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A mega-analysis of genome-wide association studies
for major depressive disorder
Major Depressive Disorder Working Group of the Psychiatric GWAS Consortium1

Prior genome-wide association studies (GWAS) of major depressive disorder (MDD) have met
with limited success. We sought to increase statistical power to detect disease loci by
conducting a GWAS mega-analysis for MDD. In the MDD discovery phase, we analyzed more
than 1.2 million autosomal and X chromosome single-nucleotide polymorphisms (SNPs) in
18 759 independent and unrelated subjects of recent European ancestry (9240 MDD cases and
9519 controls). In the MDD replication phase, we evaluated 554 SNPs in independent samples
(6783 MDD cases and 50 695 controls). We also conducted a cross-disorder meta-analysis
using 819 autosomal SNPs with P < 0.0001 for either MDD or the Psychiatric GWAS Consortium
bipolar disorder (BIP) mega-analysis (9238 MDD cases/8039 controls and 6998 BIP cases/7775
controls). No SNPs achieved genome-wide significance in the MDD discovery phase, the MDD
replication phase or in pre-planned secondary analyses (by sex, recurrent MDD, recurrent
early-onset MDD, age of onset, pre-pubertal onset MDD or typical-like MDD from a latent class
analyses of the MDD criteria). In the MDD-bipolar cross-disorder analysis, 15 SNPs exceeded
genome-wide significance (P < 5� 10�8), and all were in a 248 kb interval of high LD on 3p21.1
(chr3:52 425 083–53 822 102, minimum P = 5.9� 10�9 at rs2535629). Although this is the largest
genome-wide analysis of MDD yet conducted, its high prevalence means that the sample is still
underpowered to detect genetic effects typical for complex traits. Therefore, we were unable to
identify robust and replicable findings. We discuss what this means for genetic research for
MDD. The 3p21.1 MDD-BIP finding should be interpreted with caution as the most significant
SNP did not replicate in MDD samples, and genotyping in independent samples will be needed
to resolve its status.
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Introduction

Major depressive disorder (MDD) is a genetically
complex trait. The lifetime prevalence of MDD is
B15%.1,2 As a recurrent course is most common,3

MDD is accompanied by considerable morbidity4–6

excess mortality5,7 and substantial costs.8 The World
Health Organization projects MDD to be the second
leading cause of disability by 2020.9

The heritability of MDD is 31–42%,10 although
certain subsets of MDD may be more heritable (for
example, recurrent, early-onset MDD or clinically
ascertained MDD).11,12 The modest heritability of
MDD could reasonably be expected to complicate
attempts to identify genetic loci that confer risk or
protection. However, heritability is not necessarily a
key determinant for the identification of strong
and replicable genetic associations.13 For example,

there have been notable successes in genome-wide
searches14 for susceptibility loci for breast cancer
(heritability B25%), lung cancer (26%), Type 2
diabetes mellitus (26%), Parkinson’s disease (34%),
multiple sclerosis (41%), systemic lupus erythemato-
sus (44%) and age-related macular degeneration
(46%).15–20

The most important determinant of success in
identifying associations for complex traits is the
underlying genetic architecture (that is, the number
of loci and their frequencies, effect sizes, modes of
action and interactions with other genetic loci and
environmental factors). Heritability alone reveals
little about genetic architecture. In the absence of a
detailed understanding of genetic architecture, sam-
ple size and phenotypic homogeneity are the critical
determinants of discovering robust and replicable
genetic associations. Eight genome-wide association
studies (GWAS) for MDD have been published,21–28

with one locus of possible genome-wide signifi-
cance.26 When these studies were planned, there
were few data to guide sample size requirements.
Several had historically notable sample sizes and far
more comprehensive genomic coverage than any prior
study. However, it has become clear that the effects of
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common genetic variants for most complex human
diseases are considerably smaller than many had
anticipated.14 This implies that sample sizes neces-
sary for identification of common genetic main effects
were far larger than could be attained by single-
research groups or existing consortia.

