0‖p + C‖u‖
Lq(B

r+2/q
p,q )

‖u‖
Lq′ (Br+2/q

p,q )

Since our time interval I = (0, T ) is finite and 2 < q, we finally get

(6.2.28) ‖Ψ ∗ u(t)‖p ≤ C‖Ψ ∗ u0‖p + C‖u‖2

Lq(B
r+2/q
p,q )

.

This finishes the Proposition.

6.3. Results for the operator F

In this section, we let F = F (v, w) be an operator and assume F satisfies

(6.3.1) ∂tF − AF = −Pα(v · ∇)w − Pα(div τα(v, w)).

We prove the following proposition.

Proposition 6.3.1. Let 4 < q ≤ ∞, 2 ≤ p < ∞, and r = n/p+2/q, and 2 < r+6/q.

Assume F0 ∈ B̃r
p,q (where we recall F0 = F (x, 0)) and

(6.3.2) v, w ∈ Lq((0, T ) : B̃r+2/q
p,q )
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for some T > 0. Then any solution of (6.5.34) satisfies

(6.3.3)

‖F‖q

Lq((0,T ):B̃
r+2/q
p,q )

≤ C
∑

j

(1− Ej(qT ))2rjq‖4jF0‖q
p

+ C

∫ T

0

‖v‖q

Lq((0,t):B̃
r+2/q
p,q )

‖w‖q

Lq((0,t):B̃
r+2/q
p,q )

dt

We start with equation (6.5.37):

(6.3.4)
d

dt
‖4jF‖p + C22j‖4jF‖p ≤ I1 + I2 + I3

where

(6.3.5) I1 = C
∑

|j−k|≤M

2k+1‖4k+1w‖p

∑

m<k−5

2(1+n/p)m‖4mv‖p = Ĩ1

(6.3.6) I2 = C
∑

|j−k|≤M

2k+1‖4k+1v‖p

∑

m<k−5

2(1+n/p)m‖4mw‖p = Ĩ2

and

(6.3.7) I3 = C
∑

k>j−M

2(1+n/p)k‖4jv‖p

k+5∑

l=k−5

2k+l‖4k+lw‖p = Ĩ3.

Re-writing (6.3.4) as an integral equation, we have

(6.3.8) ‖4jF‖p ≤ CEj(t)‖4jF0‖p + C

∫ t

0

Ej(t− s)(I1 + I2 + I3)ds.

Multiplying by 2(r+2/q)j, raising both sides to the qth power, summing over j and inte-

grating over the interval (0, T ), we get

(6.3.9) ‖F‖q

Lq((0,T ):B̃
r+2/q
p,q

≤ H1 + H2 + H3 + H4
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where

(6.3.10)

H1 = C

∫ T

0

∑
j

Eq
j (t)2

(r+2/q)jq‖4jF0‖q
pdt,

H2 = C

∫ T

0

∑
j

2(r+2/q)jqH21(t)dt

H3 = C

∫ T

0

∑
j

2(r+2/q)jqH31(t)dt

H4 = C

∫ T

0

∑
j

2(r+2/q)jqH41(t)dt,

and

(6.3.11)

H21(t) =

(∫ t

0

Ej(t− s)I1ds

)q

H31(t) =

(∫ t

0

Ej(t− s)I2ds

)q

H41(t) =

(∫ t

0

Ej(t− s)I3ds

)q

.

Observing that the Hi are similar to the Mj from the previous proposition, we get

(6.3.12)

H1 ≤ C
∑

j

(1− Ej(qT ))2rjq‖4jF0‖q
p

H2 ≤ C

∫ T

0

‖v‖q

Lq((0,t):B̃
r+2/q
p,q )

‖w‖q

Lq((0,t):B̃
r+2/q
p,q )

dt

H3 ≤ C

∫ T

0

‖v‖q

Lq((0,t):B̃
r+2/q
p,q )

‖w‖q

Lq((0,t):B̃
r+2/q
p,q )

dt

H4 ≤ C

∫ T

0

‖w‖q

Lq((0,t):B̃
r+2/q
p,q )

‖v‖q

Lq((0,t):B̃
r+2/q
p,q )

dt,

which proves the Proposition.

