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Abstract

SHENGQIAN CHEN: Dynamics of continuously stratified and two-layer
incompressible Euler fluids and internal waves.
(Under the direction of Roberto Camassa.)

The first part reveals a phenomenon in fluid mechanics that can be viewed as para-

doxical: horizontal momentum conservation is violated in the dynamics of a stratified

ideal fluid filling an infinite horizontal channel between rigid bottom and lid boundaries,

starting from localized initial conditions, even though external forces only act on the

vertical direction. The paradox is shown to be a consequence of the rigid lid constraint

coupling through incompressibility with the infinite inertia of the far ends of the chan-

nel, assumed to be at rest in hydrostatic equilibrium. By the perturbation theory based

on small density variance, an analytical study quantifies the momentum development

at the initial time. These results are compared with direct numerical simulations for

variable density Euler fluids.

The second part is a numerical study of strongly nonlinear models for internal waves.

We emulate numerically the generation of solitary wave motivated by a laboratory ex-

periment. The dam-break problem for internal waves can be solved by direct numerical

simulations (DNS). By smoothing out the dam and symmetric extension of the wave

tank, the strongly nonlinear model is ready for implementation. The Kelvin-Helmholtz

instability associated with the model is treated by a time-dependent low-pass filter.

The regularized strongly nonlinear model with less-restrictive stability criterion is also

considered. The snapshots of the models and DNS show excellent agreements between

models and DNS. The effect of numerical filters are considered to behave as reducing

dissipation.

The third part consists of the comparisons among weakly nonlinear models for
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internal waves by providing predictions for the two-layer dam-break problem. We

regularized a completely integrable but ill-posed system, the two-layer Kaup equations.

The new equations are numerically solvable and provide better agreement with the

inverse scattering transform prediction for the Kaup equations than the Boussinesq

equations, another weakly nonlinear model for bi-directional waves. A higher order

uni-directional model is also considered to cope with moderate amplitude waves. These

models are compared for their traveling wave solutions, phase speed and amplitude

relations, and dispersion relations. The time evolutions for the two-layer dam-break

problem from weakly nonlinear models are compared with DNS.
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Chapter 1

GENERAL INTRODUCTION

Ideal fluids are theoretical simplifications of real fluids obtained by ignoring viscosity

and thermal conductivity. Such idealization is useful in many cases, such as flows

considered in oceanography, where the Reynolds numbers are high. The mathematical

description for ideal fluids are the Euler equations, representing conservation of mass,

momentum and energy, which can be viewed as the Navier-Stokes equations in the limit

of zero viscosity and heat conductivity. This thesis is concerned with incompressible

ideal fluids with variable densities. Such setup allows for internal waves, which in

their simplest occurrence can be seen as propagating at the interface between two

fluids of different densities. Such ultimate simplification may in fact still be useful in

oceanographic settings, and can be closely approximated in laboratory conditions.

Internal waves are gravity waves that oscillate within, rather than at the surface

of, a fluid medium. In the ocean, where the density variations are much smaller than

the density of the fluid itself, internal waves have much higher amplitudes than surface

gravity waves because gravity, the restoring force for fluid parcels at the surface of a

body of fluid, is much weaker on fluids parcels within the body, due to the buoyancy

exerted by the surrounding fluid. Internal waves are especially common over the coastal

regions where density variations, usually mostly due to temperature contrast from the

top to the bottom of the water column, are also aided by salinity contrast due to fresh

water influx from large rivers. Typical scales from field observations of internal waves



show that they are usually long with respect to the average fluid depth, e.g., wavelengths

be of the order of 10 kilometers with the layer depths less than 1000 meters (Apel et al.

[2], Helfrich & Melville [24]). Hence, in order to gain insight into wave dynamics of the

Euler equations, whose solution for the most part are amenable to numerical methods

only, it is useful to study asymptotic models built on the long wave assumption. These

models can be derived with further simplifying assumptions such as idealized domains

horizontal directions extending to infinity or confined in periodic lattices.

This thesis studies three problems concerning the derivation and properties of long

internal-wave models from incompressible ideal fluids with variable densities. Each of

these problems is essentially self contained:

1. The mathematical idealization of extending the container of the fluid to infinite

lengths simplifies the physical problem. On the other hand, this setup seemingly

brings in some paradoxical property, which are analyzed the first part of this work

in some detail.

2. The model asymptotic derivation assumes initial conditions that satisfy the long

wave assumption. When this is violated, how robust are the models with respect

to the long time evolution with respect to the parent Euler system? This question

is taken up for a class of initial and boundary conditions of relevance in laboratory

experiments in the second part of this thesis.

3. The previous study shows that solitary waves are a dominant feature of the dy-

namics of a certain class of initial data. Can the presence and features of these

waves be analytically predicted from models? This is the subject of the third part

of this work.

Throughout this work, we restrict the upper surface by a “rigid lid,”, arguing that

the surface signature of the internal waves is typically 103 smaller than typical internal
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pycnocline displacements, i.e., the scales associated with internal wave motion greatly

exceed the scales of the surface (barotropic) waves (Vlasenko et al. [36]).

This dissertation is organized as following. Chapter 2 focuses on an effect that

could also be viewed as paradoxical: horizontal momentum conservation is violated in

the dynamics of a stratified ideal fluid filling an infinite horizontal channel between

rigid bottom and lid boundaries, starting from localized initial conditions, even though

the only external forces acting on the system are vertical (gravity and constraint forces

from the horizontal boundary), and the fluid is free to move laterally. Of course, even

for an inviscid fluid, lateral boundaries could lead to horizontal forces by action-reaction

mechanisms due to the constrained motion, and so horizontal momentum conservation

cannot in general be expected to hold for a stratified Euler fluid filling a finite domain

enclosed by a rigid boundary. However, we see that for a domain extending horizontally

to infinity, the infinite inertia possessed by the far fluid at rest acts as an effective

lateral wall, giving rise to the violation of horizontal momentum conservation. While

stratification is necessary for creating the relative inertia of the lateral fluid at rest, a

subtlety of this effect is that incompressibility is also required to transmit forces arising

from finite-range motion instantaneously all the way to infinity. Accordingly, the “light-

cone” provided by the maximum speed of propagation of internal baroclinic modes

gives a rough estimate of the boundary of the exterior region that can be considered

as contributing to an effective-wall lateral confinement. In particular, we adopt a

perturbative point of view (in the limit of density difference goes to zero) to solve

the elliptic equation which determines the pressure at initial time with the setting of

zero-velocity configurations. Our analysis will be carried out directly on the Euler

equations of motion in two dimensions; however, as a benchmark for testing ideas, we

also consider long-wave one-dimensional reductions of our two-dimensional set-up, such

as the strongly nonlinear model introduced in Choi & Camassa [15], for the description
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of strongly nonlinear internal waves in two-fluid systems.

Appendix A reviews the Lagrangian and Hamiltonian formalism of the Euler equa-

tions, in particular adapting it to the two-fluid configuration, which allows the frame-

work of conservation laws to be established from a more general standpoint.

Appendix B briefly examines the limiting case of “air-water” systems, in which one

of the densities goes to zero. Non-trivial boundary effects on the pressure imbalance

which are masked by the opposite near-density limit emerge in this case, due to the

interface profile touching the channel plates along some intervals.

In Chapter 3, we conduct numerical experiments with direct Euler simulations and

two long internal wave models for large amplitude waves: the strongly nonlinear model

(Choi & Camassa [15]) and the regularized model (Choi et al. [14]). Studies of these

models have mostly been limited to traveling wave solutions only. Our numerical exper-

iments are motivated by laboratory experiments (Grue et al. [23]), with stratification

achieved by pouring a layer of fresh water above a layer of brine in a long rectangular

tank. By adding a volume of fresh water behind a gate which is lowered at one end of

tank, a corresponding mass of the brine then slowly moves to the other side of the gate

such that hydrostatic balance is maintained. By removing the gate, the initial pycno-

cline depression develops into a leading solitary wave propagating ahead of a transient

dispersive wave train. The mathematical formulation of this dam-break internal wave

problem is that of a step function representing the initial interface displacement, which

clearly does not satisfy the long wave assumption for initial data of the models. In

fact, it turns out that the models are sufficient to numerically predict front waves with

low computational cost and remarkable accuracy when comparing to the full Euler

simulations.

In Chapter 4, we compare several weakly nonlinear models in an attempt to provide

analytical solutions for the internal dam-break problem described in Chapter 3. For the
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most popular two-layer models such as Kortweg-de Vries equation (Choi & Camassa

[15]) the initial value problem can be solved exactly by the inverse scattering transform

method on the infinite domain. However, as a uni-directional model, the initial con-

ditions for the KdV equation which properly reflect those in the experiments can only

be defined approximately. Therefore the accuracy from the KdV equation prediction is

not expected to excel. This motivates us to explore the completely integrable two-layer

Kaup equations (Craig et al. [17]), a bi-directional model, which also can be solved via

the inverse scattering transform (Kaup [27], Kaup [28]). The Kaup equaitons, however,

suffer from the ill-posedness at high wave numbers, thus we propose a regularization of

Kaup equations which are asymptotically equivalent to the original model. We com-

pare the results from the new model to another well-posed weakly nonlinear model

for bi-directional waves, the known Boussinesq equations (Choi & Camassa [15]). In

turn, these three models are compared to direct numerical simulations with solitary

wave solutions in the time evolution for the dam-break problem. We finally consider

a higher-order uni-directional model (Choi & Camassa [15]) with similar form as the

KdV equation, which is able to deal with moderate amplitude waves.
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Chapter 2

EFFECTS OF INERTIA AND STRATIFICATION IN
INCOMPRESSIBLE IDEAL FLUIDS: PRESSURE IMBALANCES BY

RIGID CONFINEMENT

This Chapter is collaborative work with Gregorio Falqui, Giovanni Ortenzi and

Marco Pedroni. The content of this Chapter is from our published articles [8] and

[9] in Journal of Fluid Mechanics.

2.1 Introduction

Among the many areas of classical mechanics, fluid dynamics arguably holds a

special distinction for being a rich source of the sort of paradoxes that often arise from

simplifying limit assumptions. Thus, for instance, the limit of zero viscosity gives rise

to D’Alembert’s paradox on the drag experienced by rigid bodies moving in ideal fluids,

while the opposite limit of dominating viscous stresses leads to the Stokes or Whitehead

paradoxes of unphysical divergences for the same problem.

This chapter focuses on an effect that could also be viewed as paradoxical: horizontal

momentum conservation is violated in the dynamics of a stratified ideal fluid filling

an infinite horizontal channel between rigid bottom and lid boundaries, starting from

localized initial conditions, even though the only external forces acting on the system

are vertical (gravity and constraint forces from the horizontal boundaries) and the fluid

is free to move laterally. Of course, even for an inviscid fluid, lateral boundaries could



lead to horizontal forces by action-reaction mechanisms due to the constrained motion,

and so horizontal momentum conservation cannot in general be expected to hold for a

stratified Euler fluid filling a finite domain enclosed by a rigid boundary. However, we

shall see below that for a domain extending horizontally to infinity the infinite inertia

possessed by the far fluid at rest acts as an effective lateral boundary, giving rise to

violation of horizontal momentum conservation. While stratification is necessary for

creating the relative inertia of the lateral fluid at rest, a subtlety of this effect is that

incompressibility is also required to transmit forces arising from finite-range motion

instantaneously all the way to infinity. Accordingly, the “light-cone” provided by the

maximum speed of propagation of internal baroclinic modes gives a rough estimate

of the boundary of the exterior region that can be considered as contributing to an

effective-wall lateral confinement.

This violation can be viewed as surprising, as the only acting body-force field is the

vertical gravity and the fluid is free to move laterally. Possibly the first mention of this

peculiar feature of stratified fluid dynamics can be traced back to Benjamin [5], in his

investigation of the Hamiltonian formalism for inviscid incompressible fluids. Despite

the relatively long time elapsed, it appears that Benjamin’s observation about (in his

own words) “this curious fact” have been largely ignored since.

In the horizontal slab set-up, whenever hydrostatic conditions apply at infinity, this

violation of momentum conservation is proportional (up to terms that arise from possi-

bly different configurations at x = ±∞) to the difference of the layer-averaged pressure

at the far ends of the channel. As we will see, this pressure imbalance enters another

physically interesting quantity, namely the (total) vorticity of the system. Admittedly,

the effects herewith considered can be viewed as small, because the violation of mo-

mentum conservation must necessarily be a vanishing function of the difference ρ∆ of

the density range of the fluid as this goes to zero (momentum conservation recovers
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in the limit of a homogeneous fluid). Small density variations are common to many

applications such as geophysics, however the large scales often involved in such appli-

cations justify considering the idealized set-up of laterally infinite fluids and might lead

to non-negligible cumulative effects, even when these are small over local scales. Of

course, the implications arising from considering rigid lids upper constraints in these

applications remain to be seen; however, this limiting case may be relevant for estab-

lishing a comprehensive framework in which the dynamics of the incompressible limit

for density-stratified fluids can be properly interpreted.

We shall mainly deal with incompressible, inviscid two-layer (Euler) fluids of con-

stant different densities ρ2 > ρ1, separated by an interface located at z = η(x, t) (not

necessarily smooth), where (x, z) are horizontal and vertical Cartesian coordinates in

the plane. This choice is convenient for analytical purposes, and while numerically chal-

lenging, it can nonetheless be implemented in direct simulations of stratified Euler flows.

While restrictive, the two-layer assumption can be representative of the dynamics of Eu-

ler fluids with smooth density variations as well (see, e.g., Camassa et al. [10], Camassa

& Tiron [12]). In particular, for two-layer fluids in which the interface height is the

same at ±∞, the pressure imbalance P∆ ≡ limx→+∞ p(x, η(x, t))− limx→−∞ p(x, η(x, t))

is equal to the difference of the pressures p(±∞, z0) for any reference height z0, as it

could be obtained from Benjamin [4] for smooth stratifications.

Our main focus will be on initial conditions with null velocity and small ρ∆ ≡

ρ2 − ρ1. This choice, as shown below, restricts the effects on the pressure imbalance of

stratification at initial times to order ρ 2
∆
, as opposed to order ρ∆ , as it might be expected

at first. However, besides being simpler to implement numerically, this choice has the

advantage of leading to closed form formulae, and identifies from a theoretical viewpoint

a significant class of interface profile configurations giving rise to pressure imbalance.

In turn, these correspond to horizontal momentum non-preserving time evolutions. In
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particular, the setting of zero-velocity configurations will be instrumental in Section 2.4,

where we shall adopt a perturbative point of view (in the limit ρ∆ → 0) to solve the

elliptic equations which determine the pressure at t = 0. Some compact expressions for

the pressure imbalances can then be obtained. Our analysis will be carried out directly

on the Euler equations of motion in two dimensions; however, as a kind of benchmark for

testing ideas, we shall also consider long-wave one-dimensional reductions of our two-

dimensional set-up, such as the strongly nonlinear model introduced in Choi & Camassa

[15] for the description of strongly nonlinear internal waves in two-fluid systems. We will

also briefly review the Lagrangian and Hamiltonian formalism of the Euler equations,

in particular adapting it to the two-fluid configuration, which allows the framework of

conservation laws to be established from a more general standpoint.

More specifically, the layout of this chapter is as follows. In § 2.2 we introduce

the set-up of our physical system within the Euler formalism, and, in particular, focus

on the relation between non-conservation of horizontal momentum and the pressure

imbalance P∆ . § 2.2.2 describes the asymptotic behavior of P∆ with respect to the small

ρ∆ expansion. In particular, we establish that this behavior is linear for generic initial

configurations with nonzero initial velocities, while it becomes quadratic when static

initial conditions are considered. The relation between the time derivative of the total

vorticity and the pressure imbalance is derived in § 2.2.3, both in the smooth and the

two-layer stratification. In § 2.3 we use strongly nonlinear models to derive predictions

about the pressure imbalances. The analytical and numerical fidelity of the models to

the parent Euler system is tested on special configurations for zero-velocity initial data.

It is worthwhile to remark that, in the zero-velocity case, the dispersionless limit of the

long-wave model fails to provide the correct predictions for the pressure imbalance P∆ .

Accuracy can be restored by including the first order dispersive correction of the model

as introduced in Choi & Camassa [15].
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Next, in § 2.4 we discuss pressure imbalances with zero-velocity initial data for

two-layer fluids. The exact problem of solving the Laplace equation for the initial

pressure can be viewed as a form of Neumann-to-Dirichlet problem for a (two-layer)

strip. We adopt a simple perturbative approach in the limit of small density difference

ρ∆ , turning this problem into an iterative family of Poisson equations which allow for a

closed-form integral expression for the second order term P (2)
∆

of the pressure imbalance

associated with any interface profile z = η(x). In some cases (e.g., piecewise linear

profiles) this expression easily yields explicit formulae for P (2)
∆

(which in suitable limits

are expressed by Bernoulli-like polynomials). A sample of these formulae and their

interpretation is contained in § 2.4.3 and § 2.4.4. In particular, within a certain class

of initial data, we determine the configuration that maximizes the pressure imbalance.

In § 2.5 the dam-break configuration is studied. At t = 0 an exact explicit value

for �p�
∆

can be obtained. The comparison of the theoretical results with full-Euler

numerical experiments, in § 2.6, further illustrates the (short-time) dynamics arising

from these pressure imbalances of these configurations and its effects on the horizontal

momentum. Computations are performed with the VARDEN algorithm (Almgren et al.

[1]) which solves the inhomogeneous Euler equations. The two-layer (sharp interface)

set-up can be viewed as a severe test for the code, which gets validated by the overall

good agreement with the analytical results. In § 2.8 we discuss our findings and point

to future work.

We have also provided additional information in appendices. Specifically, Appendix

A is devoted to reconcile the apparent paradox of lack of momentum conservation with

the self-evident translational symmetry of the systems we study.
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2.2 The physical system and its governing equations

We study the Euler equations for an ideal incompressible and inhomogeneous fluid

subject to gravity,

vt + v · ∇v = −∇p

ρ
− gk , ∇ · v = 0 , ρt + v · ∇ρ = 0 . (2.1)

Here v = (u, v, w) is the velocity field with respect to Cartesian coordinates (x, y, z)

oriented by unit vectors (i, j,k), with k directed vertically upwards, ρ and p are the

density and pressure fields, respectively, and g is the constant gravity acceleration; all

physical variables depend on spatial coordinates and time t. Besides their well known

theoretical interest, this set of equations can be viewed as governing the motion of real

fluids with sufficient accuracy whenever viscosity, compressibility and diffusivity effects

can be considered small during the time evolution. In particular, the fluid domains we

shall consider here are slabs in the (x, z) plane rigidly confined by horizontal plates of

infinite extent located at z = zbottom ≡ 0 and z = ztop ≡ h. Our study will mainly

focus on two dimensional y-independent dynamics, though it can be generalized to fully

three dimensional cases. The Euler equations (2.1) are supplemented by the boundary

conditions:

v(x, ·) → 0 for |x| → ∞, w(x, 0) = w(x, h) = 0, (2.2)

with the fluid at the far ends of the channel in hydrostatic equilibrium,

∂p

∂z
= −gρ, |x| → ∞. (2.3)
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Figure 2.1: A two-layer configuration with different asymptotic heights.

2.2.1 Pressure imbalances and horizontal momentum

Consider the Euler equations for the horizontal component of the fluid’s momentum

(ρu)t = −u(ρu)x − w(ρu)z − px . (2.4)

Assuming a smooth stratification and integrating this equation on the strip S = R ×

[0, h] yields the time variation of the horizontal component Π1 of the total momentum

d

dt
Π1 =

�

S
(ρu)t dA = −

�

S

�
(ρu2)x + (ρuw)z − ρu(ux + wz) + px

�
dA

= −
� h

0

��

R
(ρu2 + p)x dx

�
dz = −h(�p(+∞)� − �p(−∞)�),

(2.5)

where we used incompressibility and the asymptotic hydrostatic conditions (see also

Benjamin [5]). Hereafter the symbol �f� stands for the (total) vertical channel average,

�f(·)� ≡ 1

h

� h

0

f(·, z) dz.

The two-layer case

The dynamics of an inviscid and incompressible fluid stratified in layers of uniform

density ρj is governed by the Euler equations for the velocity components (uj, wj) and
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the pressure pj, for each of the layers; in two dimensional Cartesian coordinates (x, z):

ujx + wjz = 0 (2.6)

ujt + ujujx + wjujz = −pjx/ρj (2.7)

wjt + ujwjx + wjwjz = −pjz/ρj − g. (2.8)

For a two-layer fluid, j = 1 (j = 2) will stand for the upper (lower) fluid, respectively,

and ρ1 ≤ ρ2 must be assumed for stable stratification (see figure 2.1 for a sketch of

this set-up). The boundary conditions at the interface z = η(x, t) are the continuity of

normal velocity and pressure

ηt + u1ηx = w1, ηt + u2ηx = w2, p1 = p2 ≡ P at z = η(x, t), (2.9)

where P (x, t) denotes the interfacial pressure. Let us rewrite the Euler system (2.8)

in terms of layer-averages (see, e.g., Wu [38] and Camassa & Levermore [11]). (For a

smoothly stratified fluid, this is equivalent to singling out an intermediate level set of

constant density z = η(x, t) and carrying similar manipulations since such a set will

always be a material surface.) Layer-mean quantities f̄ are defined by

f̄j(x, t) ≡
1

ηj

�

[ηj ]

f(x, z, t) dz , (2.10)

where ηj are the layer-thicknesses (i.e., η1 = h − η and η2 = η) and the intervals

of integration [ηj] are z ∈ (η, h) for the upper- and z ∈ (0, η) for the lower-layer,

respectively. With this notation, integration (2.6)–(2.7) across the layers with the

boundary conditions (2.2) and (2.9) yields the layer-mean equations for the upper
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(lower) fluid

ηjt +
�
ηjuj

�
x

= 0 (2.11)

ρj(ηjuj)t + ρj
�
ηjujuj

�
x

= −(ηjpj)x + (−1)jηxP , j = 1, 2 . (2.12)

Layer averages are just a local version of the integral form of the horizontal momentum

balance for each layer, which can be expressed for a section of the channel by integrat-

ing equations (2.12) over some x-interval L− ≤ x ≤ L+. The horizontal momentum

balances of the upper (j = 1) and lower (j = 2) layer for this section are, respectively,

dΠ�
1j

dt
≡ d

dt

� L+

L−

ρjηjuj dx+ ρjηjujuj|L+

L−
= − ηjpj|L+

L−
+ (−1)j

� L+

L−

ηxP dx , (2.13)

since neither the pressure at the rigid horizontal surfaces nor the external gravity field

contribute horizontal components of forces. Taking into account that

2�

j=1

ηjpj|L+

L−
= h(�p(L+)� − �p(L−)�),

and that the total horizontal momentum of the two-fluid’s system is the sum of the

contributions of the individual layers, in the limit L± → ±∞ (e.g., L± = ±L) and

Π�
1 → Π1, system (2.13) yields the two-layer analogue of Equation (2.5), i.e.,

dΠ1

dt
=

dΠ11

dt
+

dΠ12

dt
= −h�p�

∆
, (2.14)

where �p�
∆
≡ �p(+∞)�−�p(−∞)�. In hydrostatic equilibrium the layer-mean pressures

are

pj = (−1)jgρj
ηj
2
+ P , j = 1, 2 . (2.15)
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Taking this into account at ±∞, we get

dΠ1

dt
=

dΠ11

dt
+

dΠ12

dt
= −hP∆ − 1

2
ρ∆g(z

2
+ − z2−)− ρ1gh(z+ − z−), (2.16)

where P∆ ≡ limx→+∞ p(x, η(x, t))− limx→−∞ p(x, η(x, t)),

z− ≡ lim
x→−∞

η(x, t), z+ ≡ lim
x→+∞

η(x, t), for all t, (2.17)

and ρ∆ = ρ2 − ρ1. In particular, by comparing (2.14) and (2.16), we have

�p�
∆
= P∆ +

ρ∆g

2h
(z2+ − z2−) + ρ1g(z+ − z−),

so that if the asymptotic interfacial heights are the same at both far ends of the channel,

equality between asymptotic imbalances of the interfacial pressure and of the mean

pressure follows,

�p�
∆
= P∆ . (2.18)

It is interesting to view the pressure imbalance from the perspective of a center of mass

for the stratified fluid. For a laterally unbounded channel, the total mass of the fluid is

clearly infinite, and care should be taken to avoid divergent integrals. The local center

of mass horizontal coordinate for a section of the channel between x = L− and x = L+

can be defined as

X�
c(t) ≡

1

M �

� L+

L−

x
�
ρ1η1(x, t) + ρ2η2(x, t)

�
dx , (2.19)

where

M � ≡
� L+

L−

�
ρ1η1(x, t) + ρ2η2(x, t)

�
dx (2.20)
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is the total mass of the fluid in the section. Differentiating with respect to time, and

taking into account (2.11), yields

M � dX
�
c

dt
=

� L+

L−

(ρ1η1u1 + ρ2η2u2) dx+
�
(X�

c − x)(ρ1η1u1 + ρ2η2u2)
����

L+

L−
. (2.21)

For velocities that decay sufficiently fast at infinity the end-point terms in this expres-

sion vanish and the right-hand-side is well defined in the limit L± → ±∞, being equal

to the total horizontal momentum Π1 of the fluid. Thus, the position of the center of

mass for a sufficiently long section of the channel moves in the direction defined by the

total horizontal momentum, as can be expected.

2.2.2 Small ρ∆ limit and the scaling relation between P∆ and ρ∆

Some of the results of the previous subsection can be used to unravel a particular

scaling of the momentum evolution with respect to stratification. In particular, we

shall focus on the class of zero-velocity initial data. As we will see later, these initial

conditions also allow to derive closed-form expressions for the initial pressure imbalance.

From the equations of motion and, in particular, from the constraint η1 + η2 = h

we have

∂x
�
η1u1u1 + η2u2u2 +

1

ρ1
η1p1 +

1

ρ2
η2p2

�
=

� 1

ρ2
− 1

ρ1

�
ηxP . (2.22)

If hydrostatic equilibrium at infinity is enforced, the layer-mean pressures are given

by (2.15), so that in the case of equal asymptotic heights, that is, z− = z+ = z0, the

interfacial pressure difference P∆ between the ends of the channel is

P∆(ρ∆) = P |+∞
−∞ =

ρ∆

h1ρ2 + h2ρ1

� +∞

−∞
ηxP dx ≡ ρ∆

h1ρ2 + h2ρ1
IP (ρ∆) , (2.23)

where h1 = h − z0 and h2 = z0. A couple of relevant consequences follow from this

relation: First, pressure imbalances and their associated physical phenomena, such as

16



the nonconservation of total momentum and vorticity, cannot arise in uniform density

fluids. Next, and perhaps more remarkably, these phenomena cannot be detected in

the Boussinesq approximation of neglecting density stratification in the inertial terms.

Relation (2.23) further shows that P∆ scales at least linearly with ρ∆ . Of course,

the integral term IP also depends on ρ∆ , so that it cannot be concluded that this linear

scaling has general validity. In fact, in the limit ρ∆ → 0 with ρ2 fixed, the scaling can

be different than linear. Assume that the interfacial pressure P admits the expansion

P∆(0) + P∆

�(0)ρ∆ +
1

2
P∆

��(0)ρ 2
∆
+ . . .

=
1

h1ρ2 + h2ρ1
IP (0)ρ∆ +

1

h1ρ2 + h2ρ1
I �P (0)ρ

2
∆
+ . . .

=
1

hρ1
IP (0)ρ∆ +

�
1

hρ1
I �P (0)−

h1

h2ρ21
IP (0)

�
ρ 2

∆
+ o(ρ 2

∆
),

(2.24)

where o(ρ 2
∆
) denotes, as usual, terms going to zero faster than ρ 2

∆
. This implies that

IP (ρ∆) → 0 as ρ∆ → 0 for localized displacements of the interface. Equating term by

term yields P∆(0) = 0, as already manifest from (2.23). Now, for a homogeneous fluid,

equation (2.16) shows that horizontal momentum is conserved if P∆(0) = 0. On the

other hand, recalling that the time variation of each layer’s total horizontal momentum

is

dΠ1j

dt
≡ d

dt

� +∞

−∞
ρjηjuj dx+ ρjηjujuj|+∞

−∞ = − ηjpj|+∞
−∞ + (−1)jIP , j = 1, 2 , (2.25)

we can see that if the upper and lower layer momentum are separately conserved, then

not only P∆ = 0, but also IP = 0. Indeed, the lateral equilibrium boundary conditions

imply that for each infinite upper and lower layer the horizontal momenta are conserved

if and only if

−h1P∆ − IP = 0 , −h2P∆ + IP = 0 , (2.26)
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at all times, that is, if and only if

IP = 0 and P∆ = 0 . (2.27)

Now, given that ρ∆ = 0 implies horizontal momentum conservation, and for zero initial

velocities the initial value of each layer’s total horizontal momentum is clearly zero,

the conserved value of the horizontal momentum in each layer is null for all times (and

hence so is the total fluid’s horizontal momentum). Therefore (2.27) shows that the

linear term in expansion (2.24) vanishes. Thus, for zero velocities, P∆(ρ∆) is at least

quadratic in ρ∆ , since from (2.24) we obtain

P∆ =
1

h1ρ2 + h2ρ1
I �P (0)ρ

2
∆
+ o(ρ 2

∆
). (2.28)

Notice that this result is general for zero-velocity initial conditions. If the velocity of

the system is different from zero, the difference of pressure between the ends of the

channel can be expected, in general, to scale linearly with the density difference ρ∆ , at

least initially in time.

We remark that, if different asymptotic heights are enforced on the fluid’s configu-

ration, formula (2.23) has to be modified as

ρ∆

ρ1ρ2
IP (ρ∆) =

�
h− z+
ρ1

+
z+
ρ2

�
P (+∞)−

�
h− z−
ρ1

+
z−
ρ2

�
P (−∞) + gh(z+ − z−) .

(2.29)

We will henceforth refer to this case as the “kink-like” configuration. Its limiting

case, by which one or both of the two different asymptotic heights reach the channel’s

boundaries, will be referred to as “dam-like.”
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2.2.3 Interfacial pressure imbalance and total vorticity

Next, we briefly examine how the asymptotic interface pressure differential P∆ is re-

lated with variation of the total vorticity. This link can be obtained from the Helmoltz-

type equation for the vorticity,

ωt +∇× (ω × v) = −∇
�
1

ρ

�
×∇p. (2.30)

For a system in the strip S = R× [0, h], the total vorticity is

Γ =

�

R×[0,h]

ω dA . (2.31)

Its time variation follows directly by integrating (2.30), and by using the Green-Stokes’

formula. Taking into account the boundary conditions on the velocity field yields

dΓ

dt
=

�

R×[0,h]

∇p×∇
�
1

ρ

�
dA . (2.32)

Notice that any barotropic component of the pressure pb = pb(ρ) will not contribute to

this formula, which ultimately rephrases the content of the Bjerknes theorem (see, e.g.,

Yih [40]) applied to the whole fluid domain.

We now consider the two-layer case. In this case, ρ = ρ2 − H(z − η(x, t))ρ∆ (by

denoting the Heaviside function as H), and hence the gradient of 1/ρ is

∇
�
1

ρ

�
=




−ηx

1




ρ∆

ρ1ρ2
δ(z − η(x, t)), (2.33)

which is normal to the interface η(x, t). The integrand in the total vorticity deriva-

tive (2.32) will then involve products of ∇p-components with a delta-function. Such

products are well defined, in general, only if the functions multiplying the Dirac-δ are
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= +

Figure 2.2: The contours for Stokes theorem in the case of a two-layer fluid.

continuous. In our case, while the component of the pressure gradient normal to the

interface suffers a jump, the tangential component is continuous, and hence so is the

δ multiplier. We have

∇p×∇
�
1

ρ

�
= −(px + pzηx)

ρ∆

ρ1ρ2
δ(z − η(x, t)) j, (2.34)

where j is the unit vector normal to the fluid plane. Similar care is needed to apply the

Green-Stokes formula in the two-layer case, because the integrand is again singular at

the interface, in general. The contour of integration has to be modified by separating

the different domains where the density is constant, thereby breaking the contour path

used in the smooth density case into two paths enclosing the domain of each fluid. This

decomposition, depicted in figure 2.2, reduces the problem to evaluating the contour

integration at the interface, because the contributions of the channel boundaries vanish

for the same reason as for the smooth density case. In this chapter we will be concerned

mainly with the case of zero-velocity initial conditions, so that the fluid vorticity ω is

concentrated on the interface γ in a vortex sheet (see also Yih [40], p. 14). Therefore

the kinetic contribution to dΓ/dt is

�

γ

(ω × v1) · dr−
�

γ

(ω × v2) · dr =
�

γ

ω × (v2 − v1) · dr. (2.35)

Since the shear velocity v2 − v1 is tangent to the interface, these line integrals also

vanish and, with zero-velocity initial conditions, formula (2.32) still holds. Thus, by
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using (2.34) we can express the time variation of the total vorticity in terms of the

(interface) pressure imbalance as

dΓ

dt
=

� ∞

−∞

�� h

0

(px + pzηx)
ρ∆

ρ1ρ2
δ(z − η(x, t)) dz

�
dx

=
ρ∆

ρ1ρ2

� ∞

−∞
(px + pzηx)|z=η(x,t) dx =

ρ∆

ρ1ρ2

� ∞

−∞

dP

dx
dx

=
ρ∆

ρ1ρ2

�
P (+∞)− P (−∞)

�
=

ρ∆P∆

ρ1ρ2
,

(2.36)

where we have used the definition P (x) = p(x, η(x)).

Formula (2.36), connecting the time variation of the total vorticity with the asymp-

totic pressure imbalance, has to be corrected if the interface touches the boundary of

the channel. Indeed, let C be the set in which the interface coincides with one of the

boundaries (see figure 2.3). For x ∈ C and every z ∈ [0, h] the gradient of the density is

zero, so that the set C × [0, h] does not contribute to the total vorticity time-variation.

Therefore

dΓ

dt
=

ρ∆

ρ1ρ2

�

R/C

dP

dx
dx =

ρ∆

ρ1ρ2

�
P∆ −

n�

i=1

�
p
�
xR
i , η

�
xR
i

��
− p

�
xL
i , η

�
xL
i

��� �
. (2.37)

We remark that the correction terms might be, in some cases, dominant. Indeed, for

vanishing velocity initial configurations, P∆ behaves as ρ 2
∆
, while the point contributions

can produce linear terms in ρ∆ .

2.3 Long-wave models

We now briefly describe strongly nonlinear long-wave models for two-layer fluids

(see, e.g., Choi & Camassa [15]). Variants of these models have been extensively studied

in the literature, especially for the classical dispersionless limit, see for instance the

monograph in Baines [3], and, more recently, Milewski et al. [33] and Boonkasame &

21



xn
L

xn
R

x2
L

x2
R

x1
L

x1
R

ρ
1

ρ
2

z
0

Figure 2.3: Sketch of a typical interface configuration for a two-fluid density distribution
for which boundary contributions are relevant.