Meta-analysis has thus become essential in human
complex trait genetics. There are now many examples
where meta-analyses combining dozens of primary
data sets have illuminated the genetic architecture of
complex traits such as height,29 body mass,30 Crohn’s
disease31 and Type 2 diabetes mellitus.32 Following
this proven model, we created the Psychiatric GWAS
Consortium (PGC)33,34 to conduct field-wide combined
analyses for MDD as well as ADHD,35 bipolar disorder
(BIP),36 schizophrenia37 and autism. Our goal was to
evaluate the evidence for common genetic variation in
the etiology of MDD using the largest and most
comprehensively genotyped sample hitherto collected.

Materials and methods

Overview
In the discovery phase, we conducted mega-analysis
for MDD using nine primary samples. All groups
uploaded individual genotype and phenotype data to
a central computer cluster, and the PGC Statistical
Analysis Group conducted uniform quality control,
imputation and association analyses. Mega-analysis
and meta-analysis yield essentially identical results
in theory38 and in practice.37 However, mega-analysis
of individual phenotype and genotype data was used
to allow more consistent quality control and analysis,
disentangle the issue of control subjects used by
multiple studies, allow conditional analyses and to
enable efficient secondary analyses. In the replication
phase, we evaluated the top loci in seven indepen-
dent MDD samples and in the PGC BIP mega-
analysis36 given the phenotypic and genetic overlap
between MDD and BIP.39,40 Finally, we conducted
exploratory analyses of MDD sub-phenotypes in an
attempt to index clinical heterogeneity. Most of the
primary genotype data and the results have been
deposited in the NIMH Human Genetics Initiative
Repository (Supplementary Methods).

Samples
Full sample details are given in the Supplementary
Methods. For the discovery phase, we included all
identified primary MDD samples21–25,27,28,41 that con-
ducted genome-wide genotyping ( > 200K single-
nucleotide polymorphisms (SNPs)) on individual
subjects of European ancestry. Cases were required
to have diagnoses of DSM-IV lifetime MDD estab-
lished using structured diagnostic instruments from
direct interviews by trained interviewers (two studies
required recurrent MDD and one recurrent, early-onset
MDD) or clinician-administered DSM-IV checklists.
Most studies ascertained cases from clinical sources,
and most controls were randomly selected from the
population and screened for lifetime history of MDD.

The sample sizes reported here differ from the primary
reports due to different quality control procedures and
apportioning of overlapping controls. We determined
the relatedness of all pairs of individuals using
genotypes of SNPs present on all platforms, and
excluded one of each duplicate or closely related pair.
The discovery mega-analysis consists of 18 759 in-
dependent and unrelated subjects of recent European
ancestry (9240 MDD cases and 9519 controls).

There were two sets of analyses conducted on
additional samples. For MDD replication, we used
meta-analysis to combine the autosomal discovery
results (554 SNPs with P < 0.001) with summary
association results from independent samples42–48

(6783 MDD cases and 50 695 controls). The discovery
SNP results were grouped into regions defined by
linkage disequilibrium using an iterative process after
ranking all SNPs by association P-value: for SNPs with
r2 > 0.2 in a 1 Mb window (based on HapMap3
CEUþTSI), the most strongly associated SNP was
retained. In addition, given the close genetic and
phenotypic relationships between MDD and BIP, we
combined the MDD discovery sample and the PGC BIP
mega-analysis36 to evaluate 819 autosomal SNPs with
P < 0.0001 in either of the separate analyses. (See Sklar
et al.36 for complete description). In effect, we tested for
associations with a more broadly defined mood
disorder phenotype. After resolving overlapping con-
trol samples, there were 32 050 independent subjects
(9238 MDD cases/8039 controls and 6998 BIP cases/
7775 controls).