Proposition 6.3.2. Let 2 ≤ p < ∞ and 1 ≤ q < ∞. Define r = n/p + 2/q, and

assume 2 < r + 2/q. Then if u solves (1.1.2), then

(6.3.13) ‖Ψ ∗ F (t)‖p ≤ C‖Ψ ∗ F0‖p + C‖v‖
Lq(B

r+2/q
p,q )

‖w‖
Lq(B

r+2/q
p,q )

.
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As in Proposition 6.2.2, applying Ψ to our operator equation gives the following

modified version of (6.5.37):

(6.3.14)
d

dt
‖Ψ ∗ F‖p ≤ C

∑

k>j−M

2(1+n/p)k‖4jv‖p

k+5∑

l=k−5

2k+l‖4k+lw‖p.

Applying the argument used for Proposition 6.2.2 gives

(6.3.15) ‖Ψ ∗ F‖p ≤ C‖Ψ ∗ F0‖p + C‖v‖
Lq(B

r+2/q
p,q )

‖w‖
Lq(B

r+2/q
p,q )

.

6.4. Local Existence with arbitrary initial data

In this section we prove our local existence theorem.

Theorem 6.4.1. Let 4 < q ≤ ∞. Let 2 ≤ p < ∞. Let r = n/p + 2/q, and let

u0 ∈ Br
p,q. Also assume 2 < r + 2/q. Then there exists a T = T (u0) > 0 and a unique

solution u of (1.1.2) such that

(6.4.1) u ∈ X ∩ Z

where

(6.4.2) X = C([0, T ) : Br
p,q), Z = Lq

(
(0, T ) : Br+2/q

p,q

)
.

We also note that for u0, v0 ∈ Br
p,q, the corresponding solutions u(t), v(t) will satisfy

‖u− v‖X∩Z ≤ C‖u0 − v0‖Br
p,q

.

First, we will prove that the map Φ(u) = ū + F (u, u) is a contraction on the space

D = {u ∈ Z : ‖u‖Z ≤ R}, where ū(t, x) = Γ(t)u0(x) and F (u, u) = G · V α(u). As usual,

we decompose the Z-norm as

(6.4.3) ‖u‖Z ≤
(∫ T

0

‖Ψ ∗ u(t)‖q
pdt

)1/q

+

(∫ T

0

‖u(t)‖q

B̃
r+2/q
p,q

dt

)1/q

.
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We will denote the first piece as Z̄ and the second as Z̃.

Observing that

(6.4.4) ∂tū−4ū = 0

and that ū(0, x) = u0(x), a slight modification to the proof of Proposition 6.2.1 gives

that

(6.4.5)

‖ū‖q

Z̃
≤ C

∑
j

(1− Ej(qT ))2rjq‖4jū‖q
p

≤ C
∑

j

2rjq‖4ju0‖q
p ≤ ‖u0‖q

Br
p,q

.

This shows that ‖ū‖Z̃ is finite. We remark that applying the Dominated Convergence

Theorem to the first inequality in (6.4.5) gives that ‖ū‖Z̃ → 0 as T → 0.

Applying Proposition 3.8.1, we have

(6.4.6) ‖ū‖Z̄ ≤ C‖u‖H−2/q,p ≤ C‖u0‖Br
p,q

,

provided q > p. By Corollary 3.8.3, we have that ‖ū‖Z̄ can be made arbitrarily small by

choosing a sufficiently small T . Combining these two results, we get that ‖ū‖Z is finite

and tends to zero as T tends to zero.

Now we consider F . We observe that F satisfies

(6.4.7) ∂tF −∇F = V α(u)

and F (u, u)(x, 0) = 0, so Proposition 6.3.1 gives

(6.4.8)

‖F‖q

Z̃
≤ C

∫ T

0

‖u‖2

Lq((0,t):B̃
r+2/q
p,q )

dt

≤ CT‖u‖2
Z ≤ CTR2

for any u ∈ D.
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Similarly, applying Proposition 6.3.2 gives

(6.4.9) ‖Ψ ∗ F‖Z̄ ≤ C

∫ T

0

‖u‖2
Zdt ≤ CT‖u‖2

Z ≤ CTR2.

