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ABSTRACT 
SHERITHA P. LEE:  Chronic Inflammation in Sickle Cell Disease: Potential Role of 

Platelets and the Inflammatory Mediator CD40L 
(Under the direction of Leslie V. Parise, PhD) 

 
 

 
Chronic inflammation is a poorly understood, but problematic, manisfestation of sickle cell disease 

(SCD).  The potent inflammatory mediator CD40L increases leukocyte proliferation, endothelial 

adhesiveness and procoagulant activity once it is exposed and released from encrypted sites following 

platelet activation.  Since elevated leukocyte counts, adhesion and coagulation are associated with 

more clinically severe courses of SCD along with platelets that are more activated than normal, 

platelet CD40L is hypothesized to be an important mediator of inflammation in SCD.  Data shown 

here indicate that CD40L is thirty-fold higher in SCD plasma but significantly reduced in SCD 

platelets.  SCD plasma induces B cell proliferation, endothelial activation and procoagulant tissue 

factor production, all in a manner partially dependent on recognition of CD40L.  When CD40L 

activity was blocked in a mouse model of SCD, lung, liver and kidney pathology was demonstrably 

reduced.  More dramatically, anti-CD40L treatment of SCD mice prevented the architectural 

disruption and drastic enlargement of the spleen that is characteristic of SCD.  These data suggest that 

functional CD40L is available and likely mediates inflammation in SCD.  Furthermore, in a phase I 

clinical trial, the αIIbβ3 antagonist eptifibatide reduced plasma CD40L, favorably altered the 

inflammatory cytokine profile of SCD plasma and was well-tolerated by SCD patients.  This study 

provides the first evidence that inflammation and organ pathology in SCD are mediated by platelet-

derived CD40L.  Since plasma CD40L can be safely reduced by anti-platelet medication, we identify 

both CD40L and platelets as potential therapeutic targets to treat SCD.  
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CHAPTER I 

BACKGROUND AND SIGNIFICANCE 

  

Historical Overview 

Sickle cell disease (SCD) can be traced back as far as 1670 in 9 successive generations of at 

least one Ghanaian family.1  Long-standing beliefs and practices of the Yoruba and Ibo of 

Nigeria suggest that Africans may have had an awareness of SCD that predates oral and 

written histories.2,3  The transport of millions of Africans via the Atlantic slave trade led to 

the dispersal of the sickle gene and SCD throughout the Americas.4  The disease first came 

to the attention of Western medicine in 1910 when the blood cells of an anemic West Indian 

student were described as abnormally sickle-shaped.5 

 

Later studies showed that sickling is reversible6 and occurs in response to a decrease in 

oxygen,7 suggesting the involvement of hemoglobin (Hb).  The relationship became clearer 

when Hb from SCD patients, like the red cells, was observed to aggregate upon 

deoxygenation.8  The differential electrophoretic mobility of normal and sickle Hb shown in 

19499 led to the theory that the ordered structure of the abnormal Hb causes sickling,9 

making SCD the first molecular disease to be identified.  The substitution of valine for 

glutamic acid in the sixth amino acid position of the Hb β chain was reported in 1956.10 
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Since that time, SCD has been the model disease for many fields of biomedical as well as 

social science.  It was the first disease to be attributed to a mutation of a specific protein10, 

the first disease to be shown to exhibit Mendelian properties of inheritance11, and the 

landmark disease by which many racial and sociopolitical precedents have been set.  The 

study of SCD has attracted many of the best and brightest scientists of the twentieth century.  

However, despite the knowledge that has amassed, not enough has been translated into 

effective treatment for the many people around the world who still suffer with this disease.  

Widespread use of hydroxyurea has resulted in fewer and shorter pain episodes as well as 

decreased incidences of acute chest syndrome12 for those who can tolerate the drug, but 

toxicity puts limitations on its use. Stem cell transplantation is also promising; however, 

high risk and limited access prevent this treatment from being the panacea many thought it 

would be.  We are still waiting for the gene therapy that will cure the disease and/or the 

miracle drug that will make pain episodes a thing of the past.  Until then, the approaching 

one-hundredth year anniversary of SCD research marks a time filled with both 

disappointment and promise.  Sickle cell patients are living longer, more productive lives; 

but every new finding, every insight gained, is still needed to put an end to the suffering.   

 

 

Sickle cell disease is a chronic inflammatory condition. 

Sickle cell disease is a multi-factorial syndrome.  Hemoglobin polymerization leads to 

abnormally rigid and adhesive red blood cells (RBC) that obstruct blood vessels, leading to 

tissue damage from poor perfusion.13  Recent reports have begun to describe sickle RBC as 

irritants that provoke inflammation14 as they stimulate and damage surrounding tissues and 
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cells.  Therefore, normal cellular responses to these stimuli become pathogenic and 

chronically inflammatory in the abnormal context created by the mutant Hb S.  In fact, 

polymorphic differences in genes involved in inflammation are increasingly being thought of 

as reasons for the varying clinical courses of SCD patients.15  Inflammation exacerbates 

vascular occlusion in SCD because of mutual feedback loops by which inflammation and 

coagulation are intertwined.16 

 

Multiple manifestations of inflammation exist in SCD. 

The classic definition of inflammation is an elevation in leukocyte counts.  Patients with 

SCD have an abnormally high leukocyte count even in the absence of infection17.  Baseline 

leukocyte counts are believed to be predictive of clinically severe SCD, a risk factor for brain 

infarcts18, acute chest syndrome19, as well as early death20.  Case reports also document that 

leukocyte growth factors can bring about these undesirable outcomes in SCD patients.21  

Furthermore, the activation status of leukocytes is a predictor of clinically severe SCD,22 and  

intravital microscopy of SCD mice demonstrate that leukocytes may actually initiate vascular 

occlusion.23  Therefore, the high leukocyte count is inextricably linked to SCD pathogenesis, 

both as an indicator of inflammation, but also as a causative factor.  

In addition to elevated WBC counts, patients with SCD have elevated levels of the 

inflammatory markers C-reactive protein24,25, tumor necrosis factor-α and interleukin-126-28.  

Vascular cells reportedly expressing an activated phenotype in SCD include endothelial 

cells29, neutrophils30,31, monocytes24,32 and platelets.33,34  
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Platelets likely play a role in SCD inflammation. 

It is our hypothesis that platelets lie at the heart of the chronic inflammation in SCD. 

Virchow proposed in 1856 that endothelial injury, hemostasis, and a hypercoaguable state are 

the basis for thrombotic activity 35. Our current understanding of SCD includes evidence that 

all three components of Virchow’s triad exist in these patients with thrombosis likely at the 

center of the inflammatory activity.  Indeed, platelets are chronically hyperactive in SCD,34,36 

and platelets increase sickle RBC adhesion to the endothelium.37  However, the extent to 

which platelet activity contributes to SCD pathology or which of the many platelet functions 

contribute to SCD is still undefined. 

 

Previous reports have suggested that platelets have the potential to contribute to SCD via a 

minimum of 5 ways: 

• Platelet α granules expose P-selectin and release adhesion factors. 

• Platelet dense granules release proaggregatory and inflammatory factors. 

• Platelets promote procoagulant activity through initiation of the coagulation cascade. 

• Platelets aggregate.  

• Platelets expose and release CD40L. 

Understanding platelet activation in the context of SCD may be essential for understanding 

and alleviating symptoms of the disease. 

 

Platelet α granules expose P-selectin and release adhesion factors 

The exposure of P-selectin to the platelet surface38 and an increase in soluble P-selectin39  

correlate positively with pain episodes in SCD. Platelet P-selectin may serve only as a 
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marker of platelet activation and not have a direct role in SCD pathology;23 however, P-

selectin is known to adhere to sickle RBC40 and may increase the aggregation of platelets to 

leukocytes.41  Furthermore, platelet P-selectin may increase endothelial activation,42 which 

likely contributes to vaso-occlusion due to increased sickle RBC adhesion.  Platelet α 

granules also release the glycoproteins fibrinogen, fibronectin, vitronectin, von Willebrand 

factor, and thrombospondin.43  The higher plasma fibrinogen concentration may then 

increase RBC adhesivity to the endothelium,44 while the vitronectin receptor is reportedly 

upregulated in SCD and promotes neutrophil adhesion.39  Fibronectin, von Willebrand factor, 

and thrombospondin are adhesive to sickle RBC under flow conditions.45,46  In addition to 

supporting adhesion, thrombospondin increases sickle RBC adhesiveness by transmitting 

signals through the RBC receptor CD47, or integrin-associated protein to activate α4β1.47  

Thrombospondin and von Willebrand factor also contribute to adhesion by acting as bridges 

between sickle RBC and the endothelium48-50 and von Willebrand factor may link platelets to 

the endothelium.51  Therefore, platelet α granules may contribute to SCD by releasing factors 

that upregulate adhesion. 

 

Platelet dense granules release pro-aggregatory and proinflammatory factors 

Upon activation, platelet dense granules can contribute to increased platelet aggregation by 

releasing adenine nucleotides, inflammatory factors, and bivalent cations.43  Adenosine 

diphosphate (ADP) stimulation of purinergic receptors is a major mechanism of platelet 

activation.52  Therefore, the release of ADP from platelet dense granules plays a critical role 

in hemostasis by recruiting other platelets and perpetuating platelet activation.52  Since the 

platelets of SCD patients in crisis are depleted of ADP stores,53 ADP may increase SCD 
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pathology via this mechanism.  Dense granules may also contribute to SCD pathology 

through the release of inflammatory factors.  Serotonin (5-HT) is a major component of 

dense granules,43 and can exacerbate SCD through its ability to cause vasoconstriction,54 

augment the activity of other vasoconstrictors,55 and induce platelet aggregation.56  Serotonin 

may also activate and recruit neutrophils57 that may contribute to vaso-occlusion.  

Furthermore, 5-HT may promote coagulation58 in a tissue factor-dependent manner.59  Dense 

granules also contain and release the inflammatory mediator histamine, which recruits 

leukocytes57,60  These dense granule components could participate in SCD pathology by 

increasing coagulation, slowing blood flow and promoting vaso-occlusion. 

 

Platelets promote procoagulant activity through initiation of the coagulation cascade 

Upon agonist stimulation, platelets release fibrinogen,43 which then acts as a substrate for 

thrombin to cause clot formation.61  SCD patients have higher levels of fibrinogen62, 

prothrombin and thrombin-anti thrombin complexes63, indicating increased coagulant 

activity.  In addition, many of the clotting factors important to the coagulation cascade are 

also released from platelets upon agonist stimulation.43  Factors V, VII, XI and XIII are all 

housed in and released from platelet α granules.  Therefore, an increase in platelet activation 

logically increases coagulation and subsequently vascular occlusion in SCD.  Furthermore, 

plasminogen, also released from platelets,43 is thought to increase matrix metalloproteinase 

activity once it is converted to plasmin.64  In SCD, this may be the mechanism by which 

endothelial cells65 are released from the blood vessel wall to circulate and adhesive 

subendothelial extracellular matrix proteins45 become exposed to flowing RBC. 
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Platelets aggregate 

The extent to which platelet aggregation contributes to SCD pathology is unknown; however, 

both increased platelet aggregation34 and platelet exhaustion from increased66 in vivo activity 

are reported in SCD.  A transient drop in platelet count that accompanies the onset of painful 

crises67 suggests that platelet aggregation occurs during the initial phase of a crisis and may 

play an essential role in the process.  An increase in circulating platelet aggregates in SCD 

crisis patients68 provides further evidence that platelet aggregation may play a role in the 

clinical status of SCD patients.  Therefore, inhibition of platelet aggregation may be 

beneficial to SCD patients. 