Milewski [6] for a study of the stability properties of the motion governed by these

models. While derived under the long-wave approximation, the dispersive case has

been studied in the context of an internal “dam-breaking” problem (which leads to

high wavenumber initial conditions) by Esler & Pearce [18] in the Boussinesq regime;

we will return to this class of initial conditions for the parent Euler system in § 2.5.

By using these models, one can derive in a relatively straightforward manner fairly

general results, whose fidelity with respect to the parent Euler equations can be tested

on explicit solutions for special configurations (typically for zero-velocity initial data).

Thus, in this section we anticipate some of the results that will be computed explicitly

later on for the special configurations of vanishing initial velocity within the full Euler

equation study. We remark that models may differ substantially in their effectiveness to

predict the “true” physical behaviour of the systems under consideration. For instance,

as mentioned in § 2.2, the Boussinesq limit (of both models) does not capture any

pressure imbalance; in turn, the dispersionless limit notably yields a vanishing pressure

imbalance for the vanishing velocity case. The non-vanishing pressure imbalance in

the static case can be obtained by taking into account dispersive terms in the strongly

nonlinear models.
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2.3.1 Equations of motion

For a two-layer incompressible Euler fluid in a channel of height h, the equations of

motion (2.11)–(2.12) can be written as

uit + ui uix + (−1)igηix = −Px

ρi
+Di(ui, vi, ηi), ηit + (ηiui)x = 0, i = 1, 2, (2.38)

where η1+η2 = h, and the terms denoted byDi lump all the contributions from pressure,

vertical velocity components and from switching layer-averages with products. Shallow

water long-wave models can be derived from this in the case when the layer thicknesses

are small with respect to a typical wavelenght L, by retaining only the leading order

terms in Di, and provide effective approximations of (two-layer) incompressible Euler

fluid (see. e.g., Choi & Camassa [15]). Denoting the small parameter of the model by

δ ≡ h/L, at the first order in δ the hydrostatic equilibrium is valid everywhere and the

relations (2.15) hold not only asymptotically but along the whole channel. Also, at this

order Di = 0, i.e., system (2.38) is turned into its dispersionless limit

uit + ui uix + (−1)igηix = −Px

ρi
, ηit + (ηiui)x = 0, i = 1, 2. (2.39)

In case of zero asymptotic velocities the total flux Q(t) ≡ η1u1+η2u2 is zero. Solving

for Px the dispersionless equations (2.39) and using the constraint η1 + η2 = h, yields

for the interface pressure asymptotic difference the (dispersionless) formula

P∆ = h

� ∞

−∞

(u1 u2)x
η1/ρ1 + η2/ρ2

dx. (2.40)

We remark that in the Boussinesq approximation the integral becomes a total deriva-

tive, and hence this difference is zero (see, e.g., Milewski et al. [33]). This fact should

not be regarded as a surprise, since pressure imbalances are phenomena due to the rela-
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tive inertia of the stratified fluid, and not to the relative buoyancy. Still, formula (2.40)

shows that P∆ = 0 when the interface is flat (with any averaged velocities). On general

grounds, this can also be seen from (2.23), since ηx = 0 for a flat interface. However,

the dispersionless formula (2.40) predicts P∆ = 0 for zero velocities as well, which is

not true in general. Next, we show how such a pressure imbalance can be qualitatively

understood by restoring the dispersive terms in the strongly nonlinear model.

2.3.2 Effects of dispersion

The fact that for zero-velocities formula (2.40) fails to yield a nonzero value for

P∆ suggests that for small velocities (or interface profile) the dispersive terms Di of

Equation (2.38) could play a significant corrective role. In fact, if such terms are

nonzero, then relation (2.40) turns into

P∆ =

� +∞

−∞

�
η1
ρ1

+
η2
ρ2

�−1

[h (u1u2)x + (η1D1 + η2D2)] dx . (2.41)

The first nontrivial dispersion contribution is given asymptotically as δ → 0 by (see

Choi & Camassa [15])

Di ∼
1

3ηi

�
η3i

�
uixt + ui uixx − (uix)

2
��

x
, i = 1, 2. (2.42)

If ui = 0, this implies

P∆ ∼ 1

3

� ∞

−∞

�
η1
ρ1

+
η2
ρ2

�−1 �
η31 u1tx + η32 u2tx

�
x
dx . (2.43)

which, by bringing into the integrand the time-derivatives of the velocities shows that

the pressure jump can be non-zero even if the velocities are initially zero. In particular,

antisymmetric initial displacements of the interface can lead to non-zero P∆ , whereas
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this pressure jump always vanishes for symmetric initial data.

A consistent approximation of this formula can be given by inserting the expres-

sions for the uit’s obtained in the zero-dispersion limit. The dispersionless equation of

motions (2.39), when the velocities are near zero, yield

u1t ∼ ρ∆g
η2η2x

ρ1η2 + ρ2η1
, u2t ∼ −η1

η2
u1t = ρ∆g

η1η1x
ρ1η2 + ρ2η1

(2.44)

asymptotically as δ → 0. Therefore

P∆ ∼ρ∆g

3

� ∞

−∞

�
η1
ρ1

+
η2
ρ2

�−1 �
η31

�
η2η2x

ρ1η2 + ρ2η1

�

x

+ η32

�
η1η1x

ρ1η2 + ρ2η1

�

x

�

x

dx. (2.45)

When ρ∆ is small, asymptotic relation (2.45) can be simplified to

P∆ ∼ ρ∆g

3h

� ∞

−∞

�
1

h
+

η2
h2

ρ∆

ρ1

��
η31 (η2η2x)x + η32 (η1η1x)x

�
x
dx+ o(ρ 2

∆
).

The linear term in ρ∆ is a total derivative in x and therefore, confirming the general

results of the previous section, does not contribute to P∆ . As expected, the first nonzero

term for P∆ is proportional to ρ 2
∆
,

P∆ ∼
ρ 2

∆
g

6ρ1h3

� ∞

−∞
η2

�
η31

�
η22
�
xx

+ η32
�
η21
�
xx

�
x
dx+ o(ρ 2

∆
). (2.46)

This formula allows explicit analytic computations for special cases. For instance, when

the interface profile (see figure 2.4) is

η(x) = z0 + A exp
�
−(x+ S)2/σ2

�
− B exp

�
−(x− S)2/σ2

�
, (2.47)
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Figure 2.4: A two-bump configuration. Only when S is comparable with the typical
width of the bumps P∆ is nonzero.

the asymptotic difference of pressure is given by

P∆ ∼ 64
√
3πg

81ρ1

S3e−
8S2

3σ2

σ5
AB(A+B)ρ 2

∆
+ o(ρ 2

∆
). (2.48)

Here, for long-wave asymptotic consistency, σ should be taken sufficiently large, and A

and B need to be such that the extrema of function (2.47) do not touch the channel

boundary.

Some interesting conclusions can be extracted from (2.48). First, if A = −B the

interface of the system becomes symmetric and, as always in these configurations,

P∆ = 0. Second, explicit dependence on the asymptotic height z0 does not appear in

formula (2.48). However, notice that the ranges of A and B are constrained by the

choice of z0 if the interface has to stay away from the channel boundaries. Thus, by

choosing, e.g., A + B = k and B = z0 − s (for given parameters k and s) we fix the

maximum and the minimum of the interface leaving only z0 as a free variable. In this

case P∆ is a quadratic function of the interface height z0 and the vertex of the parabola

is at A = B. Third, the most interesting behaviour is related to the dependence on

the separation parameter S. If the two bumps are well separated (S � σ), then P∆ is

exponentially small. However, when the supports of the two bumps have an intersection

(S � σ), then P∆ is nonzero to leading order O(ρ 2
∆
).
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2.4 Full Euler system: pressure jump at t = 0 in the small ρ∆ asymptotic
limit

We consider again the full Euler system for a two-layer fluid with zero initial velocity.

As seen in Section 2.2.2, in this case the expansion in ρ∆ of the pressure imbalance

starts with the quadratic term. We now compute this term explicitly. Throughout this

section, unless otherwise stated, we will reference density to that of the lower fluid, so

that ρ2 = 1.

2.4.1 The small ρ∆ expansion

Consider an initial condition for the two-fluid stratification such as the one depicted

in figure 2.1. Let the initial velocity be identically zero, with the fluid in hydrostatic

equilibrium as |x| → ∞. In this case, the Euler equations (2.1) determine the pressure

p(x, z) at time t = 0 through the solution of the elliptic equation

∇ ·
�
1

ρ
∇p

�
= 0 (2.49)

subject to the Neumann boundary conditions

∂p

∂x
→ 0 as |x| → ∞ ,

∂p

∂z
= −gρ at z = 0, h . (2.50)

Of course, non-differentiability of the density distribution for the case of figure 2.1

requires an appropriate interpretation of equation (2.49). We will enforce (2.49) sepa-

rately in each of the ρ1 and ρ2 domains, Ω1 and Ω2 say,

∇2p = 0 , (x, z) ∈ Ωi, i = 1, 2 ,
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so that p is harmonic in each subdomain, and assign boundary conditions at the discon-

tinuities of ρ. These consist of continuity of p everywhere, while its normal derivatives

jump according to the “flux-continuity” condition

1

ρ1

∂p

∂n

����
1

=
1

ρ2

∂p

∂n

����
2

, (2.51)

with obvious meaning of the notation.

Let the variable density be defined as a perturbation away from a uniform density

fluid

ρ = ρ2 − �r(x, z) , 0 < � � 1, (2.52)

where r positive, so that ρ2 is the maximum density of fluid. For notational convenience,

we further choose units in such a way that h = 1, and g = 1. We seek a solution for

the pressure equation as an asymptotic expansion

p = p(0) + �p(1) + �2p(2) + o(�2) (2.53)

whence, equating like-powers of �,

∇2p(0) = 0 , ∇2p(1)+∇· (r∇p(0)) = 0 , ∇2p(2)+∇· (r∇p(1))+∇· (r2∇p(0)) = 0 , . . .

(2.54)

with boundary conditions, respectively,

∂p(0)

∂z

����
z=0,1

= −1 ,
∂p(1)

∂z

����
z=0,1

= r|z=0,1 ,
∂p(2)

∂z

����
z=0,1

= 0 ,

∂p(k)

∂x
→ 0 as |x| → ∞ for k ≥ 0.

(2.55)

The O(�0)-equation is simply solved by p(0) = −z + const., which yields the equation

28



for p(1) in the form

∇2p(1) = rz .

Since the system is two-layer, still denoting the usual Heaviside function as H, we have

r(x, z) = H(z − η(x)),

where the interface location z = η(x) behaves as

η(x) → z± as x → ±∞ , 0 < η(x) < 1 .

This means that the heavy fluid density is ρ2 = 1 and the light fluid density is ρ1 = 1−�,

so that, in the chosen units, ρ∆ = �. Let

p(1) = p(1)h + (z − z0)H(z − z0) , (2.56)

where z0 is any reference height. The summand (z − z0)H(z − z0) takes care of the

top and bottom boundary conditions, leaving a homogeneous Neumann problem for

p(1)h (x, z) in the infinite strip. The equation for p(1)h (x, z) is then

∇2p(1)h = δ(z − η(x))− δ(z − z0) . (2.57)

To solve this we can make use of the identity

∞�

n=1

cos(nπθ) = −1

2
+ δp(θ) ≡ −1

2
+

+∞�

k=−∞

δ(θ + 2k) ,
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from the theory of distributions (Gelfand & Shilov, 1964). Indeed, we have

2
∞�

n=1

cos(nπz) cos(nπη) =
∞�

n=1

�
cos

�
nπ(z − η)

�
+ cos

�
nπ(z + η)

��

= −1 + δp(z − η) + δp(z + η) = −1 + δ(z − η)

since 0 < z < 1 and 0 < η < 1, so that the support of the second Dirac-δ always falls

outside the channel. For the same reason the periodic shifts can be ignored for the first

δ. Hence, we are lead to the following expression of the right-hand side of (2.57):

δ(z − η(x))− δ(z − z0) = 2
∞�

n=1

cos(nπz)(cos(nπη(x))− cos(nπz0)), (2.58)

from which, taking the homogeneous Neumann boundary conditions into account, the

coefficient of the Fourier series expression of p(1)h (x, z) can be read off. Indeed,

p(1)h (x, z) =
∞�

n=0

an(x) cos(nπz) (2.59)

yields

a��n − n2π2an = 2(cos(nπη(x))− cos(nπz0)) for n ≥ 0.

For n = 0, a��0 = 0 ⇔ a0 = constant, say a0 = 0. For n > 0, the equation for an can be

solved by use of the Green function for the operator ∂2
x − n2π2 on the real line,

Gn(x, ξ) = − 1

2nπ
e−nπ|x−ξ| ,

to finally obtain

p(1)h (x, z) =

� +∞

−∞

∞�

n=1

e−nπ|x−ξ|

nπ
cos(nπz)

�
cos(nπz0)− cos(nπη(ξ))

�
dξ . (2.60)
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This expression shows that the layer-average of p(1)h is always zero at any fixed x-

location, as integration of cos(nπz) vanishes for all n. Since the average of p(0) and the

component (z−z0)H(z−z0) of (2.56) is the same for any fixed x, we can conclude that

no contribution to the average pressure differential �p(+∞)� − �p(−∞)� can arise at

order �, as expected from the results of § 2.2.2, and the fact that, for equal asymptotic

interfacial heights, the average and interface pressure imbalances are equal.

Next, we work on the second order pressure contribution p(2). We concentrate only

on the layer-average of the boundary term ∂xp(2) instead of the exact z-dependence.

Multiplying the p(2) equation by x, integrating over the fluid volume and taking into

account the boundary conditions yields

lim
L→∞

� 1

0

�
p(2)(L, z)− p(2)(−L, z)

�
dz = − lim

L→∞

�

[−L,+L]×[0,1]

r ∂xp
(1) dx dz.

The top and bottom boundary contributions cancel out exactly from the p(1)h and p(2)

terms. Passing to the limit we retrieve a close relative of the general formula for the

pressure differential in an infinite strip,

�p(2)�∆ ≡
� 1

0

�
p(2)(∞, z)− p(2)(−∞, z)

�
dz = −

�

R×[0,1]

r ∂xp
(1) dx dz. (2.61)

Substituting expression (2.60) for p(1)h yields

�p(2)�∆ =−
� +∞

−∞

�� +∞

−∞
sgn(x− ξ)

∞�

n=1

e−nπ|x−ξ| (cos(nπη(ξ))− cos(nπz0)) dξ

×
� 1

0

cos(nπz)H(z − η(x)) dz

�
dx .

(2.62)

The last integral is � 1

η(x)

cos(nπz) dz = − 1

nπ
sin(nπη(x))
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Table 2.1: Comparison of pressure imbalances P∆/ρ
2
∆
as predicted by long-wave model

and full Euler results for interface (2.47) with asymptotic height z0 = 1/2.

A B σ S Model (eq. (2.48)) Euler (eq. (2.63)) Model/Euler
1/3 1/3

�
8/3 1 5.69× 10−3 4.01× 10−3 1.42

2/5 1/5
�

8/3 1 3.69× 10−3 2.62× 10−3 1.40
3/5 1/3 2

�
8/3 1 9.49× 10−4 8.25× 10−4 1.15

3/5 1/3 3
�

8/3 1 1.44× 10−4 1.32× 10−4 1.09
4/5 1 4

�
8/3 1 2.76× 10−4 2.57× 10−4 1.07

3/5 2/3 4
�

8/3 3 1.59× 10−3 1.49× 10−3 1.06
1/3 1/3 4

�
8/3 20 1.68× 10−12 1.70× 10−12 0.99

and hence

�p(2)�∆ =
∞�

n=1

� +∞

−∞
sin(nπη(x))

×
�� +∞

−∞
sgn(x− ξ)

e−nπ|x−ξ|

nπ

�
cos(nπη(ξ))− cos(nπz0)

�
dξ

�
dx.

(2.63)

We remark that all the theoretical arguments for the determination of the pressure

jump �p(2)�∆ have assumed that the interface does not touch the channel boundaries.

Thus, there are always slivers of light and heavy fluid near the top and bottom lid,

respectively. However, it is not difficult to realize that, since all integrals are bounded,

and the integrands decay exponentially, we can pass to the limit of zero sliver-width

in the above formulae. Furthermore, since p(2) is no longer affected by the density

difference at the top and bottom interfaces, this limit coincides with the “physical”

instance of zero sliver-width. Indeed, the density difference is taken care by p(1), while

p(2) satisfies a Neumann problem with vanishing boundary conditions at z = 0 and

z = 1. It is however suitable to anticipate here that, in general, care should be taken in

performing such limits for general density values. In particular, in Appendix B we shall

show that the behaviour of p(x, z) in “air-water” systems, obtained by considering the

limit ρ1 → 0, might not follow from the näıve limit of vanishing sliver width.
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2.4.2 Comparison with the long wave model

Expression (2.63) can be used to test the long-wave model result (2.46) with, e.g.,

η(x) given by (2.47). While we are unable to compute the integrals in (2.63) explicitly,

their numerical evaluation for up to 25 terms in the series yields agreement over a broad

range of parameters. Table 2.1 reports a few examples. For these, the long wave model

pressure imbalance (2.46) is always of the same order of its Euler counterpart (2.63),

with the discrepancy decreasing as the main long wave parameter σ increases. Remark-

ably, the agreement is acceptable already for σ = 3
�

8/3 � 4.9, which for a channel of

height h = 1 would correspond to a value of the long-wave small parameter δ � 0.2.

The trend exemplified by table 2.1 persists in general for all the parameter combinations

we have checked.

We note that the convergence of the series in (2.63) is slow for the class of smooth

profiles from (2.47) we have explored, which partially adds to the discrepancy in ta-

ble 2.1. A general convergence proof and an estimate of the convergence rate shows

that the series coefficients are bounded by 1/n2, for any interface function η of bounded

variation class. Next, we focus instead on special profiles where the series summation

can be performed explicitly.

2.4.3 Special initial conditions: piecewise-constant interfaces

Let us consider the integral formula (2.63) for a profile η that is smooth on the

whole line, except possibly at a finite number of points A1, A2, . . . , AN , where the

jumps η(A+
α )− η(A−

α ) are finite. We also require, as usual, that limx→±∞ η(x) = z± for

some asymptotic values z±. Taking into account the distributional identity

sgn(x− ξ)e−nπ|x−ξ| =
1

nπ

d

dξ
e−nπ|x−ξ|,
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integrating by parts, and considering the distributional derivative of cos(nπη(ξ)), leads

to an expression equivalent to (2.63),

�p(2)�∆ =
∞�

n=1

1

nπ

� +∞

−∞
sin(nπη(x))

�� +∞

−∞
e−nπ|x−ξ|η�(ξ) sin(nπη(ξ)) dξ

�
dx

−
∞�

n=1

1

n2π2

N�

α=1

� +∞

−∞
dx sin(nπη(x))e−nπ|x−Aα|

�
cos(nπη(A−

α ))− cos(nπη(A+
α ))

�
dx.

(2.64)

Now, for piecewise-constant interface profiles

η(ξ) = zi for Ai < ξ < Ai+1, i = 1, . . . , N − 1,

η(ξ) = z− ≡ z0 for ξ < A1 and η(ξ) = z+ ≡ zN for ξ > AN ,
(2.65)

only the second line of equation (2.64) provides a contribution, and we have η(A−
α ) =

zα−1, η(A+
α ) = zα.

Because of the shape achieved by each fluid’s domain in the limiting three step case

with z1 = 0 and z2 = 1, i.e., disconnected domains with no connecting slivers at the top

and bottom plates, in what follows we will often refer to this class of initial conditions as

“hooks,” see figure 2.5. We remark that these are possibly the simplest configurations

yielding explicit expressions for non-vanishing pressure imbalances. Moreover, hooks

can in principle be implemented experimentally by use of gates separating the fluids,

just as in the limiting configuration of the dam-break case (corresponding to z0 = 0,

z3 = 1, z1 = z2 = 0, all A’s zero) with a single gate spanning the whole width of the

channel. Performing the integrations in (2.64) we get that the pressure jump at the

second order in the ρ∆ expansion is given by

�p(2)�∆ =
∞�

k=1

1

π3 k3

�
∆(k)

0 +
�

1≤α<β≤N

∆(k)
[α,β]e

kπ(Aα−Aβ)

�
, (2.66)
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Figure 2.5: Initial hook-like configuration for a two-fluid density distribution in an
x-infinite channel between two rigid plates located at z = 0, 1.

where

∆(k)
0 =

N�

α=1

sin(kπ(zα − zα−1)) +
1

2
(sin(2kπ z0)− sin(2kπ zN)) , (2.67)

and

∆(k)
[α,β] = (cos(kπ zβ)− cos(kπ zβ−1))(sin(kπ zα)− sin(kπ zα−1)+

− (cos(kπ zα)− cos(kπ zα−1))(sin(kπ zβ)− sin(kπ zβ−1)),
(2.68)

or, equivalently,

∆(k)
[α,β] = sin(kπ(zα − zβ))− sin(kπ(zα−1 − zβ))+

− sin(kπ(zα − zβ−1)) + sin(kπ(zα−1 − zβ−1)).
(2.69)

In particular, for the ‘three-jump’ case, with discontinuities located at A1 ≤ A2 ≤ A3

and arbitrary heights 0 ≤ z0, z1, z2 ≤ 1, z0 = z3, we have

�p(2)�∆ =
∞�

k=1

1

π3 k3

�
(sin(kπ(z1 − z0)) + sin(kπ(z2 − z1)) + sin(kπ(z0 − z2)))

×
�
1− ekπ(A1−A2)

� �
1− ekπ(A2−A3)

� �
.

(2.70)

Setting for simplicity A3 = −A1 = A, A2 = 0, and z1 = 0, z2 = 1, yields the compact
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Figure 2.6: (a) Full hook case, with A2 − A1 = A3 − A2 = 1.5, z3 = z0, z1 = 0, z2 = 1,
ρ∆ = 0.01 (crosses), ρ∆ = 0.1 (diamonds), from numerics ( § 2.6), theoretical value (solid
line) from asymptotics ρ∆ → 0 . (b) Kink-like case, with A2 − A1 = A3 − A2 = 1.5,
z1 = 0.3, z2 = 0.8, z3 = 0.5, ρ∆ = 0.01 (crosses), ρ∆ = 0.1 (diamonds), from numerics (
§ 2.6), theoretical value (solid line) from asymptotics ρ∆ → 0 (equation (2.71)).

expression

�p(2)�∆ = −2
∞�

n=0

sin((2n+ 1)πz0)

((2n+ 1)π)3

�
1− e−(2n+1)πA

�2
. (2.71)

If A is sufficiently large the exponentials can be neglected and we get the simple

quadratic expression

�p(2)�∆ = − 2

π3

∞�

n=0

sin
�
(2n+ 1)πz0

�

(2n+ 1)3
= −1

4
z0(1− z0) .

As shown in figures 2.6(a) and 2.6(b), the comparison between the results predicted

by these formulae and those obtained numerically with an Euler solver (more on this

in section 2.6 below) are very reasonable. Another comparison with the numerics is

offered by figure 2.7. Here, for the hook configuration, the quadratic asymptotic scaling

of �p�
∆
∝ ρ 2

∆
can be seen explicitly, with the theory providing an excellent fit for small

values of ρ∆ . The agreement persists up to fairly large values of ρ∆ . A relative error of

10% is not reached until ρ∆ � 0.2.
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Figure 2.7: Pressure imbalance P∆ vs. density difference ρ∆ . Theory (solid line) from
equation (2.71) and VARDEN simulation (dots). The interface is a hook (figure 2.5)
with parameters given by z0 = z3 = 0.5, z1 = 1, z2 = 0, and A2 − A1 = A3 − A2 = 1.5
as in figure 2.6(a). The 2:1 slope is maintained up to density differences as large as
ρ∆ � 0.2 (in units of ρ2).

In general, in the limit (Ai+1−Ai) large (as compared with the height of the channel),

the Fourier series of (2.66) can be easily summed. Indeed, in this case the expression

of the pressure jump reduces to

�p(2)�∆ =

�
N�

α=1

∞�

k=1

1

π3 k3
(sin(kπ(zα − zα−1)) +

1

2

∞�

k=1

1

π3 k3
(sin(2kπz0)− sin(2kπzn))

�
,

which yields

�p(2)�∆ =

�
N�

α=1

sgn(zα − zα−1)Q1(|zα − zα−1|) +Q2(z0)−Q2(zN)

�
, (2.72)

where Q1 and Q2 are the polynomials (see, e.g., Gradshteyn et al. [21])

Q1(x) =
1

12
x3 − 1

4
x2 +

1

6
x =

1

12
x(x− 1)(x− 2)

Q2(x) =
1

3
x3 − 1

2
x2 +

1

6
x =

1

3
x(x− 1)

�
x− 1

2

�
.

(2.73)

It is interesting to note that even for a piecewise constant interfacial profile a qual-

itative agreement with the long-wave model result (2.48) can be detected. For the
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Figure 2.8: The special configuration of a staircase hook for a two-fluid density distri-
bution in an x-infinite channel between two rigid plates located at z = 0, 1.

configuration depicted in figure 2.4, with an upward tooth of height A followed by a

downward tooth of height B, equation (2.70) shows exponential decay of the pressure

imbalance with increasing separation of the teeth. Further, the leading order behavior

is cubic in the heights A and B, and both expressions (2.48) and (2.70) are independent

of rigid z-translations of the profile, for as long as the profile does not hit the channel’s

boundaries.

2.4.4 Special initial conditions: linear interfaces

We next consider the problem of the maximal �p�
∆

with respect to special con-

figurations. An interesting example is the “crooked hook” configuration depicted in

figure 2.8: with the asymptotic heights at z = z0, the first jump is to z1 = 0, the second

is to z2 = 1, followed by a sequence of “steps” of heights

z3 ≥ z4 ≥ · · · zN = z0 .

We assume min(Ai+1−Ai) � 1, so that we can safely use formula (2.72) to determine

the pressure jump as a function of the decreasing heights z3, z4, . . . , z0. The outcome is

that the configuration maximizing |�p(2)�∆| is that of the left-hand side of the “crooked

hook” being a well-crafted staircase, with steps of equal heights (e.g., in the figure, for
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Figure 2.9: The “incline hook” configuration for a two-fluid density distribution in an
x-infinite channel between two rigid plates located at z = 0, 1.

N = 5 we have z0 = 1/5, z3 = 4/5, z4 = 3/5, z5 = 2/5). The sequence of the values of

�p(2)�∆ as N varies can be shown to admit �p(2)�∆ = −1
6 as the asymptotic value (as

N → ∞).

Other cases where the computations can be easily performed are those of piecewise

linear profiles. For instance, let us consider the case of the “incline hook“ as in fig-

ure 2.9, that is, a configuration of a jump located at x = 0, followed by a constant

(negative) slope connecting the top of the step to the asymptotic height z = z0. From

formula (2.64), the quantity �p(2)�∆ is the sum of two terms, one given by the jump at

x = 0, and the other given by the slope of the incline. Performing the integration, we

get

�p(2)�∆ =
∞�

k=1

�
Φ3a3 + Φ2a2 + Φ1a+ Φ0

k3π3 (1 + a2)2

�
, (2.74)

with

Φ3 =
�
1 + (−1)k cos (kπ z0)

� �
ekπ (z0−1)/a − 1

�

Φ2 = kπ(z0 − 1)− (−1)k sin(kπz0)
�
1 + 2 ekπ (z0−1)/a)

�

Φ1 = −
�
1− (−1)k cos (kπ z0)

� �
1 + ekπ (z0−1)/a

�

Φ0 = kπ(z0 − 1)− (−1)k sin(kπz0).

(2.75)
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Figure 2.10: The piecewise constant vs. linear configurations for a two-fluid density
distribution in an x-infinite channel between two rigid plates located at z = 0, 1.

In the limit a → 0, z0 → 0, the series (2.74) reduces to

−
∞�

k=1

1

π2 k2
= −1

6
.

This result matches the limiting value of the staircase of figure 2.8. Its interest lies in

part on the fact that, although geometrically one would expect the limit of zero slope

of the incline to yield a dam-break configuration, in which half of the channel is filled

with “light” fluid and the remaining half is filled with “heavy” fluid, we see that the

pressure differential is not given by the näıve geometrical limit. As computed exactly

(for any density variation) in section 2.5 below, the dam-break configuration leads to

zero pressure imbalance.

As a final example, we examine the pressure imbalances associated with sequences

of staircase configurations with a fixed total width (see figure 2.10), with an increasing

number of smaller and smaller steps. By using symbolic manipulators (Maple or Math-

ematica), it can be shown that the configuration that maximizes the pressure imbalance

is that of the incline (solid line in figure 2.10), and that the limits from below and from

above of the pressure imbalances of the piecewise constant staircases coincide with the

pressure imbalance of their limiting linear profile. In this case the pressure imbalance

agrees with the geometrical limit.
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The above examples illustrate in a simple way how pressure imbalances can arise

from localized variations of stratification, and how limiting processes can be affected

by subtleties that require some care in order to be handled correctly. Next, we take a

closer look at this issue in the context of an exact result, valid for all density differences,

for the stratified Euler system.

2.5 Dam-breaking class

A nontrivial exact solution of equation (2.49), with the usual boundary conditions,

can be obtained in the dam-break configuration depicted in figure 2.11: the heavier

fluid (density ρ2) fills the right side of the channel (assumed of height h = 1) and the

rest of the channel (density ρ1) is filled with the lighter fluid. The interface is therefore

vertical, say at x = 0. In this case the asymptotic values of the interface are obviously

different. By variable separation and solving by Fourier series, one finds closed-form

expressions for pressure,

p1 = −ρ1gz − ρ1g
ρ∆

ρ1 + ρ2

�
1

2
− 4

�

n odd

1

n2π2
cos(nπz)enπx

�
if x ≤ 0

p2 = −ρ2gz + ρ2g
ρ∆

ρ1 + ρ2

�
1

2
− 4

�

n odd

1

n2π2
cos(nπz)e−nπx

�
if x ≥ 0

(2.76)

where p1 (p2) is the pressure in the domain filled with the fluid with density ρ1 (ρ2).

The pressure given in (2.76) is continuous in the whole channel, with a discontinuous

x-derivative at x = 0. Moreover, this gradient has a (logarithmic) divergence at the

points where the interface touches the boundaries. Indeed, it can be shown that

∂p1
∂x

���
x=0−

=
ρ1ρ∆g

π(ρ1 + ρ2)
log

�
1 + cos(πz)

1− cos(πz)

�
.

41



Figure 2.11: Dam-break configuration for a two-fluid density distribution. The pressure
is everywhere continuous (and so, ∂zp1 = ∂zp2 at the interface x = 0) with the jump
condition for its normal derivative at the interface ∂xp1 = (ρ1/ρ2)∂xp2.

One could expect that this configuration, due to the overall mass imbalance of the fluid,

would consequently generate an overall pressure imbalance. However, this is not the

case since for all x ∈ R

� 1

0

p1(x, z, 0) dz =

� 1

0

p2(x, z, 0) dz = −g
ρ1ρ2

ρ1 + ρ2
. (2.77)

Hence we have that �p�
∆
= 0 at t = 0. (Notice however that the numerical simulations

presented in figure 2.16 show that a pressure imbalance will develop at times t > 0, so

that the horizontal momentum is not conserved in the course of evolution.)

This example confirms that the nonconservation of the total horizontal momentum

does not simply rely on the asymptotic difference of the purely hydrostatic pressure. In

particular, we can interpret this result as an occurrence of another non trivial instance

of boundary effects. In fact, let us consider a partial dam-break configuration, with

the heavier fluid in the region [0,+∞) × [0, z1]. One could expect it to generate a

pressure difference which increases with the partial-dam height z1 ∈ [0, 1]. However,

as equation (2.77) shows, this is once again not the case, since the pressure differential
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for the dam-break limit (z1 = 1) is null. This discontinuity might be regarded as a

boundary effect, as suggested by the perturbative results of Section 2.4.3. Indeed, the

expression for �p(2)�∆ in this partial dam-break case, obtained by appropriate use of

the polynomial formulae (2.72), yields �p(2)�∆(z1) = (z21 − z31)/4, whose minimum is at

z1 = 2/3.

Next, we remark that total horizontal momentum is always equal to that of the

subsection of the channel spanned by the (maximal) horizontal support of the interface

between the two fluids. In fact, volume conservation by incompressibility implies that

at all times the volume flux � 1

0

u(x, z, t)dz = 0

as this is satisfied as |x| → ∞ (or at the lateral vertical walls for a finite channel). Since

for homogeneous fluid the mass flux is simply proportional to the volume flux, the hori-

zontal momentum for any channel’s section of homogeneous fluid, i.e., sections that the

“gravity currents” developing from the dam-break have not had time to reach, is zero.

Further, the horizontal momentum of the fluid from a dam-break is directed towards

the lighter fluid, since for computing horizontal momentum one needs to weigh the

zero-volume-flux currents resulting from the dam-break with their different densities.

The sign of pressure imbalance as it grows past the initial time can then be predicted

to be opposite that of the momentum (i.e., positive when the denser fluid is to the

right of the dam). This can also be seen intuitively from the center of mass time evolu-

tion (2.21). The two-fluid system admits a configuration of minimum potential energy

corresponding to a flat interface, and it can be expected that the fluid’s initial motion

would be in the direction to achieve such configuration. Thus, the center of mass for

a section between end points fully lying in regions of homogeneous fluids (where mass

flux is zero), would move towards the lighter fluid, giving rise to a corresponding total

horizontal momentum according to (2.21).
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Let us now consider total vorticity evolution for the dam-break class. A general

feature of the motion can be gleaned from (2.32). Taking into account that the interface

is the segment {(0, z) | z ∈ [0, 1]} and the density is given by ρ = ρ1H(x) + ρ2H(−x)

yields ∇p×∇(1/ρ) = −δ(x) pz(0, z)ρ∆/(ρ1ρ2). Thus, from (2.32),

Γdam
t =

�

R×[0,1]

∇p×∇
�
1

ρ

�
dA

= −
�

R×[0,1]

pz(x, z)ρ∆

ρ1ρ2
δ(x) dA =

ρ∆

ρ1ρ2
(p(0, 0)− p(0, 1)) .

(2.78)

The explicit solution (2.76) for the dam configuration implies

Γdam
t = − 2ρ∆

ρ1 + ρ2
. (2.79)

We remark that this behavior can be described as a boundary effect, by considering

a limit in which the interface between the two fluids is made to coincide with one the

boundaries of the channel (the lower for x > 0 and the upper for x < 0). Formula

(2.37) can be used as depicted in figure 2.12, understanding the dam configuration as

the limit of the full hook case when A → +∞, with A the length of the hook “teeth.”

