Incorporating the Morphodynamics in ADCIRC Using Time-Varying Bathymetry

A Gharagozlou\textsuperscript{1},
JC Dietrich\textsuperscript{1}, JF Gorski\textsuperscript{1}, TR Fulle\textsuperscript{1}, D Anderson\textsuperscript{1}

\textsuperscript{1}Dep’t of Civil, Construction, and Environmental Engineering, NC State University

ADCIRC Users Group Meeting, Mar 30-31, 2020
Introduction
Isabel Inlet (2003)
Introduction

Existing Capability with Static Ground Surface
Introduction

Existing Capability with Static Ground Surface
Introduction
Existing Capability with Static Ground Surface
Introduction
Existing Capability with Static Ground Surface
Introduction

Existing Capability with Static Ground Surface
Introduction

Existing Capability with Static Ground Surface
Introduction
Existing Capability with Static Ground Surface
Introduction
Existing Capability with Static Ground Surface
Introduction

Existing Capability with Static Ground Surface
Introduction

Existing Capability with Static Ground Surface
Introduction
Existing Capability with Static Ground Surface
Introduction

Existing Capability with Static Ground Surface
Introduction
Existing Capability with Static Ground Surface
Introduction
Existing Capability with Static Ground Surface
Introduction
Existing Capability with Static Ground Surface
Introduction

Existing Capability with Static Ground Surface
Introduction

Existing Capability with Static Ground Surface
Introduction

Existing Capability with Static Ground Surface
Goals and Objectives

Goals:
1. Better understand the storm-induced erosion of barrier islands
2. Develop ways to represent that erosion in predictive models on large domains

Objectives:
1. Explore the Time-Varying Bathymetry module in ADCIRC
2. Develop a high-resolution hindcast of inlet creation in a barrier island system
3. Implement a two-way coupling of small-scale erosion to larger-scale flooding models
Dr. Chris Massey (USACE) added capability for **time-varying bathymetry**:

- Occurs at start of time step:

  ![Time Step Loop Diagram](image)

- Control over timing during simulation:

  ![Time Varying Bathymetry Diagram](image)
Time-Varying Bathymetry
Implementing the Ground Surface Change Using DEMs

Changes in ground surface, specified at only the vertices near the breach

- Linear transition between Pre- and Post-storm DEMs.
  - Location and magnitude of erosion is coming from the post-storm survey
  - Controlling the erosion over 1 day, during the landfall of the storm
  - Incremental variations:
    - Changes over 1 hour
    - Static over 2 hours
Isabel Inlet
Post-Storm Ground Surface
Isabel Inlet
Ground Surface Variation Using Observation
Isabel Inlet

Ground Surface Variation Using Observation
Isabel Inlet
Ground Surface Variation Using Observation
Isabel Inlet
Ground Surface Variation Using Observation
Isabel Inlet
Ground Surface Variation Using Observation
Isabel Inlet
Ground Surface Variation Using Observation
Isabel Inlet
Ground Surface Variation Using Observation
Isabel Inlet
Ground Surface Variation Using Observation
Isabel Inlet
Ground Surface Variation Using Observation
Isabel Inlet
Ground Surface Variation Using Observation
Isabel Inlet
Ground Surface Variation Using Observation
Isabel Inlet
Ground Surface Variation Using Observation
Isabel Inlet
Ground Surface Variation Using Observation
Isabel Inlet
Ground Surface Variation Using Observation
Isabel Inlet
Ground Surface Variation Using Observation
Isabel Inlet
Ground Surface Variation Using Observation
Isabel Inlet
Ground Surface Variation Using Observation
Isabel Inlet
Ground Surface Variation Using Observation
Isabel Inlet
Ground Surface Variation Using Observation
Isabel Inlet
Ground Surface Variation Using Observation
Isabel Inlet
Ground Surface Variation Using Observation
Isabel Inlet
Ground Surface Variation Using Observation
Isabel Inlet
Ground Surface Variation Using Observation
Isabel Inlet
Ground Surface Variation Using Observation
Isabel Inlet
Ground Surface Variation Using Observation
Isabel Inlet
Ground Surface Variation Using Observation
Isabel Inlet
Ground Surface Variation Using Observation
Isabel Inlet
Ground Surface Variation Using Observation
Isabel Inlet
Ground Surface Variation Using Observation
Isabel Inlet
Water Elevation

NC STATE UNIVERSITY

35.22°
35.24°

35.00 m/s

09/17/2003
00:36:59

-75.68°
-75.66°
-75.64°

m
3
2
1
0
-1
Isabel Inlet
Water Elevation

[Graph depicting water elevation at Isabel Inlet with NC State University logo and color scale indicating m/s and m.]
Isabel Inlet
Water Elevation

35.24°
35.22°
-75.68°
-75.66°
-75.64°

NC STATE UNIVERSITY

09/16/2003
14:30:00

35.00 m/s

m

3
2
1
0
-1
Isabel Inlet
Water Elevation
How can we represent the full effects of Isabel Inlet?

- Need erosion model on smaller domains
  - Typically consider both hydro- and morphodynamics
  - Employed on domains of only a few kilometers
  - We will use XBeach

- Need circulation models on larger domains
  - Bring in winds, waves, storm surge
  - Typically solve the shallow-water equations with a static ground surface
  - We will use ADCIRC
Time-Varying Bathymetry
eXtreme Beach (XBeach)

- Open-source model developed in the Netherlands
- Capable of simulating hydrodynamic and morphodynamic processes
- Applied typically at beach scales (a few kilometers)

Passeri et al. (2018)
ADCIRC+XBeach
ADCIRC Mesh
ADCIRC + XBeach
XBeach Mesh
Domain Size:
- 2.2 km × 2.2 km

Resolution:
- Alongshore: 2 to 5 m
- Cross-shore: 2 to 15 m

Layers:
- Pre-storm: bathy/topo
- BC: ADCIRC+SWAN
Isabel Inlet
XBeach Hindcast of Inlet Creation
Time-Varying Bathymetry
Implementing the Ground Surface Change Using XBeach

Changes in ground surface, specified at only the vertices near the breach
– Beach erosion and breaching is modeled by XBeach
  – Spatial and temporal evolution of breaching is coming from XBeach prediction.
  – Bed update takes place hourly for 3 days
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet

Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Ground Surface Variation Using XBeach
Isabel Inlet
Water Elevation
Isabel Inlet Water Elevation
Isabel Inlet
Water Elevation
Isabel Inlet
Water Elevation
Isabel Inlet
Water Elevation
Isabel Inlet
Water Elevation
Isabel Inlet
Water Elevation
Isabel Inlet
Water Elevation
Isabel Inlet
Water Elevation
Isabel Inlet Water Elevation
Isabel Inlet
Water Elevation
Isabel Inlet
Water Elevation
Isabel Inlet
Water Elevation
Isabel Inlet
Water Elevation
Isabel Inlet
Water Elevation
Isabel Inlet
Water level on the sound side

![Water level graph]
Summary and Future Work
Coupling of Inlet-Scale Erosion and Region-Scale Flooding

1. Static ground surface
   - Does not include erosion
   - Prevents flooding into back-bay

2. Updating the ground surface with pre- and post-storm DEMs
   - Hindcast mode
   - Timing of erosion in not accurate

3. Two-way coupling of small-scale erosion to larger-scale flooding
   - Predictive mode
   - Waves and water levels to XBeach, erosion timing to ADCIRC
   - Significant flows over and through the Isabel Inlet