 

Platelets expose and release CD40L 

The potential role of platelets in SCD has been suggested for some time; however, the role of 

platelet CD40L has only recently been considered.69,70  CD40L is a type II transmembrane 

protein and a member of the tumor necrosis factor superfamily.71  Inducibly expressed on 

leukocyte subsets, smooth muscle, and epithelial cells, CD40L mediates a broad variety of 

immune and inflammatory responses72 both in its membrane-bound form and as a soluble 

fragment.73,74  CD40L is upregulated in diverse clinical settings including rheumatoid 

arthritis, neurological disorders, graft-vs-host disease, lung inflammation and chronic 

lymphocytic leukemia.71,75,76  The findings that CD40L plays a prominent role in 

atherosclerosis77 and that platelets express and release it upon activation78 suggest the 

potential involvement of platelet CD40L in other inflammatory vascular diseases, including 

SCD.  Furthermore, since the proinflammatory cytokines TNFα, IL-1, IL-4 and protein 

kinase C that induce CD40L expression72 are upregulated in SCD,79 increased CD40L 
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expression and activity are hypothesized to be important for chronic inflammation in SCD.  

Some potential mechanisms of CD40L involvement in SCD pathology are outlined. 

 

CD40L may induce leukocyte proliferation 

B lymphocyte differentiation and proliferation are the original functions attributed to 

CD40L early after discovery of the protein.75,80  Subsequently, CD40L was shown to 

also regulate leukocyte counts by rescuing monocytes and dendritic cells from 

apoptosis.72  Either function of CD40L might explain the elevated leukocyte counts 

observed in SCD patients.13 

 

CD40L may increase cell adhesion by upregulating adhesion molecules and 

extracellular matrix exposure  Lymphocytes increase ICAM and αLβ2 expression in 

response to CD40L,81 while endothelial cells increase P-selectin, E-selectin, VCAM 

and ICAM upon recognition of CD40L.71,82  These increases in adhesion molecule 

expression may exacerbate SCD by increasing adhesive interactions between blood 

cells and the endothelia that might slow blood flow and increase the propensity of 

vascular occlusion.  Studies in SCD mice indicate that endothelial P-selectin exposure 

may be critical to initiating vaso-occlusion.23  Furthermore, CD40L-mediated 

alterations in matrix metalloproteinases83 potentially explains the prevalence of 

circulating endothelial cells in SCD.29  Upon exposure, extracellular matrix proteins 

may then support sickle RBC adhesion.45 
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CD40L may promote coagulation via an increase in tissue factor 

CD40L regulates endothelial cell procoagulant activity during inflammatory 

responses by inducing expression of the coagulation initiator tissue factor and by 

downregulating thrombomodulin expression.84  This activity is thought to be critical 

to plaque development in atherosclerosis77 and may complicate SCD by contributing 

to the hypercoaguable state85 of the vascular system of these patients. 

 

CD40L upregulates production of inflammatory cytokines 

Patients with SCD reportedly have increased levels of IL-1, IL-6, IL-8, and TNF.79  

These cytokines are thought to increase vaso-occlusion by increasing adhesive 

interactions in the vasculature of SCD patients.  IL-1 and TNF activate endothelial 

expression of the adhesion molecule VCAM,86,87 while IL-8 is thought to activate the 

VCAM receptor α4β1 on sickle reticulocytes.88  IL-1 and IL-6 induce secretion of 

plasma fibronectin89, which can also activate and bind α4β1.90  Expression of all of 

the aforementioned cytokines can be upregulated by CD40L.71 

 

Integrin αIIbβ3 is essential to platelet activation and CD40L release 

The integrin αIIbβ3 is required for platelet release of the inflammatory mediator CD40L.91  

Upon binding to agonist, αIIbβ3 participates in bi-directional signaling critical for platelet 

aggregation, adhesion, granule secretion, and procoagulant activity.92  The platelets of 

patients lacking αIIbβ3 fail to aggregate in response to agonists,93 demonstrating the 

essential role that this integrin plays in platelet activity.  Furthermore, blockade of αIIbβ3 

inhibits thrombotic vessel occlusion94 and the prothrombin activation that leads to 
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coagulation.95  As the most abundant glycoprotein on the platelet surface,96 αIIbβ3 plays a 

critical role in thrombosis and hemostasis.  The role of αIIbβ3 in CD40L release91 suggests 

that this integrin regulates inflammation as well.  Therefore, antagonism of αIIbβ3 is 

proposed as an effective tool to study the role of platelet activation and aggregation in SCD.    

 

 

Specific Aims of the Dissertation 

CD40L mediates chronic inflammation in multiple disease states.71  This inflammatory 

mediator increases B cell proliferation,75 endothelial adhesion molecule expression,72 and 

procoagulant activity through upregulation of tissue factor.97  A similar inflammatory profile 

is known to exist in SCD13 but by an unknown mechanism.  Platelets contain 95% of the 

circulating CD40L.98  Upon activation, this CD40L is exposed to the platelet surface and 

released as a soluble fragment into the plasma.99  Platelets of sickle cell disease (SCD) 

patients are known to be more activated than the platelets of normal individuals, suggesting 

CD40L might be more available and mediating chronic inflammation in these patients.  

However, the role of platelets and the inflammatory protein CD40L in SCD pathology is 

unknown.  Therefore, platelets may participate in the chronic inflammation of SCD via 

CD40L.  This hypothesis was tested with the following specific aims.   

 

Aim 1. Determine if CD40L potentially contributes to SCD pathology.  

In disease states where CD40L is thought to contribute to the disease process, CD40L 

is reportedly elevated.  We measured CD40L levels in SCD patients and compared 

our results to findings from normal individuals. We then assessed the correlation 
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between elevated CD40L and the clinical state of SCD patients by comparing CD40L 

levels in steady state vs. crisis patients.  We also determined if the endogenous 

CD40L in SCD patient plasma is biologically active using established CD40L 

functional assays.  Finally, we provided evidence that platelets are the source of 

CD40L in SCD plasma.   

 

Aim 2. Determine if CD40L contributes to SCD pathology in vivo. 

The relative contribution of CD40L to SCD pathology in vivo was explored using a 

mouse model of SCD.  We generated SCD mice by transplanting hematopoietic stem 

cells from the bone marrow of a SCD transgenic mouse into lethally irradiated 

recipients.  Mice were then treated with an anti-CD40L antibody shown to block 

association of the inflammatory mediator with its receptor.  Accumulated organ 

damage was compared in mice receiving the anti-CD40L compared with non-specific 

controls.  The relative importance of endothelial recognition of CD40L was also 

assessed by imposing the SCD phenotype unto mice lacking expression of potential 

CD40L receptors, CD40 and β3 integrin.  

 

Aim 3. Determine the role of platelet activation in SCD.  

The role of platelets was explored in the context of SCD by blocking the major 

platelet integrin αIIbβ3 in human patients.  Blockage of this integrin not only 

inhibited platelet aggregation, but also inhibited CD40L release from platelets.  

CD40L levels and the prevalence of platelet activation markers were assessed in 

patients receiving the αIIbβ3-antagonist eptifibatide.  The relative changes in the 
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inflammatory profile of plasma from these patients was also compared before and 

after the eptifibatide infusion.  
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CHAPTER II. 

Specific Aim 1.  Determine if CD40L potentially contributes to SCD pathology. 

 

This research was published in: 
Lee SP, Ataga KI, Orringer EP, Phillips DR, and Parise LV. Biologically Active CD40 
Ligand Is Elevated in Sickle Cell Anemia: Potential Role for Platelet-mediated Inflammation. 
ATVB 2006;26(7):1626-31. ©Lippincott Williams & Wilkins. Baltimore, 2006. 
 

Rationale 

Chronic inflammation is one of the many manifestations of sickle cell disease (SCD).1  

Patients with SCD are prone to recurrent infections and increased leukocyte counts2 even 

during the steady state.  Painful crises, the major complication suffered by SCD patients, are 

the result of vascular occlusion3 due to interactions of activated blood and endothelial 

cells.1,4 

 

The polymerization of mutated SCD hemoglobin leads to red blood cell (RBC) sickling5 and 

membrane anomalies6,7 that make sickle RBC abnormally adhesive.3,8-10  Painful vaso-

occlusive crises may partly result from these adhesive RBC interacting with adhesion 

receptors on inflamed endothelia.11  Indeed, RBC adhesiveness12 and higher WBC counts13 

correlate with clinically severe SCD.  However, inflammatory mediators leading to these 

abnormalities in SCD are not well understood.  

 

CD40L is a TNF family member that potentially mediates inflammation in SCD.  Classically 

known as the T cell membrane protein that induces B cell differentiation and 
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immunoglobulin class-switching,14  CD40L is now known to be expressed on a variety of 

cell types, including platelets.14,15  Upon activation, CD40L is exposed to the platelet 

surface,15 then cleaved to generate a soluble product16 that retains the ability to  activate its 

widely expressed receptor CD40.14  The CD40:CD40L interaction is thought to contribute to 

inflammation in systemic lupus erythematous (SLE),17 atherosclerosis,18 and chronic 

lymphocytic leukemia.19  The soluble form of CD40L also mediates prothrombotic activity 

by binding to the platelet integrin glycoprotein (GP) IIb-IIIa20 and  promotes procoagulant 

activity through upregulation of tissue factor (TF).21-23  Chronic inflammation, increased 

thrombotic activity, and hypercoagulation are known aspects of SCD.24,25  However, the 

status of sCD40L in SCD is unknown.  We hypothesized that platelet-derived sCD40L may 

be elevated in SCD as it is in other disease states and that recognition of CD40L by its 

receptor, CD40 may contribute to SCD pathology.  However, the amount of soluble CD40L 

circulating in SCD patients and the role it plays in the disease has not been examined.  

Therefore, the goal of this aim is to determine if CD40L potentially contributes to SCD 

pathology.   

 

 

Materials and Methods 

Human Subjects 

This study was approved by the UNC Committee on the Protection of the Rights of Human 

Subjects.  Informed consent was obtained in accordance with the Declaration of Helsinki.  

Study subjects were hemoglobin S homozygotes aged 20 to 63 years.  Patients in crisis were 

defined as those hospitalized for a painful vaso-occlusive event, without respect to crisis 
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phase.  Steady state patients had not experienced a pain episode requiring acute intervention 

within the previous two weeks.  SCD patients who had received blood transfusions or 

experienced symptoms not attributed to SCD within the previous two weeks were excluded, 

as were patients diagnosed with other inflammatory or malignant conditions.  Controls were 

normal, healthy adults from 19 to 49 years old, and included both African-American and 

Caucasian subjects. 