In this limit the interface at −∞ goes to 1 while at +∞ it goes to 0. From (2.37) the

time derivative of the total vorticity for the hook configuration is

Γhook
t =

ρ∆

ρ1ρ2
[P∆ − (p(A, 0)− p(0, 0))− (p(0, 1)− p(−A, 1))] . (2.80)

In the dam-break limit A → ∞, z− → 1, and z+ → 0, where P∆ = p(+∞, 0)−p(−∞, 1),
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Figure 2.12: The geometric limit from the hook to dam configuration.

we have

Γdam
t = lim

A→+∞
Γhook
t

=
ρ∆

ρ1ρ2
[(p(+∞, 0)− p(−∞, 1))− (p(+∞, 0)− p(0, 0))− (p(0, 1)− p(−∞, 1))]

= −
�

1

ρ1
− 1

ρ2

�
[p(0, 1)− p(0, 0)] ,

(2.81)

which agrees with (2.78).

2.6 Time evolution: numerical results

The above discussion was conducted with laterally unbounded domains in mind.

Of course, such an idealization cannot be used either in reality or in numerical studies.

However, in this section we provide numerical evidence that the effective-wall lateral

confinement, and hence non-conservation of horizontal momentum, can occur in finite

domains, due to the relative inertia of a stratified, incompressible Euler fluid. First,

we remark that, for domains bounded by rigid lateral walls, the finite-domain version

of equation (2.23) (obtained by writing ±L/2 in place of ±∞) continues to hold; in

the limit of the walls moving to infinity we simply recover the hydrostatic balance
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as expressed by (2.23). Next, consider the case of periodic boundary conditions in

the periodic box [−L/2, L/2]. This requires P |+L/2
−L/2 = 0 and hence the horizontal

momentum for the whole periodic domain is conserved. We focus on a subset of the

fluid domain, henceforth referred to as the “test section,” obtained by taking a (much)

smaller interval embedded in the period (cf. figure 2.13). Within this test section,

we apply localized initial conditions for velocity and pycnocline displacement, e.g., by

requiring that the data have compact support on a small subset of the test section’s

region. The analogue of equation (2.23) for a periodic domain becomes an equation

for the flux Q,

LQ̇ =

�
1

ρ2
− 1

ρ1

�� L/2

−L/2

ζxP dx. (2.82)

Consider the limit L → ∞ of this equation. For definiteness, let ζ be a function with

compact support and suppose that all the velocities are zero at t = 0. The integral on

the right-hand side will be bounded as L → ∞ (assuming that P remains bounded on

finite domains), so that Q̇ ∼ L−1. Suppose the test section extends from −A/2 to A/2

and supp(ζ) ⊂ [−A/2, A/2]. At t = 0, after integrating (2.22) in the test section and

eliminating Q̇, we obtain

�
1

ρ2
− 1

ρ1

��
1− A

L

��

supp(ζ)

ζxP dx =

�
h2

ρ2
+

h1

ρ1

�
P
���
+A/2

−A/2
. (2.83)

If we extend the test section to infinity with the double scaling limit A,L → ∞ and

A/L → 0, the previous formula becomes (2.23). Though valid only at time t = 0, this

argument shows how the limit of infinite period for localized initial data can agree with

the pressure differential of the infinite channel in hydrostatic balance at infinity.

We now explore numerically the time evolution of localized initial data under both

periodic and rigid (impermeable) wall boundary conditions. In particular, we first com-

pute the evolution of the flux Q(t) and horizontal momentum Π1(t) for the test section
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Figure 2.13: Sketch of the fluid test domain and its symmetrical padding by wings of
increasing length, doubling and quadrupling the period as shown.

Figure 2.14: Density field from the numerical simulation of the evolution from the
initial data in the 1232 cm long tank with the center 308 cm test section marked by
the vertical lines.

alone. We then compare the resulting time series with those from simulations from

the same initial conditions in progressively longer channels under periodic boundary

conditions, see figure 2.13. Thus, while the total horizontal momentum for these longer

periodic channels is conserved, that computed only in the embedded test-section will in

general exhibit time dependence. Owing to the added inertia of the “padding” wings

bracketing the test section in the longer channels, we expect this time dependence to

show some similarity with that of the walled-in test section. That is, the added iner-

tia acts as virtual walls, which could then approximate actual walls in the limit of an

infinite periodic channel.
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2.6.1 The effect of infinite inertia

We first perform long wave simulations using dimensional quantities, and translating

the origin of the coordinates to the bottom. The interface displacement is chosen to

be antisymmetric through ζ0(x) = h2 + x/2 exp(−x2/σ2) together with zero initial

velocities. This function displaces the smooth equilibrium density function ρe(z) to

give the initial condition ρ0 (with obvious meaning of notation)

ρ0(x, z) = ρ1 +
ρ2 − ρ1

2
(1 + tanh [γ(ζ0(x)− z)]) , z ∈ [0 , H] . (2.84)

Here, σ = 30 cm, ρ1 = 0.999 g·cm−3, ρ2 = 1.022 g·cm−3, H = 77 cm, h2 = 62 cm,

and the thickness of the pycnocline (defined as the distance between density isolines

corresponding to 10% and 90% of the total density jump) is set by the parameter γ = 0.5

to correspond to about 4.5 cm (all of these parameters are suggested by those typical

for experiments with salt-stratified water). Notice that this choice of parameters gives

effectively an initial condition of compact support, with the initial departure from

hydrostatic equilibrium for |ρ−ρe|/ρe of order 10−10 at the boundary of the test section

x = ±154 cm; this departure remains below 10−7 in all our runs. The simulations (see

figure 2.14) are performed using the numerical code VARDEN which solves the stratified

incompressible Euler equations (for details see Almgren et al. [1].) We typically use a

square grid with 512 points along the vertical, although we have run cases with doubled

and half this resolution to assess convergence. Figure 2.15a shows the time series of the

horizontal momentum of the test section for the walled-in configuration, and compares

it to that computed with periodic boundary conditions with quadrupled and octupled

periodic extensions. As can be seen, there is indeed a tendency for the longer channel to

yield a momentum evolution closer to that of the walled section, for the initial (short)

time displayed. As expected, later time evolution shows larger discrepancies but still
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Figure 2.15: (a) Horizontal momentum time evolutions for the test section embedded
in progressively larger periodic domains, starting from the same initial condition. The
solid line correspond to the rigid wall boundaries. (b) Time series of fluxes Q(t) with
respect to increasing period L, for the same cases as (a). The flux decreases as 1/L in
response to the larger inertia of the channel “padding” wings.

with similar overall behavior and magnitudes. This is in rough agreement with the

estimate from the fastest baroclinic wave speeds, which for this parameter choice are

of order 16 cm/s, and with the horizontal scale of the initial condition with respect to

that of the test section. For reference, we remark that the code maintains the total

horizontal momentum for the periodic channels close to zero (the initial value) with an

error of order 10−3. Figure 2.15b presents the time series of the flux Q(t) for the same

runs. The flux is computed at different x-locations, yielding the same value to within

a relative error of 10−10 (thus further validating the convergence of the code). As can

be seen by the different curves, the flux appears to scale as the inverse of the channel

length L, in agreement with expression (2.82) for its initial time derivative. This can

be taken as further evidence of the inertia provided by the padding wings (growing as

L) which acts to oppose the fluid flux (recall that in the limit of an unbounded domain

Q ≡ 0 due to the equilibrium at infinity). The inverse scaling with L can be given

further analytic interpretation. In fact, the analogue of (2.40) for the leading-order

hydrostatic (and hence dispersionless) long-wave approximation is

Q̇

� +L/2

−L/2

1

η1/ρ1 + η2/ρ2
dx+

� +L/2

−L/2

(η1u1
2 + η2u2

2)x
η1/ρ1 + η2/ρ2

dx = 0 . (2.85)
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For zero-velocity initial conditions, this expression yields Q̇(0) = 0, in contrast to the

time series depicted in figure 2.15b. This discrepancy brings forth a limitation of the

hydrostatic (and hence dispersionless) long-wave model. It is generally accepted that

the dispersionless approximation works well at intermediate times, while at long times

the system could display a gradient catastrophe, which can be avoided by restoring

dispersive effects (Esler & Pearce [18]). Remarkably, equation (2.85) shows that dis-

persive effects can also be qualitatively relevant at short times, even in the absence of

large x-derivatives. Specifically, at t = 0 with zero initial velocities the dispersive terms

turn (2.85) into � +L/2

−L/2

−Q̇(0) + 1
3 (η

3
1u1xt + η32u2xt)x

η1/ρ1 + η2/ρ2
dx = 0. (2.86)

By computing the leading-order long-wave asymptotic expressions for the time deriva-

tives (Choi & Camassa [15]) in equation (2.86), the initial slope of the flux turns out

to be

Q̇(0) =

�� +L/2

−L/2

Bx

η1/ρ1 + η2/ρ2
dx

��� +L/2

−L/2

1− Ax

η1/ρ1 + η2/ρ2
dx

�−1

, where

A =
η31
3

� ρ2
η2ρ1 + η1ρ2

�

x
+ (1 ↔ 2), B =

g(ρ2 − ρ1)η31
3

� η2η2x
η2ρ1 + η1ρ2

�

x
− (1 ↔ 2) .

Even within this leading-order approximation, there is rough agreement (in particular

by capturing the correct sign) with the numerical data in figure 2.15b. This can also

be seen as an a posteriori check on the robustness of the two-layer model. For instance,

the theoretical prediction (adjusting for smooth stratification, as in Camassa & Tiron

[12]) is Q̇(0) � −8.1 × 10−3 cm2/s2 for the case in figure 2.15b with L = 1232 cm,

whereas the numerical result is Q̇(0) � −1.9 × 10−3 cm2/s2. Finally, we remark that

the inertia effects can be further magnified by taking larger density variations. We

have carried out tests with various density ratios, e.g., for ρ2 = 2ρ1 and ρ2 = 1.022
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g/cm3 the model predicts Q̇(0) � −9.62 cm2/s2, while the measured numerical value

is Q̇(0) � −2.04 cm2/s2.

2.6.2 Step function simulations

We now focus on providing examples of the time evolution ensuing from the class

of initial data we have analyzed. So far as we can see, this can only be done numer-

ically. Of course, our analysis of inertia and incompressibility effects of the previous

sections has been carried out with laterally unbounded domains in mind. For numeri-

cal investigations these infinite domains have to be truncated, for instance by erecting

vertical no-flux walls. In the context of the theoretical examples studied in the previ-

ous sections, these inertia effects can be illustrated with direct numerical simulations

of the time evolution of Euler equations in two dimensions. The initial conditions in

all our simulations (all performed using nondimensional quantities) are chosen among

the specific cases discussed in Section 2.4 with zero initial velocities. The computa-

tion domain is [−8, 8] × [0, 1], and gravity is unity. We typically use a square grid of

512 points along the vertical, although we have run cases with doubled and half the

resolution to assess convergence. For t = 0 results, two to three significant digits are

kept as they are the same for all three resolutions. As fluid motion ensues, different

resolutions show some discrepancies. However, the general density and velocity profiles

as well as the important features in pressure jumps and total vorticity remain similar

across resolutions.

Exact solutions: the dam problem

We begin our numerical simulations with the dam case, which is solved exactly in

Section 2.5, and hence provides possibly the best test for numerical validation. We

choose density parameters of the top and lower layers to be ρ1 = 0.9 and ρ2 = 1.0.
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Figure 2.16: (a) Pressure jump and (b) total vorticity time history for the dam-break
initial condition sketched in figure 2.11, in the time interval 0s < t < 2.8s with 512
(solid line) and 256 (dotted line) vertical points resolutions. The initial velocities of the
fluids are zero, the fluid densities are ρ1 = .9 and ρ2 = 1 and the height of the channel
is fixed to 1.

Figure 2.16(a) shows the time evolution of �p�
∆
, from which we can see that �p�

∆
= 0

and ∂t�p�∆ = 0 at t = 0, validating our theoretical results. Here, as well as in figures 2.17

and 2.18, we perform numerical simulations with 256 and 512 vertical grid points,

confirming that the time evolution is largely independent of resolutions. Figure 2.16(b)

shows the total vorticity, exhibiting a linear behaviour of Γ near to t = 0, despite the

fact that the pressure imbalance evolves from zero with zero slope. With the density

parameters we have chosen in this section the value of the total vorticity obtained

from this formula is Γdam
t = −1.05 × 10−1. The value obtained from the numerical

simulation related to figure 2.16(b) is Γdam
t = −1.05 × 10−1 which agrees rather well

with the theory. Snapshots of fluid time evolutions are shown in figure 2.19.

Asymptotic solutions: the hook case(s)

The first example is the case of figure 2.5, in which z0 = z3 = 0.5, z1 = 0.1,

z2 = 0.9, and A2 − A1 = A3 − A2 = 1.5. We choose density parameters of the top and

lower layers to be ρ1 = 0.9 and ρ2 = 1.0 so that the case qualifies small ρ∆ analysis

discussed in Section 4.1. Figure 2.20 are snapshots of density profile up to time t = 2.8.

Figures 2.17(a) and 2.17(b) show the pressure jump �p�
∆
and the total vorticity Γ for

t = 0 ∼ 2.8. The pressure jump is −4.95 × 10−4 at t = 0, in reasonable quantitative
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Figure 2.17: (a) Same as figure 2.16 but for the “hook with sliver” initial condition
(figure 2.5) with z0 = z3 = 0.5, z1 = 0.1 and z2 = 0.9.
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Figure 2.18: (a) Same as figure 2.16 but for “complete hook” initial condition (fig-
ure 2.5) with z0 = z3 = 0.5, z1 = 0 and z2 = 1.

agreement with equation (2.70), which predicts �p�
∆
∼ ρ 2

∆
�p(2)�∆ = −4.72× 10−4. The

total vorticity time derivative Γt = −5.49 × 10−5 also shows a good agreement with

equation (2.37), by which Γt ∼ −5.25× 10−5. Since in this case the interface does not

reach either the top or the bottom of the channel, the pressure difference between the

interacting points xL
i and xR

i is neglected. When t < 0.5, the pressure jump is almost

constant and the total vorticity behaves linearly, which can be explained by �p�
∆ t

= 0

for t = 0 in case of zero initial velocities. Next we let z1 = 0 and z2 = 1, so that the

interface touches the channel’s boundary. Figure 2.21 shows the snapshots of density

profile for time between 0 and 2.8. At t = 0, the pressure jump (figure 2.18(a)) is

−6.46 × 10−4 and the total vorticity time derivative (figure 2.18(b)) is 2.80 × 10−5.

Equations (2.70) and (2.37) provide �p�
∆
∼ −6.13 × 10−4 and Γt ∼ 2.82 × 10−5. The

error is consistent with a second order-ρ 2
∆
estimate when ρ∆ = 0.1. From the figures

it is apparent that, in both the full hook and in the hook with slivers, the pressure

imbalance �p�
∆
has initial zero time-derivative (this point is further taken on in § 2.7).
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Figure 2.19: Snapshots of density ρ and velocities (u, w) (for horizontal and vertical
component, respectively) for the time evolution of motion with the dam-breaking ini-
tial condition sketched in figure 2.11. Resolution is 512 vertical points, with physical
parameters for this computation listed in the caption of figure 2.16. The initial density
configuration is depicted in the top panel, which also illustrates the actual computa-
tional domain and its aspect ratio.
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Figure 2.20: Same as figure 2.19 but for the “hook with sliver” initial condition case
(figure 2.5). Physical parameters listed in caption of figure 2.17.
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Figure 2.21: Same as figure 2.19 but for the “complete-hook” initial condition case
(figure 2.5). Physical parameters listed in caption of figure 2.18.
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Figure 2.22: Convergence of numerical algorithm for the “hook with sliver” initial data.
Plotted here is the density difference at t = 2.8, generated by subtracting off the density
from computations with 512 and 256 (vertical) nodes. Only the central portion (1/3 of
the total length) of the channel is shown. For initial conditions that do not smooth the
density jump, the resolution error becomes noticeable along the interface, where slight
differences in its position in addition to numerical diffusion lead to nonzero density
differences between the two computations.

We remark that we limited the time of evolution in all our numerical simulations

to relatively short times, in order to maintain reasonable accuracy. An example of

convergence for our numerical simulations is depicted in figure 2.22. As can be seen, the

difference of two resolutions, 256 and 512 in the vertical directions, in the density field

is maximal within a thin layer around the interface of the two fluids, not unexpectedly

due to slight differences in the interface position and the effects of numerical diffusivity.

2.7 Time derivative of �p�
∆

at t = 0

The results of § 2.4 in general hold only when the velocity v vanishes (the initial

condition for all our numerical simulations). Here we consider the time derivative of

�p�
∆
and show how the behaviour of our numerical simulations for small (but nonzero)

time can be framed within our theoretical set-up.

The continuity equation implies that if v = 0 then ρt = 0. Differentiating the

momentum equations with respect to time when v = 0 yields

vtt +
1

ρ
∇pt = 0. (2.87)
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From incompressibility of the fluid we have that

∇ ·
�
1

ρ
∇pt

�
= 0. (2.88)

Therefore pt satisfies the same equation as p but with homogeneous boundary condi-

tions. Indeed,

∂pt
∂x

→ 0 as |x| → ∞ ,
∂pt
∂z

= 0 at z = 0, h, t = 0, (2.89)

where we used again the fact that ρt = 0 when v = 0. If ρ is smooth, we can use Gauss

theorem to obtain

0 =

�

R×[0,h]

pt∇ ·
�
1

ρ
∇pt

�
dx dz

=

�

R×[0,h]

�
∇ ·

�
pt
ρ
∇pt

�
− 1

ρ
|∇pt|2

�
dx dz

=

� h

0

�
pt
ρ
pxt

���
x=+∞

− pt
ρ
pxt

���
x=−∞

�
dz +

� +∞

−∞

�
pt
ρ
pzt

���
z=0

− pt
ρ
pzt

���
z=h

�
dx

−
�

R×[0,h]

1

ρ
|∇pt|2 dx dz.

(2.90)

By using the vanishing Neumann boundary conditions, the first two integrals are zero

and we obtain �

R×[0,h]

1

ρ
|∇pt|2 dx dz = 0. (2.91)

Therefore ∇pt = 0 and in particular its first component pxt vanishes. Hence

∂t�p�∆ =

� h

0

pt
���
x=+∞

dz −
� h

0

pt
���
x=−∞

dz =

� h

0

�� +∞

−∞
pxt dx

�
dz = 0. (2.92)

Therefore, if at t = 0, the velocity data are v = 0, then the time derivative of the

pressure imbalance vanishes as well.

56



The presence of an interface implies a discontinuity in the density which requires

some attention in applying Gauss theorem. For this, in analogy with what we have

done in computing the time derivative of the total vorticity in § 2.2, we have to break

the integration domain according to figure 2.2. The only new term in the integral (2.90)

is given by the net flux through the interface between the two fluids

�

γ

1

ρ1

∂pt
∂n1

dσ +

�

γ

1

ρ2

∂pt
∂n2

dσ (2.93)

where n1 (n2) is the normal to the interface exterior to the domain of fluid with density

ρ1 (ρ2), and integration is taken along the interface γ = {(x, η(x)) | x ∈ R}. The

boundary conditions on the interface given in (2.51) imply

1

ρ1

d

dt

∂p

∂n1
= − 1

ρ2

d

dt

∂p

∂n2
(2.94)

because n2 = −n1 ≡ n. Notice that the normal to the interface between the two

fluids depends on time. However, when the velocity of the fluid is everywhere zero, the

kinematic boundary condition reduces to ηt = 0, so that nt = 0. Finally,

1

ρ1

∂pt
∂n1

= − 1

ρ2

∂pt
∂n2

(2.95)

and therefore the new interface contribution (2.93) is identically zero. Thus, for the

special case of vanishing velocity initial condition, ∂t�p�∆ = 0 at t = 0.

2.8 Conclusions

Total momentum conservation in the time-evolution of a stratified, incompressible

ideal fluid is subject to a subtle interplay among boundary forces, incompressibility and

inertia linked to the spatial extent of the fluid’s domain. The case of an inhomogeneous,
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laterally infinite fluid confined between two-horizontal rigid plates offers perhaps the

simplest set-up to illustrate this interplay and remarked by Benjamin [5] in his study

of Hamiltonian invariants. General formulae established by either approach suggest

that horizontal momentum can fail to be conserved, even though only forces along the

vertical direction act on such systems. These formulae connect momentum conservation

to the pressure imbalance in the far field dynamics of the fluid, with the dynamics

evolving from localized initial data and hydrostatic equilibrium enforced at infinity.

While general plausibility arguments, together with long-wave model calculations and

direct numerical simulations, certainly make a convincing case for the validity of the

conclusions in the above studies, an explicit computation of such pressure imbalances

has so far been lacking. In the present study we fill this gap by providing explicit

examples.

Specifically, we have presented a systematic study of classes of initial data which

allow closed-form expressions for pressure imbalances to be derived. In particular, we

have examined in detail the case of zero initial velocities and two-fluid systems, showing

that in this case the nonlocal pressure component arising from localized density dis-

placements is the result of a Neumann-to-Dirichlet boundary map. In the limit of small

density differences such map can be computed asymptotically, revealing non-intuitive

properties of limiting configurations with simple piecewise constant initial conditions.

(A similar analysis can be performed in the opposite limit ρ1 → 0, akin to an “air-

water” system whenever air can be viewed as approximately incompressible, with some

preliminary results in Appendix B). In particular, an exact expression shows that an

internal “dam-breaking” problem, which leads to evolution of internal gravity currents,

initially evolves maintaining constant horizontal momentum, as the total pressure im-

balance is zero for such configuration.

Throughout our study, the long-wave models, and in particular the strongly non-
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linear dispersive terms, have provided intuition, while correctly predicted scalings and

parametric dependences for pressure imbalances for all the cases we have examined.

Remarkably, qualitative and partially quantitative agreement continued to hold even

when non-smooth data violated the asymptotic assumption that lay at these models’

foundation. To this end, we have treated the technical point arising in connection with

distributional derivatives due to density and velocity jumps. We have further shown

how global-vorticity balance-laws for the class of initial data we have studied relate to

pressure imbalances.

Lastly, in Appendix A we briefly discuss how our set-up can be framed within known

variational principles. This allows a compact formulation of conservation laws through

invariance under symmetry and Noether’s theorem.

It is worth stressing again that in this study we have focussed on providing explicit

expressions for the initial conditions we have examined. More general results along

these lines of investigation properly pertain to mathematical analysis of general elliptic

problems, and in particular to their Neumann-to-Dirichlet operators. These go beyond

a fluid mechanical perspective, though nonetheless worth pursuing in future studies.
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Chapter 3

AN EXTENDED APPLICATION FOR THE STRONGLY NONLINEAR
INTERNAL WAVE MODELS

This Chapter is collaborative work with

Wooyoung Choi, Tae-Chang Jo and Roxana Tiron.

(Article in preparation)

3.1 Introduction

Synopsis: Strongly nonlinear models of internal wave propagation for incompressible

stratified Euler fluids are investigated numerically and analytically to determine the

evolution of a class of initial conditions of interest in laboratory experiments. This

class of step-like initial data severely tests the robustness of the models beyond their

strict long-wave asymptotic validity, and model fidelity is assessed by direct numerical

simulations (DNS) of the parent Euler system. It is found that the primary dynamics

of near-solitary wave formation is remarkably well predicted by the models for both

wave and fluid properties, at a fraction of the computational costs of the DNS code.

Large-amplitude internal waves are a common occurrence in many areas of the world

oceans, and have been successfully observed and measured in both field and laboratory

experiments. They occur in a stratified body of water under gravity whenever isolines

of constant density are displaced from their equilibrium location. In fact, perhaps the

simplest case for observing internal waves is perhaps when they occur at the a sharp



interface between two fluids of different densities. Scientific interests in internal waves

are motivated by a myriad of applications, such as the need to quantify induced loads

on submerged engineering constructions, as well as by the mathematical perspective

of the need to understand the interplay between nonlinearity and dispersion which

gives rise to a variety of nonlinear dispersive evolution equations in the discipline of

hydrodynamics. Field observations report amplitudes of internal waves greater than

100 meters in fluid bodies of depth less than 1000 meters with wavelength of 1 to 10

kilometers (e.g., Apel et al. [2], Helfrich & Melville [24]). This is a highly nonlinear

regime of wave motion, characterized by large amplitudes that are nevertheless of small

slope.

While the main features of internal wave dynamics can be assumed to be governed

by the stratified, incompressible Euler equations, such system is hardly amenable to

analytical studies, and predictions based on it have to be extracted by numerical so-

lutions. These are often costly, especially in fully three dimensional setting and when

multidimensional parametric studies are needed to determine dynamical ranges, to the

point of becoming prohibitive. An alternative approach is offered by strongly nonlinear

long-wave asymptotic models which aim at retaining as much as possible of the dy-

namics from the parent Euler system, especially for large amplitude wave-propagation,

while maintaining a relative simplicity which allows for some analytical results, such as

traveling wave solutions, to be derived and studied.

A strongly nonlinear internal wave model have been derived (Miyata [34] [35], Choi

& Camassa [15]) for large amplitude motion using long-wave asymptotics. This model

consists of a set of coupled nonlinear equations evolving the layer-mean velocities, the

interface displacement and the interfacial pressure. In finite domains, the strongly

nonlinear model is unstable for large wave numbers because of the Kelvin-Helmholtz

instability (Choi et al. [14]), an effect that needs to be addressed when implementing
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numerical computations. One direct strategy is to apply a numerical low-pass filter to

the system, an approach that allows the conserved quantities such as mass and energy

to be well preserved for traveling wave solutions (Jo & Choi [26]). Another method is

to regularize the model by introducing related variables for the horizontal velocities. It

turns out that by choosing to work with the velocities at the top and bottom boundaries

in place of their layer-mean counterparts has a beneficial effect on the high-wave number

instability (Choi et al. [14]). Thus, the regularized model expands the stability regime

of the strongly nonlinear model, and is able to sustain the solitary wave solutions from

the strongly nonlinear model for quite long time due to their asymptotic equivalence.

Unlike KdV-type models as single equations, for which abundant mathematical

results are known and been thoroughly carried out, studies of the strongly nonlinear

internal wave model have been mostly limited to traveling wave solutions and it has not

been broadly explored in dynamical time-dependent situations. The present work aims

at filling this gap. In particular, we want to investigate motion emanating from initial

conditions that do not necessarily respect the long-wave asymptotic of the model’s

derivation, in order to test the robustness and broad applicability of the model for

practical applications.

Motivated by the laboratory work of Grue et al. [23], we concentrate on internal

waves’ generation from an internal dam-break problem, where the initial displacement

of the interface is a step function. The details of the experiment are described in § 3.2.

We then review the strongly nonlinear regularized models in § 3.3, along with their

stability criteria. § 3.4 lays out numerical methods for the strongly nonlinear model, the

regularized model as well as the direct Euler simulations. With the zero-flux constraint,

the strongly nonlinear model can be reduced to a set of two nonlinear equations from

a set of four. A filter is described to cure the instability in the strongly nonlinear

model. The results from simulations are discussed in § 3.5. We study three cases
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generating solitary waves with small, moderate and large amplitudes. Comparisons

between models and Euler simulations are presented both in wave and fluid quantities

. For large amplitude waves, the effect of the filter is important. In fact, our direct

Euler simulations show that these are the regimes when Kelvin-Helmholtz instability

also appears in the course of the evolution. We propose a possible method to choose

the optimal filter for the long-wave models, and of course expect that the details of the

Kelvin-Helmholtz dynamics, which occurs in the wake of the primary waves, can not

be described by the model (captured at best in some form of spatial averages)

3.2 Motivations

The physical problem we are looking at is motivated by laboratory experiments

(Grue et al. [23]) calibrated with a layer of fresh water above a layer of brine in a

long rectangular tank. By adding a volume of fresh water behind a gate which is

lowered at one end of the tank, a corresponding mass of the brine then slowly moves

to the other side of the gate maintaining hydrostatic balance. By quickly removing the

gate, an initial depression develops into a leading solitary wave propagating ahead of

a transient dispersive wave train. Here we focus on the generations of solitary waves

by applying long wave models. The experiments are based on a free-surface set-up.

However, observations show that the free surface does not move substantially during

the experiment, and enforcing a slip rigid wall boundary conditions at the upper layer

simplified the numerical computation while keeping the general features of internal

waves intact.

Long wave models are based on the long-wave shallow-water assumption, for which

the typical wave length is much larger than the depth of each layer, and the slopes

are assumed to be compatible with this small number. In this experiment, the initial

condition certainly does not comply with this assumption at the step location. The no-
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penetration boundary condition at the tank ends also need to be enforced. Because the

model computation is essentially one dimensional in space, it is relatively inexpensive

to use large computational domains, so that it is convenient to simply symmetrically

extend the wave tank to double its length and enforce periodic boundary conditions.

This exactly describes the reflection at the ends of the tank. To help the model in its

first few time steps, the vertical interface displacement can be smoothed out with a

suitable choice of smoothing functions, such as hyperbolic tangents.

With these assumptions for the model setup, we next explore how the strongly

nonlinear wave model behaves in comparison with direct Euler simulations for the

corresponding identical physical setup.

3.3 Mathematical models

3.3.1 Governing equations

For an inviscid and incompressible fluid of density ρ, the velocity components in

Cartesian coordinates (u, w) and the pressure p satisfy the continuity equation, the

Euler governing equations are

ux + wz = 0, (3.1)

ut + uux + wuz = −px
ρ
, (3.2)

wt + uwx + wwz = −pz
ρ

− g, (3.3)

ρt + uρx + wρz = 0, (3.4)

where g is the gravitational acceleration. A two-layer fluid system with uniform densi-

ties in each layer can be assumed for smooth stratifications that satisfy a near two-layer

configuration. This allows a substantial simplification, although it leads in general to

a velocity discontinuity at the interface. In this case, the dynamic of waves is governed
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by the Euler equations for the velocity components (ui, wi) and the pressure pi, where

i = 1(i = 2) stands for the upper (lower) fluid and densities ρ1 < ρ2 is assumed for

a stable stratification. The boundary conditions at the interface are the continuity of

normal velocity and pressure,

ζt + u1ζx = w1 , ζt + u2ζx = w2 , p1 = p2 = P at z = ζ(x, t), (3.5)

where ζ is the interface displacement. At the upper and lower rigid surfaces, the

kinematic boundary conditions are given by

w1(x, h1, t) = 0 , w2(x, h2, t) = 0, (3.6)

where h1(h2) is the undisturbed thickness of the upper (lower) fluid layer.

3.3.2 Strongly nonlinear internal wave model

The strongly nonlinear internal wave model for describing the interface displace-

ment of a two-layer fluid system follows asymptotically from the long-wave assumption

(Miyata [34], [35] and Choi & Camassa [15] ),

ηit + (ηiui)x = 0 , (3.7)

uit + uiuix + gζx = −Px

ρi
+

1

ηi

�
1

3
η3iGi

�

x

, i = 1, 2 (3.8)

where

η1(x, t) = h1 − ζ(x, t) , u1(x, t) =
1

η1

� h1

ζ

u1(x, z, t)dz, (3.9)

η2(x, t) = h2 + ζ(x, t) , u2(x, t) =
1

η2

� ζ

−h2

u2(x, z, t)dz, (3.10)
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and Gi denotes the nonlinear dispersive effect:

Gi(x, t) = uixt + uiuixx − (uix)
2. (3.11)

The model approximates the Euler equations with an error of O(�4), where � is the

long-wave parameter defined by � = h1/l and l is the typical wave length; h2 = O(h1)

is assumed. This strongly nonlinear model is, however, accompanied by an undesirable

tangential velocity discontinuity across the interface, which in turn introduces a jump

in the horizontal velocity, implying that the time-dependent model initialized with a

deformed interface could suffer from the Kelvin-Helmholtz instability when it is solved

numerically. One can perform a local stability analysis to find the following criterion

for stability ( Liska, Margolin & Wendroff [32], Jo & Choi [26]):

U2
0 ≤ g(ρ2 − ρ1)(ρ1α1η2 + ρ2α2η1)

ρ1ρ2α1α2
(3.12)

for each x, where

U0 = |u1 − u2|

and αi = 1+ 1
3k

2η2i . We note that there always exists an unstable mode k for all nonzero

U0 since the righthand side of (3.12) vanishes as k → ∞.

3.3.3 Regularized nonlinear long wave model

By taking velocities at the top and bottom boundaries, û1 and û2, respectively (Choi

et al. [14]), the strongly nonlinear model (3.7)-(3.8) can be regularized as

ηi,t +

�
ηi

�
ûi −

1

6
η2i ûi,xx

��

x

= 0 (3.13)
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ûi,t +

�
1

2
û2
i + gζ +

P

ρi

�

x

=

�
1

2
η2i

�
ûi,xt + ûiûi,xx − û2

i,x

��

x

(3.14)

With the same asymptotic behavior, the regularized model acuires a wider stable range

with the following stability criterion:

U2
0 ≤ 3g(ρ2 − ρ1)[ρ1η2(3 + η21k

2) + ρ2η1(3 + η22k
2)]

ρ1ρ2(3 + η21k
2)(3 + η22k

2)
. (3.15)

for each x, where now

U0 = û2 − û1.

The regularized model is linearly stable for all wave number k when its shear velocity

U0 satisfies

U2
0 ≤ g(ρ2 − ρ1)(ρ2η1 + ρ1η2)

3ρ1ρ2
(3.16)

when we consider the dynamics of long waves.

3.4 Numerical algorithms

We compare the strongly nonlinear internal wave models described above with full

Euler simulations by adopting them to emulate the laboratory experiment described in

§ 3.2. A numerical filter is applied for the strongly nonlinear model and the regularized

model whenever necessary in the time stepping of the algorithm.

3.4.1 Direct numerical simulations for Euler equations

Solutions of the fully nonlinear Euler system for continuously stratified fluids are

obtained using the numerical algorithm VarDen for variable density, constant viscosity,

incompressible flow based on a second-order projection method (Almgren et al. [1]). By

setting viscosity to zero and the allowing for only the external force of gravity, VarDen

solves the incompressible Euler equations with variable density (3.1)-(3.4). The method
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is based on a projection formulation, in which advection-diffusion equations are first

solved to predict intermediate velocities, and then project these velocities onto a space

of approximately divergence-free vector fields. The treatment of the first step uses

a specialized second-order upwind method for differencing the nonlinear convection

terms, which provides a robust treatment of these terms suitable for inviscid or high

Reynolds number flow.