So for sufficiently small R and T , Φ : Z → Z. Now we show that Φ is a contraction.

We note that

(6.4.10) Φu− Φv = F (u, u)− F (v, v) = −(F (u, u− v) + F (u− v, v)).

We remark that F (u, u− v) satisfies

(6.4.11) ∂tF − AF = V α(u, u− v)

and F (u, u− v)(x, 0) = 0, so using Proposition 6.3.1 and Proposition 6.3.2 we have

(6.4.12) ‖F (u, u− v)‖q
Z ≤ C‖u‖q

Z‖u− v‖q
Z .

Obtaining a similar bound for F (u− v, v) and combining the results, we have

(6.4.13) ‖Φu− Φv‖Z ≤ C(‖u‖Z + ‖v‖Z)‖u− v‖Z ≤ CR‖u− v‖Z .

So for small enough R, Φ is a contraction on D for sufficiently small T . To finish the

theorem, we need to show that the solution u ∈ C([0, T ) : Br
p,q).

We start with Proposition 6.2.2 and get

(6.4.14) ‖Ψ ∗ u(t)‖p ≤ C‖Ψ ∗ u0‖p + C‖u‖2

Lq(B
r+2/q
p,q )

.

For the second piece of the Besov norm, we bound Ej by 1 and (6.2.4) becomes

(6.4.15)

‖4ju(·, t)‖p ≤C‖4ju0‖p + C

∫ t

0

Ej(t− s)2(2+n/p)j‖4ju(·, s)‖2
pds

+C

∫ t

0

Ej(t− s)‖4ju(·, s)‖p

∑
m<j−5

2(1+n/p)m+j‖4mu(·, s)‖pds.
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Multiplying both sides by of (6.4.15) by 2rj, raising both sides to the qth power and

summing over j gives

(6.4.16) ‖u(t)‖q

B̃r
p,q
≤ C‖u0‖B̃r

p,q
+ N1 + N2

where

(6.4.17)

N1 ≡ C
∑

j

2(2+n/p+r)jqN11(t)

N2 ≡ C
∑

j

2rjqN21(t)

and

(6.4.18)

N11(t) =

(∫ t

0

Ej(t− s)‖4ju‖2
pds

)q

N21(t) =

(∫ t

0

Ej(t− s)‖4ju‖p

∑
m<j−5

2(1+n/p)m+j‖4mu‖p

)q

.

Estimating these terms as in Proposition 6.2.1, we eventually get

(6.4.19) ‖u(t)‖q

B̃r
p,q
≤ C‖u0‖B̃r

p,q
+ ‖u‖Z

which proves u ∈ C([0, T ) : Br
p,q).

Dependance on the initial data follows from the standard argument.

6.5. Additional Besov computations

In this section we prove two additional Besov space results.

Proposition 6.5.1. Any solution u of (1.1.2) satisfies

(6.5.1)
d

dt
‖u‖q

B̃r
p,q

+ Cq‖u‖q

B̃
r+2/q
p,q

≤ Cq‖u‖q

B̃
r+2/q
p,q

‖u‖
B̃

n/p
p,q

,

provided r ∈ R, n ≥ 2, 1 ≤ q < ∞ and 2 ≤ p < ∞ and 2− r − 2/q < 0.
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This is similar to Theorem 4.1 in [18].

We begin by writing (1.1.2) as

(6.5.2) ∂tu− Au + Pα(u · ∇)u + Pα(div ταu) = 0,

and then, for any j ≥ 0, apply 4j to (6.5.2) to get

(6.5.3) ∂t4ju + (u · ∇)4ju− A4ju = −[Pα4j, u · 4]u− Pα4j(div ταu)

where [·, ·] represents the commutator. This differs from equation (4.9) in [18] only in the

presence of the term involving τα. Following the argument used in [18], we eventually

get

(6.5.4)

d

dt
‖4ju‖p

p + C22j‖4ju‖p
p

≤C‖4ju‖p−1
p (H + J)

where

(6.5.5) H = ‖[Pα4j, u · ∇]u‖p

and

(6.5.6) J = ‖Pα4j(div ταu)‖p.