 

Preparation of human plasma and platelets 

Peripheral blood samples were collected by venipuncture into either 0.13 M sodium citrate or 

ACD.  Blood samples were processed within 90 minutes of blood draw.  To obtain platelet- 

and microparticle-free plasma (PFP), samples were centrifuged at 200g for 15 minutes to 

remove red and white cells, then once at 750g for 20 minutes to remove platelets, and once at 

16,000g for 20 minutes to remove microparticles.  Platelet quiescence was maintained by 

resting samples for 15-30 minutes at 37°C before every centrifugation.  Prostacyclin 

(5 ng/mL) was added to platelet-rich plasma prior to the second centrifugation and to 

platelet-poor plasma prior to the third centrifugation. 

 

For samples used in ELISAs, PFP was defibrinated (1U/mL thrombin) as recommended by 

sCD40L ELISA manufacturer instructions.  Plasma defibrination did not further elevate 

CD40L levels.  Samples were stored at -80°C as per manufacturer’s instructions until use in 

sCD40L (Alexis Biochemicals, San Diego, CA) and TF (American Diagnostica, Greenwich, 

CT) ELISAs. 
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Platelet CD40L levels 

To measure platelet CD40L levels, platelet pellets were collected following a 20-minute 

centrifugation at 750g.  Platelets were carefully resuspended in a modified Tyrode’s buffer of 

5 mM HEPES, 135 mM NaCl, 2.7 mM KCl, 11.9 mM NaHCO3, 0.42 mM NaH2PO4, 1 mM 

MgCl2, 1 mg/ml dextrose, 1 mg/ml BSA, 50 U/ml heparin, and 10 µg/ml apyrase, pH 6.5.  

Platelets were standardized to 3x108 platelets/ml following counting in a Beckman Coulter 

counter, then lysed in 10 mM CHAPS, 0.5% deoxycholate, 137 mM NaCl, 20 mM HEPES, 

and a broad-spectrum protease inhibitor cocktail (CalBiochem, La Jolla, CA).  

Concentrations of solubilized CD40L in the resulting lysates were then determined by ELISA 

as above.  

 

B cell proliferation 

Ramos B cells were maintained in RPMI-1640 + 10% fetal bovine serum (FBS) at 37°C in 

5% CO2.  For proliferation experiments, B cells were incubated for 72 hours in RPMI-1640 + 

10% human plasma prepared as indicated above, without defibrination.  sCD40L was 

precipitated from samples by incubating plasma with glutathione sepharose beads 

(Amersham Biosciences) and either anti-CD40L or non-specific control rabbit IgG overnight 

at 4ºC.  3H-thymidine (1U/mL of culture media) was added during the last 18 hours of 

culture.  

 

Monocyte tissue factor production 

THP-1 monocytic cells were grown in RPMI-1640 + HEPES + 10% FBS at 37°C in 5% CO2.  

For TF induction experiments, THP-1 cells were incubated in 10% human plasma that was 
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prepared as described above, but without defibrination.  Following addition of either anti-

CD40 (ATCC#HB-11339) or control antibody, THP-1 cells were incubated for 24 hours, 

then washed 3X in PBS before being lysed with 1% NP-40 in a Tris-based lysis buffer 

containing 150 mM NaCl and 2 mM EDTA, pH 7.5.  

 

Endothelial cell isolation and culture 

Collagenase (1 mg/ml) was used to harvest human umbilical vein endothelial cells (HUVEC) 

from the cannulated vein of human umbilical cords as described.26  HUVEC were then 

cultured in M199 media with 20% FBS, heparin, non-essential amino acids, endothelial cell 

growth factor, penicillin and streptomycin. HUVEC were used from passages 2-4. 

 

Cell surface ELISA 

HUVEC were grown to over-confluence to induce quiescence in 12-well tissue culture 

dishes, then treated with 10% human plasma for 24 hours.  Plasma was prepared as above, 

but was not defibrinated.  For inhibition experiments, rabbit anti-human CD40 polyclonal 

antibody (Research Diagnostics, Flanders, NJ) or rabbit IgG were added 30 minutes prior to 

treatment with human plasma.  Cells were washed 3X with PBS, fixed with 1% 

paraformaldehyde, then blocked with 10% non-fat dry milk.  A monoclonal antibody against 

ICAM-1 (Serotec, Inc., Raleigh, NC) at 1 µg/ml was incubated overnight at 4°C, followed by 

an anti-mouse IgG:horseradish-peroxidase conjugate, with 3X PBS + 0.1% Tween-20 washes 

between each step.  Reactions were developed in tetramethylbenzidine (Sigma) and stopped 

with 2N H2SO4.  Absorbance was read at 450 nm. 
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Statistical Analyses 

All data are presented as mean ± standard deviation.  Levels of soluble CD40L in human 

plasma were compared using nonparametric Wilcoxon sum rank tests as computed by SAS 

Proc Npar1way where average scores were used as ties.  The student’s t test was used to 

determine significance for all other data, at a power of 0.1. 

 

 

Results 

CD40L is elevated in the plasma of SCD patients 

To determine if CD40L is elevated in SCD, sCD40L levels were measured by ELISA in 

platelet- and microparticle-free plasma (PFP).  PFP was prepared by centrifugation of 

quiescent platelet-rich plasma under conditions determined to prevent platelet activation or 

contribution of microparticles, as described in Methods.  The average concentration of 

sCD40L in SCD plasma (1.31 ± 1.74 ng/ml) was 30-fold higher than sCD40L found in 

normal plasma (0.04 ± 0.05 ng/ml, Figure 1).  This value is several fold higher than in 

chronic lymphocytic leukemia19 and acute coronary syndromes18 where sCD40L is thought 

to contribute to the disease process.  CD40 ligand levels in SCD plasma varied greatly among 

patients, ranging from normal values (i.e. 0.03 ng/ml) to values 150-fold higher (i.e. 

6.0 ng/ml).  sCD40L levels of SCD patients in crisis were further elevated by 79% when 
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compared to steady state (Figure 1), suggesting that higher levels of sCD40L correlate with 

the clinical status of SCD patients.  

 

Platelet CD40L is decreased in SCD and further depleted during crises 

Since more than 95% of circulating CD40L is contained within platelets27 and released 

following platelet activation,16 we examined the possibility that the chronically activated 

platelets believed to exist in SCD patients28-30 might be the source of sCD40L in SCD 

plasma.  Using the same ELISA assay, CD40L levels were measured from resting platelet 

lysates of SCD patients and normal individuals.  We found that platelets from SCD patients 

contained less than half of the CD40L found in platelets from normal individuals (5.69 ± 

4.81 ng/3x108 platelets versus 13.30 ± 6.77 ng/3x108 platelets, Figure 2A).  This two-fold 

difference is more than enough to account for the elevated CD40L measured in the plasma of 

SCD patients.31  Furthermore, the resting platelets of SCD patients in crises contained less 

than half of the CD40L than platelets of patients in the steady state (2.97 ± 2.81 ng/3x108 

platelets versus 7.08 ± 5.26 ng/3x108 platelets, Figure 2B).  These results provide evidence 

that platelets are a major source of elevated CD40L in SCD and suggest an association 

between decreased platelet CD40L, increased plasma CD40L and painful crises in SCD 

patients. 

 

Tissue factor levels are elevated in SCD and correlate with elevated CD40L 

Since CD40L mediates expression of the coagulation initiator TF,23 we speculated that 

elevated CD40L may contribute to hypercoaguability in SCD plasma by upregulating TF 

production.  Therefore, we compared the levels of TF in SCD and normal plasma (713.11 
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pg/ml ± 420.84 pg/ml vs. 6.34 pg/ml ± 12.34 pg/ml, Figure 3A).  SCD plasma contained over 

100-fold greater TF than the plasma from normal controls.  Furthermore, elevations in TF 

correlated with elevations in sCD40L in matched SCD plasma samples at a level of R2 = 

0.600 (Figure 3B). 

 

CD40:CD40L interaction augments SCD plasma-induced TF production by monocytes 

Monocytes are known to respond to CD40L stimulation with increased TF production, thus 

promoting procoagulant activity.32  We therefore asked whether SCD plasma increases TF 

production by monocytes, and if so, whether this increase is dependent upon the 

CD40:CD40L interaction.  Lysates of monocytic THP-1 cells were assayed for TF following 

incubation with plasma from either SCD patients or normal volunteers.  SCD plasma induced 

a significant increase in TF production relative to plasma from normal individuals or media 

alone.  Optical density readings indicating relative TF expression were two-fold greater in 

lysates from SCD plasma-treated THP-1 cells than from THP-1 cells treated with normal 

plasma (Figure 4A).  The CD40:CD40L interaction was not solely responsible for the 

elevation in TF production, but appeared to promote coagulation in some cases as pre-

incubation of the THP-1 cells with a function blocking anti-CD40 antibody, prevented 

increased TF expression in 5 of 8 individual cases (Figure 4B). 
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SCD plasma-induced expression of VCAM-1 and ICAM-1 occurs via CD40:CD40L 

interaction 

Red blood cells from SCD patients are known to induce endothelial cell expression of 

adhesion molecules.33  We found that SCD plasma can also induce surface expression of 

endothelial VCAM-1 and ICAM-1.  Relative to normal plasma, optical density readings were 

two-fold greater corresponding to surface expression of endothelial VCAM-1 and three-fold 

greater corresponding to surface expression of endothelial ICAM-1 as a result of SCD 

plasma treatment (Figure 5A).  Similar to the results obtained with TF production, CD40 

blockade significantly reduced SCD plasma-induced ICAM-1 expression by HUVEC (Figure 

5B), suggesting that the CD40:CD40L interaction can contribute to the adhesive state of the 

endothelium by inducing ICAM-1 expression on these cells.  The reduction in VCAM-1 

expression was lowered by CD40 blockade, but was not statistically significant (Figure 5B). 

 

CD40L in SCD plasma induces B cell proliferation 

A B cell proliferation assay was used to further confirm the biological activity of soluble 

CD40L in SCD plasma.  B cell proliferation was measured by 3H-thymidine incorporation 

following the culture of Ramos B cells in either media alone, plasma from SCD patients or 

plasma from normal volunteers.  We found that B cell incorporation of 3H-thymidine was 31-

fold greater in the presence of SCD plasma versus normal plasma (2.49x10-3 cpm ± 

1.12x10-3 cpm vs. 0.079x10-3 cpm ± 0.028x10-3 cpm, Figure 6A).  Since ligation of CD40 

with anti-CD40 antibodies was found to activate Ramos B cells, the role of the CD40:CD40L 

interaction was investigated by immunoprecipitation of sCD40L from SCD plasma.  Ramos 

B cells treated with sCD40L-cleared plasma exhibited significantly less proliferation than 
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control plasma, with an ~75% reduction in 3H-thymidine uptake.  Proliferation was not 

reduced by control IgG (Figure 6B), indicating that the increased proliferation of B cells by 

SCD plasma is CD40L-dependent and that the sCD40L circulating in SCD patients is 

biologically active. 