3.4.2 Strongly nonlinear model

As mentioned above, the symmetric extension of the wave tank is of great conve-

nience for the numerical solution of the problem by reducing a four variable system to

a coupled two-equation problem under the zero-flux horizontally assumption:

Q = η1u1 + η2u2 = 0 (3.17)

for x ∈ [−L,L] and t ∈ [0,∞). While in general dQ/dt �= 0 (see Chapter 2), for

symmetric initial data we know that the constraint flux-cons is maintained in time.

With (3.17), and eliminating interface pressure P from (3.7)-(3.8), we get the reduced

system in ζ and u1:

ζt − [(h1 − ζ)u1]x = 0 (3.18)

Lu1t = RHS (3.19)

where L is defined as

L = f1(x, t) + g1(x, t)
∂

∂x
+ h1(x, t)

�
∂

∂x

�2

, (3.20)
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with

f1(x, t) = ρ1 − ρ2 + ρ2
H

η2
+

1

3
ρ2H(ζxx +

ζ2x
η2
), (3.21)

g1(x, t) = ρ1η1ζx +
1

3
ρ2(3η2 −H)ζx, (3.22)

h1(x, t) = −1

3

�
ρ1η1

2 + ρ2η1η2
�
, (3.23)

and RHS is

RHS(x, t) = RHS1(x, t) + f2(x, t)ζt + g2(x, t)ζxt + h2(x, t)ζxxt (3.24)

with

RHS1(x, t) = (ρ2u2u2x − ρ1u1u1x) + g(ρ2 − ρ1)ζx

+ρ2η2ζx(u2u2xx − u2
2
x) + ρ1η1ζx(u1u1xx − u1

2
x)

+
ρ2η22

3

�
u2u2xx −−u2

2
x

�
x
− ρ1η12

3

�
u1u1xx − u1

2
x

�
x

(3.25)

and

f2(x, t) =
ρ2Hu1

η22
+

Hρ2
3

�
2u1ζxx
η2

+
u1xζx
η2

− u1xx

�
, (3.26)

g2(x, t) =
Hρ2
3

�
u1ζx
η2

− 2u1x

�
, (3.27)

h2(x, t) = −1

3
ρ2Hu1. (3.28)

As described in § 3.2, the rigid wall boundary condition on the wave tank can be

viewed as periodic boundary condition for the symmetric extended domain. A pseudo-

spectral algorithm is implemented with fourth order Runge-Kutta time evolution and

the nonlinear operator L is solved through iteration by introducing the linear operator

69



L:

L = f 1 + g1
∂

∂x
+ h1(

∂

∂x
)2 (3.29)

where f 1, g1 and h1 are the average values of f1, g1 and h1 over the computation domain

[−L,L], e.g. f 1 =
1
2L

� L

−L f1(x, t)dx. A standard iteration method is used for computing

u1t.

3.4.3 Regularized model

The numerical algorithm for the regularized model has a layout similar to that of

the strongly nonlinear model. We use

ζt =

�
η1

�
û1 −

1

6
η21û1,xx

��

x

(3.30)

for updating ζ in time and use

η1

�
û1 −

1

6
η21û1,xx

�
+ η2

�
û2 −

1

6
η22û2,xx

�
= 0 (3.31)

and

ρ1

�
û1,t +

�
1

2
û2
i + gζ

�

x

�
− ρ2

�
û1,t +

�
1

2
û2
i + gζ

�

x

�

= ρ1

�
1

2
η2i

�
ûi,xt + ûiûi,xx − û2

i,x

��

x

+ ρ2

�
1

2
η2i

�
ûi,xt + ûiûi,xx − û2

i,x

��

x

(3.32)

for updating velocities. Taking time derivative in equation (3.31), we have

η1

�
û1,t −

1

6
η21û1,txx

�
+ η2

�
û2,t −

1

6
η22û2,txx

�
= R1 (3.33)

where

R1 = ζt

��
û1 −

1

2
η21û1,xx

�
−

�
û2 −

1

2
η22û2,xx

��
. (3.34)
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We solve equations (3.32)-(3.33)by using the iteration method described in Choi et al.

[16].

3.4.4 Artificial filter for long wave models

Keeping in mind that the mathematical wave model for the shallow configuration

captures correctly the long wave behavior, it is justifiable to adopt a numerical filter

to suppress the short-wave instability without affecting the long-wavelength behavior.

This is equivalent to assuming that significant viscous dissipation occurs only in the

high wave-number regime, and to this end we adopt the following smooth low-pass filter

to keep unstable short-wavelength disturbances from growing:

fk =






1 for k < kf1

cos2
�

π(k−kf1 )

2(kf2−kf1 )

�
for kf1 ≤ k ≤ kf2

0 for kf2 ≤ k

(3.35)

where kf1 = 0.9kcritical, and kf2 = max{C · kcritical, kupp} with C and kupp to be deter-

mined. These wave numbers are counted on the domain of length 2π. In numerical

computations with domain size of 2L, waves numbers are converted by the condition

K = L
πk. This filter is effective for ill-posed problems, in particular, propagation of

traveling wave solutions for strongly nonlinear model as shown in (Jo & Choi [26]). In

our problem, where short waves form rapidly at the beginning of the motion, the critical

wave number kcritical depends on time. The choices of coefficients for kf1 and kf2 are

rather arbitrary and are not based on an a-priori mathematical criterion. Experience

shows that a minimal number of parameters molding the filters seems to suffice, and

judge their effectiveness by monitoring diagnostically the most significant conserved

quantities, such as the (physical) energy.
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Figure 3.1: Dam-break experiment setup

3.5 Results

3.5.1 Parameter set-up

We choose the physical parameters based on the laboratory experiment, for which

ρ1 = 0.999 g · cm−3, ρ2 = 1.022 g · cm−3, h1 = 15 cm, h2 = 62 cm, g = 981 cm · s−2,

and the length of the wave tank is L = 2464 cm. The initial condition is chosen to be

a symmetric extension of the experimental setup (figure 3.1). Further, to eliminate the

stiffness of the step function, the jump of interface ζ is smoothed out by a hyperbolic

tangent function (figure 3.2). The initial condition for the model is

ζ(x, 0) =
hgate

2
tanh [λ(x− Lgate)] +

hgate

2
tanh [λ(x+ Lgate)] , (3.36)

where x ∈ [−L,L]. When λ = 0.1, the transition length l is 29 cm to achieve 10%

and 90% of hgate. When λ = 0.2 cm−1, the according transition length is 15 cm. We

typically choose the length of the gate to be Lgate = 100 cm and the height of the gate

hgate varies among 10, 20 and 50 cm representing small, moderate and large amplitude

waves. For VarDen simulations, we only need the right half of the domain and the

initial condition needs the prescription of density,

ρ(x, z, 0) = ρ2 −
ρ2 − ρ1

2
[σ(z − ζ(x, 0))] , (3.37)
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Figure 3.2: Initial condition for long wave models by a symmetric extension of the wave
tank and smoothed gate.

where

ζ(x, 0) =
hgate

2
tanh [λ(x− Lgate)] . (3.38)

Here σ = 0.5 cm−1 so that the thickness of the transition layer is about 4 cm comparing

to a tank of total height of 77 cm. We label our simulations in table 3.1 for different

choices of hgate. The full Euler simulations are done with VarDen on a cluster with

parallel processors.

Figure 3.3 (a) and (b) are snapshots for runs H10LD1 and H50LD1, respectively.

In H10LD1, there is no apparent instability. A solitary wave begins to emerge from

T = 69 s. In H50LD1, Kelvin-Helmholtz roll-ups appear quite early. The front wave

travels fast, forming a solitary wave with large amplitude and leaving the roll-ups

behind.

To link the two-layer system with its continuously stratified counterpart, we re-

parameterize the three physical parameters (top and bottom densities and quiescent-

state interface position) of the two layer system to values informed by the continuous

stratification. This is done by matching the linearized phase speed and optimizing the

potential energies and masses of upper and lower layers. The strongly nonlinear model

with the set of optimized parameters greatly improves the agreement for the traveling

wave solutions between the strongly nonlinear model’s and the Euler system’s solutions.
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Table 3.1: Labels for numerical runs with different parameters

hgate (cm) λ = 0.1 cm−1 λ = 0.2 cm−1 λ = ∞
10 H10LD1 H10LD2 H10LD9
20 H20LD1 H20LD2 H20LD9
50 H50LD1 H50LD2 H50LD9

T = 0 s

T = 10 s

T = 36 s

T = 80 s

(b)

T = 0 s

T = 24 s

T = 69 s

T = 80 s

(a)
1.02

1.01

1

1.02

1.01

1

Figure 3.3: Snapshots of VarDen simulations. Top: H10LD1; bottom: H50LD1
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Figure 3.4: Snapshots at T = 80 s from VarDen simulations with different λ, corre-
sponding to different smoothing effect for runs H10’s (a) and H50’s (b). Solid black:
λ = 0.1 cm−1; solid gray: λ = 0.2 cm−1; dash-dot black: λ = ∞ (no smoothing).

3.5.2 The effect of gate smoothing

The laboratory experiments are performed with the gate forming a jump displace-

ment of the interface , while the model needs to handle smooth initial conditions. For

small and moderate amplitude waves, the VarDen simulation appears to be identical

for the mean density isopycnocline in runs H10s and H20s with different choices of λ

(figure 3.4). For the large amplitude waves, however, different smoothing choices do

have an effect on the secondary wave. Nonetheless, this differences are far less than

that from long wave models to VarDen simulations as we will see in § 3.5.5. Therefore,

we conclude that it is sufficient to use the smoothed gate with λ = 0.1 for the long

wave model initial conditions.

75



3.5.3 Small amplitude waves

Figure 3.5 is the snapshot of runs H10LD1 at T = 80 s. For the Euler simulation,

we interpolate to get the isopycnocline of the mean density ρmid = 1
2(ρ1 + ρ2) as the

interface displacement. VarDen simulations are run on a square grids with 512 points

on the vertical direction. By doubling and halving the grid points, we conclude that

the mean density isopycnocline is accurate with relative error 1e − 2 measured in the

sup-norm. For the strongly nonlinear and the regularized models, we typically choose

the number of grid points N = 8192 over the extended domain and ∆t = 0.01 s. For the

strongly nonlinear model, the filter is applied every 0.01 second while the regularized

model can run without instabilities without applying the filter. We test the convergence

by half and double grid points, and half and double time-step. The relative accuracy

is within 8e− 5 for the strongly nonlinear model and 2.5e− 2 for the regularized model

in the sup-norm. The strongly nonlinear model achieves better accuracy because the

higher modes are filtered away.

In runs H10LD1, both models show good agreement with the VarDen simulation

by capturing the amplitude and phase of the front wave, with the strongly nonlinear

wave model being a better match, even agreeing for a large portion of the dispersive

tail (figure 3.5) where we expect to see discrepancies owing to the presence of short

waves and possible influence of dissipation from the filter. The primary waves from

both strongly nonlinear and regularized models are in good agreement with those from

the VarDen simulation. The amplitude of the primary wave from the strongly nonlinear

model is slightly smaller than that from the VarDen simulation, while the opposite is

true for the regularized model. The differences in amplitudes of primary waves between

VarDen simulation and models are within 5% and 8% for the strongly nonlinear model

and the regularized model, respectively. The phases of primary waves for VarDen

simulation and the strongly nonlinear model has an excellent agreement with less than
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Figure 3.5: Snapshot of H10LD1 at T = 80 s. Solid: mean density isopynocline from
VarDen simulation; dashed: strongly nonlinear model; dotted: regularized model. The
three vertical lines are at locations x = 1420, 1510 and 1610 cm

0.1% difference. The phase difference between VarDen simulation and regularized model

is also small as shown in table 3.2. The primary wave speed agrees well with both two-

layer models.

High wave modes act as dissipation in long wave models when the stability criteria

are not satisfied. The filter, by cutting off unstable modes, reduces dissipation so as to

prevent excessive energy loss. We record the total energy along with time evolutions.

The strongly nonlinear model (with no filter) has an exact energy expression,

E =
1

2

� �
g(ρ2 − ρ1)ζ

2 +
�

i=1,2

ρi

�
ηiui

2 +
1

3
η3i ui

2
x

��
dx, (3.39)

which is conserved. The regularized model, on the other hand, does not seem to have

an explicit conserved energy quantity, however it is expected to conserve the physical

energy to within asymptotic accuracy. Thus, this pseudo-energy for the regularized

model,

Epseudo =
1

2

� �
g(ρ2 − ρ1)ζ

2 +
�

i=1,2

ρiηi

�
û2
i +

1

3
η2i

�
û2
i,x − ûiûi,xx

��
�
dx, (3.40)

is a time-dependent quantity. Denoting E0 as the total energy at T = 0 s for each
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simulations, and E(t) as the energy at time t, after T = 80 s the normalized energy

loss δE/E0 = (E(t) − E0)/E0 appears to be much smaller for the strongly nonlinear

model with 6.4e− 7 than for the regularized model with 1.5e− 2, whereas the VarDen

simulation only introduces 9e− 10 of normalized energy loss (figure 3.6).

A remark is in order on the robustness of the filtering effect. For the strongly

nonlinear model, different filters are attempted. The upper limits of Kupp are chosen

to vary from 0 to 3000 (corresponding to kupp = 3.8 wave numbers in the normalized

form). The frequencies of applying the filters varies between every 0.01 and 0.1 second.

The relative difference among different filters are 7e− 3 for the interface displacement

ζ measured in sup-norm.

3.5.4 Moderate amplitude waves

For the H20LD1 case, the snapshots at T = 80 s are shown in figure 3.7. Similar to

runs H10LD1, the primary wave from the VarDen simulation is well captured by the

strongly nonlinear model with relative amplitude difference of 5% and relative phase

difference of 0.28%. The regularized model has a slightly larger amplitude, with relative

difference of 4.1%, and travels a bit faster with a 0.83% relative phase difference. Once

again, in this run the filter is only applied for the strongly nonlinear model. From figure

3.6, we notice that the energy loss for the VarDen simulation gets 6e-8 at T = 80 s.

The energy loss from models also has an increment compared with runs in H10LD1,

but the scaling remains similar.

3.5.5 Large amplitude waves

The run H50LD1 is a case when the real Kelvin-Helmholtz instability occurs, as

displayed by figure 3.3 (b). The instability is numerically challenging for the VarDen

simulation in order to achieve the desired accuracy. By halving the grids, with 512 and
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Figure 3.6: Time series of relative energy loss from VarDen simulations (a1, a2, and
a3), the strongly nonlinear model (b1, b2, b3), and the regularized model (c1, c2, c3),
with number 1, 2 and 3 denoting runs H10LD1, H20LD1 and H50LD1, respectively.
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Figure 3.7: Snapshot of H20LD1 at T = 80 s. Solid: isopynocline of the mean density
from VarDen simulation; dashed: strongly nonlinear model; dotted: regularized model.
The three vertical lines are at locations x = 1525, 1610 and 1700 cm.

Table 3.2: Numerical values for amplitudes a and phases X of the primary wave from
VarDen simulation, the strongly nonlinear model and the regularized model for runs
H10LD1, H20LD1 and H50LD1 at T = 80 s.

H10LD1 H20LD1 H50LD1
a (cm) X (cm) a (cm) X (cm) a (cm) X (cm)

VarDen -6.306 1418.8 -12.456 1526.2 -22.440 1552.9
Strongly -6.024 1417.9 -11.837 1522.0 -21.556 1556.2

Regularized -6.775 1435.3 -12.979 1538.8 -22.330 1546.6

x (cm)

ζ
 (

cm
)

Figure 3.8: Snapshot of H50LD1 at T = 80 s. Solid: isopynocline of the mean density
from VarDen simulation; dashed: strongly nonlinear model; dotted: regularized model.
The three vertical lines are at locations x = 1550 cm, 1610 cm and 1800 cm
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Figure 3.9: Convergence study for run H50LD1 in VarDen simulations with different
resolutions. Black: nz = 512; gray: nz = 1024, with the grid points at the vertical
direction.

1024 grid points on the vertical directions, the discrepancy in the secondary wave is

visible (figure 3.9). To resolve the issue of convergence of the simulation for this sec-

ondary wave, it would be necessary to run the code on a significantly higher resolutions

which becomes too expensive. However, if we still place our emphasis on the primary

wave it is clear that 1024 grid points on the vertical direction is sufficient to provide a

reliable reference.

For run H50LD1, numerical filters are required for both the strongly nonlinear and

the regularized models. For the latter, the solution is robust with respect to different

choices of the filter, while for the strongly nonlinear model the solution is somewhat

sensitive to the choices. In § 3.5.6, we describe how the choice of Kupp = 500 and

C = 1.3 is optimal in this case. With the optimal filter, the strongly nonlinear model

captures the amplitude by a relative difference with 2.1%. The regularized model is

about twice this difference at 4.9%. The phase differences are 0.2% and 0.4% for the

strongly nonlinear model and the regularized model, respectively.
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Figure 3.10: Solutions from the strongly nonlinear model for run H50LD1 with fixed
C = 1.3 and different Kupp at T = 80 s. Solid: mean density isopycnocline from
VarDen simulation; dashed black: Kupp = 0; dashed blue: Kupp = 500; dashed red:
Kupp = 900.

3.5.6 Choice of the optimal filter

The numerical filter is applied to the strongly nonlinear model for all three runs and

to the regularized model for the high amplitude run H50LD1. We tested the different

parameters in the filter (kupp and C), and found that the solution is robust for small

and moderate amplitude waves. When the amplitude gets bigger, choices of kupp can

become more critical for obtaining consistency of amplitude, phase, and shape for the

front waves.

Figure 3.10 is the solution from the strongly nonlinear model for runs H50LD1, with

different choices of Kupp values. For Kupp = 500, the front wave shows good agreements

with the VarDen simulation. For the solution with Kupp = 0, the front wave is larger

but narrower, while for Kupp = 900, the amplitude of the front wave is smaller than

the VarDen simulation. The choices of Kupp also affect the relative energy loss (figure

3.11). We notice that for Kupp = 0, 100, 300 and 500, the energy loss is within a similar

range, while for Kupp = 700 and 900, the energy loss is increasing with the increment

of Kupp. Based on this, Kupp = 500 seems to be an optimal choice for the upper bound

for the filter. Fixing Kupp = 500, we alter the value of C among 1.1, 1.3 and 1.5. The

solution appears to be identical and so does the energy loss, and we conclude that the
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Figure 3.11: Time series of relative energy loss for the strongly nonlinear model with
fixed C = 1.3 and different Kupp. Solid black: Kupp = 0; solid blue: Kupp = 500;
solid red: Kupp = 900; dashed purple: Kupp = 100; dashed green: Kupp = 300; dashed
orange: Kupp = 700.

solution is insensitive to these parameters.

3.5.7 Primary wave forming solitary waves

The primary waves emerging from the time evolution appears to travel steadily

without significant deformations. We extract data from the right sides of the primary

waves at different times (T = 60, 80 and 100 s), and compare them with the closed-form

traveling wave solution from the strongly nonlinear model, by matching the amplitudes

at T = 100 s (figure 3.12). Note that the left parts of the primary waves are still

evolving, separating solitary waves from dispersive tails.

The front waves emerging from the strongly nonlinear model simulations have al-

ready settled to the traveling wave solution for runs H10LD1 and H20LD1. On the

other hand, more time may be necessary for run H50LD1 in order for the primery

wave to settle close to a solitary traveling wave. We tested this tendency by comparing

the difference between snapshots at 100 s and at 80 s, which looks smaller than that

between snapshots at 80 s and 60 s. The primary waves from the regularized model

is also compared with the traveling wave solution from the strongly nonlinear model
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Figure 3.12: The front half of the primary waves from models at time T = 60 s (black
short-dashed), T = 80 s (black long-dashed) and T = 100 s (black solid), VarDen
simulations at T = 100 s (red solid) traveling wave solutions from the strongly nonlinear
model with matching amplitude at T = 100 s (green solid). (a1), (a2) and (a3) are
from the strongly nonlinear model for runs H10LD1, H20LD1 and H50LD1; (b1), (b2)
and (b3) are from the regularized model for the same runs.
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by matching amplitudes. In all three runs, the primary waves are settling down by

comparing snapshots at different times. Front waves from the VarDen simulations at

T = 100 s are also recorded. The shapes of the strongly nonlinear model appear to

better match the Euler solutions for small and moderate amplitude waves, whereas this

advantage is somewhat lost for runs H50LD1. In all three cases, the regularized model

provides deeper and narrower front waves.

We also track the time history of the peak of the primary waves. Figure 3.13

are plots of the amplitudes and phase locations of the wave peaks from the strongly

nonlinear model and the Euler solutions. We notice that the amplitudes of the wave

peaks decrease during the evolutions and show a trend of settling to a fixed value,

which should be the amplitude of the solitary wave. The strongly nonlinear model

always have a smaller amplitude than the Euler simulations. The phase locations of

the two are very close.

3.5.8 Horizontal shear velocity reconstruction

Besides wave profiles, the models also provide fluid velocity information which can

be reconstructed from the long wave assumption. The horizontal velocity z-dependence

can be reconstructed to order O(�4) at fixed x location by using ui in the strongly

nonlinear model (Camassa et al. [10])

ui(x, z, t) = ui(x, t) +

�
(ηi(x, t))2

6
− (hi ∓ z)2

2

�
∂2
xui(x, t), (3.41)

and by ûi in the regularized model,

ui(x, z, t) = ûi(x, t) +

�
(ηi(x, t))2

2
− (hi ∓ z)2

2

�
∂2
xûi(x, t), (3.42)
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Figure 3.13: Amplitudes (left) and phase locations (right) of the wave peak for H10LD1
(a), H20LD1 (b) and H50LD1 (c). Square: the strongly nonlinear model; cross: VarDen
simulation
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Figure 3.14: Horizontal shear velocities reconstructions for runs H10LD1 (a), H20LD1
(b) and H50LD1 (c) at locations noted in figures 3.5, 3.7 and 3.8.
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Shear velocities are reconstructed through (3.41) and (3.42) fron both the strongly

nonlinear model and the regularized model. We choose three locations for each runs: at

the crest, the inflection point and the very front of the primary waves. The regularized

model seems to match better with the VarDen simulations for all three runs. Though

the origin of this increased accuracy is not clear, this might be due to the vigorous filter

applied to the strongly nonlinear model which results in an additional slowing down of

the flow.

3.6 Discussion

The application of the strongly nonlinear model and its regularized companiont are

extended to simulate a laboratory experiment that can be described as a dam-break

problem for internal waves. This initial state does not satisfy the long wave assumption

and hence constitutes a severe test for models’ predictive capability and robustness.

The rigid wall boundary condition for the wave tank is transferred to the long wave

models by symmetrically extending the wave tank, which allows the use of periodic

boundary conditions. The gate-introduced step-function of the interface displacement

is smoothed out to carry out numerical computations of long wave models, and its

analog is used for the full Euler (DNS) simulations. We compare solutions from long

wave models with DNS simulations using the algorithm VarDen to validate the model.

The ill-posedness of the strongly nonlinear model induced by the shear instability is

treated with a numerical filter adjustable along with the time evolution. The regularized

model partially cures the instability by writing the model in terms of horizontal velocity

at the top and bottom boundary instead of the mean velocities of each layer.

We compare the models with the Euler simulations by taking snapshots of the in-

terface displacements and by recording the time series of energy loss. The strongly

nonlinear model presents excellent agreements for the small and moderate amplitude
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waves by well capturing the shape, amplitude and phase of the primary wave, while

the regularized model, albeit also showing good agreement, generates waves traveling

slightly faster and manifesting deeper but narrower fronts. The case with large am-

plitude waves, however, is challenging for the strongly nonlinear model because the

solution is becomes somewhat sensitive to the choice of the filter, and an optimal

choice becomes necessary. In this case, the regularized model seems preferable over

the strongly nonlinear model even when the optimal filter is used. Both models show

the tendency of the primary waves beginning to settle to a solitary wave, as seen by

comparing their fronts at a series of time snapshots to the closed-form traveling wave

solutions of the strongly nonlinear model. Besides wave profile, we also reconstruct

the shear velocity of the front waves, a quantity that can be important in applications.

The regularized model present better agreement with the VarDen simulations than the

regularized model for this variables, possibly due to the more vigorous application of

the numerical filter necessary for large waves.

With good agreements at hand, we still cannot downplay the remaining questions

for extending the applications of the long wave models. Just like the two-layer parent

Euler system, the ill-posedness of the strongly nonlinear model presents a problem for

the optimal choice of filters. We have presented a possible way to monitor a choice

effectiveness by looking at the time series of energy loss, and a more systematic study

using this diagnostic tool may be possible to explore different filtering algorithms. This

might have to be tailored to information provided by the initial conditions. A better

understanding of these questions will further enhance the applicability of long wave

models, which are computationally inexpensive comparing to the full Euler simulations,

especially over long computational times out of reach for even massive parallel machines.
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Chapter 4

WEAKLY NONLINEAR MODELS FOR INTERNAL WAVES

(Article in preparation)

4.1 Introduction

In Chapter 3, the strongly nonlinear model and the regularized model have been

studied numerically by emulating the dam-break problem for internal waves. These

two models show good agreement with the Euler simulations for the primary waves

spanning a fairly wide range from small to large amplitudes. However, any prediction

on the outcome of the internal dam-break has to still rely on numerical simulations,

and it would highly desirable to have an analytical way to predict the outcome of the

strongly nonlinear models without recourse to numerics. Of course, it is not reasonable

to expect that an analytic result can account for complex dynamics that ensues from

such initial conditions, such as Kelvin-Helmholtz instability. Nonetheless, however

approximate might an “back of the envelope” prediction be, it would be preferable to

not having any information at all before running a code. Therefore, in this chapter,

we focus on weakly nonlinear models, because it is in this class that some systems

solvable by the Inverse Scattering Transform (IST) can be found. In particular, the

primary wave ought to be the main point of interest, as it is the one with the fastest

speed and most of the energy, and as it separates from its dispersive tail, it is natural



to seek a result which is asymptotic in time for the limit of an infinite channel. For

solvable evolution equations, solitary waves are linked by IST to the real eigenvalues of

an associated isospectral problem (Whitham [37], Kaup [27]). However, while solvable,

some of these models have the drawback of being ill-posed, and even when that is not

the case, highly oscillatory wavetrains may develop in the solution (such as for the

Korteweg de Vries equation), thereby preventing standard numerical approaches from

achieving the desired accuracy. Thus, alternative models which are asymptotically

equivalent are sometimes preferable and should be considered.

We review the governing equations and strongly nonlinear internal wave models in

§ 4.2 and § 4.3. The two-layer Kortweg-de Vries equation (see, e.g., Choi & Camassa

[15]) with its associated inverse scattering transform method is reviewed in § 4.4. The

possible Talbot fractal effect (Chen & Olver [13]) determined by the dispersion relation

of the KdV equation is also discussed. In § 4.5, we propose a regularized version

of the ill-posed two-layer Kaup (Craig et al. [17]), and the solitary wave solution for

the new model is provided. The general solution of initial value problem for the new

regularized Kaup equations does not appear to be available in closed form, unlike that

of the original Kaup system, which is in principle analytically solvable (Kaup [28])

through IST. However, apart from special cases, this technique is in fact hardly of

practical use for following the time evolution of general initial data, and one has to

resort to numerical solutions. Here, the particular nature of the ill-posedness of Kaup’s

system proves to be rather challenging for designing numerical solution algorithms, a

situation that is completely by-passed by the new regularized Kaup system. We provide

numerical evidence showing that our regularization has little influence on the prediction

offered by IST: the soliton content of initial data based on Kaup’s system is left basically

intact by its regularized counterpart, as tested by the numerical simulations of the new

model.
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Another well-posed weakly nonlinear model for bi-directional waves, the Boussi-

nesq equations (see, e.g., Choi & Camassa [15]) is also asymptotically equivalent to

the two-layer Kaup equtions with a zero-flux constraint. This system has not been

studied extensively for the internal wave setup. We fill this gap here, beginning with a

comparison among the weakly nonlinear models based on their solitary wave solutions,

and then moving on to full time dependent simulations.

Finally, in § 4.6, a higher-order uni-directional model is derived from the strongly

nonlinear model for moderate amplitude waves. In § 4.7, well-posed models are numer-

ically computed for the two-layer dam break problem. These numerical solutions are

then compared with the full Euler simulations, and the analytical predictions of IST of

the emerging solitons are tested for this class of initial data.

4.2 Governing equations

For an inviscid and incompressible fluid of density ρi, the velocity components in

Cartesian coordinates (ui, wi) and the pressure pi satisfy the continuity equation and

the Euler equations,

uix + wiz = 0, (4.1)

uit + uiuix + wiuiz = −pix/ρi, (4.2)

wit + uiwix + wiwiz = −piz/ρi − g, (4.3)

where g is the gravitational acceleration and subscripts with respect to space and

time represent partial differentiation. In a two-fluid system, i = 1(i = 2) stands for the

upper (lower) fluid and ρ1 < ρ2 is assumed for a stable stratification.

The boundary conditions at the interface are the continuity of normal velocity and
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pressure:

ζt + u1ζx = w1 , ζt + u2ζx = w2 , b1 = b2 = P at z = ζ(x, t), (4.4)

where ζ is a displacement of the interface. At the upper and lower rigid surfaces, the

kinematic boundary conditions are given by

w1(x, h1, t) = 0 , w2(x, h2, t) = 0, (4.5)

where h1(h2) is the undisturbed thickness of the upper (lower) fluid layer.

From the linearized problem of (4.1)-(4.5), the dispersion relation between wave

speed c and wave number k (Lamb [29]) is

c2 =
(g/k)(ρ2 − ρ1)

ρ1 coth(kh1) + ρ2 coth(kh2)
. (4.6)

Under the shallow water assumption (khi → 0), the asymptotic behavior of the

linear dispersion becomes

c = c0

�
1− k2

6

ρ1h2
1h2 + ρ2h1h2

2

ρ1h2 + ρ2h1 +O(k4h4
i )

�
, c20 =

gh1h2(ρ2 − ρ1)

ρ1h2 + ρ2h1
(4.7)

This linear dispersion relation results in linear dispersive terms in the weakly non-

linear models as described in the following sections.

4.3 The strongly nonlinear model

The strongly nonlinear model is introduced in § 3.3.2 with the shallow water as-

sumption

O(l/hi) = O(�), (4.8)
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where l is the typical wave length. The speed c of the solitary wave is related to its

amplitude a by
c2

c02
=

(h1 − a)(h2 + a)

h1h2 − (c02/g) a
. (4.9)

The maximum wave amplitude and speed are given by

am =
h1 − h2

�
ρ1/ρ2

1 +
�

ρ1/ρ2
, (4.10)

cm
2 = g(h1 + h2)

1−
�

ρ1/ρ2

1 +
�
ρ1/ρ2

. (4.11)

4.4 The Kortwerg-de Vries equation

The two-layer Kortweg-de Vries (KdV) equation (see, e.g., Choi & Camassa [15]) is

a uni-directional model for small amplitude waves where the amplitude of the wave a

is small with respect to the depth of each layer,

O(a/hi) = O(α), (4.12)

in addition to the shallow water assumption (4.8), and the small parameters � and α

satisfy the order relation α = �2. In terms of the interfacial displacement ζ, the KdV

equation is written as

ζt + c0ζx + c1ζζx + c2ζxxx = 0, (4.13)

where

c0 =

�
g(ρ2 − ρ1)h1h2

ρ1h2 + ρ2h1

� 1
2

, c1 = −3c0
2

ρ1h2
2 − ρ2h2

1

ρ1h1h2
2 + ρ2h2

1h2
, and c2 =

c0
6

ρ1h2
1h2 + ρ2h1h2

2

ρ1h2 + ρ2h1
.

(4.14)

The KdV equation is a completely integrable system, whose initial value problem

can be solved analytically through the inverse scattering transform technique (Whitham
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[37]). Rescaling the variables in (4.13):

x� = c
− 1

3
2 (x− c0t), ζ � =

c1

6c
1
3
2

ζ, (4.15)

we get

ζ �t − 6ζ �ζ �x� + ζ �x�x�x� = 0 (4.16)

The corresponding Schrödinger eigenvalue problem is

ψx�x� + (ζ � − γ)ψ = 0, (4.17)

where ψ is an unknown function of t and x�, and ζ � is the solution of the Korteweg-

de Vries equation to be determined from its initial condition at t = 0. From the

Schrödinger equation we obtain

ζ � =
1

ψ

∂2ψ

∂x2
− γ. (4.18)

The complete integrability of the KdV equation allows to find ζ � depending on time

while the set of eigenvalues γ remain constant. After eigenvalues are found, the time

evolution of eigenfunctions associated to each eigenvalue γ, the norming constants,

and the reflection coefficients – comprising the so-called scattering data – is given

by a system of linear ordinary differential equations which can be solved analytically.

Finally, performing the inverse scattering procedure by solving the Gelfand-Levitan-

Marchenko integral equation (Gel’fand [19], Marchenko [31]), a linear integral equation,

the final solution of the original nonlinear partial differential equation is recovered. For

the Schrödinger equation, the discrete spectrum eigenvalues essentially correspond to

solitary wave solutions emerging asymptoticaly in time from the evolution governed by

the KdV equation, while the continuous spectrum gives rise to dispersive tails. The
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solitary wave corresponding to γ = σ2 are given by

ζ � = −2σ2sech2(σx� − 4σ3t) (4.19)

In the physical domain, the corresponding traveling wave solution is

ζ =
12c

1
3
2 σ

2

c1
sech2(σc

− 1
3

2 (x− c0t)− 4σ3t) . (4.20)

The speed c of the solitary wave and the amplitude are related by

a =
3(c− c0)

c1
, (4.21)

and there is no maximum amplitude or wave-speed for these solutions of the KdV

equation, clearly an unphysical feature of the equation, and one that conflicts with its

derivation under small amplitude assumptions.

The KdV equation is a favorite model for studies of wave propagation, when ap-

plicable, for its simplicity and its complete integrability. However, in applications, we

note there are two deficiencies. First, the equation is a model for uni-directional propa-

gating waves, whereas bi-directional waves propagation is the generic outcome of most

physical process where the models apply. For traveling wave solutions, Wu [39] linked

the KdV equation with the bi-directional weakly nonlinear model to the order of O(�4).

However, this approach is hard to extend to general initial conditions. The best we can

do with a zero initial velocity is to simply divide the physical initial condition into two

uncoupled components traveling in opposite directions.