Computing the time derivative and canceling the common ‖4ju‖p−1
p factor, we have

(6.5.7)

d

dt
‖4ju‖p + C22j‖4ju‖p

≤C(H + J)
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Since the calculations required to estimate H and J are similar (and the estimate for

H is essentially identical to the one in [18]), we will only estimate J . We remark that to

estimate J , it is sufficient to estimate ‖Pα4j(div (1−α24)−1(∇u ·∇u))‖p, and we have

(6.5.8) ‖Pα4j(div (1− α24)−1(∇u · ∇u))‖pC ≤ ‖4j(∇u · ∇u)‖p.

Using (5.2.18), (5.2.19), and (5.2.20), we get

(6.5.9) ‖4j(∇u∇u)‖p ≤ J1 + J2

where

(6.5.10) |J1| ≤ C‖
∑

|j−k|≤M

4jSk−5(∇u)4k+1∇u‖p

and

(6.5.11) |J2| ≤ C‖
∑

k≥j−M

4j4k(∇u)
5∑

l=−5

4k+l∇u‖p.

Applying Young’s inequality and Bernstein’s inequality, we get

(6.5.12)

|J1| ≤ C
∑

|j−k|≤M

‖∇Sk−5u‖∞‖∇4k+1u‖p

≤ C
∑

|j−k|≤M

2k+1‖4k+1u‖p

∑

m<k−5

2(1+n/p)m‖4mu‖p

and

(6.5.13)

|J2| ≤ C
∑

k>j−M

‖∇4ku‖∞
5∑

l=−5

‖∇4k+lu‖p

≤ C
∑

k>j−M

2(1+n/p)k‖4ku‖p

5∑

l=−5

2k+l‖4k+lu‖p.
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Combining the estimates on J1 and J2 gives

(6.5.14)

|J | ≤C
∑

|j−k|≤M

2k+1‖4k+1u‖p

∑

m<k−5

2(1+n/p)m‖4mu‖p

+C
∑

k>j−M

2(1+n/p)k‖4ku‖p

5∑

l=−5

2k+l‖4k+lu‖p.

Using methods similar to those in Section 5.3, we get

(6.5.15)

|H| ≤C
∑

|j−k|≤M

‖4k+1u‖p

∑

m<k−5

2(1+n/p)m‖4mu‖p

+C
∑

k>j−M

2(1+n/p)k‖4ku‖p

5∑

l=−5

‖4k+lu‖p.

Since j ≥ 0, we have

(6.5.16)

|H|+ |J | ≤C
∑

|j−k|≤M

2k+1‖4k+1u‖p

∑

m<k−5

2(1+n/p)m‖4mu‖p

+C
∑

k>j−M

2(1+n/p)k‖4ku‖p

5∑

l=−5

2k+l‖4k+lu‖p.

Applying this to (6.5.7) gives

(6.5.17)

d

dt
‖4ju‖p + C22j‖4ju‖p

≤C
∑

|j−k|≤M

2k+1‖4k+1u‖p

∑

m<k−5

2(1+n/p)m‖4mu‖p

+C
∑

k>j−M

2(1+n/p)k‖4ku‖p

5∑

l=−5

2k+l‖4k+lu‖p.

Multiplying both sides by q2rjq‖4ju‖q−1
p and summing over j, we get

(6.5.18)
d

dt
‖u‖q

B̃r
p,q

+ Cq‖u‖q

B̃
r+2/q
p,q

≤ I1 + I2

where

(6.5.19) I1 = C
∑

j

2rjq‖4ju‖q−1
p

M∑

k=−M

2j+k+1‖4j+k+1u‖p

∑

m<j+k−5

2(1+n/p)m‖4mu‖p
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and

(6.5.20) I2 = C
∑

j

2rjq‖4ju‖q−1
p

∑

k>j−M

2(1+n/p)k‖4ku‖p

5∑

l=−5

2k+l‖4k+lu‖p.

We start with I1. Manipulating the powers of 2, we have

(6.5.21) 2rjq2j+k+12(1+n/p)m = 2(r+2/q)jq2−(j+k+l)2nm/p2m−(j+k−5)2C ,

where C is a fixed finite number resulting from manipulating 2j. Applying this to I1, we

have

(6.5.22) I1 ≤ C
∑

j

2(r+2/q)jq‖4ju‖q−1
p

(
M∑

k=−M

‖4j+k+1u‖pI1,1

)
,

where

(6.5.23) I1,1 =
∑

m<j+k−5

2mn/p2m−(j+k−5)‖4mu‖p.