 

Discussion 

This study provides new insights into potential mechanisms contributing to inflammatory 

processes in SCD.  CD40L has emerged as a potent mediator of inflammation, with  elevated 

sCD40L levels being observed in a variety of diseases involving vascular inflammation.17-19  

We now find that sCD40L is elevated in SCD as well.  Indeed, our findings indicate an 

average 30-fold elevation of sCD40L in SCD versus normal plasma, with corresponding 

decreases in the amount of CD40L stored in the platelets of SCD patients.  The elevated 

sCD40L in SCD plasma positively correlates with increased TF and participates in the 

induction of TF and ICAM-1 expression via its interaction with CD40.  Biological activity of 

sCD40L in SCD plasma is further confirmed by its induction of B cell proliferation.  

Together, these data identify sCD40L as potentially important for both inflammation and 

coagulation in SCD, and suggest a previously unrealized participation of platelets in SCD 

pathogenesis. 

 

The magnitude of sCD40L elevation in SCD (~30-fold) can be compared to the increased 

levels of sCD40L found in other chronic inflammatory conditions such as SLE (>20-fold),17 

chronic lymphocytic leukemia (2.7-fold)19 and unstable angina (3-fold).18  In all of these 

latter conditions, CD40L is thought to contribute to the disease state.  The 30-fold elevation 
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of sCD40L reported here places CD40L among the inflammatory cytokines potentially 

sharing a causative role in vascular occlusion in SCD.  

 

In addition to platelets, WBC in SCD patients are also depleted of CD40L (data not shown), 

suggesting that both may contribute to the elevated sCD40L in SCD plasma.  However, since 

platelets contain more than 95% of the circulating CD40L,27 and these stores are reduced by 

approximately 57% in SCD (Figure 2), platelets are likely to be the major source of sCD40L 

in SCD plasma.  Indeed, SCD patients average 5.7 ng of CD40L per 3x108 platelets 

compared to 13.3 ng of CD40L found in normal platelets (Figure 2).  Assuming a platelet 

count of 3x108 platelets/ml of plasma, 7.6 ng of CD40L relocated from platelets to the 

plasma would correspond to nearly a 200-fold increase over normal circulating levels of 

0.04 ng CD40L/ml, suggesting that the amount depleted from SCD platelets could more than 

account for the 30-fold elevation found in SCD plasma (Figure 1).  Given that elevated 

sCD40L levels return to baseline within two hours of cardiopulmonary bypass,31 and that the 

amount of sCD40L at sites of thrombosis would presumably be more concentrated, the 

potential exists for soluble CD40L to reach far greater levels than reported here.  The further 

depletion of platelet CD40L during crises suggests a correlation to worsened clinical status of 

SCD patients and leads us to propose that platelets contribute to the chronic inflammation in 

SCD by releasing CD40L into the plasma. 

 

Increased in vivo platelet activation in SCD results in increased CD40L exposure to the 

platelet surface34  Once exposed, the cleavage of CD40L from platelets results in the release 

of sCD40L16 to the plasma and a loss of platelet CD40L.  Therefore, SCD platelets have 
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more surface-exposed CD40L,34 but less total CD40L stored, as measured here in platelet 

lysates (Figure 2).   

 

CD40L may link chronic inflammation and hypercoagulation in SCD.  We confirm here that 

TF, a major initiator of the coagulation cascade, is abnormally elevated in SCD plasma 

(Figure 3A).24  Furthermore, elevated TF in SCD plasma correlates to increased CD40L 

(Figure 3B).  Since monocyte TF production can be induced by SCD plasma (Figure 4) and 

reduced by CD40 blockage, our results suggest that the CD40:CD40L contributes to 

hypercoagulation in SCD,  particularly when taken in context with other studies showing that 

CD40L upregulates TF production.23,35,36  Platelets may therefore contribute to the 

hypercoagulation in SCD via CD40L exposure and release.  

 

Notably, our study indicates that plasma from SCD patients is itself inflammatory.  Plasma 

from SCD patients was sufficient to increase endothelial ICAM-1 expression 3-fold (Figure 

5A), and Ramos B cell proliferation 31-fold (Figure 6A).  Therefore, therapeutic approaches 

targeted to inflammatory plasma components may also be beneficial to SCD patients.   

 

Recent evidence that CD40L provides a novel mechanism of platelet activation37 suggests a 

potential positive feedback loop whereby CD40L participation in SCD may be perpetuated.  

CD40 ligand is thought to cause α− and dense-granule release, potentially maintaining the 

activation profile already characterized by SCD platelet studies.30,34,39  CD40L-induced P-

selectin exposure38 may lead to further procoagulant activity40 and strongly suggests that 

targeting CD40L release or activity may be therapeutically beneficial to SCD patients.  
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Inhibitors of platelet GPIIb-IIIa have shown promising results in acute coronary 

syndromes,41,42 and anti-CD40L treatment reportedly improves the clinical profiles of SLE 

patients.43  SCD patients may be candidates for either of these therapies.  Future studies will 

be necessary to clarify the relative importance of CD40L in context with the other 

inflammatory mediators in SCD plasma, as well as to determine whether the elevated 

sCD40L levels in SCD are as predictive of inflammatory and thrombotic activity in SCD as 

they are in acute coronary syndromes.  
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Figure 1 
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Figure 1. Soluble CD40L is elevated in SCD plasma. Levels of sCD40L were determined 
to be 1.18 ± 1.39 ng/ml in plasma samples from 49 sickle cell (SCD) patients compared to 
0.04 ± 0.07 ng/ml in plasma from 16 normal volunteers by ELISA as extrapolated from a 
standard curve. Total SCD data are significantly different from normal controls (p-value < 
0.0001). Crisis patients have even higher sCD40L levels at 1.89 ± 1.59 ng CD40L/ml of 
plasma from 10 SCD patients in pain crises compared to 1.05 ± 1.33 ng CD40L/ml of plasma 
from 37 steady state SCD patients (p-value = 0.065). 
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Figure 2A 
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Figure 2. Platelets from SCD patients have lower CD40L levels than normal controls 
and are further depleted during crises. (A) Platelet lysates from 21 SCD patients contained 
5.69 ± 4.81 ng CD40L/3 x 108

 platelets, or less than half the 13.30 ± 6.77 ng CD40L/3 x 108
 

platelets found in 4 normal samples. Data reflect measurement by ELISA and are 
significantly different (p-value = 0.029). (B) Platelet lysates from 13 steady state patients 
contained 7.08 ± 5.26 ng CD40L/3 x 108

 platelets, or more than two-fold greater than the 
average 2.97 ± 2.81 ng CD40L/3 x 108

 platelets found in platelets from 8 SCD patients in 
crisis. Data reflect measurement by ELISA and are significantly different (p-value = 0.042). 
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Figure 3A 
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Figure 3B 
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Figure 3. Tissue factor is elevated in SCD plasma and correlates with higher CD40L 
levels. (A) The coagulation cascade initiator TF was found to be elevated over 100-fold in 18 
SCD patients compared to normal donors (713.11 pg/ml ± 420.84 pg/ml vs. 6.34 pg/ml ± 
12.34 pg/ml). Data shown represent tissue factor levels as measured by ELISA and are 
significantly different (p-value = 0.0395). (B) Levels of TF in SCD plasma samples were 
plotted against corresponding sCD40L levels measured in the same samples. R2 = 0.600 for 
sCD40L levels < 2.5 ng/ml. 
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Figure 4A 
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Figure 4B 
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Figure 4. SCD plasma-induced monocytic TF is reduced by an anti-CD40 monoclonal 
antibody. (A) Monocytes exposed to plasma from SCD patients produced greater TF than 
monocytes exposed to plasma from normal volunteers. Optical density readings of TF in 
THP-1 lystates are 2X greater following treatment with SCD plasma. (B) In 5 of 8 SCD 
patient samples, an anti-CD40 monoclonal antibody decreased TF production by THP-1 cells 
relative to an isotype-matched control antibody. 
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Figure 5 

Figure 5. Blockage of CD40 on HUVEC inhibits SCD plasma-mediated increases in VCAM-1 
and ICAM-1 expression. (A) Optical density readings corresponding to HUVEC surface expression 
of adhesion molecules were increased two-fold for VCAM-1 and three-fold for ICAM-1 (p-value = 
0.0242) following treatment with SCD plasma from 8 patients compared to plasma from 3 normal 
individuals. (B) ICAM-1 expression could be significantly reduced by pretreatment of HUVEC with 
an anti-CD40 polyclonal antibody (n = 4, p-value = 0.0475). The reduction in VCAM-1 expression 
was not statistically significant.  Non-specific rabbit immunoglobulin had no effect. 
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Figure 6A 
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Figure 6. B cell proliferation increases 35-fold in SCD vs. normal plasma and is inhibited by 
CD40L depletion from plasma. (A) Ramos B cells were cultured in RPMI-1640 + 10% human 
plasma from either SCD patients or normal volunteers. Uptake of 3H-thymidine averaged 0.079 x 10-
3 cpm ± 0.028 x 10-3 cpm in the presence of plasma from 3 normal volunteers and ~31-fold higher 
(2.49 x 10-3 cpm ± 1.12 x 10-3 cpm) in the presence of SCD plasma from 6 patients. (B) Depletion of 
sCD40L by treating SCD plasma with beads plus anti-CD40L polyclonal antibody significantly 
decreased 3H- thymidine uptake by an average of 75% to 0.50 x 10-3 cpm ± 0.61 x 10-3 cpm, versus 
a non-specific rabbit IgG control antibody, which did not inhibit SCD plasma-induced B cell 
proliferation (p-value = 0.002). 
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CHAPTER III. 

Specific Aim 2.  Determine if CD40L contributes to SCD pathology in vivo. 

 

Rationale 

CD40 ligand (CD40L) is a TNF family member1 implicated in the pathogenesis of SCD.2  

Platelet-released CD40L may participate in SCD severity via numerous mechanisms.  

CD40L may be partially responsible for high leukocyte counts3 that are predictive of SCD 

severity4 and early death5 because of the role CD40L plays in inducing leukocyte 

proliferation.6,7  Endothelial adhesion molecule expression may be upregulated by CD40L,8 

potentially leading to increased sickle RBC adhesion to the endothelium.9  Sickle cell 

adhesion may also follow extracellular matrix exposure10 caused by a CD40L-mediated 

increase in MMP production.11 Combined with the ability of CD40L to promote 

coagulation,12 these findings suggest a role for CD40L in SCD vaso-occlusion.   