Another pitfall of the KdV equation is that the solution is accompanied by a dis-

persive tail which may travel at speeds that are not faithfully representing those of the

parent Euler equations. In infinite domain, where short waves quickly travel away from
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the region of interest, this may not be a problem. Nonetheless, in a practical sense,

and specifically with periodic boundary conditions, the dispersive tail can pollute the

solution that one is trying to follow numerically. In the two-layer KdV equation, the

problem becomes more apparent by looking at the linear dispersion relation at ζ = 0:

ω(k) = c0k − c2k
3. (4.22)

As k → ∞, the linear dispersion relation ω(k) ∼ −c2k3 with c2 ≤ 0 often large in the

two-layer physical set-ups, implying a fast propagating of high modes (Chen & Olver

[13]). This feature also brings difficulties in numerical computations. Writing

ζ(x, t) =
k=K�

0

A(t) exp(ikx) (4.23)

for the linearized two-layer equation, we get

A�(t) = i(c2k
3 − c0k)A(t) = −iω(k)t. (4.24)

The solution is A(t) = exp(−iω(k)t), which is highly oscillatory in time for large wave

numbers. This indicates that in order to achieve a desired accuracy, the time-step for

the numerical computations has to be small enough to capture the highly oscillatory

behavior. In § 4.5, we introduce weakly nonlinear models for bi-directional waves which

offers some remedy for this situation.
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4.5 Weakly nonlinear models for bi-directional waves

4.5.1 The two-layer Kaup model

By using an Hamiltonian perturbation approach (Craig et al. [17]), a two-layer Kaup

system can be derived

ζt + b1vx + b3(ζv)x + b4vxxx = 0, (4.25)

vt + b2ζx + b3vvx = 0, (4.26)

where ζ is the interface displacement, and

v = ρ2ǔ2 − ρ1ǔ1 (4.27)

with ǔi (i = 1, 2) horizontal velocities near the interface for upper and lower fluids.

The coefficients bj are

b1 =
h1h2

ρ1h2 + ρ2h1
, b2 = g(ρ2−ρ1), b3 =

ρ2h2
1 − ρ1h2

2

(ρ1h2 + ρ2h1)2
, b4 =

(h1h2)2(ρ1h1 + ρ2h2)

3(ρ1h2 + ρ2h1)2
.

(4.28)

This is an integrable system and can be solved by inverse scattering theory (Kaup [27],

[28]). The system (4.25)-(4.26), under the scaling

x� =

�
b1
b4
x, t� =

�
b21b2
b4

t, ζ � = −b3
b1
ζ, v� =

b3√
b1b2

v (4.29)

becomes the completely integrable Kaup equations

ζ �t� − v�x� − (ζ �v�)x� − v�x�x�x� = 0 (4.30)

v�t� − ζ �x� − v�v�x� = 0. (4.31)
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The eigenvalue problem for (4.30)-(4.31) is

ψx�x� + (γ2 +
1

4
+ iγq + r)ψ = 0 (4.32)

where

q =
1

2
v�, and r = −1

4
(ζ � +

1

4
v�2).

The inverse scattering transform for (4.32) is different from (4.17) by its “transformation

kernel”(Kaup [28]). The eigenvalue is written as γ2 = −(σ2
1 − 1

4), with real values of σ1

yielding solitary wave solutions by the following steps

σ1 =
1

4
(ξ − 1

ξ
), σ2 =

1

8
(ξ2 − 1

ξ2
) , (4.33)

χ� =
∓8σ1

cosh(2σ1x� + 2σ2t�)± 1
2(ξ +

1
ξ )

, (4.34)

ζ � = σ2χ
� +

σ2
1

2
χ�2 , (4.35)

v� = σ1χ
� . (4.36)

Back to physical variables, we have

χ =
∓8σ1

cosh(2σ1

�
3b1
b4
x+ 2σ2

�
3b21b2
b4

t)± 1
2(ξ +

1
ξ )

, (4.37)

ζ = −b1
b3

�
σ2χ+

σ2
1

2
χ2

�
, (4.38)

v =

√
b1b2
b3

σ1χ . (4.39)

When 1 < ξ < ∞, this correspond to a soliton moving to the left, while for −1 <

ξ < 0, the soliton is moving to the right; the sign is chosen so that the denominator of
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(4.37) does not vanish. It is easy to show through (4.37)-(4.39) that the amplitude a

and the traveling wave speed c are related linearly for the Kaup system solitons,

a =
2b1(c− c0)

b3c0
. (4.40)

This relation is in fact the same as that from the KdV equation in (4.21). The Kaup

equations have the merit to be analytically solvable in the infinite domain. However,

by looking into its linear dispersion relation at (v = 0, ζ = 0), a serious mathematical

drawback immediately comes to the fore. By writing v = v0ei(kx−ωt) and ζ = ζ0ei(kx−ωt),

the dispersion relation for the linearized system is

ω2 = b2k
2
�
b1 − b4k

2
�
, (4.41)

where b1, b2 and b4 are all positive, indicating that the system is ill-posed for wave

numbers k larger than the critical value

kcritical =

�
b1
b4

=

�
3(ρ1h2 + ρ2h1)

h1h2(ρ1h1 + ρ2h2)
(4.42)

This critical value exists for any choice of the “hardware” physical parameters ρ’s and

h’s, and more importantly it is independent of fluid velocity shears. This property is

quite different from the ill-posedness for the Euler equations or its strongly-nonlinear

models, where it is always generated by the presence of a jump in velocity across

fluid interfaces, and as such it is physically, as well as mathematically, undesirable. In

particular, an algorithm to filter wavenumbers past kcritical may suppress a range of k

that is necessary for an accurate solution reconstruction by Fourier Transform.

For instance the instability in the strongly nonlinear model is triggered by the shear

velocity, i.e., the weaker the shear, the larger the local kcritical becomes. With zero

100



shear, the linear dispersion relation from the strongly nonlinear model becomes stable.

As shown by (4.42), this is not the case for the Kaup equations. When applying linear

stability analysis around (v, ζ) = (V,H), we have the dispersion relation

ω(k) = b3V k ± k
�

b2b3H + b2(b1 − b4k2), (4.43)

so that

kcritical =

�
1

b4
(b3H + b1) (4.44)

For solitary wave solutions, from (4.37)-(4.38), we can show that b3H > 0 always holds,

indicating that for larger amplitude waves, the stability criterion actually improves by

allowing for larger wavenumbers, in contrast to the physics supported by the parent

Euler equations. Thus, the most unstable locations for solutions of the Kaup equations

are actually the ones where no wave motion occurs as in (4.42).

It is natural to implement a low-pass filter for the Kaup equations in a similar

fashion as for the strongly nonlinear model. However, the value of kcritical in (4.42) can

be very small by the choice of physical parameters ρis and his. Specifically, write

b1
b4

=
3(ρ1h2 + ρ2h1)

h1h2(ρ1h1 + ρ2h2)
=

ρh2 + h1

h1h2(ρh1 + h2)
= R(ρ), (4.45)

where ρ = ρ1
ρ2
. We have

R�(ρ) =
h2
2 − h2

1

(ρh1 + h2)2
, (4.46)

When h2 > h1, R(ρ) achieves its minimum at ρ = 0, the situation where the two-layer

case turns into a single layer and

R(0) =
3

h2
2

(4.47)

On the other hand, when h2 < h1, R(ρ) achieves its maximum at ρ = 0. For in-

stance, with the physical parameters chosen as in Grue’s experiment, this critical wave
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Figure 4.1: The solitary wave solution from the Kaup equations with the physical
parameters ρ1 = 0, ρ2 = 1 g·cm−3, h1 = 1.95 cm, h2 = 2 cm, g = 1 cm·s−2 cor-
responding ti the critical wavenumber kcritical = 0.86. The Fourier modes below this
instability threshold are not sufficient for recovering the solution. Solid: solitary wave
solution; dashed: solitary wave solution with truncated Fourier coefficients satisfying
the stability criterion.

frequency is kcritical = 0.057.

Just like KdV, the Kaup equations support solitary waves with no maximum am-

plitude requirement. Unlike KdV, the stability criterion prevents these solutions from

being used in numerical simulations. For instance, we choose the parameters in the

Kaup equations as ρ1 = 0, ρ2 = 1 g·cm−3, h1 = 1.95 cm, h2 = 2 cm, g = 1 cm·s−2, and

the amplitude a = 1.9 cm. The critical wave frequency is kcritical = 0.86. The domain is

[−40, 40] cm so that the value of ζ is less than 1e− 15 at boundaries, corresponding to

11 wave numbers in the domain within the stability criterion. These 11 wave numbers

cannot recover a good approximation to the solitary wave solution as demonstrated in

figure 4.1.

4.5.2 Regularized Kaup equations

It is possible however to make use of the leading-order terms in these equations

to recombine the asymptotic expansion so as to obtain well-posed models. From the
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leading order of (4.25)-(4.26), we have

ζxxt + b1vxxx = O(�2α2), (4.48)

vxxt + b2ζxxx = O(�2α2), (4.49)

By multiplying (4.48)-(4.49) by arbitrary constants µ and ν, and adding them to (4.25)-

(4.26), different models asymptotically equivalent to (4.25)-(4.26) can be constructed:

ζt + b1vx + b3(ζv)x + b4vxxx = µ(ζxxt + b1vxxx) (4.50)

vt + b2ζx + b3vvx = ν(uxxt + b2ζxxx) (4.51)

The dispersion relation

ω2(k) =
b2k2 [b1 + (µb1 − b4)k2]

1 + µk2
(4.52)

is independent of ν. In order to cure the instability completely, it is required that

ω(k)2 ≥ 0 for all k therefore we choose µ = b4
b1

and ν = 0. The “regularized Kaup

equations” then become

ζt −
b4
b1
ζxxt + b1vx + b3(ζv)x = 0 (4.53)

vt + b2ζx + b3vvx = 0 (4.54)

We can obtain exact solutions for the regularized Kaup model. Writing v(x, t) = V (X)
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and ζ(x, t) = H(X), where X = x− ct with the traveling wave speed c, we have from

H �2 =
2b1
b4c

��
c3

2b22
− b1c

2b2

�
V 2 +

�
b1b3
3b2

− 5b3c2

6b22

�
V 3

�

+
2b1
b4c

�
+
b23c

2b22
V 4 − b33

10b22
V 5

�
, (4.55)

H =
1

b2
(cV − b3

2
V 2) . (4.56)

This system becomes a differential equation of V only:

V � = ±
b2
�

f(V )

c− b3V
, (4.57)

where

f(V ) =
2b1
b4c

��
c3

2b22
− b1c

2b2

�
V 2 +

�
b1b3
3b2

− 5b3c2

6b22

�
V 3 +

b23c

2b22
v4 − b33

10b22
V 5

�
,

= − b1b33
5b22b4c

V 2

�
V 3 − 5c

b3
V 2 − 5(2c20 − 5c2)

3b23
V − 5c(c2 − c20)

b33

�
. (4.58)

Under the condition that |c| > |c0| (notice that c20 = b1b2) and

4c6 + 12c30c
3 + 9c40c

2 − 160c60 < 0 , (4.59)

the model has solitary wave solutions, as f(V ) has three real roots with same sign

depending on the traveling direction, corresponding to the sign of c and the sign of

elevation/depression wave criterion ρ2h2
1 − ρ1h2

2, which in turn corresponds to the sign

of b3. When b3c > 0, f(V ) has three positive roots. When b3c < 0, f(V ) has three

negative roots. Consider the case when b3 < 0 and c > 0 for right going depression

traveling waves:

f(V ) = − b1b33
5b22b4c

V 2(V + V1)(V + V2)(V + V3) . (4.60)
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Write

∆0 =
10c20
b23

, ∆1 = −5(2c3 + 3cc20)

b33
, and C =

�
∆1 +

�
∆2

1 − 4∆3
0

2

� 1
3

,

and the three roots have the form

V1 =
1

3
(−5c

b3
+ e−

2
3πiC + e

2
3πi

∆0

C
) ,

V2 =
1

3
(−5c

b3
+ C +

∆0

C
) ,

V3 =
1

3
(−5c

b3
+ e

2
3πiC + e−

2
3πi

∆0

C
) .

The imaginary parts are always canceled by complex conjugates. The differential equa-

tion (4.57) is now

V � = κ
V
�
(V + V1)(V + V2)(V + V3)

c− b3V
. (4.61)

Using integration by parts yields

κdX =
c

V
�

(V + V1)(V + V2)(V + V3)
dV − b3�

(V + V1)(V + V2)(V + V3)
dV . (4.62)

A solution can be expressed implicitly by elliptical integrals, with the assumption that

V1 > V2 > V3 > V ≥ 0,

κX = − 2(c+ b3V2)

V2

√
V3 − V1

F (φ,m)− 2c(V2 − V1)

V1V2

√
V3 − V1

Π(n;φ,m), (4.63)

where

sinφ ≡
�
V + V1

V + V2

� 1
2

, m2 ≡ V3 − V2

V3 − V1
, n ≡ V2

V1
, (4.64)

and the coefficient κ is

κ =

����
b1b33
5b4c

����

1
2

. (4.65)
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Here F (·, ·) and Π(·; ·, ·) stand for the first and third elliptic integrals (Byrd [7]).

4.5.3 The two-layer Boussinesq equations

The two-layer Boussinesq equation is another weakly nonlinear model for the bi-

directional wave propagation, written in terms of the interface displacement ζ and the

mean upper layer horizontal velocity u1:

ζt − [(h1 − ζ)u1]x = 0, (4.66)

u1t + d1u1u1x + (d2 + d3ζ)ζx = d4u1xxt +O(α�4, α2�2), (4.67)

where

d1 =
ρ1h2

2 − ρ2h1(h1 + h2)− ρ2h2
1

ρ1h2
2 + ρ2h1h2

, d2 =
g(ρ1 − ρ2)h2

ρ1h2 + ρ2h1
,

d3 =
gρ2(ρ1 − ρ2)(h1 + h2)

(ρ1h2 + ρ2h1)2
, d4 =

1

3

ρ1h2
1h2 + ρ2h1h2

2

ρ1h2 + ρ2h1
.

We first show that the Boussinesq and Kaup equations are asymptotically equivalent

under the zero flux assumption:

Q(t) =

� h1

−h2

u(x, z, t) dz = 0, (4.68)

which holds for a variety of conditions: waves in an infinite domain, symmetric waves,

rigid walls at boundary, etc. In the shallow-water configuration, there is an approximate

relation between layer-averaged velocities u1 and u2 and local velocities u1(x, z, t) and

u2(x, z, t) (Camassa et al. [10]):

u2(x, z, t) = u2(x, t) +

�
(η2(x, t))2

6
− (z + h2)2

2

�
∂2
xu2(x, t) +O(�4α2) , (4.69)
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with −h2 < z < ζ for the lower layer, and

u1(x, z, t) = u1(x, t) +

�
(η1(x, t))2

6
− (z − h1)2

2

�
∂2
xu1(x, t) +O(�4α2) (4.70)

with ζ < z < h1 for the upper layer. Neglecting higher order terms, at the interface we

have

ǔ2 = u2 −
η22
3
u2xx, and ǔ1 = u1 −

η21
3
u1xx. (4.71)

With mean horizontal velocities uis, the zero-flux constraint (4.68) can be written

as

u1η1 + u2η2 = 0. (4.72)

We now have

u2 = −h1 − ζ

h2 + ζ
u1 =

�
−h1

h2
+

h1 + h2

h2
2

ζ +O(α2)

�
u1 (4.73)

and

v = ρ2ǔ2 − ρ1ǔ1 ,

= ρ2u2 −
ρ2η22

3
u2xx − ρ1u1 +

ρ1η12

3
u1xx +O(�4α2) ,

= −ρ1h2 + ρ2h1

h2
u1 +

ρ2(h1 + h2)

h2
2 ζu1 +

ρ1h1
2 + ρ2h1h2

3
u1xx +O(�α2) .

(4.74)

Substituting (4.74) into (4.25) yields

ζt − b1
ρ1h2 + ρ2h1

h2
u1x + b1

ρ2(h1 + h2)

h2
2 (ζu1)x +

b1(ρ1h1
2 + ρ2h1h2)

3
u1xxx ,

−b3
ρ1h2 + ρ2h1

h2
(ζu1)x − b4

ρ1h2 + ρ2h1

h2
u1xxx = 0, (4.75)
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which is identical to the ζ equation of the Boussinesq system (4.77). With (4.74),

equation (4.26) becomes

ρ2(h1 + h2)ζ − (ρ1h2
2 + ρ2h1h2)

h2
2 u1t +

ρ2(h1 + h2)

h2
2 (ζu1t + ζtu1)

−ρ1h1
2 + ρ2h1h2

3
u1xxt + b2ζx + b3

(ρ1h2 + ρ2h1)2

h2
2 u1u1x = 0. (4.76)

Because of

ζt = [(h1 − ζ)u1]x = (h1u1)x +O(�α2), (4.77)

and the inversion of the parameter of u1t term in (4.76), this can be written as

h2
2

ρ2(h1 + h2)ζ − (ρ1h2
2 + ρ2h1h2)

= − h2

ρ1h2 + ρ2h1
− ρ2(h1 + h2)

(ρ1h2 + ρ2h1)2
ζ +O(α2) (4.78)

Thus, equation (4.76) is asymptotically equivalent to

u1t −
b2h2

ρ1h2 + ρ2h1
ζx −

b2ρ2(h1 + h2)

(ρ1h2 + ρ2h1)2
ζζx −

(ρ1h1 + ρ2h2)h1h2

3(ρ1h2 + ρ2h1)
u1xxt

−b3(ρ1h2 + ρ2h1)2 + ρ2h1(h1 + h2)

h2(ρ1h2 + ρ2h1)
u1u1x = 0 , (4.79)

which is exactly the evolution equation for u1 of the Boussinesq equations (4.79).

We remark that the two-layer Boussinesq equations have the linear dispersion rela-

tion

ω2(k) =
d21d2
d4

− d31d2
d1d4 + d24k

2
, (4.80)

which is identical as the regularized Kaup equations (4.25)-(4.26). We notice that

|ω(k)| ≤ d1
�

d2
d4
, so that the high wavenumbers modes travel slowly.
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We seek traveling wave solutions for the Boussinesq equation by writing

U(X) = u1(x, t), and H(X) = ζ(x, t), (4.81)

where X = x − ct with c the traveling wave speed in equations (4.77) and (4.79), the

differential equation for U(X) can be written as

f(U) = U2
X

=
2

d4c

�
c

2
U2 − d1

6
U3 −

�
d2h1 +

d3h2
1

2

�
U −

�
d2h1c+ d3h

2
1c
�
log

����
c− U

c

����

�

+
d3h2

1c

d4

�
1

U − c
+

1

c

�
. (4.82)

Here the presence of the logarithm prevents further progress, thus we expand (4.82) at

U = 0,

f(U) = p2U
2 + p3U

3 + p4U
4 + p5U

5 +O(U6), (4.83)

where

p2 =
c2 + d2h1

d4c2
=

c20
d4c2

(
c2

c20
− 1),

p3 = −d1c2 − 2d2h1 + d3h2
1

3d4c3
=

c20
3d4c3h2

�
(1− 2

c2

c20
)
ρ2h2

1 − ρ1h2
2

ρ2h1 + ρ1h2
+

�
c2

c20
− 1

�
h2

�
,

p4 =
h1(d2 − d3h1)

2d4c4
=

c20
2d4c4h1h2

(ρ1h
2
2 − ρ2h

2
1)

p5 =
h1(2d2 − 3d3h1)

5d4c5

From the approximate function (4.83), we are able to understand some of the fea-

tures of the Boussinesq traveling wave solutions. Existence of solutions requires p2 > 0,

which leads to

c2 > c20 (4.84)
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i.e., the same criterion sas for the Kaup equations and its regularized sibling. The

polarities of the ordinary differential equation (4.82), however, need an analysis for the

combination of f(U) and its derivative f �(U). Here we consider the case when c > 0. As

U → −∞, f(U) ∼ d1U3, and therefore there is always one real root with the negative

sign. When U → c−, f(U) → ∞. These asymptotic behavior of f(U) help determine

the other roots. By taking the derivative of f(U):

f �(U) =
U

(U − c)2
g(U) , (4.85)

where

g(U) = − 1

d1
U3 + (1 + d1)cU

2 − (2c2 +
d1c2

2
+ b2h1 +

d3h2
1

2
)U + (c3 + d2ch1) . (4.86)

The criterion for g(U) to have three distinct real roots is

∆Bsq(c) =
�
(d1 − 2)2 c2 − 3d1h1(2d2 + d3h1)

�3

+c2
�
(−2 + d3)

3c2 + 9d1h1((1 + b1)b3h1 + (2− b1)b2)
�2

> 0 . (4.87)

From this the qualitative behavior of solitary wave solutions can be understood, and

a rough estimates provided. We can only work with the local extrema from equation

(4.86), which is not sufficient to make any conclusion on the polarities of f(U). We

assume that as the traveling wave speed c gets larger, it is less likely to have multiple

real roots. Therefore we let c = c0 in (4.87). If ∆Bsq(c0) > 0, it is possible to have three

different real roots for f(U) on (−∞, c) corresponding to small amplitude traveling

wave solutions. By setting ρ2h2
1 = ρ1h2

2, this is the case when d1 = −1, where we

find that ∆Bsq(c0) = 0. When d1 < −1, ∆Bsq(c0) < 0; and when When d1 > −1,

∆Bsq(c0) > 0. By looking at (4.86) we conclude that the there is at least one negative
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root when d1 < 0, and all three roots are positive when d1 > 0, with the largest one

greater than c. When d1 = 0, equation (4.86) reduces to a quadratic equation, and has

two roots with positive values. Figure 4.2 is a sketch summarizing all the possibilities.

Note that when −1 < d1 < 0, two solitary waves can emerge. Both have been tested

as stable in numerical computations.

We now choose a set of parameters away from b3 = 0 (see further results in § 4.7),

so that the Boussinesq equation does not have dual polarity waves. We remark that

all the models (regularized-Kaup, Boussinesq equations and strongly nonlinear) have

maximum traveling wave speed c. For the Kaup equations, however, the traveling wave

speed c goes to infinity as the differential equation associated with the Kaup model’s

traveling wave solution (4.88)

V �2 = f(V ) =
1

b4
V 2

�
b23
8b2

V 2 − b3c

b2
V − (b1 −

c2

b2
)

�
, (4.88)

always has two roots with the same sign when c2 > c20, with amplitude being linearly

dependent on c.

4.5.4 The derivation of KdV equation from the Kaup equation

Based on the scalings in (4.8) and (4.12), we non-dimensionalize all physical vari-

ables as

x = Lx̃, t =
L

U0
t̃, ζ = aζ̃, v = (ρ2 − ρ1)U0ṽ, (4.89)

and assumes that all variables adorned with tildes are O(1) in �. Then the Kaups

equations in dimensionless form is

ζ̃t̃ + b1ṽx̃ + �b3(ζ̃ ṽ)x̃ + αb4ṽx̃x̃x̃ = 0 (4.90)

ṽt̃ + b2ζ̃x̃ + �b3ṽṽx̃ = 0 (4.91)
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U0

f (U)

U0

f (U)

U0

f (U)

U0

c c

c c

(a) (b) (c)

(d)
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Figure 4.2: Sketch of f(U) in equation (4.82) with all possibilities for different values
of d1. Note that the gray curves do not lead to solitary wave solutions.
(a): d1 ≤ −1, one negative root for f(U).
(b): −1 < d1 < 0, three real roots for g(U), with one negative and two positive. The
black and gray curves represent possible situations for f(U), with different choices of
ρi, hi and c.
(c): −1 < d1 < 0, three real roots for g(U), all negative. The black and gray curves
represent possible situations for f(U), with different choices of ρi, hi and c.
(d): d1 = 0, two positive roots for g(U). The black and gray curves represent possible
situations for f(U), with different choices of ρi, hi and c.
(e): d1 > 0, three positive roots for g(U). The black and gray curves represent possible
situations for f(U), with different choices of ρi, hi and c.

112



a (cm)

c
 (
cm
/s
)

Figure 4.3: The relationship between traveling wave speed and amplitude with param-
eters in the laboratory experiments introduced in Chapter 3. Solid: strongly nonlinear;
long dashed: Boussinesq; dotted: regularized Kaup; short dashed: Kaup model

Applying the strategy introduced in Whitham [37], we seek the unidirectional model

corrected to first order in � and α, in the form of

ṽ =

�
b2
b1
ζ̃ + �A+ αB +O(�2 + α2) (4.92)

where A and B are functions of ζ̃ and its x̃ derivatives. Equations (4.90)-(4.91) become

ζ̃t̃ +
�

b1b2ζ̃x̃ + �

�
�

b1b2Ax̃ + 2b3

�
b2
b1
ζ̃ ζ̃x̃

�
+ α

�
�
b1b2Bx̃ + b4

�
b2
b1
ζ̃x̃x̃x̃

�

+O(�2 + α2) = 0 (4.93)

ζ̃t̃ +
�

b1b2ζ̃x̃ + �

��
b1
b2
At̃ + b3

�
b2
b1
ζ̃ ζ̃x̃

�
+ α

�
b1
b2
Bt̃ +O(�2 + α2) = 0 (4.94)
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Figure 4.4: Traveling wave solutions from the strongly nonlinear model (solid green), the
Kaup equations (solid), the regularized Kaup equations (dashed) and the Boussinesq
equations (dotted) matching amplitude a with physical parameters introduced in § 4.7.
(a): a = −1 cm, (b): a = −5 cm and (c): a = −10 cm.
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Since ζ̃t̃ = −
√
b1b2ζ̃x̃+O(�, α), all t̃ derivatives in the first order terms may be replaced

by x derivatives. Then the two equations are consistent if

A = − b3
4b1

�
b2
b1
ζ̃2, B = − b4

2b1

�
b2
b1
ζ̃x̃x̃ (4.95)

Hence we have

ṽ =

�
b2
b1
ζ̃ − �

b3
4b1

�
b2
b1
ζ̃2 − α

b4
b1

�
b2
b1
ζ̃x̃x̃ (4.96)

and

ζ̃t̃ +
�

b1b2ζ̃x̃ + �
3b3
2

�
b2
b1
ζ̃ ζ̃x̃ + α

b4
2

�
b2
b1
ζ̃x̃x̃x̃ = 0. (4.97)

Writing in dimensional quantities, we get the two-layer KdV equation (4.13).

4.6 Higher-order uni-directional models

We carry out a comparison between the strongly nonlinear system and its unidirec-

tional approximations, which stand in closer relation with the classical weakly nonlinear

theories in the KdV family. By expanding the strongly nonlinear system in the two

small parameters (�, α), with the amplitude scale parameter α chosen to satisfy the

relative ordering

�2 < α < � (4.98)

with respect to the long wave parameter �, the following equation for the interface

displacement ζ(x, t) can be derived (in dimensional form)

ζt + c0ζx + c1ζζx + c2ζxxx + c3
�
ζ3
�
x
+
�
c4ζ

2
x + c5ζζxx

�
x
= 0 . (4.99)

Here the right-hand side would be of order O(�4) or higher, and we truncate the ex-

pansion by setting it to zero. The coefficients ci, i = 1, . . . 5 depend on the depth and
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density parameters (Choi & Camassa [15]):

c3 =
7c12

18c0
− c0(ρ1h3

2 + ρ2h3
1)

h2
1h

2
2(ρ1h2 + ρ2h1)

, c4 =
17c1c2
12c0

+
c0h1h2(ρ1 − ρ2)

12(ρ1h2 + ρ2h1)
,

c5 =
7c1c2
3c0

+
c0h1h2(ρ1 − ρ2)

6(ρ1h2 + ρ2h1)
.

The terms multiplying the coefficients c2 through c5 are formally of higher order, O(�2),

O(α2) and O(�2α), than the first three of order O(1), O(1) and O(α), respectively. This

leaves some asymptotic freedom in that one can add to (4.99) the second derivative of

the lower order terms

µ
�
ζt + c0ζx + c1ζζx)xx ,

for any constant µ, without altering the asymptotic accuracy of the equation. Hence

ζt+ c0ζx+ c1ζζx+µζxxt+(c2+µc0)ζxxx+ c3
�
ζ3
�
x
+
�
(c4+µc1)ζ

2
x+(c5+µc1)ζζxx

�
x
= 0 ,

(4.100)

can be taken as the most general asymptotically consistent form of the class of unidi-

rectional equations expressing the ordering (�, α) above.

4.6.1 Choice of µ for conserved quantity

Various realizations by fixing µ are now possible, depending on which property one

chooses to focus on. For instance, requiring that during the evolution an intensity-like

integral, i.e., one that involves the squares of the wave elevation ζ2, is conserved, leads

to the choice

µ ≡ µ̃ =
c5 − 2c4

c1
= −h1h2(h1ρ1 + h2ρ2)

12 (h2ρ1 + h1ρ2)
= − c2

2c0
. (4.101)
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With this µ, it is easy to see that the positive definite quantity

E =
1

2

� +∞

−∞

�
ζ2 +

�
2c4 − c5

c1

�
ζ2x

�
dx =

1

2

� +∞

−∞

�
ζ2 +

c2
2c0

ζ2x

�
dx , (4.102)

is conserved by equation (4.100), which reads explicitly

ζt + c0ζx + c1ζζx −
c2
2c0

ζxxt +
c2
2
ζxxx + c3

�
ζ3
�
x
+ (c5 − c4)

�
ζ2x + 2ζζxx

�
x
= 0 . (4.103)

Traveling wave solutions of (4.103) with X = x − ct can be computed by quadratures

thanks to the existence of this conservation law. For solitary waves, equation (4.103)

reduces to

ζx = cu
ζ2(ζ − a+)(ζ − a−)

ζ − a∗
, (4.104)

where the coefficient Cu is

cu =
c3

4(c4 − c5)
,

the denominator’s root a∗ is

a∗ =
c2(c0 + c)

4c0(c4 − c5)
(4.105)

and a± are the roots of the quadratic equation

ζ +
2c1
3c3

ζ + 2
c0 − c

c3
= 0, (4.106)

respectively. Whether the traveling wave solution is of elevation or depression still

depends on the sign of ρ1h2 − ρ2h2
1. The negative sign gives a wave of depression, and

can be expressed in terms of elliptic integrals:

X = − 2(a∗ − a+)

a+n
�

(−cu(a∗ − a−))
[F (φ,m) + (n− 1)Π(n, φ,m)] , (4.107)
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where

sinφ =

�
(a∗ − a−)(ζ − a+)

(a∗ − a−)(ζ − a−)

�2
, m =

a∗ − a+
a∗ − a−

, n =
a−(a∗ − a+)

a+(a∗ − a−)
. (4.108)

The structure of the solution is very similar to that of the strongly nonlinear wave model.

We compare the traveling solution of the strongly nonlinear model, KdV equation and

the higher order uni-directional model with the choice µ = µ̃ in figure 4.5. As the

amplitude gets larger, the higher order uni-directional model provides a traveling wave

solution which is closer to the strongly nonlinear model than the KdV equation, which

agrees with its higher order asymptotic equivalence.

4.7 The solitary waves produced by an arbitrary initial disturbance

The problem we are looking at is motivated by the laboratory experiment of Grue

(see Chapter 3). We have shown in Chapter 3 that certain gate smoothing does not af-

fect the wave profile substantially, especially for the primary solitary wave. We analyze

the solitary wave solution by the inverse scattering transform with the step function

initial condition, while setting λ = 0.1 in numerical computations. With the goal of

comparing numerical solutions with the analytical predictions from the inverse scat-

tering transform technique, we set the domain and the final time to be long enough

for the solitary waves to fully develop. Typically, we choose the tank length to be

L = 128 × 77 = 9856 cm, so that the the total length of the extended domain is

2L = 19712 cm and the code runs up to T = 500 s. Because of the long domain, for

convenience, we only show waves in the subsection at the right end, from 4000 cm to

9856 cm.
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Figure 4.5: Traveling wave solutions from the strongly nonlinear model (solid), the
higher-order unidirectional model with µ = µ̃ (dashed) and the KdV equation (dotted)
matching amplitude a with physical parameters introduced in § 4.7. (a): a = −1 cm,
(b): a = −5 cm and (c): a = −10 cm.
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Figure 4.6: Snapshot of time evolution at T = 500 s from the KdV equation.
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4.7.1 Solutions for the two-layer KdV equation

The initial conditions for our simulations are zero velocities and interface displace-

ment given by

ζ(x, 0) =






−hgate, |x| ≤ Lgate

0, |x| > Lgate

(4.109)

where hgate > 0 and Lgate > 0. Waves generated by this initial condition propagate

would physically propagate in both direction of the extended domain. A correspond-

ing initial condition for uni-directional models needs to be defined. With zero initial

velocity, the emerging waves can be viewed as superposition of the left and right going

wavesfrom the uni-directional model, to leading order (Wu [39])

ζ+(x, t) = ζ−(x, t) =
1

2
ζ(x, t), (4.110)

for t ≥ 0. Applying the leading order formula for the uni-directional model, we obtain

the initial conditions for ζ± as approximately

ζ±(x, 0) =






−1
2hgate, |x| ≤ Lgate

0, |x| > Lgate

(4.111)

With the rescaling (4.15), the initial condition for equation (4.16) becomes

ζ �±(x, 0) =






1
12c1c

− 1
3

2 hgate, |x| ≤ c
− 1

3
2 Lgate

0. |x| > c
− 1

3
2 Lgate

(4.112)

This is a rectangular well of width lwell = 2c
− 1

3
2 Lgate > 0 and depth dwell =

1
12c1c

− 1
3

2 hgate >
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0. It gives rise to the eigenvalues (Landau & Lifshitz [30])

sin

�
lwell

�
dwell − k2

n

2

�
=

kn
dwell

, (4.113)

Depending on the values of lwell and dwell, there is always at least one eigenvalue. This

might seem surprising, since even when lwell and dwell are very small, this result predicts

that there will always be a solitary wave emerging from this potential well problem.

With the physical parameter hgate = 10 cm and Lgate = 100 cm, following the

inverse scattering transform technique in § 4.4, we find that there are two solitary

waves emerging from this initial condition with amplitudes aKdV
i and traveling speeds

cKdV
i

aKdV
1 = −7.456 cm, cKdV

1 = 18.78 cm · s−1; aKdV
2 = −1.253 cm, cKdV

2 = 16.33 cm · s−1,

(4.114)

A Crank-Nicolson scheme with pseudo-spectral method is applied to the two-layer KdV

equation. As described in § 4.4, the time-step of the KdV equation is determined by

the asymptotic behavior of the linear dispersion relation (4.22), so that

∆t <
(∆x)3

π2c2
. (4.115)

We typically use ∆t = 10−5 s for the choice of ∆x = 77
32 cm grid size. This choice of

time step allows the solution to achieve the second order convergence in time and the

relative error is within 5e-3 in the infinite norm measurement at T = 500 s. Because of

the large speed for the high modes traveling to the opposite direction of the front wave

in the periodic domain, the oscillation can cross the boundary quickly and affect the

solitary wave (figure 4.6 ), resulting in the Talbot fractal effect (Chen & Olver [13]).

We record the amplitude and phase of the front wave in table 4.1 at T = 100N s ,
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Table 4.1: Tracking front wave amplitude aKdV and phase XKdV from two-layer KdV
model for the two-layer dam-break problem with Lgate = 100 cm and hgate = 10 cm at
different snapshots.