Using Holder’s inequality for sums, we have

(6.5.24)

I1,1 ≤
( ∑

m<k+j−5

2(n/p)qm‖4mu‖q
p

)1/q ( ∑

m<j+k−5

2(m−(j+k−5))q′
)1/q′

≤ C‖u‖
B̃

n/p
p,q

.

Returning to I1, we have

(6.5.25)

I1 ≤ C‖u‖
B̃

n/p
p,q

∑
j

2(r+2/q)j(q−1)‖4ju‖q−1
p

(
M∑

k=−M

2(r+2/q)(j+k+1)‖4j+k+1u‖p

)

≤ C‖u‖
B̃

n/p
p,q
‖u‖q−1

B̃
r+2/q
p,q

(∑
j

(
5∑

k=−5

2(r+2/q)(j+k+1)‖4j+k+1u‖p

)q)1/q

≤ C‖u‖
B̃

n/p
p,q
‖u‖q

B̃
r+2/q
p,q

.
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Now we work on I2. Manipulations similar to those used in (5.5.9) gives

(6.5.26) I2 ≤ C
∑

j

2(r+2/q)j(q−1)‖4ju‖q−1
p I2,1

where

(6.5.27) I2,1 =
∑

k>M

2k(2−r−2/q)2(r+2/q)(j+k)‖4(j+k)u‖p

5∑

l=−5

2(n/p)(j+k+l)‖4j+k+lu‖p.

Applying Holder’s inequality gives

(6.5.28) I2 ≤ C‖u‖q−1

B̃
r+2/q
p,q

‖I2,1‖lq .

To compute ‖I2,1‖lq , we use Minkowski’s inequality for sums and get

(6.5.29) I2,1 ≤ C
∑

k>−M

2k(2−r−2/q)

5∑

l=−5

(∑
j

(
2(r+2/q)(j+k)‖4(j+k)u‖pI2,2

)q

)1/q

where I2,2 is defined by

(6.5.30) I2,2 = 2(n/p)(j+k+l)‖4j+k+lu‖p ≤ C‖u‖
B̃

n/p
p,∞

≤ C‖u‖
B̃

n/p
p,q

,

and the last line applied Besov embedding (Theorem 4.8.1). So finally we bound ‖I2,1‖lq

by

(6.5.31) ‖I2,1‖lq ≤ C‖u‖
B̃

n/p
p,q
‖u‖

B̃
1+2/q
p,q

∑

k

2k(2−r−2/q).

The last sum will be finite provided 2 < r − 2/q, and we bound I2 by

(6.5.32) I2 ≤ C‖u‖
B̃

n/p
p,q
‖u‖q

B̃
1+2/q
p,q

.

Using the bounds on I1 and I2 in (6.5.18), we finally get

(6.5.33)
d

dt
‖u‖q

B̃r
p,q

+ Cq‖u‖q

B̃
r+2/q
p,q

≤ C‖u‖
B̃

n/p
p,q
‖u‖q

B̃
r+2/q
p,q

which proves Proposition 6.5.1.
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Our second estimate is an operator estimate. We recall our previous constructions

for the operator F . We let F = F (v, w) be an operator and assume F satisfies

(6.5.34) ∂tF − AF = −Pα(v · ∇)w − Pα(div τα(v, w)).

We have the following Proposition, which is similar to Theorem 4.3 in [18].

Proposition 6.5.2. Let r ∈ R and q ∈ [1,∞). Assume v, w are in

(6.5.35) L∞([0, T ) : B̃r
p,q) ∩ Lq([0, T ) : B̃r+2/q

p,q )

for 0 < T ≤ ∞. Then any solution F of (6.5.34) satisfies

(6.5.36)

d

dt
‖F‖q

B̃r
p,q

+ Cq‖F‖q

B̃
r+2/q
p,q

≤Cq
(
‖w‖q

B̃
r+2/q
p,q

‖v‖q

B̃
n/p
p,q

+ ‖v‖q

B̃
r+2/q
p,q

‖w‖q

B̃
n/p
p,q

)
.