 

Sickle cell disease is known to be a chronic inflammatory condition13 where multiple 

inflammatory mediators are upregulated.14-16  Elevations in inflammatory cytokines and acute 

phase proteins17 are implicated in disease severity18 and pathology19.  Cytokines may play a 

role in SCD by inducing endothelial adhesiveness20,21, activating platelets and neutrophils15, 

regulating hematopoiesis22, and inhibiting immune functions.23  All of the aforementioned 

factors likely contribute to the exacerbation SCD severity.  Since the manifestations of SCD 
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are likely the combined result of numerous factors, the relative role played by CD40L in this 

inflammatory milieu remains obscure.  Therefore, we sought to determine the relative 

importance of CD40L to SCD pathology in vivo using a mouse model of SCD.24  To 

accomplish this, sCD40L was measured in platelet-free plasma from SCD mice.  Mice 

mimicking SCD were also treated with an anti-CD40L monoclonal antibody shown to 

effectively block CD40L activity in a murine model of atherosclerosis.25  Accumulated organ 

damage in anti-CD40L treated mice was then compared to mice receiving non-specific 

immunoglobulin control.  In addition, the relative importance of CD40L recognition by the 

endothelium will be determined by imposing the SCD phenotype onto mice lacking 

expression of the known possible CD40L receptors, CD40 and β3 integrin.26 

 

 

Materials and Methods 

CD40L ELISA 

Blood was drawn by cardiac puncture from wild-type, sickle and heterozygote mice into 

ACD in the laboratory of Dr. Paul Frenette (Mt. Sinai Medical Center, New York, NY).  

Blood cells were removed by a 200g centrifugation for 15 min, followed by resting the 

resultant platelet-rich plasma at 37°C for 15 min.  Prostaglandin E1 was added to maintain 

platelet quiescence before a second centrifugation of 750g for 20 min to remove platelets.  

Platelets lysed in 1%NP-40 and  platelet-free plasma were stored at -80°C and shipped on dry 

ice where samples were used in a sandwich ELISA. Briefly, CD40L was captured by an anti-

mouse CD40L monoclonal antibody-coated microtiter wells.  CD40L was then sandwiched 

by an anti-CD40L polyclonal antibody, that was in turn detected by a horseradish peroxidase 
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(HRP)-linked anti-rabbit secondary antibody.  A tetramethyl benzidine developing solution 

(Sigma Chemicals) was applied as the HRP substrate and the color reaction was stopped by 

adding 2N H2SO4.  Color was then read at 450nm by a microplate reader and compared to a 

standard curve of known concentrations of recombinant mouse CD40L.  

 

Bone Marrow Transplantation 

Eight-week old wild-type C57BL/6, CD40-/- or β3-/- females were given two doses of total 

body irradiation, 700 Rad and 500 Rad given 4 hours apart, in a cesium-137 irradiator 

(AECL Gammacell 40).  Lethally irradiated mice were then rescued with an injection of 

3x106 bone marrow cells collected from the hind limbs of a genetically bred SCD mouse24 

donor.  In this way, bone marrow transplantation reliably confers the hematopoietic 

phenotype of donor mice unto the genetic background of irradiated recipients.27  In addition 

to standard chow, mice were maintained on acidified neomycin water (1g/L, pH 2.0) for 2-3 

weeks following transplant.  Chimerism was verified by hemoglobin electrophoresis 6-8 

weeks following the transplant.  All mice were housed in a barrier facility maintained by the 

UNC Department of Laboratory and Animal Medicine (DLAM).  Protocols were reviewed 

and approved by the UNC Institutional Animal Care and Use Committee (IACUC). 

 

Anti-CD40L treament 

Bone marrow transplanted (BMT) SCD mice were treated with a monoclonal antibody, clone 

MR1, known to inhibit CD40L activity in vivo.25  Mice were injected intraperitoneally with 

250 µg of low-endotoxin, azide-free anti-CD40L antibody (Taconic) twice per week for 6 
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weeks.  Non-specific, isotype-matched control antibody was also administered to BMT SCD 

mice as control.  Following treatment, blood was drawn by cardiac puncture. 

 

Organ collection and histologic preparations 

Mice were weighed, then placed in a CO2 inhalation chamber until motionless. Mouse organs 

were preserved by cardiac infusion of PBS followed by freshly prepared 4% 

paraformaldehyde, pH 7.2.  The fixation process was continued by incubation of whole mice 

in 4% paraformaldehyde for 7 days.  Mice were then switched to a solution of 70% ethanol 

until organs were collected for histologic preparation.  Lung, liver, kidney and spleen were 

embedded in paraffin, sectioned and mounted on slides.  All organs were stained with 

hematoxylin & eosin (H&E), gomori iron and the fibrin-indicator phosphotungstic acid-

hematoxylin (PTAH) stains.  Paraffin preparation, tissue sectioning and histological staining 

were performed by the DLAM histopathology core facility. 

 

 

Results 

Soluble CD40L may be elevated in SCD mouse plasma and depleted from mouse platelets 

To determine if SCD mice exhibit elevated plasma CD40L levels as seen in humans, an 

ELISA was developed to measure CD40L in mouse platelet-free plasma and platelet lysates.  

Results from samples collected in the laboratory of Paul Frenette (Mt. Sinai, New York, NY) 

demonstrated that  plasma CD40L is 1.3X greater in an SCD mouse (SS) compared to wild-

type (WT), while platelet CD40L is measurably less in the SCD mouse compared to wild-

type (Figure 7).  The heterozygote mouse (SA) expressing one sickle allele also exhibited 
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elevated plasma CD40L, although platelets from this mouse did not contain less CD40L 

(Figure 7). 

 

Splenic abnormalities in BMT SCD mice are reduced by anti-CD40L treatment, but not by 

the absence of potential CD40L receptors from the endothelia 

To determine the relative contribution of CD40L to SCD in vivo, SCD mice were generated 

through bone marrow transplantation, then treated with the anti-CD40L antibody, clone 

MR1, shown to block CD40L activity in a mouse model of atherosclerosis.25  The SCD 

phenotype was also conveyed to CD40-/- and β3-/- mice to determine the importance of 

endothelial recognition of CD40L. Spleens collected from anti-CD40L treated mice did not 

exhibit the dramatic 7-fold enlargement that is characteristic of SCD mice.  Anti-CD40L 

treated mouse spleens, but not IgG control treated, were comparable to normal in percentage 

of mouse body weight (Figure 8A).  Conversely, the absence of CD40 and β3 integrin from 

the endothelia did not result in decreased spleen size (Figure 8A).  Bone marrow 

transplantation alone did not increase spleen size, as WT BMT controls did not exhibit 

splenic enlargement (Figure 8A). 

 

Upon microscopic examination of spleens, the characteristic disruption of splenic 

architecture that is typical in SCD mice was readily observed in BMT mice.  Red-white pulp 

nodular organization was apparent in mice treated with anti-CD40L, but not control IgG 

(Figure 8B).  The lack of endothelial CD40 nor β3 integrin was protective against the 

abnormal splenic architecture induced by the SCD BMT (Figure 8B). 
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Lung pathology in BMT SCD mice is abrogated by both anti-CD40L treatment and the 

absence of CD40 

BMT mice were treated with anti-CD40L antibody, an isotype-matched control IgG, or left 

untreated for 8-10 weeks following the introduction of SS bone marrow.  Histologic 

preparations of perfusion-fixed lung tissue were prepared with H&E, iron and fibrin stains.  

Lungs from anti-CD40L treated mice, compared to lungs from control IgG-treated mice, had 

demonstrably less damage as evidenced by the amount of iron and fibrin deposits (Figure 9).  

The lack of CD40 was also protective against sickle-induced lung pathology in the CD40-/- 

chimeric mice (Figure 9), with lungs virtually free of iron and fibrin deposits.  Conversely, 

the absence of the β3 integrin did not affect accumulated damage to the lungs of the β3-/- 

mice following the sickle BMT procedure (Figure 9). 

 

Anti-CD40L treatment reduces liver and kidney pathology in BMT SCD mice 

Liver and kidney tissue sections isolated from anti-CD40L treated, BMT SCD mice were 

also prepared, staining for iron and fibrin deposits.  Liver sections from the anti-CD40L were 

less positive for both iron and fibrin stains than liver sections from mice treated with a non-

specific, isotype-matched control antibody (Figure 10).  Kidney sections from the anti-

CD40L treated mice contained demonstrably less iron deposits than the IgG control treated 

mice, however fibrin deposits appeared similar for both treatment groups (Figure 10). 
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Non-hematopoietic sources of CD40 and β3 integrin are not required for SCD-induced liver and 

kidney damage.   

Perfusion-fixed liver and kidneys were isolated from chimeric SCD mice expressing the 

sickle phenotype against either a CD40-/- or β3-/- background.  When histologic sections of 

liver and kidney tissue were examined, the absence of CD40 nor β3 integrin from the non-

hematopoietic cells appeared to protect the BMT mice from SCD-induced iron and fibrin 

deposits (Figure 11).   

 

 

Discussion 

CD40L is a potent inflammatory mediator1 known to induce proliferation of some 

leukocytes.6  Upon recognition by its receptor CD40, CD40L also increases endothelial 

expression of cell adhesion molecules1,8 and promotes coagulation through upregulated tissue 

factor production.28,29  The elevated WBC counts5,13, endothelial adhesivity30,31 and 

hypercogulation32 that exacerbate the clinical course of SCD, may be partially explained by 

the activity of CD40L.2  However, multiple inflammatory cytokines are likely involved in the 

clinical manifestations of SCD.15  In this study, we sought to determine the relative 

importance of CD40L to SCD pathology in vivo. 

 

Results presented here infer that sCD40L may be elevated in the plasma of SCD mice 

(Figure 7) just as it is in the plasma of human SCD patients.2  As these data only represent a 

single mouse of each genotype, firm conclusions can not be drawn.  However, the higher 

level of sCD40L found in plasma from a SS homozygote corroborates the fact that the 
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phenotype of the Berkeley SCD mice24 strongly recapitulates human SCD.33  The potential 

elevation of sCD40L in mouse SCD plasma also lends credence to the relative importance of 

this particular characteristic.   

 

When the activity of CD40L was blocked in the SCD mice, we found that organ pathology 

was noticeably diminished.  Namely, the characteristic enlargement of the spleen that occurs 

in SCD was not evident following anti-CD40L treatment (Figure 8A).  In fact, spleens of 

anti-CD40L treated mice were normal in size rather than the gross 7-fold splenic enlargement 

of the IgG control-treated mice (Figure 8A).  Furthermore, well-defined nodules indicative of 

normal red-white pulp splenic architecture was evident in anti-CD40L treated mouse spleens, 

but not in the spleens of mice treated with an isotype-matched control antibody (Figure 8B).  

Larger, more defined areas of white pulp seen in the spleens of the anti-CD40L treated mice 

are seemingly the antithesis of expected results since CD40L is known to mediate 

proliferation of leukocytes found in white pulp.1,6  However, it is important to note that the 

sections shown here are indicative of architectural organization only and do not allow for 

quantitative comparisons of particular cell types to be made.  Regardless, this study becomes 

the first to demonstrate that CD40L participates in SCD-induced splenic enlargement and the 

disruption of splenic architecture. 