T (s) 100 200 300 400 500
aKdV(cm) -7.45 -7.34 -7.41 -7.46 -7.40
XKdV(cm) 1917 3798 5689 7591 9462

where (N = 1, 2, 3, 4, 5). The phase speed of the front wave seems to have settled to

an asymptotic value already, whereas the amplitude of the front wave keeps oscillating

due to Talbot-like effects.

4.7.2 Solutions for the two-layer weakly nonlinear models for bi-directional
waves

For the Kaup equations, with the initial condition (4.109) and rescaling (4.29), the

potentials in the eigenvalue problem (4.32) are

q = 0, and r =






− b3
4b1

hgate, for |x| ≤
�

b1
b4
Lgate

0, for |x| >
�

b1
b4
Lgate

(4.116)

Because of q = 0, the eigenvalue problem (4.32) is similar to the Schrödinger eigenvalue

problem related to the KdV equation (4.17) by assigning

−σ2
1 = γ2 +

1

4
. (4.117)

The solitary wave solutions are given by the inverse scattering transform (4.33), (4.37)-

(4.39). For hgate = 10 cm and Lgate = 100 cm, there are two solitary waves, with

amplitudes and phase speeds in the same scaling as that from the the inverse scattering
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prediction of the KdV equation:

aKaup
1 = −6.843 cm, cKaup

1 = 18.645 cm·s−1; aKaup
2 = −1.233 cm, cKaup

2 = 16.320 cm·s−1.

(4.118)

Because of the ill-posedness of the Kaup equations, we are unable to compare the nu-

merical results with the inverse scattering predictions. Nonetheless, thanks to their

asymptotic equivalences, the regularized Kaup equations (4.53)-(4.54) and the Boussi-

nesq equations (4.77)-(4.79) can all be used to test the analytical predictions, since

they are well-posed models and are numerically feasible.

The numerical scheme is a Runga-Kutta time integration with pseudo-spectral

method. The linear dispersion relations of both models are the same as (4.80), and

the asymptotic behavior for high modes allows ∆t < π
�
b4/(b21b2), regardless of the

choice of ∆x. We typically choose ∆t = 5 × 10−3 s and ∆x = 77/128 cm. By halving

and doubling time-steps and grid sizes, we conclude that the relative error at T = 500 s

is 1e-6 in the infinite norm measurement. Table 4.2 are the amplitudes and phases of

the front waves from two models. From T = 200 s the front waves have settled to the

sped of a solitary wave with no significant change in phases X and amplitudes a. From

the figure, it is remarkable that the strongly nonlinear model agrees with the Euler

simulations not only in well-capturing the front wave, but, also, in reproducing a large

portion of the dispersive tail. The amplitude of the front wave from the regularized

Kaup equations is closer to the inverse scattering prediction (4.118), with 1% difference,

while that from the Boussinesq equations is within 11%.

The secondary waves from the two models, though not fully developed at T = 500 s

are also reported here for reference: a2 = −1.293 cm and −1.094 cm for the regularized

Kaup equations and the Boussinesq equations, respectively. For the secondary wave,

the Boussinesq equations is slightly better, with 4.8% difference, than the regularized
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Table 4.2: Tracking front wave amplitudes a and phases X from the two-layer regular-
ized Kaup equations and the Boussinesq equations for the two-layer dam-break problem
with Lgate = 100 cm and hgate = 10 cm at different snapshots.

T (s) 100 200 300 400 500
areg (cm) -6.763 -6.774 -6.774 -6.774 -6.774
Xreg (cm) 1862 3715 5570 7423 9277
aBsq (cm) -7.549 -7.571 -7.572 -7.572 -7.571
XBsq (cm) 1837 3667 5497 7327 9157

aStrongly (cm) -5.995 -5.954 -5.950 -5.950 -5.950
XStrongly (cm) 1774 3557 5340 7124 8907

ς 
(c

m
)

x (cm)

Figure 4.7: Snapshot of the time evolution from the regularized Kaup equations
(dashed), the Boussinesq equations (dotted), the strongly nonlinear model (solid
green) and the Euler simulation (solid) with the initial condition hgate = 10 cm and
Lgate = 100 cm, at T = 500 s.

Kaup equaitons, with 11% difference. Overall, the regularized Kaup equations get result

closer to the predictions from the Kaup equations in terms of amplitudes of solitary

waves. Figure 4.7 is the snapshot at T = 500 s with the regularized Kaup equations,

the Boussinesq equations and the mean density isopycnocline from Euler simulations.

Both models have big discrepancies on the phase comparing with the Euler simulations,

while the regularized Kaup equations has a much better fit in amplitude of the front

wave.

With the goal of predicting secondary solitary waves, we choose a wider gate with

Lgate = 200 cm and keep hgate = 10 cm. From the inverse scattering transform, there

are three solitary waves with amplitudes (table 4.2). The amplitudes of front waves of
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Figure 4.8: Snapshot of the time evolution from the regularized Kaup equations
(dashed), the Boussinesq equations (dotted), the strongly nonlinear model (solid
green) and the Euler simulation (solid) with the initial condition hgate = 10 cm and
Lgate = 200 cm, at T = 500 s.

the numerical solutions from the two models are also reported in table 4.2. We find that

the agreement between the regularized Kaup equations and the analytical predictions

is significantly better for the first solitary wave. The Boussinesq equaiotns have a slight

better agreement for the secondary wave. For the third waves, although these have not

formed at T = 500 s, the regularized Kaup equations are better considering that the

amplitudes will decrease after the solitary wave forms completely. Figure 4.8 is the

snapshot at T = 500 s from the regularized Kaup equations, the Boussinesq equations

and the mean density isopycnocline from Euler simulations. The weakly nonlinear mod-

els from the analytical predictions and the numerical solutions from weakly nonlinear

models all show that three solitary waves will emerge (table 4.3), with the regularized

Kaup equations a better match for the front wave. Comparing to the Euler simula-

tions, disregarding the phase shift, the regularized Kaup equations seems to predict the

amplitude of the front wave from the Euler simulations quite accurately.

The wave amplitudes in this study, being around 7 cm as opposed to top layer

thickness of 15 cm depth, may violate the assumption underlying the weakly nonlin-

ear models, which could contribute to the discrepancies between the weakly nonlinear

models and the Euler simulations. A smaller amplitude case, when hgate = 1 cm, can
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Table 4.3: Values of amplitudes from inverse scattering predictions from Kaup equations
and time evolutions from regularized Kaup equations, the Boussinesq equations and the
Euler simulations at T = 500 s for Lgate = 200 cm and hgate = 10 cm.

aKaup (cm) -8.190 -5.902 -2.194
areg (cm) -8.281 -5.529 -1.965
aBsq (cm) -8.960 -5.936 -1.790

aStrongly (cm) -7.812 -3.789 N/A
aEuler (cm) -8.198 -3.921 N/A

Figure 4.9: Snapshot of the time evolution from the regularized Kaup equations
(dashed), the Boussinesq equations (dotted), the strongly nonlinear model (solid
green) and the Euler simulation (solid) with the initial condition hgate = 1 cm and
Lgate = 100 cm, at T = 500 s.

be used to test the importance of the small amplitude assumption. In figure 4.9, the

strongly nonlinear models and the weakly nonlinear models provide similar wave struc-

ture, capturing front waves, but missing the dispersive tails at a distance. Note that

in this case the solitary wave has not formed yet.

Initial conditions such as the step which violate the long wave assumption could

also contribute to the occurrence of the ever forming dispersive tails. Next, we choose

a long-wave initial condition with the interface located at

ζ = −hgate sech
2
� x

200

�
. (4.119)

This is a very smooth profile comparing to the smoothed gate initial condition as
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Figure 4.10: Initial conditions of ζ with the set-up from the dam-break experiment
(solid) and a long wave in the expression of equation (4.119) with the same amplitude
(hgate = 1 cm) (dotted dash)

shown in figure 4.10. We can also apply IST to this configuration (Landau & Lifshitz

[30]), where the eigenvalue problem, under appropriate transformations, turns into the

equation of the associated Legendre polynomials. After rescaling variables, the initial

condition becomes

ζ � =
b3
b1
hgate sech

2

��
b4
b1

x�

200

�
. (4.120)

Then r = − b3
4b1

ζ � and q = 0 in the eigenvalue problem. Let H0 = − b3
4b1

hgate and

β =
�

b4
b1
/200, the eigenvalue γ2 = −(σ2

1 − 1
4) is given by

σ1 =
β

2

�
−(1 + 2n) +

�

1 +
4H0

β2

�
, (4.121)

where the index n labels the possible eigenvalues, n = 0, 1, 2.... For the choice hgate =

1 cm, we find from IST that the Kaup equations will give one solitary wave with the

amplitude of −0.471 cm.

Figure 4.11 shows that in this case, with hgate = 1 cm, the dispersive tail is much

less active, being barely visible with respect to the primary wave. All three models

have good agreement with the Euler simulation. Table 4.4 records amplitudes and

phases at T = 500 s. The discrepancy between the IST from the Kaup equations and
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Table 4.4: Amplitudes and phases of front waves from models and the Euler simulations
when the initial interface displacement is ζ = sech2( x

200) at T = 500 s.

Kaup reg. Kaup Boussinesq Strongly. Euler
a(cm) -0.471 -0.487 -0.488 -0.482 -0.491
X(cm) 7992 7991 7986 7973

Figure 4.11: Snapshot of the time evolution from the regularized Kaup equations
(dashed), the Boussinesq equations (dotted), the strongly nonlinear model (solid green)
and the Euler simulation (solid) with the initial condition hgate = 1 cm, at T = 500 s.

numerical results of weakly nonlinear models could be a consequence that the solitary

waves having not completely separated from the dispersive tails.

4.7.3 Higher order uni-directional model

For the high order uni-directional models, we do not have an analytical prediction

for emerging solitary waves. Therefore we run numerical simulations, this time in a

shorter tank with L = 2464 cm and up to T = 80 s. Because of its uni-directional

wave propagation nature, the initial condition we choose is the same as for the KdV

equation.

The linear dispersion relation for the higher order unidirectional model is

ω(k) =
c0k − (c2 + µc0)k3

1− µk2
,∼ (c0 +

c2
µ
)k as |k| → ∞, (4.122)

possibly leading to high oscillatary behavior for short waves. Note that the dispersion
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Figure 4.12: Snapshots for higher-order uni-directional model with µ = µ̃ at T = 80 s
with domain L = 2464 cm. Thick gray: Euler; solid: the strongly nonlinear model;
dashed: higher-order uni-directional model with µ = µ̃; dotted: the KdV equation

relation increases linearly with wave numbers, unlike the KdV model which has a cubic

asymptotic behavior when k → ∞. Its time step constraint is ∆t < µ∆x
c2+c0µ

, and the

numerical schemes is Crank-Nicolson in time and pseudo-spectral in space. We typically

use ∆t = 10−3 s for ∆x = 77/256 cm grid sizes. At T = 80 s, the higher order model

with µ = µ̃ shows an improvement from the KdV equation, in agreement with the front

wave from the Euler simulation (figure 4.12). For the dispersive tails, the strongly

nonlinear model again performs remarkably well. We also notice that the dispersive

tail traveling to the opposite direction of the solitary wave begins to cross back into the

periodic box, therefore at longer times it is expected that the dispersive tail will affect

the front waves in a similar fashion as for the KdV solution.

4.8 Discussion

For small aspect ratios of the thickness of the fluid layers to typical wavelength,

and small wave amplitude with respect to the fluid layer thicknesses, we have derived a

bi-directional weakly nonlinear model by regularizing the ill-posed Kaup equations in a

two-layer fluid system for the shallow water configuration. We have provided the exact

traveling wave solution for the new model. Both the regularized Kaup equations and the
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Boussinesq equations are put to use in the computation of the dam-break problem for

internal wave generation experiments. The numerical results show excellent agreement

with inverse scattering transform associated with completely integrable ill-posed Kaup

equations.

For uni-directional models, we compare the two-layer KdV equation and the higher-

order model suitable for moderate amplitude waves. The generic link between bi-

directional and uni-directional models are yet to be found beyond the leading order,

thus to choose appropriate initial condition is still an open question. For unidirectional

models, the dispersion relations show high frequency oscillation in time for short waves

propagating to the whole periodic domain and interacting with solitary waves. As a

consequence, small time-step have to chosen to ensure numerical convergence. This

phenomenon is believed to be a consequence of the asymptotic behavior of linear dis-

persion relations for short waves (Chen & Olver [13]). The higher-order uni-directional

model is capable to handle moderate amplitude waves emerging from the potential well

problem and compares well to the strongly nonlinear model. Its benign dispersion rela-

tion, in that high wavenumbers oscillations are limited to certain regimes to not overly

restrict the time-step in numerical computations.

We have found intrinsic connections among different models. The combinations of

inverse scattering transform theory has shown good agreement with numerical compu-

tations as far as the models’ asymptotic equivalence. To the particular potential well

problem in this work, it remains unclear whether there is a secondary wave emerging

or not from the strongly nonlinear model and uni-directional model. Our investigation

shows that the problem of seeking an appropriate model in the nonlinear regime with

solvability both analytically and numerically remains open.
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Appendix A

TRANSLATIONAL INVARIANCE AND SYMMETRIES

In this appendix we discuss the translational invariance of the system. Indeed,

regardless of the kind of constraint represented by the lids, translation along the hor-

izontal axis is a symmetry of the system, so that a conservation law should ensue,

as already clearly pointed out by Benjamin [5]. However, this conserved quantity for

motion between two rigid lids does not correspond to the horizontal component of

momentum, as is usually the case in unconstrained dynamics; instead it includes a con-

tribution from boundary terms, as we briefly summarize below. To tackle these issues,

we review the Lagrangian and Hamiltonian formulation of the governing equation (2.1)

for a heterogeneous fluid. It is fair to say that the results of this appendix can be

derived from those in the referenced literature. However, it is useful to collect them

here for self-consistency and ease of reference.

As it is well known, the Euler system (2.1) admits a variational formulation. We

focus first on the Lagrangian approach, following Zakharov et al. [42], Zakharov &

Kuznetsov [41]. The basic idea is to use a subset of the Euler equations as constraints

in the Lagrangian. Thus, the action is written with the usual difference between kinetic

and potential energy, plus terms with Lagrange multiplier for constraints,

A ≡
� t1

t0

Ldt (A.1)

=

� t1

t0

�
1

2

�

D
ρ|v|2 dV −

�

D
ρgz dV

�
dt

+

� t1

t0

��

D
Φ∇ · v dV −

�

D
λ(ρt + (v · ∇)ρ) dV

�
dt,
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where D is the fluid domain and dV its (two-dimensional) volume measure. By varying

the action A with respect to all the fields entering L, we get the following equations

δA

δΦ
= 0 ⇒ ∇ · v = 0 ,

δA

δλ
= 0 ⇒ ρt + (v · ∇)ρ = 0 ,

δA

δρ
= 0 ⇒ λt +∇ · (λv) + 1

2
|v|2 − g z,

(A.2)

and, in particular, the defining relation

δA

δv
= 0 ⇒ ρv −∇Φ− λ∇ρ = 0. (A.3)

This set of equations (Zakharov & Kuznetsov [41]) can be considered to be equivalent

to the Euler equations (2.1).

When the domain, as in our case, is the infinite strip S = R× [0, h], translation

along the x-axis is a symmetry of the system, and Noether’s (first) theorem yields a

conservation law for the Euler equations. As well known, for a Lagrangian system in 2

spatial dimensions with N fields (ϕ1, ϕ2, . . . , ϕN), the expression for such a conservation

law is
N�

α=1

�
∂

∂t

� ∂L

∂ϕα,t
δϕα

�
+∇ ·

� ∂L

∂∇ϕα
δϕα

��
= 0, (A.4)

δϕα being the infinitesimal variations of the field ϕα. Taking into account that for

x-translations δϕα = ϕαx, the corresponding conservation law for the Lagrangian (A.1)

is given by
∂

∂t
(λρx) = ∇ · J, J = (Φux − λuρx,Φwx − λwρx). (A.5)

In order to properly identify the conserved quantity

I =

�

S
λρx dV (A.6)

it is useful to cast the problem in the Hamiltonian formalism.
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The Hamiltonian H = T + U associated with the Lagrangian in (A.1) makes use

of a pair of Clebsch variables (λ,Φ) (the Lagrange multipliers of the Lagrangian), and

reads

H =

�

S

�
1

2
ρ|v|2 + gρ z

�
dV with v = (λ∇ρ+∇Φ)/ρ.

It turns out that the equations of motion imply

ρt =
δH

δλ
, λt = −δH

δρ
,

that is, the density ρ and the Clebsch variable λ are canonically conjugated to each

other. We thus recover the conserved quantity (A.6), since, with respect to the canonical

brackets, the functional generating translations along x is indeed

I =

�

S
λρx dV .

To proceed further, we connect this formalism with the set-up of Benjamin [5], which

does not make use of the (implicitly defined) Clebsch variables. The basic variables

here are the density ρ together with a kind of “density-weighted vorticity” σ defined

by

σ = (ρw)x − (ρu)z. (A.7)

The equations of motion for these two fields are

ρt + uρx + wρz = 0

σt + uσx + wσz + ρx
�
gz − 1

2(u
2 + w2)

�
z
+ 1

2ρz
�
u2 + w2

�
x
= 0

(A.8)

They can be written in the form

ρt = −
�
ρ,

δH

δσ

�
, σt = −

�
ρ,

δH

δρ

�
−
�
σ,

δH

δσ

�
, (A.9)
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where, by definition, [A,B] := AxBz − AzBx, and

H =

�

S

1

2
ρ
�
|v|2 + gz

�
dV. (A.10)

In turn, the Hamiltonian H is to be written in terms of the stream function ψ, which

is related to Benjamin’s variables (ρ, σ) via

σ = (ρw)x − (ρu)z = −(ρψx)x − (ρψz)z = −ρ∇2ψ −∇ρ · ∇ψ. (A.11)

As shown by Benjamin, equations (A.9) are actually a Hamiltonian system with respect

to a non-canonical (actually, Lie algebraic) Hamiltonian structure, i.e., (A.8) can be

written as

ρt = {ρ,H}B, σt = {σ,H}B

for the Poisson bracket that can be easily spelled out by (A.9).

A straightforward computation shows that the canonical (Zakharov et al. [42]) and

modified (Benjamin [5]) Hamiltonian structures are equivalent under the “coordinate

transformation”

(ρ, λ) → (ρ, σ) = (ρ, λxρz − λzρx), (A.12)

where the equality σ = λxρz − λzρx is a consequence of (A.3).

Benjamin’s formalism [5] is explicitly tailored for symmetries. The generator of

translations along the horizontal directions (the “impulse”) is, as it is easily verified,

I =

�

D
zσ(x, z) dV .

In particular, for two-dimensional motion between two rigid horizontal lids we have a
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bulk and boundary components,

I =

�

S
ρ u dV −

�

R
z ρu|z=h

z=0 dx,

where the first term in this sum is the ordinary total horizontal momentum, while the

second term is a boundary term — called B6 in [5]. Indeed we have, in the infinite strip

S = R× [0, h],

�

S
zσ dV =

�

S
z(ρw)x dV −

�

S
z(ρu)z dV

=

� h

0

��

R
(zρw)x dx

�
dz −

�

R

�� h

0

z(ρu)z dz

�
dx

=

� h

0

zρw|x=+∞
x=−∞ dz −

�

R
zρu|z=h

z=0 dx+

�

S
ρu dV

= −
�

R
zρu|z=h

z=0 dx+

�

S
ρu dV,

(A.13)

thanks to the boundary conditions. This yields

I +

�

R
zρu|z=h

z=0 dx =

�

R×[0,h]

ρu dV.

Using the Euler equation for the horizontal momentum (see (2.4))

(ρu)t = −1

2
ρx(u

2 + w2)−
�
1

2
ρ(u2 + w2) + p

�

x

+ w σ (A.14)

at z = h (where w vanishes) yields

(ρu)t = −1

2
ρx(u

2)−
�
1

2
ρu2 + p

�

x

,

and so
dB6

dt
= −h

��

R

1

2
ρx(u

2)|z=hdx+ p(+∞, h)− p(−∞, h)

�
. (A.15)
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In the case of constant density at the top lid, and with an equilibrium distribution

ρ0 = ρ0(z) (the case of Benjamin [5]), this reduces to

dB6

dt
= −h (p(+∞, h)− p(−∞, h)) .

Quoting Benjamin [5]:

“Here p(+∞, h) and p(−∞, h) are the pressure levels as x = +∞ and

x = −∞ relative to hydrostatic pressure in the quiescent state of the whole

system; and while only their difference can have any dynamic significance

there is no reason in general for it to be zero or take any other constant

value.”

In the bulk of the paper we have constructed solutions for which this pressure difference

can be computed analytically. Here we have consistently recovered that the systems

admits a conservation law corresponding to the x-translational invariance, but this

quantity might not coincide (in general) with the x-component of the total momentum.

Rather, the invariant is the sum of such a bulk term and of the boundary term B6,

whose time variation is given by the pressure imbalance of the system for x → ±∞.
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Appendix B

BOUNDARY EFFECTS IN AIR WATER SYSTEMS

For those configurations in which the interface of a two-layer fluid coincides some-

where with one of the channel upper or lower boundaries, the formulae previously

computed may, in general, be incorrect and have to be appropriately modified. This

is best appreciated by looking at specific examples, which we consider next. A deeper

and more systematic analysis of this kind of phenomena would be outside of the aims

of the present paper and will be reported separately. Here we limit ourselves to a brief

discussion, by using the long-wave model, of how the combination of “air-water”-like

stratification and boundary effects influence the pressure imbalance.

As previously remarked, in the long-wave (dispersionless) approximation, the pres-

sure difference P∆ is given by

P∆ = h

� ∞

−∞

(u1 u2)x
η2/ρ2 + η1/ρ1

dx. (B.1)

If the interface is (sufficiently) far from the upper boundary (that is, if η2(x) = η(x) �= h

for all x), then P∆ , for fixed ρ2, goes to zero when ρ1 goes to zero. However, the

same conclusion cannot be drawn when the region occupied by the lighter fluid is

disconnected.

In order to study this problem for ρ1 → 0, let us rewrite (B.1) as

P∆ = h

�

R/C

(u1 u2)x
η2/ρ2 + η1/ρ1

dx+ h

�

C

(u1 u2)x
η2/ρ2 + η1/ρ1

dx, (B.2)

where C is the subset of R (which we can assume, for the sake of definiteness, to be the
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segment C = [xL, xR] ) where η1 is sufficiently small in such a way that

ρ1
η1

� ρ2
η2

(B.3)

holds even if ρ1 � ρ2. In this case only the second integral contributes to the pressure

imbalance P∆ . If we consider the double scaling limit ρ1/η1 � ρ2/η2 for ρ1 → 0 and

η1 → 0 (and therefore C = {x ∈ R | η1(x) ≤ hρ1/ρ2}), then relation (B.2) becomes

P∆ = ρ2h

�

C

(u1 u2)x
2η2

dx � ρ2
2
u1 u2

���
xR

xL
. (B.4)

Hence, in this particular limit, there is no reason for P∆ to vanish when ρ1 goes to zero.

We finally mention that a similar qualitative result can be obtained in the case of

zero initial velocities, provided that the dispersive terms of (2.45) be included in the

calculation of P∆ . In the same approximations of the dispersionless case we obtain the

estimate

P∆ ∼ −gρ2h2

12
η2xx

���
xR

xL
. (B.5)
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Appendix C

INDEPENDENT DIRECT NUMERICAL SIMULATIONS

C.1 Solitary wave collisions

Chapter 2 reveals that the pressure imbalance at infinite ends for an incompressible

stratified Euler fluid with initial interface displacement localized in the center. Chap-

ter 3 presents that a two-layer dam break problem can generate solitary waves. Now we

consider to place dams at both ends of the long wave channel with rigid wall boundary

conditions. There should be pressure difference when the two dams are not symmetri-

cally built from the very beginning. We carry out numerical studies for both symmetric

and asymmetric case.

The physical parameters are same as introduced in Chapter 3, where ρ1 = 0.999 g·cm−3,

ρ2 = 1.022 g·cm−3, h1 = 15 cm, h2 = 62 cm and g = 981 cm·s−2. The transition

layer is approximately 4 cm. For the symmetric case, we choose hgate = 10 cm and

Lgate = 100 cm for both left and right side. For the asymmetric case, we alter the

height of the gate at the right end to be 15 cm. The gate are smoothed by a hyperbolic

tangent function as in Chapter 3 where λ = 0.1.

The snapshots for both cases are in figure C.1. The symmetric initial condition

maintains its symmetry from the beginning to end, where the emerged solitary waves

begin to collide at around 60 s. The asymmetric initial condition generate solitary

waves with different amplitudes, and they begin to collide at around 60 s. The pressure

difference at far ends should be zero for the symmetric case as suggested in Chapter 2,

but not for the asymmetric case. Figure C.2 records the pressure difference for the two

cases, we note that the pressure imbalance for the asymmetric case is largest at the
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Figure C.1: Snapshots of collisions of two solitary waves generated from dam-break at
two ends. (a): symmetric case; (b) asymmetric case with different gate height at two
ends

initial times. It settles to zero and then slowly begins to form an oscillatory pattern

around zero.

C.2 Dam-break problem

This section is a direction numerical simulation with the physical parameter close

to an experiment performed in the wave tank in the Fluids Lab at UNC, where ρ1 =

0.989 g·cm−3, ρ2 = 1.011 g·cm−3, h1 = 12 cm, h2 = 30 cm and g = 981 cm·s−2. The

tank is 2688 cm long, and Lgate = 900 cm and hgate = 9 cm. The thickness of the

pycnocline is about 4 cm and the gate is represented as a strict step function, without

any smoothing effect. Figure C.3 is snapshots from the numerical simulation.
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Figure C.2: Time series of P∆ for solitary wave collisions with symmetric dam set-up
(dashed) and asymmetric dam set-up (solid)
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Figure C.3: Snapshots of the dam-break problem with a gate in the dimension of
Lgate = 900 cm and hgate = 9 cm in a 2688 cm long tank.

141



Appendix D

CODES FOR MODELS

D.1 The strongly nonlinear model

Main code

PROGRAM GreenNaghdi

use parameters

implicit none

double precision, dimension(0:nx-1) :: x, u, eta, zeta, u1, zeta1

double complex :: Dfft(0:nxhalf)

double complex, parameter :: I = cmplx(0.d0, 1.d0)

double precision:: k0, tnow, M0, E0

double precision :: tnow1

double precision, dimension(0:nx-1) :: uK1, uK2, uK3, uK4

double precision, dimension(0:nx-1) :: zetaK1, zetaK2, zetaK3, zetaK4

double precision :: xval

integer *8 plan

integer :: remainfilter

integer kstep, tstep, cut1

double precision:: dx, dt,timerecord

integer :: nframe

character(len = 20) :: nu, nzeta

dt = dt fix

xval = 0.d0

dx = (R-L)/nx
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nframe = 0

tnow = 0.d0

timerecord = 0.d0

do kstep = 0, nxhalf

Dfft(kstep) = 2*pi*I/(R-L)*kstep

end do

!*****initial condition

do kstep = 0, nx-1

x(kstep) = L+dx*kstep

zeta(kstep) = hgate/2.d0*(dtanh(lambda*(x(kstep)-lgate)) &

-dtanh(lambda*(x(kstep)+lgate)))

end do

u = 0.d0

!*********write initial condition

write(nu,’(a,i0,a)’) ’result’,nframe, ’.dat’

open(11, file = nu)

do kstep = 0, nx-1

write(11,505) x(kstep), zeta(kstep), u(kstep)

end do

close (11)

nframe = nframe +1

open (41, file = ’outputTS’) !write time series to file

k0 = 0.d0

cut1= nxhalf-1
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remainfilter = 0

!********** first time evolution, get an estimate for uK1

call TimeDerivative2(cut1, xval, u, zeta, x, Dfft, k0, uK1, zetaK1)

do while ((tnow+1d-10).le. stop time )

tstep = tstep+1

!********** write data every mkframe second

if((timerecord+1.d-10) .ge. mkframe) then

write(nu,’(a,i0,a)’) ’result’,nframe, ’.dat’

open(11, file = nu)

do kstep = 0, nx-1

write(11,506) x(kstep), zeta(kstep), u(kstep)

end do

close (11)

nframe = nframe+1

timerecord = 0.d0

end if

!********** compute conserved quantities M and E

call conserve (u, zeta, Dfft, M0, E0)

write(41, 506) tnow, E0, cut1, M0

remainfilter = remainfilter+1

if (tnow+dt .ge. stop time) then

dt = stop time-(tnow)

end if

u1 = u

zeta1 = zeta
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tnow1 = tnow

call TimeDerivative2(cut1, xval, u1, zeta1, x,Dfft, k0, uK1, zetaK1)

u1 = u+half*dt*uK1

zeta1 = zeta +half*dt*zetaK1

tnow1 = tnow +half*dt

uK2 = uK1

call TimeDerivative2(cut1, xval, u1, zeta1, x, Dfft, k0, uK2, zetaK2)

u1 = u+half*dt*uK2

zeta1 = zeta + half*dt*zetaK2

tnow1 = tnow + half*dt

uK3 = uK2

call TimeDerivative2(cut1, xval, u1, zeta1, x, Dfft, k0, uK3, zetaK3)

u1 = u+ dt*uK3

zeta1 = zeta + dt*zetaK3

tnow1 = tnow + dt

uK4 = uK3

call TimeDerivative2(cut1, xval, u1, zeta1, x, Dfft, k0, uK4, zetaK4)

u = u + dt * (uK1+2.d0*uK2+2.d0*uK3+uK4)*sixth

zeta = zeta + dt * (zetaK1+2.d0*zetaK2+2.d0*zetaK3+zetaK4)*sixth

!***********get initial guess for iteration for the next time step

uK1 = (uK1+2.d0*uK2+2.d0*uK3+uK4)*sixth

!*********** decide whether or not to apply filter

if(remainfilter .ge. Nfilter ) then

call filter(cut1, u, zeta)

print *, ’filtering’

remainfilter = 0
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end if

tnow = tnow + dt

timerecord = timerecord + dt

end do

!*********** write final result

open(21, file = ’result.dat’ ) ! final result

do kstep = 0,nx-1

write(21, 505)x(kstep), zeta(kstep), u(kstep)

end do

close (21)

close(41)

505 format(D30.20, 1x, D30.20,1x, D30.20, 1x)