We again observe that it is sufficient to consider (1 − α24)−1(∇v · ∇w) in place of

τα(v, w). Following [18], we have

(6.5.37)

d

dt
‖4jF‖p + C22j‖4jF‖p

≤C‖4j(v · ∇)w‖p + C‖4j(∇v · ∇w)‖p.

The estimates for ‖4j(v · ∇)w‖p and ‖4j(∇v · ∇w)‖p are similar, so we estimate

‖4j(∇v · ∇w)‖p. Using (5.2.18), (5.2.19), and (5.2.20), we have

(6.5.38) ‖4j(∇v · ∇w)‖p ≤ I1 + I2 + I3

where

(6.5.39) I1 = C
∑

|j−k|≤M

‖Sk−5∇v‖∞‖4k+1∇w‖p
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(6.5.40) I2 = C
∑

|j−k|≤M

‖Sk−5∇w‖∞‖4k+1∇v‖p

and

(6.5.41) I3 = C
∑

k>j−M

‖4k∇v‖∞(
k+5∑

l=k−5

‖4k+l∇w‖p).

Applying Bernstein’s inequality (Theorem 4.8.6) gives

(6.5.42) I1 ≤ C
∑

|j−k|≤M

2k+1‖4k+1w‖p

∑

m<k−5

2(1+n/p)m‖4mv‖p = Ĩ1

(6.5.43) I2 ≤ C
∑

|j−k|≤M

2k+1‖4k+1v‖p

∑

m<k−5

2(1+n/p)m‖4mw‖p = Ĩ2

and

(6.5.44) I3 ≤ C
∑

k>j−M

2(1+n/p)k‖4jv‖p

k+5∑

l=k−5

2k+l‖4k+lw‖p = Ĩ3.

We define the right hand sides of (6.5.42), (6.5.43), and (6.5.44) as Ĩ1, Ĩ2, and Ĩ3,

respectively. Next, we have

(6.5.45) ‖4j(v · ∇)w‖p ≤ H1 + H2 + H3

where

(6.5.46)

H1 = C
∑

|j−k|≤M

2k+1‖4k+1w‖p

∑

m<k−5

2(n/p)m‖4mv‖p

H2 = C
∑

|j−k|≤M

‖4k+1v‖p

∑

m<k−5

2(1+n/p)m‖4mw‖p

H3 = C
∑

k>j−M

2(1+n/p)k‖4jv‖p

k+5∑

l=k−5

‖4k+lw‖p.
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Remarking that Hi ≤ Ĩi, we have our bound for (6.5.38). Using this bound in (6.5.37),

multiplying by q2rjq‖4F‖q−1
p , and summing over j gives

(6.5.47)
d

dt
‖F‖q

Ḃr
p,q

+ Cq‖F‖q

Ḃ
r+2/q
p,q

≤ J1 + J2 + J3

where

(6.5.48)

J1 = Cq
∑

j

2rjq‖4jF‖q−1
p Ĩ1,

J2 = Cq
∑

j

2rjq‖4jF‖q−1
p Ĩ2,

J3 = Cq
∑

j

2rjq‖4jF‖q−1
p Ĩ3.

From here, we mimic the argument used for Proposition 6.5.1 and get

(6.5.49)

d

dt
‖F‖q

Ḃr
p,q

+ Cq‖F‖q

Ḃ
r+2/q
p,q

≤
(
‖v‖

B̃
n/p
p,q
‖w‖

B̃
r+2/q
p,q

+ ‖w‖
B̃

n/p
p,q
‖v‖

B̃
r+2/q
p,q

)
‖F‖q−1

B̃
r+2/q
p,q

.

Applying Proposition (3.10.4) gives

(6.5.50)

d

dt
‖F‖q

Ḃr
p,q

+ Cq‖F‖q

Ḃ
r+2/q
p,q

≤‖v‖q

B̃
n/p
p,q

‖w‖q

B̃
r+2/q
p,q

+ ‖w‖q

B̃
n/p
p,q

‖v‖q

B̃
r+2/q
p,q

which proves Proposition 6.5.2.
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