 

The data shown here go on to demonstrate that the CD40:CD40L dyad plays a prominent 

role in the development of lung pathology in SCD.  Lung tissue from BMT SCD mice were 

virtually free of iron and fibrin deposits when either CD40L was blocked by anti-CD40L 

treatment or when CD40 was absent from non-hematopoietic cells (Figure 9).  As the 
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absence of non-hematopoietic CD40 did not affect SCD-induced pathology of other organs 

studied (Figure 11), these results highlight differential and organ-specific mechanisms by 

which CD40L participates in the pathology of SCD.  Since anti-CD40L treatment 

demonstrably reduced SCD-induced organ pathology (Figures 8 and 10) in tissues where the 

absence of non-hematopoietic CD40 and endothelial β3 integrin had no effect (Figures 8 and 

11), these results suggest that:  1) CD40L may interact with an unknown receptor; 2) 

Endothelial expression, rather than recognition, of CD40L may be an important mechanism 

of organ damage induced by SCD; or 3) Hematopoietic sources of CD40 and CD40L 

participate in SCD-induced organ damage.  Additional studies aimed at dissecting out the 

specific mechanisms by which CD40L participates in SCD pathology are warranted.  
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Figure 7 
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Figure 7.  CD40L may be elevated in mouse plasma and depleted in mouse platelets.  CD40L 
was determined to be 0.265 ± 0.001 ng/ml in the plasma of a wild-type C57BL6 mouse (WT) and 
0.317 ± 0.036 ng/3x108 platelets. A heterozygote expressing one human sickle allele (SA) had 
plasma CD40L of 0.315 ± 0.001 ng/ml and 0.322 ± 0.008 ng/3x108 platelets. The homozygote 
SCD mouse (SS) had plasma CD40L of 0.345 ± 0.027 ng/ml and platelet CD40L of 0.299 ± 
0.007 ng/3x108 platelets. Results shown are normalized to wild-type measurements and reflect 3 
iterations of 1 sample from each phenotype. 
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Figure 8 

 
Figure 8. SCD-induced splenic abnormalities are reduced by anti-CD40L treatment, but not by 
the absence of endothelial CD40 and β3 integrin in BMT SCD mice.  (A) The spleens of SS BMT 
mice (n=4) averaged 1.585% of total body weight compared to just 0.485% in AA BMT mice (n=2).  
In CD40-/- mice, spleens were 1.88% and 0.263% in SS (n=3) and AA (n=3) BMT mice, 
respectively.  Spleens from β3-/- mice averaged 2.19% in SS BMT mice (n=2) and 0.305% in AA 
BMT mice (n=2).  Following treatment with an anti-CD40L antibody, spleens of SS BMT mice 
averaged 0.285% of total body weight.  (B) Photographs of 10X magnification of spleen sections 
stained with H&E demonstrate that anti-CD40L treated mouse spleens have the nodular red-white 
pulp architecture that is lost in SCD. IgG control treatment had no effect on spleen size or 
architecture. 



 

55 

Figure 9 

 
 
Figure 9.  Lung pathology in BMT SCD mice is abrogated by both anti-CD40L treatment and 
the absence of CD40.  RBC congestion (black arrows) is evident in H&E stained lung sections of SS 
BMT mice, but not in AA BMT controls. Fibrin and iron deposits are noticeably decreased by 
αCD40L treatment as well as the absence of non-hematopoietic CD40. IgG control treatment and the 
lack of non-hematopoietic β3 integrin had no effect on SCD-induced fibrin and iron deposits.  Data 
shown represent photographs of 20x magnification of lung sections. 
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Figure 10 

 
 
Figure 10.  Anti-CD40L treatment decreases liver and kidney pathology in BMT SCD mice.  
Liver and kidney sections from SS BMT mice contain iron and fibrin deposits not found in 
comparable sections from AA BMT control mice. αCD40L treatment reduced iron deposits in 
both liver and kidney sections. Fibrin deposits were visibly reduced in liver, but this reduction 
was not readily apparent in kidneys. Isotype-matched control IgG treatment did not reduce SCD-
induced iron and fibrin deposits to liver and kidney in BMT mice. Data shown represent 
photographs of 20X magnification of liver sections and 10X magnification of kidney sections. 
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Figure 11 

 
 
Figure 11.  Non-hematopoietic sources of CD40 and β3 integrin are not required for SCD-
induced liver and kidney damage.  Liver and kidney sections from SS BMT mice contain iron 
and fibrin deposits not found in comparable sections from AA BMT control mice. These deposits 
of iron and fibrin were evident regardless if the SS phenotype was transplanted onto a WT, 
CD40-/- or β3-/- background.  Data shown represent photographs of 20X magnification of liver 
sections and 10X magnification of kidney sections. 
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CHAPTER IV. 

Specific Aim 3.  Determine the role of platelet activation in SCD. 

 

Rationale 

Sickle cell disease (SCD) is a complex syndrome characterized by a hypercoagulable state of 

multifactorial etiology1.  A quagmire of vaso-occlusive RBC phenomena2 is compounded by 

ischemia-reperfusion injury,3 elevated leukocyte counts, abnormal activation of granulocytes 

and monocytes,4,5 and elevated levels of multiple inflammatory mediators.2  Platelets are also 

thought to contribute to SCD via P-selectin,6-8 endothelial activation9 and aggregate 

formation.10  Platelet-released factors11 increase RBC adhesivity,12,13 coagulation14 and 

vasoconstriction.15,16 

 

Furthermore, platelets expose and release the inflammatory mediator CD40L,17 capable of 

mediating a broad variety of immune and inflammatory responses.18  As SCD is 

characterized by elevated leukocyte counts,19 circulating endothelial cells20 and a 

hypercoaguable state,21 platelet CD40L may play a similar role in SCD as it does in other 

vascular diseases.22,23  Our findings that the elevation of biologically active soluble CD40L in 

plasma correlates to the SCD clinical state24 further suggest that understanding platelet 

activation and subsequent CD40L release may be essential for understanding and alleviating 

symptoms of SCD. 
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The integrin αIIbβ3 is critical for platelet aggregation, adhesion, granule secretion, and 

platelet-induced procoagulant activity.25,26  Blockade of αIIbβ3 inhibits thrombotic vessel 

occlusion,27 the prothrombin activation that leads to coagulation,28 as well as platelet release 

of inflammatory CD40L.29  The antagonism of αIIbβ3 may therefore be beneficial to SCD 

patients as it may reduce many of the factors contributing to the adhesive, pro-inflammatory, 

and hypercoaguable state of the SCD vasculature.    

 

Eptifibatide, or Integrilin®, is an αIIbβ3 antagonist shown to be safe and effective in treating 

acute coronary syndromes (ACS).30,31  Blockade of αIIbβ3 via eptifibatide also effectively 

decreases the release of platelet CD40L,29 suggesting possible therapeutic benefit to SCD 

patients.  Therefore, we asked if eptifibatide could safely lower CD40L levels when 

administered to patients with SCD.  We also assessed changes in the inflammatory profile of 

eptifibatide-treated SCD patients and determined if comparable pharmacodynamics observed 

in the treatment of ACS could be achieved within the complex hemodynamics of SCD. 

 

 

Materials and Methods 

Study Participants 

Approval for this study was obtained from the Committee on the Protection of the Rights of 

Human Subjects at the University of North Carolina-Chapel Hill with informed consent 

provided according to the Declaration of Helsinki.  Study participants were eligible if they 

met the following criteria: 1) adults (age 18 to 50 years) with a confirmed diagnosis of 

homozygous SCD (Hb SS); 2) had no history of acute vaso-occlusive events requiring 
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hospitalization over the preceding 6 weeks; 3) had clinically acceptable values for 

hematology, chemistry, urinalysis and electrocardiogram for a patient with SCD; 4) had a 

negative pregnancy test, if female; 5) had a clinically acceptable physical examination; 6) 

had no evidence of infiltrates on a chest x-ray; and 7) weighed ≤ 100 kg. Patients were 

excluded from participating in the study if: 1) they were pregnant or breastfeeding; 2) had 

laboratory values that indicated major organ dysfunction (e.g. serum creatinine > 2.0, AST 

and/or ALT > 3 times normal); 3) had received a red blood cell transfusion within the 

previous 3 months; 4) had a history of clinically significant active cardiovascular, neurologic, 

endocrine, hepatic or renal disorder; 5) uncontrolled hypertension; 6) previous hemorrhagic 

stroke; 7) had a history of recent illicit drug or alcohol abuse; 8) had been exposed to any 

investigational drug within the preceding 6 weeks; 9) they were on chronic anticoagulation 

therapy; and 10) they were on aspirin, non-steroidal anti-inflammatory drugs or other anti-

platelet medications.  

 

Patient Characteristics  

Four subjects were enrolled onto this open-label Phase I study. All of the subjects were 

studied in their non-crisis, steady states.  All study subjects were male and had homozygous 

SCD (Hb SS). The median age was 31.5 years (range from 20 to 34 years). Three of the four 

study subjects were on hydroxyurea therapy at the time of evaluation. 

 

Treatment Plan 

The study was an open-label trial to evaluate the safety, and pharmacodynamics of 

eptifibatide in patients with SCD in the steady, non-crisis state. The study was divided into 
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four phases: a screening phase; a treatment phase; a post-treatment phase; and a follow-up 

phase. Eligible study subjects were admitted to the General Clinical Research Center 

(GCRC) one day prior to commencement of study drug administration. On the day of study 

drug administration, two baseline samples (i.e., time –30 min) for platelet aggregation studies 

and plasma CD40L were obtained using a 21-gauge needle.  Beginning immediately 

thereafter, each subject received two 180 µg/kg boluses of Eptifibatide 10 minutes apart, 

followed immediately by a continuous infusion at 2 µg/kg/min for a total of 6 hours.  

Throughout this treatment phase, safety assessments were obtained by monitoring vital signs, 

clinical laboratory test results (complete blood counts, PT/PTT and renal and liver function tests), and 

any observed or reported adverse events.  The post-treatment phase began immediately after the 

eptifibatide infusion was completed and lasted for a total of 24 hours.  Seven days after 

completion of the study-drug infusion, each subject returned as an outpatient for the follow-

up phase, which involved a thorough history and physical examination, a detailed assessment 

for adverse events, clinical laboratory safety tests, and final plasma samples for 

pharmacodynamic analyses. 

 

Platelet aggregation 

The pharmacodynamics of Eptifibatide in this patient population was analyzed by performing 

platelet aggregation studies on platelet rich plasma samples taken prior to the study drug 

infusion, immediately following discontinuation of the drug, and at the 7-day post-infusion 

follow-up.  For all platelet aggregation studies, the blood samples were drawn into 1.2 mM 

PPACK, rested for 15 min at 37ºC, then centrifuged at 200g for 15 minutes before the red 

and white blood cells were removed.  Aggregation was then measured in platelet-rich plasma 
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by an optical aggregometer (Chrono-Log, Havertown, PA) using autologous platelet-poor 

plasma as a reference and either 20µM ADP or 5µM TRAP6 as agonists. 