506 format(D30.20, 1x, D30.20, 1x, D30.20, 1x, D30.20, 1x)

end program GreenNaghdi

subroutine filter( cut1, u, zeta)

use parameters

implicit none

include ’fftw3.f’

integer, intent(INOUT) :: cut1

double precision, dimension(0:nx-1), intent(INOUT) :: u, zeta

integer :: cut2, cut3, kstep

double complex, dimension (0:nxhalf) :: ucomplex, zetacomplex

integer *8 :: plan

cut3 = cut1
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cut1 = floor(cut1 coef*cut3)

cut2 = max(floor (cut2 coef*dble(cut3)), cut2 lim)

if (cut1 .le. nxhalf-1) then

call dfftw plan dft r2c 1d(plan,nx,u,ucomplex,FFTW ESTIMATE)

call dfftw execute dft r2c(plan, u, ucomplex)

call dfftw destroy plan(plan)

call dfftw plan dft r2c 1d(plan,nx, zeta, zetacomplex,FFTW ESTIMATE)

call dfftw execute dft r2c(plan, zeta, zetacomplx)

call dfftw destroy plan(plan)

ucomplex = ucomplex/dble(nx)

zetacomplex = zetacomplex/dble(nx)

do kstep = cut1, min(nxhalf, cut2)

ucomplex(kstep) = ucomplex(kstep) *dcos(2.d0*datan(1.d0)&

*(cut1-kstep)/(cut1-cut2))**2

zetacomplex(kstep) = zetacomplex(kstep) * dcos(2.d0*datan(1.d0)&

*(cut1-kstep)/(cut1-cut2))**2

end do

if (cut2 .le. nxhalf) then

do kstep = cut2, nxhalf

ucomplex(kstep) = 0.d0

zetacomplex(kstep) = 0.d0

end do
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end if

call dfftw plan dft c2r 1d(plan,nx, ucomplex, u,FFTW ESTIMATE)

call dfftw execute dft c2r(plan, ucomplex, u)

call dfftw destroy plan(plan)

call dfftw plan dft c2r 1d(plan,nx, zetacomplex, zeta, FFTW ESTIMATE)

call dfftw execute dft c2r(plan, zetacomplex, zeta)

call dfftw destroy plan(plan)

end if

cut1 = cut3

end subroutine filter

subroutine TimeDerivative2(cut1, xval, u1, zeta, x, Dfft, k0, &

u1RHS, zetaRHS )

use parameters

implicit none

include ’fftw3.f’

integer, intent(INOUT) :: cut1

double precision, intent(INOUT) :: xval, k0

double precision, dimension(0:nx-1), intent(IN) :: u1, zeta, x

double precision, dimension(0:nx-1), intent(INOUT):: u1RHS, zetaRHS

double complex , dimension(0:nxhalf), intent(IN) :: Dfft

integer *8 plan

integer :: kstep, cut2, cut3
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double precision :: step, maxktemp, stablecheck

double precision :: U0, k1, nx inv, K, f u mean, g u mean, h u mean

double precision :: relaxation

double complex :: Dfft now

double precision :: f1, amp

double precision, dimension(0:nx-1) :: u2, eta1 inv, eta2 inv, add

double precision, dimension(0:nx-1) :: f u, g u, h u

double precision, dimension(0:nx-1) :: f zeta, g zeta, h zeta

double precision, dimension(0:nx-1) :: f u a, g u a

double precision, dimension(0:nx-1) :: h u a, f zeta z

double precision, dimension(0:nx-1) :: g zeta z, h zeta a

double precision, dimension(0:nx-1) :: eta1, eta2,

double precision, dimension(0:nx-1) :: u1 a, u2 a, zeta a

double precision, dimension(0:nx-1) :: eta1 a, eta2 a,

double precision, dimension(0:nx-1) :: eta1 inv a, eta2 inv a

double precision, dimension(0:nx-1) :: u1 x, u2 x, u1 xx

double precision, dimension(0:nx-1) :: u2 xx, u1 xxx

double precision, dimension(0:nx-1) :: u2 xxx,zeta t, zeta tx, zeta txx

double precision, dimension(0:nx-1) :: zeta x, zeta xx

double precision, dimension(0:nx-1) :: u1RHS x, u1RHS xx

double precision, dimension(0:nx-1) :: test1, test2, test3, total RHS

double precision, dimension(0:nx-1) :: part1, part2, u1 add, u2 add

double precision, dimension(0:nx-1) :: resi, resi1, u1RHStemp

double precision, dimension(0:nx-1) :: part1 a, part2 a

double precision, dimension(0:nx-1) :: u1 add a, u2 add a

double complex, dimension(0:nxhalf):: u1 cplx, u2 cplx, zeta cplx
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double complex, dimension(0:nxhalf)::eta1 cplx, eta2 cplx

double complex, dimension(0:nxhalf):: eta1 inv cplx, eta2 inv cplx

double complex, dimension(0:nxhalf):: u1 xcplx, u2 xcplx, u1 xxcplx

double complex, dimension(0:nxhalf):: u2 xxcplx, zeta xcplx

double complex, dimension(0:nxhalf):: zeta xxcplx, zeta txxcplx

double complex, dimension(0:nxhalf):: zeta tcplx, zeta txcplx

double complex, dimension(0:nxhalf) :: u1 xxxcplx, u2 xxxcplx

double complex, dimension(0:nxhalf) :: u1RHS cplx

double complex, dimension(0:nxhalf) :: resi cplx, resi1 cplx, add cplx

double complex, dimension(0:nxhalf) :: u1RHS xcplx, u1RHS xxcplx

nx inv = 1.d0/dble(nx)

eta1 = h1 - zeta

eta2 = h2 + zeta

! ***********iteration criterion

relaxation = min(h1/maxval(abs(zeta)),5.d-1)

do kstep = 0, nx-1

eta1 inv(kstep) = 1.d0/eta1(kstep)

eta2 inv(kstep) = 1.d0/eta2(kstep)

end do

call dfftw plan dft r2c 1d(plan,nx,u1,u1 cplx,FFTW ESTIMATE)

call dfftw execute dft r2c(plan, u1, u1 cplx)

call dfftw destroy plan(plan)

call dfftw plan dft r2c 1d(plan,nx, eta1 inv, eta1 inv cplx,FFTW ESTIMATE)

call dfftw execute dft r2c(plan, eta1 inv, eta1 inv cplx)

call dfftw destroy plan(plan)
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call dfftw plan dft r2c 1d(plan,nx, eta2 inv, eta2 inv cplx,FFTW ESTIMATE)

call dfftw execute dft r2c(plan, eta2 inv, eta2 inv cplx)

call dfftw destroy plan(plan)

call dfftw plan dft r2c 1d(plan,nx, eta1, eta1 cplx,FFTW ESTIMATE)

call dfftw execute dft r2c(plan, eta1, eta1 cplx)

call dfftw destroy plan(plan)

call dfftw plan dft r2c 1d(plan,nx, eta2, eta2 cplx,FFTW ESTIMATE)

call dfftw execute dft r2c(plan, eta2, eta2 cplx)

call dfftw destroy plan(plan)

call dfftw plan dft r2c 1d(plan,nx, zeta, zeta cplx,FFTW ESTIMATE)

call dfftw execute dft r2c(plan, zeta, zeta cplx)

call dfftw destroy plan(plan)

u1 cplx = u1 cplx* nx inv

eta1 cplx = eta1 cplx*nx inv

eta2 cplx = eta2 cplx*nx inv

eta1 inv cplx = eta1 inv cplx*nx inv

eta2 inv cplx = eta2 inv cplx*nx inv

zeta cplx = zeta cplx * nx inv

do kstep = ceiling(nxhalf/4.d0), nxhalf

u1 cplx (kstep) = 0.d0

eta1 cplx(kstep) = 0.d0

eta2 cplx(kstep) = 0.d0

eta1 inv cplx(kstep) = 0.d0

eta2 inv cplx(kstep) = 0.d0
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zeta cplx(kstep) = 0.d0

end do

u1 xcplx = 0.d0

zeta xcplx = 0.d0

u1 xxcplx = 0.d0

zeta xxcplx = 0.d0

u1 xxxcplx = 0.d0

do kstep = 0, floor(nxhalf/4.d0)

u1 xcplx(kstep) = u1 cplx(kstep) *Dfft(kstep)

u1 xxcplx(kstep) = u1 xcplx(kstep) *Dfft(kstep)

u1 xxxcplx(kstep) = u1 xxcplx(kstep) * Dfft(kstep)

zeta xcplx(kstep) = zeta cplx(kstep) *Dfft(kstep)

zeta xxcplx(kstep) = zeta xcplx(kstep) *Dfft(kstep)

end do

call dfftw plan dft c2r 1d(plan,nx,u1 cplx, u1 a,FFTW ESTIMATE)

call dfftw execute dft c2r(plan, u1 cplx, u1 a)

call dfftw destroy plan(plan)

call dfftw plan dft c2r 1d(plan,nx,zeta cplx, zeta a,FFTW ESTIMATE)

call dfftw execute dft c2r(plan, zeta cplx, zeta a)

call dfftw destroy plan(plan)

call dfftw plan dft c2r 1d(plan,nx, eta1 cplx, eta1 a,FFTW ESTIMATE)

call dfftw execute dft c2r(plan, eta1 cplx, eta1 a)

call dfftw destroy plan(plan)

call dfftw plan dft c2r 1d(plan,nx, eta2 cplx, eta2 a,&
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FFTW ESTIMATE)

call dfftw execute dft c2r(plan, eta2 cplx, eta2 a)

call dfftw destroy plan(plan)

call dfftw plan dft c2r 1d(plan,nx, eta1 inv cplx, eta1 inv a,&

FFTW ESTIMATE)

call dfftw execute dft c2r(plan, eta1 inv cplx, eta1 inv a)

call dfftw destroy plan(plan)

call dfftw plan dft c2r 1d(plan,nx, eta2 inv cplx, eta2 inv a, &

FFTW ESTIMATE)

call dfftw execute dft c2r(plan, eta2 inv cplx, eta2 inv a)

call dfftw destroy plan(plan)

call dfftw plan dft c2r 1d(plan,nx,u1 xcplx, u1 x,FFTW ESTIMATE)

call dfftw execute dft c2r(plan, u1 xcplx, u1 x)

call dfftw destroy plan(plan)

call dfftw plan dft c2r 1d(plan,nx,zeta xcplx, zeta x,FFTW ESTIMATE)

call dfftw execute dft c2r(plan, zeta xcplx, zeta x)

call dfftw destroy plan(plan)

call dfftw plan dft c2r 1d(plan,nx,u1 xxcplx, u1 xx,FFTW ESTIMATE)

call dfftw execute dft c2r(plan, u1 xxcplx, u1 xx)

call dfftw destroy plan(plan)

call dfftw plan dft c2r 1d(plan,nx,zeta xxcplx, zeta xx,FFTW ESTIMATE)

call dfftw execute dft c2r(plan, zeta xxcplx, zeta xx)

call dfftw destroy plan(plan)

call dfftw plan dft c2r 1d(plan,nx,u1 xxxcplx, u1 xxx,FFTW ESTIMATE)

call dfftw execute dft c2r(plan, u1 xxxcplx, u1 xxx)

call dfftw destroy plan(plan)
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do kstep = 0, nx-1

u2(kstep) = u1 a(kstep) - hh*eta2 inv a(kstep) * u1 a(kstep)

end do

!**********compute critical wave numbers

maxktemp = k1

call maxk (maxktemp, zeta, u1, x, xval)

k0 = maxktemp

cut3 = floor(maxktemp*R/pi)

if (cut1 .ge. (nxhalf-1)) then

cut1 = nxhalf-1 ! critical wave number no bigger than nxhalf

end if

if (cut3 .le. cut1) then

cut1 = cut3 ! once the modes are cut, not more are kept

end if

!************compute z t

do kstep = 0, nx-1

zetaRHS(kstep) = eta1 a(kstep) *u1 x(kstep) - zeta x(kstep) *u1 a(kstep)

end do

zeta t = zetaRHS

!************compute u1 t

u2 a = u2

call dfftw plan dft r2c 1d(plan,nx , u2, u2 cplx,FFTW ESTIMATE)

call dfftw execute dft r2c(plan, u2, u2 cplx)
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call dfftw destroy plan(plan)

call dfftw plan dft r2c 1d(plan,nx,zeta t,zeta tcplx,FFTW ESTIMATE)

call dfftw execute dft r2c(plan, zeta t, zeta tcplx)

call dfftw destroy plan(plan)

zeta tcplx = zeta tcplx*nx inv

u2 cplx = u2 cplx*nx inv

zeta txcplx = 0.d0

zeta txxcplx = 0.d0

u2 xcplx = 0.d0

u2 xxcplx = 0.d0

u2 xxxcplx = 0.d0

do kstep = 0, floor(nxhalf/4.d0)

zeta txcplx (kstep) = zeta tcplx(kstep)*Dfft(kstep)

zeta txxcplx(kstep) = zeta txcplx(kstep)*Dfft(kstep)

u2 xcplx (kstep) = u2 cplx(kstep) * Dfft(kstep)

u2 xxcplx (kstep) = u2 xcplx(kstep) * Dfft(kstep)

u2 xxxcplx(kstep) = u2 xxcplx(kstep) * Dfft(kstep)

end do

call dfftw plan dft c2r 1d(plan,nx, zeta txcplx, zeta tx, FFTW ESTIMATE)

call dfftw execute dft c2r(plan, zeta txcplx, zeta tx)

call dfftw destroy plan(plan)

call dfftw plan dft c2r 1d(plan,nx, zeta txxcplx, zeta txx, FFTW ESTIMATE)

call dfftw execute dft c2r(plan, zeta txxcplx, zeta txx)
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call dfftw destroy plan(plan)

call dfftw plan dft c2r 1d(plan,nx, u2 xcplx, u2 x, FFTW ESTIMATE)

call dfftw execute dft c2r(plan, u2 xcplx, u2 x)

call dfftw destroy plan(plan)

call dfftw plan dft c2r 1d(plan,nx, u2 xxcplx, u2 xx, FFTW ESTIMATE)

call dfftw execute dft c2r(plan, u2 xxcplx, u2 xx)

call dfftw destroy plan(plan)

call dfftw plan dft c2r 1d(plan,nx, u2 xxxcplx, u2 xxx, FFTW ESTIMATE)

call dfftw execute dft c2r(plan, u2 xxxcplx, u2 xxx)

call dfftw destroy plan(plan)

do kstep = 0, nx-1

part1(kstep) = rho2*u2 a(kstep)*u2 x(kstep)&

-rho1*u1 a(kstep)*u1 x(kstep) &

+ grav*(rho2-rho1)*zeta x(kstep)

part2(kstep) = -1.d0*rho2*eta2 a(kstep)*zeta x(kstep)&

* (u2 a(kstep)*u2 xx(kstep)-u2 x(kstep)**2) &

- rho1*eta1 a(kstep)*zeta x(kstep)* &

(u1 a(kstep)*u1 xx(kstep)-u1 x(kstep)**2)

u1 add(kstep) = rho1*alpha*eta1 a(kstep)**2&

*(-1.d0*u1 x(kstep)*u1 xx(kstep)+u1 a(kstep)*u1 xxx(kstep))

u2 add(kstep) = -1.d0*rho2*alpha*eta2 a(kstep)**2 &

*(-1.d0*u2 x(kstep)*u2 xx(kstep)+u2 a(kstep)*u2 xxx(kstep))

f zeta(kstep) = rho2*hh*u1 a(kstep)*eta2 inv a(kstep)**2 &

+hh*rho2*alpha *(2.d0*u1 a(kstep)*zeta xx(kstep)&

*eta2 inv a(kstep) +u1 x(kstep)*zeta x(kstep) &
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*eta2 inv a(kstep)-u1 xx(kstep))

g zeta(kstep) = hh*rho2*alpha*(u1 a(kstep) &

*zeta x(kstep)*eta2 inv a(kstep)-2.d0*u1 x(kstep))

h zeta(kstep) = -1.d0*alpha*rho2*hh*u1 a(kstep)

f u (kstep) = rho1-rho2+rho2*hh*eta2 inv a(kstep)&

+ alpha*rho2*hh*(zeta xx(kstep)+zeta x(kstep)**2 &

*eta2 inv a(kstep))

g u(kstep) = rho1*eta1 a(kstep)*zeta x(kstep)&

+ alpha *rho2*(3.d0*eta2 a(kstep)-hh)*zeta x(kstep)

h u(kstep) = -1.d0*alpha *(rho1*eta1 a(kstep)**2 &

+rho2*eta1 a(kstep)*eta2 a(kstep))

end do

call antialiase ( 7, f u, f u a)

call antialiase ( 7, g u, g u a)

call antialiase ( 7, h u, h u a)

do kstep = 0, nx-1

test1(kstep) = f zeta(kstep)*zeta t(kstep)&

+ g zeta(kstep)*zeta tx(kstep) &

+h zeta(kstep)*zeta txx(kstep)

end do

test2 = part1 + part2 + u1 add + u2 add + test1

call antialiase(7, test2, total RHS)
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f u mean = 0.d0

g u mean = 0.d0

h u mean = 0.d0

do kstep = 0, nx-1

f u mean = f u mean + f u a(kstep)

g u mean = g u mean + g u a(kstep)

h u mean = h u mean + h u a(kstep)

end do

f u mean = f u mean *nx inv

g u mean = g u mean * nx inv

h u mean = h u mean * nx inv

do kstep = 0, nx-1

resi1(kstep) = total RHS(kstep)-&

(u1RHS(kstep)*f u(kstep)+u1RHS x(kstep)*g u(kstep) &

+u1RHS xx(kstep)*h u(kstep))

end do

call antialiase( 7, resi1, resi)

add = resi

u1RHStemp = u1RHS

relaxation = abs(h u mean)/maxval(abs(h u))

!**********teration begins here

do while( (maxval(abs(add))/maxval(abs(u1RHS))).ge. 1.d-14)

call dfftw plan dft r2c 1d(plan,nx, resi, resi cplx,FFTW ESTIMATE)

call dfftw execute dft r2c(plan, resi, resi cplx)

call dfftw destroy plan(plan)

resi cplx = resi cplx*nx inv
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do kstep = 0, nxhalf

add cplx(kstep) = resi cplx(kstep)&

/(f u mean+g u mean*Dfft(kstep)+h u mean*Dfft(kstep)**2)

end do

call dfftw plan dft c2r 1d(plan, nx, add cplx, add, FFTW ESTIMATE)

call dfftw execute dft c2r(plan, add cplx, add)

call dfftw destroy plan(plan)

u1RHStemp = u1RHStemp + add*relaxation

u1RHS = u1RHStemp

call dfftw plan dft r2c 1d(plan, nx, u1RHS, u1RHS cplx, FFTW ESTIMATE)

call dfftw execute dft r2c(plan, u1RHS, u1RHS cplx)

call dfftw destroy plan(plan)

u1RHS cplx = u1RHS cplx * nx inv

do kstep = 0, nxhalf

u1RHS xcplx(kstep) = u1RHS cplx(kstep) * Dfft(kstep)

u1RHS xxcplx(kstep) = u1RHS xcplx(kstep) * Dfft(kstep)

end do

call dfftw plan dft c2r 1d(plan, nx, u1RHS xcplx, u1RHS x, FFTW ESTIMATE)

call dfftw execute dft c2r(plan, u1RHS xcplx, u1RHS x)

call dfftw destroy plan(plan)

call dfftw plan dft c2r 1d(plan,nx,u1RHS xxcplx,u1RHS xx, FFTW ESTIMATE)

call dfftw execute dft c2r(plan, u1RHS xxcplx, u1RHS xx)

call dfftw destroy plan(plan)

do kstep = 0, nx-1

resi1(kstep) = total RHS(kstep)-&
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(u1RHS(kstep)*f u(kstep)+u1RHS x(kstep)*g u(kstep)&

+u1RHS xx(kstep)*h u(kstep))

end do

call antialiase( 7, resi1, resi)

end do

end subroutine TimeDerivative2

subroutine antialiase(order, u, u a)

! anti-aliasing to remove high wave numbers according to order

use parameters

implicit none

include ’fftw3.f’

integer, intent(IN) :: order

double precision, dimension(0:nx-1), intent(IN) :: u

double precision, dimension(0:nx-1), intent(INOUT):: u a

integer *8 plan

integer :: kstep

double complex, dimension(0:nxhalf):: u cplx

double precision :: factor

factor = 2.d0/dble(order +1)

call dfftw plan dft r2c 1d(plan,nx,u,u cplx,FFTW ESTIMATE)

call dfftw execute dft r2c(plan, u, u cplx)

call dfftw destroy plan(plan)

u cplx = u cplx/dble(nx)

do kstep = floor( nxhalf*factor), nxhalf
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u cplx(kstep) = 0.d0

end do

call dfftw plan dft c2r 1d(plan, nx, u cplx, u a, FFTW ESTIMATE)

call dfftw execute dft c2r(plan, u cplx, u a)

call dfftw destroy plan(plan)

end subroutine antialiase

subroutine maxk (kmax, zeta, u1, x, xval)

! compute critical wave numbers in non-dimensional form

use parameters

implicit none

double precision, dimension(0:nx-1), intent(IN) :: zeta, u1, x

double precision, intent(INOUT) :: kmax, xval

double precision, dimension (0:nx-1) :: k

double precision :: f1, u2, U, eta1, eta2, a, b, c, d

double precision :: ktestmax

integer :: kstep

ktestmax = nxhalf / R * pi

xval = 0.d0

do kstep = 0, nx-1

eta1 = h1 - zeta(kstep)

eta2 = h2 + zeta(kstep)

u2 = -1.d0 * eta1 / eta2 * u1 (kstep)

U = abs(u2-u1(kstep))

a = U*U*rho1*rho2*eta1*eta1*eta2*eta2/9.d0
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b = 1.d0/3.d0 * (U*U*rho1*rho2*(eta1*eta1+eta2*eta2)&

- grav * (rho2-rho1)*eta1*eta2*(rho1*eta2+rho2*eta1))

c = U*U*rho1*rho2-grav *(rho2-rho1)*(rho1 * eta2 + rho2 * eta1)

d = b*b - 4.d0*a*c

if ( f1 (ktestmax, zeta(kstep), u1(kstep)) .le. 0.d0) then

k(kstep) = nxhalf / R * pi

else

k(kstep) = dsqrt(-2.d0*c/(b + dsqrt(d)))

end if

if (k(kstep) .le. ktestmax) then

xval = x(kstep)

ktestmax = k(kstep)

endif

end do

kmax = minval(k)

end subroutine maxk

function f1(x, zeta, u1)

! stability criterion

use parameters

implicit none

double precision, intent(IN) ::x, zeta, u1

double precision :: u2, u, eta1, eta2, f1

double precision :: temp

eta1 = h1 - zeta

eta2 = h2 + zeta
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u2 = -1.d0 * eta1 / eta2 * u1

u = abs(u1-u2)

temp = 1.d0/3.d0*x*x

f1 = u*u - grav*(rho2-rho1) *(eta2/rho2/(1.d0+temp*eta2*eta2)&

+ eta1/rho1/(1.d0+temp*eta1*eta1))

end function f1

subroutine conserve(u, zeta, Dfft, M0, E0)

use parameters

implicit none

include ’fftw3.f’

double precision, dimension (0:nx-1), intent (IN) :: u, zeta, Dfft

double precision, intent (INOUT) :: M0, E0

double precision, dimension (0:nx-1) :: u1, u2, eta1, eta2

double precision, dimension (0:nx-1) :: u1 x, u2 x

double complex, dimension (0: nxhalf) :: u1complex, u2complex

double complex, dimension (0: nxhalf) :: u1 xcomplex, u2 xcomplex

double precision :: dx

integer :: kstep

integer *8 :: plan

dx = (R-L)/dble(nx)

u1 = u

eta1 = h1 - zeta

eta2 = h2 + zeta

u2 = -1.d0*(u1*eta1)/eta2
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call dfftw plan dft r2c 1d(plan,nx,u1,u1complex,FFTW ESTIMATE)

call dfftw execute dft r2c(plan, u1, u1complex)

call dfftw destroy plan(plan)

call dfftw plan dft r2c 1d(plan,nx,u2,u2complex,FFTW ESTIMATE)

call dfftw execute dft r2c(plan, u2, u2complex)

call dfftw destroy plan(plan)

u1complex = u1complex /dble(nx)

u2complex = u2complex /dble(nx)

do kstep = 0, nxhalf

u1 xcomplex = u1complex(kstep) * Dfft(kstep)

u2 xcomplex = u2complex(kstep) * Dfft(kstep)

end do

call dfftw plan dft c2r 1d(plan,nx,u2 xcomplex,u2 x,FFTW ESTIMATE)

call dfftw execute dft c2r(plan, u2 xcomplex, u2 x)

call dfftw destroy plan(plan)

call dfftw plan dft c2r 1d(plan,nx,u1 xcomplex,u1 x,FFTW ESTIMATE)

call dfftw execute dft c2r(plan, u1 xcomplex, u1 x)

call dfftw destroy plan(plan)

M0 = 0.d0

E0 = 0.d0

do kstep = 0, nx-1

M0 = M0+zeta(kstep)

E0 = E0 + HALF*grav*zeta(kstep)**2*(rho2-rho1) &

+ HALF*rho1*(eta1(kstep)*u1(kstep)**2 &
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+ eta1(kstep)**3*u1 x(kstep)**2/3.d0)&

+HALF*rho2*(eta2(kstep)*u2(kstep)**2 &

+ eta2(kstep)**3*u2 x(kstep)**2/3.d0)

end do

M0 = M0*dx

E0 = E0*dx

E0 = E0/2.d0 + (rho1*(h1/2.d0+h2)*h1 + rho2*h2/2.d0*h2)*grav*R

end subroutine conserve

D.2 The regularized Kaup equations

Main code

module parameters

integer, parameter:: nx =8192

integer, parameter :: nxhalf = ceiling(nx/2.d0)

double precision, parameter:: stop_time =8.d1

double precision, parameter :: lambda = 1.d-1, mkframe = 2.5d0

double precision, parameter:: R = 1.232d3*2.d0, L = -1.d0*R

double precision, parameter :: hgate = 1.d0, lgate =1.d2

double precision, parameter :: hh = 77.d0, grav = 981.d0

!lambda = 0.5

!double precision, parameter :: rho1 = 0.9998817144855958d0

!double precision, parameter :: rho2 = 1.0215548370691494d0

!double precision, parameter :: h1 = 14.551541169411323d0

!lambda = 1

!double precision, parameter :: rho1 = 0.9994235006405087

!double precision, parameter :: rho2 = 1.0217692795999886
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!double precision, parameter :: h1 = 14.753638180803918

!lambda = 0.25

!double precision, parameter :: rho1 = 1.0009125274217063

double precision, parameter :: rho2 = 1.0211814125745406

!double precision, parameter :: h1 = 14.321902674392888

double precision, parameter:: rho1 = 9.99d-1, rho2 = 1.022d0

double precision, parameter:: h1 = 1.5d1

double precision, parameter :: h2 = hh -h1

double precision, parameter:: b1 = (h1*h2)/(rho2*h1+rho1*h2)

double precision, parameter :: b2 = grav*(rho2-rho1)

double precision, parameter:: b3 = (rho2*h1*h1-rho1*h2*h2)&

/(rho1*h2+rho2*h1)**2

double precision, parameter:: b4 = (h1*h2)**2*(rho1*h1+rho2*h2)/3.d0 &

/(rho1*h2+rho2*h1)**2

end module parameters

PROGRAM REGULAR KAUP

!external

use parameters

implicit none

include ’fftw3.f’

double precision, dimension(0:nx-1) :: x, u, u2, eta

double precision, dimension(0:nx-1) :: zeta, u1, zeta1

double complex :: Dfft(0:nxhalf)

double complex, parameter :: I = cmplx(0.d0, 1.d0)
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double precision:: alpha, k0, k01, tnow, dt, K, M0, E0

double precision :: ONE, HALF, SIXTH, tnow1

double precision, dimension(0:nx-1) :: uK1, uK2, uK3, uK4

double precision, dimension(0:nx-1) :: eta1, eta2

double precision, dimension(0:nx-1) :: zetaK1, zetaK2, zetaK3, zetaK4

!internal

integer kstep, tstep, cut1

double precision:: pi,dx, timerecord

integer:: nt

real, dimension(2) :: tarray1, tarray2

integer :: nframe

character(len = 20) :: nu, nzeta

print *, b1, b2,b3,b4

pi = 4.d0 *datan(1.d0)

alpha = 1.d0/3.d0

ONE = 1.d0

hALF = 0.5d0

SIXTH = 1.d0/6.d0

dx = (R-L)/nx

dt = 1.d-2

K = 2.0*pi/(R-L)

nt = ceiling(stop_time/dt)

do kstep = 0,nxhalf

Dfft(kstep) = 2*pi*I/(R-L)*kstep

end do

do kstep = 0, nx-1
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x(kstep) = L+dx*kstep

zeta(kstep) = hgate/2.d0*(dtanh(lambda*(x(kstep)-lgate))&

-dtanh(lambda*(x(kstep)+lgate)))

end do

u = 0.d0

nframe = 0

tnow = 0.d0

nframe = nframe +1

timerecord = 0.d0

do while ((tnow+1d-10).le. stop_time )

print *, ’time = ’, tnow

tstep = tstep+1

u1 = u

eta1 = h1 - zeta

eta2 = h2 + zeta

if (tnow+dt .ge. stop time) then

dt = stop time-(tnow)

end if

u1 = u

zeta1 = zeta

tnow1 = tnow

call TimeDerivative3( u1, zeta1, Dfft, uK1, zetaK1)

u1 = u+half*dt*uK1

zeta1 = zeta +half*dt*zetaK1

tnow1 = tnow +half*dt

call TimeDerivative3( u1, zeta1, Dfft, uK2, zetaK2)
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u1 = u+half*dt*uK2

zeta1 = zeta + half*dt*zetaK2

tnow1 = tnow + half*dt

call TimeDerivative3( u1, zeta1, Dfft, uK3, zetaK3)

u1 = u+ dt*uK3

zeta1 = zeta + dt*zetaK3

tnow1 = tnow + dt

call TimeDerivative3( u1, zeta1, Dfft, uK4, zetaK4)

u = u + dt * (uK1+2.d0*uK2+2.d0*uK3+uK4)*sixth

zeta = zeta + dt * (zetaK1+2.d0*zetaK2+2.d0*zetaK3+zetaK4)*sixth

uK1 = (uK1+2.d0*uK2+2.d0*uK3+uK4)*sixth

tnow = tnow + dt

timerecord = timerecord + dt

end do

call ETIME(tarray2, result2)

open(31, file = ’result.dat’)

do kstep = 0,nx-1

write(31, 503) x(kstep), zeta(kstep), u(kstep)

end do

close(31)

502 format(D30.20)

505 format(D30.20, 1x, D30.20,1x)

503 format(D30.20, 1x, D30.20, 1x, D30.20)
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end program REGULAR KAUP

subroutine TimeDerivative3(u, zeta, Dfft, uRhs, zetaRHS)

use parameters

implicit none

include ’fftw3.f’

integer *8 plan

double precision, dimension(0:nx-1):: u, zeta, u x, u xxx, zeta x

double precision, dimension(0:nx-1):: uzeta, uzeta x, u2, u2 x

double precision, dimension(0:nx-1):: uRHS, zetaRHS

double complex, dimension(0:nxhalf):: Dfft, u cplx, zeta cplx, u x cplx

double complex, dimension(0:nxhalf):: u xxx cplx, zeta x cplx, uzeta cplx

double complex, dimension(0:nxhalf):: uzeta x cplx, u2 cplx, u2 x cplx

double complex, dimension(0:nxhalf):: zetaRHS cplx, RHS cplx, uRHS cplx

double precision :: nx inv = 1.d0/dble(nx)

integer :: kstep, alias k = floor(dble(nxhalf)/2.d0)

call dfftw plan dft r2c 1d(plan,nx,zeta,zeta_cplx,FFTW ESTIMATE)

call dfftw execute dft r2c(plan, zeta, zeta_cplx)

call dfftw destroy plan(plan)

call dfftw plan dft r2c 1d(plan,nx,u,u_cplx,FFTW ESTIMATE)

call dfftw execute dft r2c(plan, u, u_cplx)

call dfftw destroy plan(plan)

zeta cplx = zeta cplx *nx inv

u cplx = u cplx * nx inv
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do kstep = alias_k+1, nxhalf

zeta cplx(kstep) = 0.d0

u cplx(kstep) = 0.d0

end do

u x cplx = 0.d0

zeta x cplx = 0.d0

u xxx cplx = 0.d0

do kstep = 0, alias_k

u x cplx(kstep) = u cplx(kstep)*Dfft(kstep)

u xxx cplx(kstep) = u x cplx(kstep)*Dfft(kstep)**2

zeta x cplx(kstep) = zeta cplx(kstep)*Dfft(kstep)

end do

call dfftw plan dft c2r 1d(plan,nx,zeta cplx, zeta,FFTW ESTIMATE)

call dfftw execute dft c2r(plan, zeta cplx, zeta)

call dfftw destroy plan(plan)

call dfftw plan dft c2r 1d(plan,nx,u cplx, u,FFTW ESTIMATE)

call dfftw execute dft c2r(plan, u cplx, u)

call dfftw destroy plan(plan)

u2 = u * u

uzeta = u *zeta

call dfftw plan dft r2c 1d(plan,nx,u2 ,u2 cplx,FFTW ESTIMATE)

call dfftw execute dft r2c(plan, u2, u2 cplx)
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call dfftw destroy plan(plan)

call dfftw plan dft r2c 1d(plan,nx,uzeta,uzeta cplx,FFTW ESTIMATE)

call dfftw execute dft r2c(plan, uzeta, uzeta cplx)

call dfftw destroy plan(plan)

u2 cplx= u2 cplx *nx inv

uzeta cplx = uzeta cplx*nx inv

u2 x cplx = 0.d0

uzeta x cplx = 0.d0

do kstep = 0, alias k

u2 x cplx(kstep) = u2 cplx(kstep) * Dfft(kstep)

uzeta x cplx(kstep) = uzeta cplx(kstep) * Dfft(kstep)

end do

uRHS cplx = -1.d0*(b2*zeta x cplx + b3*5.d-1*u2 x cplx)

zetaRHS cplx = 0.d0

RHS cplx = b1*u x cplx + b3*uzeta x cplx

do kstep = 0, alias k

zetaRHS cplx(kstep) = -1.d0/(1.d0-b4/b1*Dfft(kstep)**2)*RHS cplx(kstep)

end do

call dfftw plan dft c2r 1d(plan,nx,uRHS cplx, uRHS,FFTW ESTIMATE)

call dfftw execute dft c2r(plan, uRHS cplx, uRHS)

call dfftw destroy plan(plan)

call dfftw plan dft c2r 1d(plan,nx,zetaRHS cplx, zetaRHS,FFTW ESTIMATE)

call dfftw execute dft c2r(plan, zetaRHS cplx, zetaRHS)

call dfftw destroy plan(plan)
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end subroutine TimeDerivative3

D.3 The Boussinesq equations

Main code

module parameters

integer, parameter:: nx =4096*4

integer, parameter :: nxhalf = ceiling(nx/2.d0)

double precision, parameter :: amp = 1.d-1/16.d0

double precision, parameter:: stop_time = 5.d2 , dt = 1.d-1/2.d0

double precision, parameter :: lambda = 0.1d0, mkframe = 1.d2

double precision, parameter:: R = 2.464d3*4.d0, L = -1.d0*R

double precision, parameter :: hgate = 10.d0, lgate = 1.d2

!lambda = 0.5

double precision, parameter :: rho1 = 0.9998817144855958d0

double precision, parameter :: rho2 = 1.0215548370691494d0

double precision, parameter :: h1 = 14.551541169411323d0

!lambda = 1

!double precision, parameter :: rho1 = 0.9994235006405087

!double precision, parameter :: rho2 = 1.0217692795999886

!double precision, parameter ::h1 = 14.753638180803918

!lambda = 0.25

!double precision, parameter :: rho1 = 1.0009125274217063

!double precision, parameter :: rho2 = 1.0211814125745406

!double precision, parameter :: h1 = 14.321902674392888

!double precision, parameter:: rho1 = 9.99d-1, rho2 = 1.022d0
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!double precision, parameter :: h1 = 1.5d1

double precision, parameter:: h2 = 7.7d1-h1, grav = 9.81d2

double precision, parameter:: b1=(rho1*h2*h2-rho2*h1*h2&

-2.d0*rho2*h1*h1)/(rho1*h2*h2+rho2*h1*h2)

double precision, parameter:: b2 = grav*h2*(rho1-rho2)&

/(rho1*h2+rho2*h1)

double precision, parameter:: b3 = grav*rho2*(rho1-rho2)*(h1+h2)&

/(rho1*h2+rho2*h1)**2

double precision, parameter:: b4 = 1.d0/3.d0&

*(rho1*h1*h1*h2+rho2*h1*h2*h2)/(rho1*h2+rho2*h1)

double precision, parameter:: dx = (R-L)/dble(nx)

double precision, parameter :: pi = 4.d0*datan(1.d0)

end module parameters

program BOUSSINESQ

use parameters

!external

implicit none

include ’fftw3.f’

double precision, dimension(0:nx-1) :: u, eta, zeta, u1, eta1

double complex :: Dfft(0:nxhalf)

double complex, parameter :: I = cmplx(0.d0, 1.d0)

double precision:: x(0:nx-1),tnow, dt1

double precision :: ONE, HALF, SIXTH, tnow1,

double precision, dimension(0:nx-1) :: uK1, uK2, uK3, uK4

double precision, dimension(0:nx-1) :: etaK1, etaK2, etaK3, etaK4
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double precision :: initial value

integer *8 plan

integer :: nframe

double precision :: timerecord

character(len = 20) :: nu, nzeta

!internal

integer kstep, tstep

integer nt

real, dimension(2) :: tarray1, tarray2

real :: result1, result2

print *, b1, b2, b3, b4

ONE = 1.d0

HALF = 0.5d0

SIXTH = 1.d0/6.d0

nt = ceiling(stop time/dt)

open(33, file = ’gridset’)

write(33, 1100) mkframe, dx, L, nx

close(33)

do kstep = 0,nxhalf

Dfft(kstep) = 2*pi*I/(R-L)*kstep

end do

do kstep = 0, nx-1

x(kstep) = L+dx*kstep
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u(kstep) = 0.d0

zeta(kstep) = initial value(x(kstep))

end do

eta = h1-zeta

tnow = 0.d0

tstep = 0

call ETIME(tarray1, result1)

uK1 = 0.d0

etaK1 = 0.d0

uK2 = 0.d0

etaK2 = 0.d0

uK3 = 0.d0

etaK3 = 0.d0

uK4 = 0.d0

etaK4 = 0.d0

nframe = 0

write(nu,’(a,i0,a)’) ’bsq result’,nframe, ’.dat’

open(11, file=nu)

do kstep = 0, nx-1

write(11,502) x(kstep), zeta(kstep), u(kstep)

end do

close (11)

timerecord = 0.d0

dt1 = dt
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nframe = nframe +1

op_shift1 = 0.d0

do while ((tnow+dt).le.(stop time+1d-10) .and. (tstep) .le. nt )

tstep = tstep+1

if (tnow+dt .ge. stop_time) then

dt1 = stop time-(tnow)

end if

u1 = u

eta1 = eta

tnow1 = tnow

call TimeDerivative( u1, eta1, Dfft, uK1, etaK1)

u1 = u+half*dt1*uK1

eta1 = eta +half*dt1*etaK1

tnow1 = tnow +half*dt1

call TimeDerivative(u1, eta1, Dfft, uK2, etaK2)

u1 = u+half*dt1*uK2

eta1 = eta + half*dt1*etaK2

tnow1 = tnow + half*dt1

call TimeDerivative(u1, eta1, Dfft, uK3, etaK3)

u1 = u + dt1*uK3

eta1 = eta + dt1*etaK3

tnow1 = tnow+dt1

call TimeDerivative(u1, eta1, Dfft, uK4, etaK4)

u = u + dt1 * (uK1+2.d0*uK2+2.d0*uK3+uK4)*sixth

eta = eta + dt1 * (etaK1+2.d0*etaK2+2.d0*etaK3+etaK4)*sixth
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timerecord = timerecord + dt1

tnow = tnow + dt1

if((timerecord+1.d-10) .ge. mkframe) then

zeta = h1-eta

write(nu,’(a,i0,a)’) ’bsq result’,nframe, ’.dat’

open(11, file = nu)

do kstep = 0, nx-1

write(11,502) x(kstep), zeta(kstep), u(kstep)

end do

close (11)

nframe = nframe + 1

timerecord = 0.d0

end if

end do

zeta = h1 - eta

open(21, file = ’bsq result’)

do kstep = 0, nx-1

write(21, 502)x(kstep),zeta(kstep), u(kstep)

end do

close (21)

502 format(D30.20, 1x, D30.20, 1x, D30.20)

503 format(D30.20, 1x, D30.20, 1x, D30.20, 1x, D30.20, 1x)

end program BOUSSINESQ
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subroutine TimeDerivative( u, eta, Dfft, uRHS, etaRHS )

use parameters

implicit none

include ’fftw3.f’

integer :: kstep

double precision :: half, nx inv, mx inv, tnow

double complex, dimension(0:nxhalf) :: Dfft

double precision, dimension(0:nx-1) :: u, eta, zeta, ueta, ueta x

double precision, dimension(0:nx-1) :: zetazeta x, uzeta xtest

double precision, dimension(0:mx-1) :: u1, zeta1, u x1, zeta x1

double precision, dimension(0:mx-1) :: uzeta1, uu x1

double precision, dimension (0:mx-1) :: uzeta x1, zetazeta x1

double precision, dimension(0:nx-1) :: u x, uu x, zeta x, uRHS, etaRHS,

double precision, dimension (0:nx-1) :: etaRHS1, uSource

double complex, dimension(0:nxhalf) :: zetacomplex, ucomplex

double complex, dimension(0:nxhalf) :: zeta xcomplex

double precision, dimension (0:nxhalf) :: zetazeta xcomplex

double complex, dimension(0:nxhalf) :: zeta xcomplexsave

double complex, dimension(0:nxhalf) :: u xcomplexsave

double complex, dimension(0:nxhalf) :: uSourcecomplex

double complex, dimension(0:nxhalf) :: u xcomplex, uu xcomplex

double complex, dimension(0:nxhalf) :: uetacomplex, ueta xcomplex

double complex, dimension(0:nxhalf) :: uRHScomplex, etaRHScomplex

double complex, dimension(0:mxhalf) :: u1complex, zeta1complex

double complex, dimension(0:mxhalf) :: u x1complex,zeta x1complex
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double complex, dimension(0:mxhalf) :: uzeta x1complex

double complex, dimension(0:nxhalf) :: zetazeta x1complex

double complex, dimension(0:mxhalf) :: uu x1complex, uzeta1complex

double complex, dimension(0:nxhalf) :: uu xcomplextest

double complex, dimension(0:nxhalf) :: zetazeta xcomplextest

double complex, dimension(0:mxhalf) :: uzeta xcomplextest

double precision :: RHS1, RHS2

integer *8 plan

half = 5.d-1

nx inv = 1.d0/dble(nx)

mx inv = 1.d0/dble(mx)

zeta = h1-eta

do kstep = 0, nx-1

ueta(kstep) = u(kstep) *eta(kstep)

end do

call dfftw plan dft r2c 1d(plan,nx,u,ucomplex,FFTW ESTIMATE)

call dfftw execute dft_r2c(plan, u, ucomplex)

call dfftw destroy plan(plan)

call dfftw plan dft r2c 1d(plan,nx,zeta,zetacomplex,FFTW ESTIMATE)

call dfftw execute dft r2c(plan, zeta,zetacomplex)

call dfftw destroy plan(plan)

call dfftw plan dft r2c 1d(plan,nx,ueta,uetacomplex,FFTW ESTIMATE)

call dfftw execute dft r2c(plan, ueta,uetacomplex)

call dfftw destroy plan(plan)
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ucomplex = ucomplex*nx inv

zetacomplex = zetacomplex*nx inv

uetacomplex = uetacomplex*nx inv

do kstep = 0, nxhalf

u xcomplex(kstep) = ucomplex(kstep)*Dfft(kstep)

zeta xcomplex(kstep) = zetacomplex(kstep) *Dfft(kstep)

ueta xcomplex(kstep) = uetacomplex(kstep)*Dfft(kstep)

end do

u xcomplexsave = u xcomplex

zeta xcomplexsave = zeta xcomplex

call dfftw plan dft c2r 1d(plan, nx, u xcomplex, u x, FFTW ESTIMATE)

call dfftw execute dft c2r(plan, u xcomplex, u x)

call dfftw destroy plan(plan)

call dfftw plan dfT c2r 1d(plan, nx, zeta xcomplex, zeta x, &

FFTW ESTIMATE)

call dfftw execute dft c2r(plan, zeta xcomplex, zeta x)

call dfftw destroy plan(plan)

call dfftw plan dft c2r 1d(plan, nx, ueta xcomplex, ueta x, &

FFTW ESTIMATE)

call dfftw execute dft c2r(plan, ueta xcomplex, ueta x)

call dfftw destroy plan(plan)

u xcomplex = u xcomplexsave

zeta xcomplex = zeta xcomplexsave

!!!!!!!!!!!!!!!!!!!!!!!!!!
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!!!!!dealiasing!!!!!!!!!!!

u1complex = 0.d0

zeta1complex = 0.d0

u x1complex = 0.d0

zeta x1complex = 0.d0

do kstep = 0, nxhalf

u1complex(kstep) = ucomplex(kstep)

zeta1complex(kstep) = zetacomplex(kstep)

u x1complex(kstep) = u xcomplex(kstep)

zeta x1complex(kstep) = zeta xcomplex(kstep)

end do

call dfftw plan dft c2r 1d(plan, mx, u1complex, u1, FFTW ESTIMATE)

call dfftw execute dft c2r(plan, u1complex, u1)

call dfftw destroy plan(plan)

call dfftw plan dft c2r 1d(plan, mx, u x1complex, u x1, FFTW ESTIMATE)

call dfftw execute dft c2r(plan, u x1complex, u x1)

call dfftw destroy plan(plan)

call dfftw plan dft c2r 1d(plan, mx, zeta1complex, zeta1, FFTW ESTIMATE)

call dfftw execute dft c2r(plan, zeta1complex, zeta1)

call dfftw destroy plan(plan)

call dfftw plan dft c2r 1d(plan, mx,zeta x1complex,zeta x1,FFTW ESTIMATE)

call dfftw execute dft c2r(plan, zeta x1complex, zeta x1)

call dfftw destroy plan(plan)

do kstep = 0, mx-1
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uu x1(kstep) = u1(kstep)*u x1(kstep)

zetazeta x1(kstep) = zeta1(kstep)*zeta x1(kstep)

uzeta1(kstep) = u1(kstep)*zeta1(kstep)

end do

call dfftw plan dft r2c 1d(plan,mx,uu x1,uu x1complex,FFTW ESTIMATE)

call dfftw execute dft r2c(plan, uu x1, uu x1complex)

call dfftw destroy plan(plan)

call dfftw plan dft r2c 1d(plan,mx,zetazeta_x1,zetazeta x1complex,&

FFTW ESTIMATE)

call dfftw execute dft r2c(plan, zetazeta x1, zetazeta x1complex)

call dfftw destroy plan(plan)

call dfftw plan dft r2c 1d(plan,mx, uzeta1,uzeta1complex,FFTW ESTIMATE)

call dfftw execute dft r2c(plan, uzeta1, uzeta1complex)

call dfftw destroy plan(plan)

uu x1complex = uu x1complex*mx inv

zetazeta x1complex = zetazeta x1complex*mx inv

uzeta1complex = uzeta1complex*mx inv

do kstep = 0, nxhalf

uu xcomplextest(kstep) = uu x1complex(kstep)

zetazeta xcomplextest(kstep) = zetazeta x1complex(kstep)

uzeta xcomplextest(kstep) = uzeta1complex(kstep)*Dfft(kstep)

end do

!!!!!!!!!!!!!!!!dealiasing!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
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call dfftw plan dft c2r 1d(plan, nx, uzeta xcomplextest, uzeta xtest,&

FFTW ESTIMATE)

call dfftw execute dft c2r(plan, uzeta xcomplextest, uzeta xtest)

call dfftw destroy plan(plan)

do kstep = 0, nx-1

etaRHS(kstep) = uzeta xtest(kstep) - h1*u x(kstep)

end do

do kstep = 0, nx-1

uu x(kstep) = u(kstep)*u x(kstep)

zetazeta x(kstep) = zeta(kstep)*zeta x(kstep)

end do

call dfftw plan dft r2c 1d(plan,nx,uu x,uu xcomplex,FFTW ESTIMATE)

call dfftw execute dft r2c(plan, uu x, uu xcomplex)

call dfftw destroy plan(plan)

call dfftw plan dft r2c 1d(plan,nx,zetazeta x,zetazeta xcomplex,&

FFTW ESTIMATE)

call dfftw execute dft r2c(plan, zetazeta x, zetazeta xcomplex)

call dfftw destroy plan(plan)

zetazeta xcomplex = zetazeta xcomplex*nx inv

uu xcomplex = uu xcomplex*nx inv

do kstep = 0, nxhalf

uRHScomplex(kstep) &

& = (-1.d0*b1*uu xcomplextest(kstep)-b2*zeta xcomplex(kstep)&

&-b3*zetazeta xcomplextest(kstep))&
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&/(1-b4*Dfft(kstep)*Dfft(kstep))

end do

call dfftw plan dft c2r 1d(plan, nx, uRHScomplex, uRHS, FFTW ESTIMATE)

call dfftw execute dft c2r(plan, uRHScomplex, uRHS)

call dfftw destroy plan(plan)

end subroutine TimeDerivative

function initial value(x)

use parameters

implicit none

double precision :: x, initial_value

initial value = hgate *(dtanh(lambda*(x-lgate)) &

- dtanh(lambda *(x+lgate)))/2.d0

return

end function initial_value

D.4 The KdV equation

Main code

PROGRAM KDV

!external

implicit none

include ’fftw3.f’

integer, parameter :: nx = 1024

integer, parameter :: nxhalf = ceiling(nx/2.d0)

integer:: mx, mxhalf

double precision, dimension(0:nx-1) :: zeta, zetabi, zeta1
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double complex :: Dfft(0:nxhalf)

double complex, parameter :: I = cmplx(0.d0, 1.d0)

double complex :: slope

double precision:: x(0:nx-1),c0,c1,c2,c3, c4,rho1,rho2,h1, h2,&

& L, R, stop_time, grav, tnow, K

double precision :: ONE, HALF, SIXTH, tnow1

double precision, dimension(0:nx-1) :: zetaK1, zetaK2, zetaK3, zetaK4

double precision :: RHS1, RHS2

double precision :: hgate = 1.d1, lgate =1.d2, lambda = 2.d-1

integer :: nframe

character(len = 20) :: nu, nzeta

double precision :: mkframe, timerecord

!internal

integer kstep, tstep

double precision:: pi,dx, dt

integer nt

real, dimension(2) :: tarray1, tarray2

real :: result1, result2

mx = ceiling(nx*2.d0)

mxhalf = ceiling(mx/2.d0)

pi = 4.d0 *datan(1.d0)

L = -2.464d3

R = 2.464d3

!lambda = 0.5

h1 = 14.551541169411323d0
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rho1 =0.9998817144855958d0

rho2 = 1.0215548370691494d0

!lambda = 1.0

!h1 = 14.753638180803918d0

!rho1 = 0.9994235006405087d0

!rho2 = 1.0217692795999886d0

!lambda = 0.25

!h1 = 14.321902674392888d0

!rho1 = 1.0009125274217063d0

!rho2 = 1.0211814125745406d0

!rho1 = 0.999d0

!rho2 = 1.022d0

!h1 = 1.5d1

h2 = 7.7d1-h1

grav = 9.81d2

c0 = dsqrt(grav*h1*h2*(rho2-rho1)/(rho1*h2+rho2*h1))

c1 = -1.5d0*c0*(rho1*h2**2-rho2*h1**2)/(rho1*h1*h2**2+rho2*h1**2*h2)

c2 = c0/6.d0*(rho1*h1**2*h2+rho2*h1*h2**2)/(rho1*h2+rho2*h1)

write(*,*) c0, c1, c2

stop_time = 8.d1

ONE = 1.d0

HALF = 0.5d0

SIXTH = 1.d0/6.d0

dx = (R-L)/nx

dt = 4.d-5

K = 2.0*pi/(R-L)
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nt = ceiling(stop_time/dt)

do kstep = 0, nx-1

x(kstep) = L + kstep*dx

zeta(kstep)=hgate/4.d0*(dtanh(lambda*(x(kstep)-lgate))&

-dtanh(lambda*(x(kstep)+lgate)))

end do

do kstep = 0,nxhalf

Dfft(kstep) = 2*pi*I/(R-L)*kstep

end do

do kstep = 0, nx-1

x(kstep) = L+dx*kstep

end do

tnow = 0.d0

tstep = 0

mkframe = 2.5d0

timerecord = 0.d0

nframe = 0

write(nzeta,’(a, i0,a)’) ’zeta’,nframe, ’.dat’

open(21, file = nzeta)

write(21,501)(zetabi(kstep), kstep = 0, nx-1)

close (21)

nframe = nframe +1

call ETIME(tarray1, result1)
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do while ((tnow+dt).le.(stop_time+1d-10) )

tstep = tstep+1

if((timerecord+1d-10) .ge. mkframe) then

nframe = nframe+1

timerecord = 0.d0

end if

if (tnow+dt > stop_time) then

dt = stop_time-(tnow)

end if

call TimeDerivative(nx,nxhalf,c0, c1, c2, c3, dt, zeta, Dfft, zeta1)

zeta = zeta1

timerecord = timerecord + dt

tnow = tnow + dt

end do

call ETIME(tarray2, result2)

open(21, file = ’zeta_raw.dat’)

do kstep = 0, nx-1

write(21,505) x(kstep), zeta(kstep)

end do

close(21)

print * , ’execution time = ’, tarray2(1)-tarray1(1)

501 format(2048(D30.20,1x),1x)

502 format(D30.20)

503 format(D30.20, 1x, D30.20, 1x, D30.20)

505 format(D30.20, 1x, D30.20,1x)
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end program KDV

subroutine TimeDerivative(nx,nxhalf, c0, c1, c2, c3, &

dt, zeta, Dfft, zetanew )

implicit none

include ’fftw3.f’

integer :: nx,nxhalf, mx, mxhalf, kstep

double precision :: c0, c1, c2, c3, half

double precision :: nx inv, mx inv, dt

double complex, dimension(0:nxhalf) :: Dfft

double precision, dimension(0:nx-1) :: zeta, zetaleft

double precision, dimension(0:nx-1) :: zeta2, zeta2x, zeta3

double precision, dimension(0:nx-1) :: zetanew, zetap, zetap2

double precision, dimension(0:nx-1) :: zetapleft, zetap2x, zetap3

double precision, dimension(0:nx-1) :: zetaRHS

double complex, dimension(0:nxhalf) :: zetacomplex, zeta2complex

double complex, dimension(0:nxhalf) :: zeta2xcomplex

double complex, dimension(0:nxhalf) :: zeta3complex, zetap2complex

double complex, dimension(0:nxhalf) :: Rt, St1, St2

double complex, dimension(0:nxhalf) :: zetapcomplex, zetap2xcomplex

double complex, dimension(0:nxhalf) :: zetap3complex

integer *8 plan

half = 5.d-1

nx inv = 1.d0/dble(nx)
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do kstep = 0, nxhalf

Rt(kstep) = (1.d0- dt*5.d-1*c0*Dfft(kstep)&

-dt*5.d-1*c2*Dfft(kstep)**3) &

/(1.d0+dt*5.d-1*c0*Dfft(kstep)+ dt*5.d-1*c2*Dfft(kstep)**3)

St1(kstep) = -2.5d-1*c1*dt*Dfft(kstep)&

/(1.d0+dt*5.d-1*c0*Dfft(kstep)+ dt*5.d-1*c2*Dfft(kstep)**3)

St2(kstep) = -2.5d-1*c3*dt &

/(1.d0+dt*5.d-1*c0*Dfft(kstep)+ dt*5.d-1*c2*Dfft(kstep)**3)

end do

zetaleft (0) = zeta(0)

do kstep = 1, nx-1

zetaleft(kstep) = zeta(nx-kstep)

end do

call dot21(nx, nxhalf, zeta, zeta, zeta2)

call dfftw plan dft r2c 1d(plan,nx,zeta,zetacomplex,FFTW ESTIMATE)

call dfftw execute dft r2c(plan, zeta, zetacomplex)

call dfftw destroy plan(plan)

call dfftw plan dft r2c 1d(plan,nx,zeta2,zeta2complex,FFTW ESTIMATE)

call dfftw execute dft r2c(plan, zeta2, zeta2complex)

call dfftw destroy plan(plan)

zetacomplex = zetacomplex*nx inv

zeta2complex = zeta2complex*nx inv

zetap = zeta

zetanew = 1.d0

do kstep = 0, nxhalf

zeta2xcomplex(kstep) = Dfft(kstep) * zeta2complex(kstep)
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end do

call dfftw plan dft c2r 1d(plan,nx, zeta2xcomplex, zeta2x, FFTW ESTIMATE)

call dfftw execute dft c2r(plan, zeta2xcomplex, zeta2x)

call dfftw destroy plan(plan)

call dot21(nx, nxhalf, zeta2x, zetaleft, zeta3)

call dfftw plan dft r2c 1d(plan,nx,zeta3,zeta3complex,FFTW ESTIMATE)

call dfftw execute dft r2c(plan, zeta3, zeta3complex)

call dfftw destroy plan(plan)

zeta3complex = zeta3complex * nx inv

do while (maxval(abs(zetap-zetanew))> 1.d-13)

zetanew = zetap

zetapleft (0) = zetap(0)

do kstep = 1, nx-1

zetapleft(kstep) = zetap(nx-kstep)

end do

call dot21(nx, nxhalf, zetap, zetap, zetap2)

call dfftw plan dft r2c 1d(plan,nx,zetap,zetapcomplex,FFTW ESTIMATE)

call dfftw execute dft r2c(plan, zetap, zetapcomplex)

call dfftw destroy plan(plan)

call dfftw plan dft r2c 1d(plan,nx,zetap2,zetap2complex,FFTW ESTIMATE)

call dfftw execute dft r2c(plan, zetap2, zetap2complex)

call dfftw destroy plan(plan)

zetap2complex = zetap2complex*nx inv

zetapcomplex = zetapcomplex * nx inv

do kstep = 0, nxhalf

zetap2xcomplex(kstep) = Dfft(kstep) * zetap2complex(kstep)
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end do

call dfftw plan dft c2r 1d(plan,nx,zetap2xcomplex,zetap2x,FFTW ESTIMATE)

call dfftw execute dft c2r(plan, zetap2xcomplex, zetap2x)

call dfftw destroy plan(plan)

call dot21(nx, nxhalf, zetap2x, zetapleft, zetap3)

call dfftw plan dft r2c 1d(plan,nx,zetap3,zetap3complex,FFTW ESTIMATE)

call dfftw execute dft r2c(plan, zetap3, zetap3complex)

call dfftw destroy plan(plan)

zetap3complex = zetap3complex * nx inv

do kstep = 0, nxhalf

zetapcomplex (kstep) = Rt(kstep)*zetacomplex(kstep) &

+ St1(kstep) *(zeta2complex(kstep)+zetap2complex(kstep))&

+ St2(kstep) * (zeta3complex(kstep)+ zetap3complex(kstep))

end do

call dfftw plan dft c2r 1d(plan,nx,zetapcomplex,zetap,FFTW ESTIMATE)

call dfftw execute dft c2r(plan, zetapcomplex, zetap)

call dfftw destroy plan(plan)

end do

zetanew = zetap

end subroutine TimeDerivative

subroutine dot21(nx, nxhalf, a, b, result)

implicit none

include ’fftw3.f’

integer :: nx, nxhalf, kstep

double precision , dimension(0: nx-1) :: a, b, a1, b1,result
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double complex, dimension(0: nxhalf) :: acomplex, bcomplex

double complex, dimension(0: nxhalf) :: a1complex, b1complex

integer *8 plan

call dfftw plan dft r2c 1d(plan, nx, a, acomplex, FFTW ESTIMATE)

call dfftw execute dft r2c(plan, a, acomplex)

call dfftw destroy plan(plan)

call dfftw plan dft r2c 1d(plan, nx, b, bcomplex, FFTW ESTIMATE)

call dfftw execute dft r2c(plan, b, bcomplex)

call dfftw destroy plan(plan)

acomplex = acomplex /dble(nx)

bcomplex = bcomplex/dble(nx)

a1complex = acomplex

b1complex = bcomplex

do kstep = floor(nxhalf/2.d0)-1, nxhalf

a1complex(kstep) = 0.d0

b1complex(kstep) = 0.d0

end do

call dfftw plan dft c2r 1d(plan, nx, acomplex, a1, FFTW ESTIMATE)

call dfftw execute dft c2r(plan, acomplex, a1)

call dfftw destroy plan(plan)

call dfftw plan dft c2r 1d(plan, nx, bcomplex, b1, FFTW ESTIMATE)

call dfftw execute dft c2r(plan, bcomplex, b1)

call dfftw destroy plan(plan)
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do kstep = 0, nx-1

result(kstep) = a1(kstep) * b1(kstep)

end do

end subroutine dot21

D.5 Higher order uni-directional model

Main code

PROGRAM HIGHER

!external

implicit none

include ’fftw3.f’

integer, parameter :: nx = 1024

integer, parameter :: nxhalf = ceiling(nx/2.d0)

integer:: mx, mxhalf

double precision, dimension(0:nx-1) :: zeta, zetabi, zeta1

double complex :: Dfft(0:nxhalf)

double complex, parameter :: I = cmplx(0.d0, 1.d0)

double complex :: slope

double precision:: x(0:nx-1),c0,c1,c2,c3, c4, c5, c7, c8, c9

double precision :: rho1,rho2,h1, h2,&

& L, R, stop_time, grav, tnow, K, temp

double precision :: ONE, HALF, SIXTH, tnow1

double precision, dimension(0:nx-1) :: zetaK1, zetaK2, zetaK3, zetaK4

double precision :: RHS1, RHS2

double precision :: hgate = 1.d1, lgate =1.d2, lambda = 1.d-1

integer :: nframe
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character(len = 20) :: nu, nzeta

double precision :: mkframe, timerecord

!internal

integer kstep, tstep

double precision:: pi,dx, dt

integer nt

real, dimension(2) :: tarray1, tarray2

real :: result1, result2

mx = ceiling(nx*2.d0)

mxhalf = ceiling(mx/2.d0)

pi = 4.d0 *datan(1.d0)

L = -2.464d3

R = 2.464d3

!lambda = 0.5

h1 = 14.551541169411323d0

rho1 =0.9998817144855958d0

rho2 = 1.0215548370691494d0

!lambda = 1.0

!h1 = 14.753638180803918d0

!rho1 = 0.9994235006405087d0

!rho2 = 1.0217692795999886d0

!lambda = 0.25

!h1 = 14.321902674392888d0

!rho1 = 1.0009125274217063d0

!rho2 = 1.0211814125745406d0
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!rho1 = 0.999d0

! rho2 = 1.022d0

! h1 = 1.5d1

h2 = 7.7d1-h1

grav = 9.81d2

c0 = dsqrt(grav*h1*h2*(rho2-rho1)/(rho1*h2+rho2*h1))

c1 = -1.5d0*c0*(rho1*h2**2-rho2*h1**2)/(rho1*h1*h2**2+rho2*h1**2*h2)

c2 = c0/6.d0*(rho1*h1**2*h2+rho2*h1*h2**2)/(rho1*h2+rho2*h1)

c3 = 7.d0*c1*c1/(18.d0*c0)-c0*(rho1*h2**3+rho2*h1**3)&

/((h1*h1*h2*h2)*(rho1*h2+rho2*h1))

c4 = (17.d0*c1*c2)/(12.d0*c0)+c0*h1*h2*(rho1-rho2)&

/(12.d0*(rho1*h2+rho2*h1))

c5 = 7.d0*c1*c2/(3.d0*c0) + c0*h1*h2*(rho1-rho2)&

/(6.d0*(rho1*h2+rho2*h1))

c7 = (2.d0*c4-c5)/c1

c8 = c2 + c0*(2.d0*c4-c5)/c1

c9 = c5-c4

stop_time = 8.d1

ONE = 1.d0

HALF = 0.5d0

SIXTH = 1.d0/6.d0

dx = (R-L)/nx

dt = 5.d-5

K = 2.0*pi/(R-L)

nt = ceiling(stop_time/dt)

do kstep = 0, nx-1
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x(kstep) = L + kstep*dx

temp = c2**(1.d0/3.d0)

zeta(kstep)=hgate/4.d0*(dtanh(lambda*(x(kstep)-lgate))&

-dtanh(lambda*(x(kstep)+lgate)))

end do

do kstep = 0,nxhalf

Dfft(kstep) = 2*pi*I/(R-L)*kstep

end do

do kstep = 0, nx-1

x(kstep) = L+dx*kstep

end do

tnow = 0.d0

tstep = 0

mkframe = 2.5d0

timerecord = 0.d0

nframe = 0

nframe = nframe +1

call ETIME(tarray1, result1)

do while ((tnow+dt).le.(stop_time+1d-10) )

tstep = tstep+1

if (tnow+dt > stop_time) then

dt = stop_time-(tnow)

end if

call TimeDerivative(nx,nxhalf,c0, c1, c2, c3, c7,c8,c9,&

dt, zeta, Dfft, zeta1)

zeta = zeta1
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timerecord = timerecord + dt

tnow = tnow + dt

end do

open(21, file = ’zeta_raw.dat’)

do kstep = 0, nx-1

write(21,505) x(kstep), zeta(kstep)

end do

close(21)

call ETIME(tarray2, result2)

print * , ’execution time = ’, tarray2(1)-tarray1(1)

501 format(2048(D30.20,1x),1x)

502 format(D30.20)

503 format(D30.20, 1x, D30.20, 1x, D30.20)

505 format(D30.20, 1x, D30.20,1x)

end program HIGHER

subroutine TimeDerivative(nx,nxhalf, c0, c1, c2, &

c3, c7,c8, c9, dt, zeta, Dfft, zeta new )

implicit none

include ’fftw3.f’

integer :: nx,nxhalf, kstep

double precision :: c0, c1, c2, c3, c7,c8,c9, half, nx inv, dt

double complex, dimension(0:nxhalf) :: Dfft

double precision, dimension(0:nx-1) :: zeta test, zeta, zeta2, zeta3

double precision, dimension(0:nx-1) :: zeta new, zetax, zetax2

double precision, dimension(0:nx-1) :: zetaxx, zetazetaxx, f1
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double complex, dimension(0:nxhalf) :: zetacplx, zetaxcplx, zetaxxcplx

double complex, dimension(0:nxhalf) :: f1cplx, zeta newcplx

double precision, dimension(0:nx-1) :: zetap, zeta2p, zeta3p

double precision, dimension(0:nx-1) :: zetaxp, zetax2p, zetaxxp

double precision, dimension(0:nx-1) :: zetazetaxxp, f1p

double complex, dimension(0:nxhalf) :: zetapcplx, zetaxpcplx

double complex, dimension(0:nxhalf) :: zetaxxpcplx, f1pcplx

double complex, dimension(0:nxhalf) :: St, Rt, zeta testcplx

double complex :: dfft now

integer *8 plan

half = 5.d-1

nx inv = 1.d0/dble(nx)

do kstep = 0, nxhalf

dfft now = Dfft(kstep)

St(kstep) = 1.d0+ c7* dfft now**2&

+ c8 * dt* half * dfft now **3&

+ c0 *dt* half * dfft now

Rt(kstep) = 1.d0+ c7* dfft now**2&

- c8 * dt* half * dfft now **3&

- c0 *dt* half * dfft now

end do

call dot21(nx, nxhalf, zeta, zeta, zeta2)

call dot21(nx, nxhalf, zeta, zeta2, zeta3)

call dfftw plan dft r2c 1d(plan,nx,zeta,zetacplx,FFTW ESTIMATE)

call dfftw execute dft r2c(plan, zeta, zetacplx)

call dfftw destroy plan(plan)
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zetacplx = zetacplx*nx inv

zetaxcplx = 0.d0

zetaxxcplx = 0.d0

do kstep = 0, nxhalf

zetaxcplx(kstep) = Dfft(kstep) * zetacplx(kstep)

zetaxxcplx(kstep) = Dfft(kstep) * zetaxcplx(kstep)

end do

call dfftw plan dft c2r 1d(plan,nx, zetaxcplx, zetax, FFTW ESTIMATE)

call dfftw execute dft c2r(plan, zetaxcplx, zetax)

call dfftw destroy plan(plan)

call dfftw plan dft c2r 1d(plan,nx, zetaxxcplx, zetaxx, FFTW ESTIMATE)

call dfftw execute dft c2r(plan, zetaxxcplx, zetaxx)

call dfftw destroy plan(plan)

call dot21(nx, nxhalf, zetax, zetax, zetax2)

call dot21(nx, nxhalf, zeta, zetaxx, zetazetaxx)

f1 = c1*half *zeta2 + c3 * zeta3 + c9*(zetax2+ 2.d0*zetazetaxx)

call dfftw plan dft r2c 1d(plan,nx, f1 , f1cplx ,FFTW ESTIMATE)

call dfftw execute dft r2c(plan, f1, f1cplx)

call dfftw destroy plan(plan)

f1cplx = f1cplx * nx inv

zetap = 0.d0

zeta test = zeta

do while (maxval(abs(zeta test-zetap))/maxval(abs(zeta test)) > 1.d-13)

zetap = zeta test

call dot21(nx, nxhalf, zetap, zetap, zeta2p)

call dot21(nx, nxhalf, zetap, zeta2p, zeta3p)
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call dfftw plan dft r2c 1d(plan,nx,zetap,zetapcplx,FFTW ESTIMATE)

call dfftw execute dft r2c(plan, zetap, zetapcplx)

call dfftw destroy plan(plan)

zetapcplx = zetapcplx*nx inv

zetaxpcplx = 0.d0

zetaxxpcplx = 0.d0

do kstep = 0, nxhalf

zetaxpcplx(kstep) = Dfft(kstep) * zetapcplx(kstep)

zetaxxpcplx(kstep) = Dfft(kstep) * zetaxpcplx(kstep)

end do

call dfftw plan dft c2r 1d(plan,nx, zetaxpcplx, zetaxp, FFTW ESTIMATE)

call dfftw execute dft c2r(plan, zetaxpcplx, zetaxp)

call dfftw destroy plan(plan)

call dfftw plan dft c2r 1d(plan,nx, zetaxxpcplx, zetaxxp, FFTW ESTIMATE)

call dfftw execute dft c2r(plan, zetaxxpcplx, zetaxxp)

call dfftw destroy plan(plan)

call dot21(nx, nxhalf, zetaxp, zetaxp, zetax2p)

call dot21(nx, nxhalf, zetap, zetaxxp, zetazetaxxp)

f1p = c1*half *zeta2p + c3 * zeta3p + c9*(zetax2p+ 2.d0*zetazetaxxp)

call dfftw plan dft r2c 1d(plan,nx, f1p , f1pcplx ,FFTW ESTIMATE)

call dfftw execute dft r2c(plan, f1p, f1pcplx)

call dfftw destroy plan(plan)

f1pcplx = f1pcplx * nx inv

do kstep = 0, nxhalf

zeta testcplx(kstep) = Rt(kstep)/St(kstep) * zetacplx(kstep) &

&- half*Dfft(kstep)/St(kstep) * dt* (f1cplx(kstep)+ f1pcplx(kstep))
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end do

call dfftw plan dft c2r 1d(plan,nx,zeta testcplx,zeta test,FFTW ESTIMATE)

call dfftw execute dft c2r(plan, zeta testcplx, zeta test)

call dfftw destroy plan(plan)

zeta test = half * (zeta test + zetap)

end do

zeta new = zeta test

end subroutine TimeDerivative

subroutine dot21(nx, nxhalf, a, b, result)

implicit none

include ’fftw3.f’

integer :: nx, nxhalf, kstep

double precision , dimension(0: nx-1) :: a, b, a1, b1,result

double complex, dimension(0: nxhalf) :: acomplex, bcomplex

double complex, dimension(0: nxhalf) :: a1complex, b1complex

integer *8 plan

call dfftw plan dft r2c 1d(plan, nx, a, acomplex, FFTW ESTIMATE)

call dfftw execute dft r2c(plan, a, acomplex)

call dfftw destroy plan(plan)

call dfftw plan dft r2c 1d(plan, nx, b, bcomplex, FFTW ESTIMATE)

call dfftw execute dft r2c(plan, b, bcomplex)

call dfftw destroy plan(plan)

acomplex = acomplex /dble(nx)

bcomplex = bcomplex/dble(nx)
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a1complex = acomplex

b1complex = bcomplex

do kstep = floor(nxhalf/2.d0)-1, nxhalf

a1complex(kstep) = 0.d0

b1complex(kstep) = 0.d0

end do

call dfftw plan dft c2r 1d(plan, nx, acomplex, a1, FFTW ESTIMATE)

call dfftw execute dft c2r(plan, acomplex, a1)

call dfftw destroy plan(plan)

call dfftw plan dft c2r 1d(plan, nx, bcomplex, b1, FFTW ESTIMATE)

call dfftw execute dft c2r(plan, bcomplex, b1)

call dfftw destroy plan(plan)

do kstep = 0, nx-1

result(kstep) = a1(kstep) * b1(kstep)

end do

end subroutine dot21
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