 

CD40L, beta-thromboglobulin (βTG) and platelet factor 4 (PF4) measurement 

Peripheral blood samples were collected by venipuncture from the antecubital vein via a 21-

gauge needle into 0.13M sodium citrate.  To separate plasma from blood cells, samples were 

centrifuged at 200g, PGI2 (1U/mL) was then added to plasma before removing platelets at a 

750g centrifugation, and microparticles at a 16,000g centrifugation.  Each centrifugation was 

15 minutes in duration and was preceded by a 15-30 minute rest of platelets at 37ºC.  

According to the manufacturer’s recommendations, a fibrin clot was formed by the addition 

of 1U thrombin/mL plasma.  The resulting defibrinated plasma was stored at -80ºC until it 

was analyzed.  CD40 ligand, βTG and PF4 levels were measured in thawed plasma with 

ELISA kits (Alexis Biochemicals, San Diego, CA and American Diagnostica, Greenwich, 

CT, respectively).  Both assays rely on antibody capture techniques and horseradish 

peroxidase conjugates.  Reactions are developed using a tetramethylbenzidine developing 

solution. 

 

Luminex Assays 

Plasma levels of inflammatory cytokines were measured using luminex MAP technology.32  

Briefly, specific fluorescent microspheres were used to recognize target analytes in human 

plasma samples.  Dual lasers identified microspheres and allowed the amount of analyte 

bound to be quantified.  Assays were performed by Rules Based Medicine (Houston, TX).   
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Flow cytometry 

Platelet exposure of P-selectin and CD40L were measured by whole blood flow cytometry as 

described previously.33  Briefly, 5 µl of whole blood obtained from 0.13M sodium citrate 

anti-coagulated blood was incubated with either FITC-conjugated anti-CD62P and PE-

conjugated anti-CD40L or appropriate fluorophore- and isotype- matched control antibodies 

(BD PharMingen, San Diego, CA).  Samples were incubated at room temperature for 30 

minutes, fixed with 0.7% paraformaldehyde, and read by a FACScan flow cytometer (Becton 

Dickinson, San Jose, CA).  Platelets were selected based on characteristic forward- and side-

scatter profiles. 

 

Results  

Safety  

Eptifibatide was well tolerated by the study subjects. The patients did not experience any 

side-effects that were thought to be secondary to the administration of eptifibatide. One 

subject complained of 2 days of a sore throat and a non-productive cough on his day 7 

follow-up visit that was thought to be due to a viral upper respiratory tract infection.  There 

were no bleeding manifestations or clinically meaningful changes in any of the safety 

laboratory studies (hematological, biochemical, or coagulation parameters) that were 

evaluated before, during and following eptifibatide infusion.   
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Platelet granule release and aggregation to leukocytes in SCD plasma is not increased by 

eptifibatide treatment 

Despite the reduction in platelet:platelet aggregation, eptifibatide has been reported to 

increase some markers of platelet activation and the degree of platelet:leukocyte 

aggregation.34  Therefore, platelet activation markers β-thromboglobulin (β-TG) and platelet 

factor 4 (PF4) were measured to determine if eptifibatide increases platelet granule release in 

patients with SCD.  Neither β-TG nor PF4 were increased by eptifibatide treatment (Figure 

12A).  Furthermore, surface expression of platelet P-selection remained unchanged in the 

study subjects as a result of eptifibatide treatment (Figure 12B).  Blood cells simultaneously 

positive for the leukocyte marker CD45 and the platelet marker GPIX were analyzed by 

whole blood flow cytometry to determine the amount of platelet:leukocyte aggregates in 

SCD patient samples.  The high degree of platelet:leukocyte aggregates found in the blood of 

patients with SCD was not increased by treatment with eptifibatide, remaining near constant 

for all time points measured (Figure 12C).  These results suggest that the already high level 

of platelet granule release and aggregation to leukocytes that exists in SCD is not increased 

by treatment with eptifibatide. 

 

Elevated CD40L in SCD plasma is reduced by eptifibatide treatment  

Soluble CD40L levels in cell-free SCD plasma were measured.  Six hours following 

eptifibatide infusion, soluble plasma CD40L levels were decreased in 3 of the 4 patients 

studied.  CD40L levels remained unchanged for 1 patient (Figure 13).  On average, soluble 

CD40L levels were reduced by approximately 35% in those patients whose plasma CD40L 

were decreased following eptifibatide treatment (Figure 13B).  Given that higher levels of 
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soluble CD40L may be predictive of vascular inflammation,35 these results suggest that 

eptifibatide treatment may be beneficial in reducing vascular inflammation and the risk of 

adverse cardiovascular events in patients with SCD.   

 

The profile of inflammatory indicators in SCD plasma is altered by eptifibatide treatment 

Plasma from patients with SCD was assayed for expression of inflammatory indicators 

before and after treatment with eptifibatide.  Myoglobin, an indicator of damage to muscle 

tissue, was reduced by an average of 35%, macrophage inflammatory protein-1 alpha (MIP-

1α) expression was reduced by 37%, and tumor necrosis factor alpha (TNFα) was reduced 

by 32% (Figure 14A).  Conversely, eptifibatide treatment increased matrix 

metalloproteinases MMP-2 and MMP-9 by an average of 34% and 81%, respectively (Figure 

14B).  The adipokine leptin was similarly increased by an average 70% in plasma from SCD 

patients following eptifibatide treatment (Figure 14C).   

 

Eptifibatide inhibits platelet aggregation in SCD patients 

The inhibition of ex vivo platelet aggregation by eptifibatide was examined in patients with 

SCD.  Platelet response to adenosine diphosphate (ADP) and thrombin receptor activating 

peptide (TRAP) was measured in all 4 study subjects at baseline, 6-hours, 24-hours, and 7-

days post eptifibatide infusion.  Eptifibatide significantly inhibited platelet aggregation in all 

4 subjects studied (Figure 15).  We found ADP-induced platelet aggregation to be inhibited 

by approximately 90% immediately following eptifibatide infusion (6-hours post infusion).  

Aggregation induced by varying concentrations of TRAP was inhibited by approximately 46-

67%.  Aggregation returned to normal at the 24-hour time point for all agonists.  
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Discussion 

Sickle cell disease is characterized by increased thrombin generation, abnormal activation of 

fibrinolysis, increased platelet activation and decreased levels of anticoagulant proteins.1   

Additionally, increased levels of soluble tissue factor (TF) combined with TF-expressing 

endothelial cells and microparticles36,37 constitute a hypercoagulable state of multifactorial 

etiology.  The quagmire of vaso-occlusive events is compounded by an abnormal RBC 

membrane phospholipid asymmetry,7,38 the adherence of sickle RBCs to vascular 

endothelium,2 as well as ischemia-reperfusion injury.3  In addition, SCD is an inflammatory 

state, as evidenced by chronic elevation of leukocyte counts, abnormal activation of 

granulocytes and monocytes4,5 and chronically elevated levels of multiple inflammatory 

mediators.2 

 

Platelet hyperactivity and increased release of the inflammatory mediator CD40L 

characterize the vascular pathogenesis of SCD just as it does in other inflammatory vascular 

diseases including ACS.  Antagonism of platelet integrin αIIbβ3 by eptifibatide has proven 

to be safe and effective for the treatment of ACS, with patients benefiting from the inhibition 

of platelet aggregation and CD40L release.  Improved clinical status of ACS patients due to 

Eptifibatide treatment was seen despite in vitro reports of granule release and 

platelet:leukocyte aggregation resulting from occupation of αIIbβ3 by the antagonist.  

Eptifibatide may prove to be beneficial in the treatment of SCD as well.  However, the 

unique hemodynamics of SCD may make these patients less tolerant of residual αIIbβ3 

activation caused by eptifibatide than the normal volunteers and ACS patients studied in 
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previous safety trials.  Here we show that eptifibatide can be safely administered to SCD 

patients, that eptifibatide treatment may promote a favorable alteration of cytokine 

expression in SCD, and that the beneficial effects of decreased platelet aggregation and 

CD40L release are still achieved. 

 

Eptifibatide was well tolerated by SCD patients.  No adverse events were reported during the 

study, and there were no significant changes in any of the hematological, chemical, or 

coagulation parameters measured as a result of Eptifibatide infusion.  Furthermore, SCD 

patients receiving Eptifibatide did not show increased platelet granule release as a result of 

drug treatment (Figure 12).  Although elevated beyond normal levels, platelet activation 

markers β-TG and PF4 were not further increased by Eptifibatide treatment of the SCD 

patients in this study (Figure 12A).  Similarly, platelet exposure of P-selectin remained 

relatively constant following Eptifibatide infusion for all time points studied (Figure 12B).  

Platelet:leukocyte aggregates were also not increased in SCD patients following eptifibatide 

treatment (Figure 12C).  Collectively, these results suggest that antagonism of platelet 

integrin αIIbβ3 by eptifibatide does not increase platelet activation in the context of SCD and 

may be suitable for use in the treatment of SCD.  

 

We also demonstrate in this study that soluble CD40L is reduced by eptifibatide treatment in 

75% of SCD patients tested (Figure 13).  Reductions averaged 35% in these patients (Figure 

13B), suggesting that in addition to its safe administration, eptifibatide treatment may lower 

CD40L levels in SCD patients.  As elevated CD40L is a potential indicator of vascular 
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inflammation39 and may correlate to the SCD clinical state,24 reductions in CD40L levels are 

likely to be beneficial to SCD patients. 

 

Indeed, multiple inflammatory cytokines were reduced following eptifibatide treatment 

(Figure 14).  As MIP-1α and TNFα are potent mediators of inflammation, reduced 

expression of these cytokines might result in beneficial effects for the SCD patient.  

Furthermore, a decrease in the injury indicator myoglobin may be further evidence of a 

therapeutic benefit of eptifibatide treatment for SCD patients.  Upregulation of the matrix 

metalloproteinases MMP-2 and MMP-9 (Figure 14B) is consistent with vessel dilation, as is 

an increase in the adipokine leptin (Figure 14C).   

 

Pharmacodynamic studies of eptifibatide have largely focused on its short-acting, reversible 

decrease in platelet aggregation.  However, benefits to patients receiving eptifibatide are 

significant even a year following treatment.40  One-year hazard ratios demonstrate a 

decreased risk of death and myocardial infarction following eptifibatide treatment,41 

suggesting that a one-time dose of the αIIbβ3 antagonist has long lasting effects.  Since 

eptifibatide inhibition of platelet aggregation in SCD patients was comparable to results 

achieved in ACS treatment (Figure 15), SCD patients could presumably enjoy lasting benefit 

from eptifibatide treatment as well.    

 

This study demonstrates that eptifibatide is safe for use in SCD patients.  Furthermore, these 

data demonstrate that the effective inhibition of αIIbβ3-mediated platelet aggregation in SCD 

is comparable to that shown in ACS.  Additionally, 75% of these patients demonstrated a 
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decrease in CD40L levels.  As eptifibatide infusion led to a favorable alteration in the 

inflammatory profile of the plasma of these SCD patients, eptifibatide may have additional 

benefits for SCD patients.  These results suggest that eptifibatide may be an effective 

treatment modality for the vascular occlusion that occurs in patients with SCD.  Future 

studies designed to establish the efficacy of eptifibatide in SCD are therefore warranted.  



 

73 

 Figure 12 
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Figure 12.  Eptifibatide treatment did not increase platelet activation in SCD plasma. 
(A) Platelet activation markers beta-thromboglobulin (β-TG) and platelet factor 4 (PF4) were 
measured by ELISA in cell-free SCD plasma at the indicated time points.  Baseline measurement of 
β-TG in SCD plasma averaged 193.9 IU/ml ± 7.7 IU/ml.  Plasma levels of β-TG were unchanged by 
Eptifibatide treatment.  Similarly, the average PF4 level of 77.8 IU/ml ± 10.9 IU/ml remained the 
same following Eptifibatide treatment.  Results shown were normalized relative to baseline.  (B) 
Surface expression of platelet P-selectin was analyzed by whole blood flow cytometry.  Mean 
fluorescence intensity (MFI) of the P-selectin fluorophore remained relatively unchanged as a result 
of Eptifibatide treatment.  (C) Whole blood from SCD patients was analyzed by flow cytometry.  
Leukocytes and platelets were selected by CD45 and GPIX specificity, respectively.  Co-incidence of 
the leukocyte and platelet markers indicate that the amount of platelet:leukocyte aggregates in SCD 
patient samples was not increased by Eptifibatide treatment.   
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Figure 13 
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Figure 13.  Elevated CD40L in SCD plasma is reduced by eptifibatide treatment 
CD40L levels were measured in cell-free SCD plasma collected at time points indicated.  For SCD 
patients 1, 2 and 4, ELISA results demonstrate a reduction in soluble CD40L at the 6h time point.  
Levels of plasma CD40L returned to baseline by the 24h time point.  Soluble CD40L remained 
unchanged for SCD patient 3.  (B) Eptifibatide treatment reduced CD40L levels by an average 35% 
for SCD patients 1, 2 and 4 as shown for the 6h time point.  Results shown represent mean ± SEM. 
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Figure 14 

 

 

Figure 14.  The profile of inflammatory indicators in SCD plasma is altered by 
eptifibatide treatment.  (A) Average plasma concentration of myoglobin dropped from 6.9 
ng/ml to 4.1 ng/ml, MIP-1α dropped from an average 12.3 pg/ml to 8.6 pg/ml, and average 
TNFα concentration was reduced from 7.0 pg/ml to 4.6 pg/ml.  Reductions in myoglobin, 
MIP-1α and TNFα following eptifibatide infusion averaged 35%, 37% and 32%, 
respectively, for each patient. (B) Matrix metalloproteinases MMP-2 (334 ng/ml to 
434 ng/ml) and MMP-9 (448 ng/ml to 596 ng/ml) increased average concentrations 34% and 
81%, respectively, in SCD patient plasma following eptifibatide infusion.  (C) Leptin 
concentrations increased from 0.78 ng/ml to 1.04 ng/ml following eptifibatide infusion, an 
average 1.84-fold increase in expression.  Data shown determined by Luminex multiplex 
analysis of EDTA-anticoagulated patient plasma. 
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Figure 15 
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Figure 15.  Eptifibatide inhibits platelet aggregation in SCD  patients 

The extent of ex vivo platelet aggregation inhibition with eptifibatide was examined in patients with 
SCD disease.  Platelet response to ADP and TRAP was measured in four steady state, homozygous 
SCD patients at baseline, 6-hours, 24-hours, and 7-days post eptifibatide infusion.  (A) Eptifibatide 
inhibited platelet aggregation to 20 µM ADP by approximately 90%, **p<0.001.  (B-D)  Platelet 
aggregation was inhibited ~67% in response to 12.5 µM TRAP*, ~54% in response to 25 µM 
TRAP*, and ~46% in response to 50 µM TRAP, *p<0.05.  Aggregation profiles returned to baseline 
levels within 24 hours and were unchanged 7 days post eptifibatide infusion.  
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CHAPTER V. 

CONCLUSIONS 

 

CD40L mediates chronic inflammation in multiple disease states1.  B cell proliferation,2 

endothelial adhesion molecule expression,3 and procoagulant activity through tissue factor 

upregulation4 are all mechanisms by which CD40L exerts its inflammatory effects.  All of 

these indices of inflammation characterize SCD,5 but by unknown mechanisms.  SCD is also 

characterized by increased platelet activity, suggesting that the vast amount of CD40L stored 

in platelets6 are prone to surface exposure and release as soluble fragments into the 

bloodstream.7 Therefore, CD40L might be more available and mediating the chronic 

inflammation that occurs in SCD patients.  Prior to this work, the role of platelets and the 

inflammatory protein CD40L in SCD pathology had not been clearly established.  Here we 

present evidence that platelets participate in the chronic inflammation of SCD via CD40L 

and provide new insights into mechanisms contributing to SCD pathology. 

 

Just as sCD40L levels are elevated in a variety of diseases involving vascular 

inflammation,8-10 we found that sCD40L is elevated in SCD as well.  Indeed, our findings 

indicate an average 30-fold elevation of sCD40L in SCD versus normal plasma.  We also 

demonstrate a corresponding decrease in the amount of CD40L stored in the platelets of SCD 

patients, more than enough to account for the increased plasma amounts measured.  The 



 

82 

elevated sCD40L in SCD plasma positively correlates with increased TF and participates in 

the induction of TF, VCAM-1 and ICAM-1 expression via its interaction with CD40.  

Biological activity of sCD40L in SCD plasma is further confirmed by its induction of B cell 

proliferation.  Together, these data identify sCD40L as potentially important for both 

inflammation and coagulation in SCD, and suggest a previously unrealized participation of 

platelets in SCD pathogenesis. 

 

In vivo studies of the organ pathology in SCD provide further evidence of the role the potent 

inflammatory mediator CD40L plays in this disease.  Following bone marrow transplantation 

to convey the SCD phenotype to mice, the effects of anti-CD40L treatment or the lack of 

endothelial CD40 or β3 integrin were examined.  In the SCD mice where CD40L activity 

was inhibited, there was significantly less lung, liver and kidney damage as shown by 

immunohistochemical staining for iron and fibrin deposits.  Even more impressively, the 

spleens of anti-CD40L treated mice appeared normal compared to the disrupted architecture 

and grossly enlarged spleens typical of SCD.  Furthermore, the lack of CD40 was protective 

against the accumulation of lung pathology in the BMT SCD mice.  These results 

demonstrate a role for CD40L in the development of organ damage in SCD, and suggest that 

blocking CD40L activity could reduce the damage that accumulates in the vital organs of 

SCD patients. 

 

Platelet hyperactivity and increased release of the inflammatory mediator CD40L 

characterize the vascular pathogenesis of SCD just as it does in other inflammatory vascular 

diseases including ACS.  Antagonism of platelet integrin αIIbβ3 by eptifibatide has proven 
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to be safe and effective for the treatment of ACS, with patients benefiting from the inhibition 

of platelet aggregation and CD40L release.  Improved clinical status of ACS patients due to 

eptifibatide treatment was seen despite in vitro reports of granule release and 

platelet:leukocyte aggregation resulting from occupation of αIIbβ3 by the antagonist.  

Eptifibatide may prove to be beneficial in the treatment of SCD as well.  However, if 

eptifibatide occupancy of αIIbβ3 causes residual outside-in platelet activation, the unique 

hemodynamics of SCD may make these patients less tolerant of residual platelet activity than 

the normal volunteers and ACS patients studied in previous safety trials.  Here we show that 

eptifibatide can be safely administered to SCD patients. Furthermore, these data demonstrate 

that the effective inhibition of αIIbβ3-mediated platelet aggregation in SCD is comparable to 

that shown in ACS.  Additionally, 75% of these patients demonstrated a decrease in CD40L 

levels.  As eptifibatide infusion led to a favorable alteration in the inflammatory profile of the 

plasma of these SCD patients, eptifibatide may have additional benefits for SCD patients.  

These results suggest that eptifibatide may be an effective treatment modality for the vascular 

occlusion that occurs in patients with SCD.  The extent to which eptifibatide, or other platelet 

antagonist, may be effective as a treatment modality for SCD should be determined.  

 

Together, these data provide new insights into mechanisms of inflammation in SCD.  The 

findings presented here suggest that platelet CD40L plays an important role in the 

inflammatory processes of SCD and in the resulting pathology.  Furthermore, these results 

suggest a mechanistic link by which the mutated hemoglobin of sickle RBC leads to the 

numerous downstream effects of inflammation, vascular occlusion and hypercoagulation.  

The process of sickling damages the RBC of SCD such that membrane leakiness releases 
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ADP11-13 and phospholipid asymmetry exposes phosphatidylserine.14  Therefore, sickle RBC 

can be irritants,15 provoking a variety of effects that include platelet activation.11 Activated 

platelets expose CD40L to their surface16 and release soluble CD40L fragments.7   

 

When CD40L is no longer encrypted in platelets, the multifunctional inflammatory mediator 

can cause a host of proinflammatory and procoagulant effects.3  B cell proliferate,17 VCAM-

1 and ICAM-1 expression is upregulated,18 and tissue factor production is increased;19,20 all 

in response to CD40 ligation.  Increased leukocyte counts, endothelial activation, and 

procoagulant activity are SCD characteristics associated with increased vascular occlusion21 

and more clinically severe SCD,22,23 with an increased propensity for the sickling of slowly 

transversing RBC.   

 

A model for chronic inflammation in SCD is proposed here (Figure 16) where we present 

graphically how this self-perpetuating process predisposes SCD patients to recurring and 

ongoing inflammation.  As presented here, this repetitive cycle requires both platelet 

activation and CD40L activity.  Therefore, platelets and CD40L are identified as two 

potential therapeutic targets to interrupt the chronic inflammatory cascade and treat the 

manifestations of SCD. 

 

This research goes on to suggest that a particular platelet antagonist, eptifibatide, may be 

beneficial to SCD patients.  Pending more extensive studies, interventional therapy with the 

αIIbβ3 antagonist could provide lasting benefits for SCD patients just as it does for patients 

with ACS.24  If this or other mechanisms aimed at antagonizing platelet activation and 
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reducing CD40L activity are employed in SCD, these patients could potentially enjoy longer 

life spans, less pain crises, fewer hospitalizations, and overall better health as a result.   
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Figure 16. Potential model of platelet CD40L role in chronic inflammation in SCD.  
Hemoglobin S abnormally polymerizes upon deoxygenation, causing distorted, sickle-shaped 
RBC. Repetitive sickling damages RBC membranes, causing phosphatidylserine exposure 
and the release of ADP. Platelets in turn become activated, exposing and releasing CD40L.  
CD40L mediates B cell proliferation, endothelial activation, and TF production. These 
processes increase the propensity for vascular occlusion. RBC transit through the vasculature 
is slowed, oxygenation is delayed, sickling is increased and a persistent cycle of chronic 
inflammation ensues.   
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