SNP genotyping
SNP genotyping is described in the Supplementary
Methods and summarized in Supplementary Table S2.
Briefly, all samples were genotyped with SNP arrays
intending to provide genome-wide coverage of com-
mon variation. Imputation was performed within each
study in batches of 300 individuals. Batches were
randomly assigned to keep the same case–control
ratios as in the primary studies. We used Beagle 3.0.4
[ref. 49] with the CEUþTSI HapMap3 data as
reference (410 phased haplotypes)50 to impute
1 235 109 autosomal SNP allele dosages. We had
previously evaluated this approach by masking and
then imputing genotyped loci and found a high
correlation between the genotyped and imputed allele
dosages (Pearson r > 0.999).37

Quality control
Genotyping coordinates are given in NCBI Build 36/
UCSC hg18. For the discovery phase, quality control
was conducted separately for each resolved sample.
SNPs were removed for missingness X0.02, case–
control difference in SNP missingness X0.02, SNP
frequency difference from HapMap3 [ref. 50] X0.15,
or exact Hardy–Weinberg equilibrium test in controls
< 1� 10�6. Subjects were removed for excessive
missingness (X0.02), identical or closely related to
any subject in any sample (p̂> 0.2 based on common
autosomal SNPs) and if there was evidence for
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diverging ancestry. Ancestry was estimated using
multidimensional scaling applied to 8549 SNPs
directly genotyped in all samples and in approximate
linkage equilibrium.

Statistical analysis
We used logistic regression to test the association of
MDD diagnosis with imputed SNP dosages under an
additive model. This test has correct type 1 error with
imputed data.51 Covariates included study indicators
and five principal components reflecting ancestry. For
the MDD replication samples, the top SNP in each
region was tested for association, and fixed-effect
meta-analysis was used for the replication samples,
and for the combination of PGC discovery and
replication data.

Chromosome X
Female sex is an established risk factor for MDD, and
analysis of chromosome X is particularly salient
(although not included in many GWAS). Imputation
using HapMap3 reference genotypes (as in the primary
analysis) was not possible due to persisting difficulties
with the phased chromosome X data, but we were able
to impute using 1000 Genomes Project data.52 Chromo-
some X imputation was conducted for subjects passing
QC for the autosomal analysis and with SNP call rates
> 0.95 for chrX SNPs. SNPs with missingness X0.05 or
HWE P < 10�6 (females) were excluded. Phasing was
conducted using MACH53 in female subjects. Imputa-
tion was performed separately for males and females
using MINIMAC with haplotypes from 381 European
samples from the 1000 Genomes Project as reference
(1.45 million chrX SNPs, but many were monomorphic
in our sample). Chromosome X SNPs in HapMap2 and
HapMap3 with r2

X0.3 were carried forward for further
analysis (122 602 SNPs). Association was tested under
an additive logistic regression model implemented in
PLINK (meta-analysis of male and female association
results) using the same covariates as for the autosomal
analysis.

Secondary analyses
MDD is suspected to have important phenotypic
heterogeneity, and association analyses might yield
clearer findings if clinical features are incorporated
into genetic analyses. Thus, we conducted pre-
defined secondary analyses intended to index plau-
sible sources of phenotypic heterogeneity in MDD
cases. (a) Sex. As the lifetime prevalence of MDD is
approximately two times greater in females,54,55 we
conducted association analyses separately in males
and females to evaluate sex-specific genetic risk
variants. (b) Recurrence and age of onset. As
recurrence and age of onset may index heterogeneity
in MDD,10,56 we analyzed early-onset MDD (p30
years), recurrent MDD (X2 episodes), pre-pubertal
onset MDD (p12 years, see Weissman et al.57) and age
of onset of MDD as a quantitative trait. (c) Symptoms.
As MDD is phenotypically heterogeneous, we ob-
tained MDD symptom data from 88% of all MDD

cases (the nine DSM-IV ‘A’ criteria disaggregated to
code increase and decrease in appetite, weight, sleep
and energy level). Latent class cluster models were fit
to binary responses for these MDD ‘A’ criteria, and
identified three latent classes in MDD cases char-
acterized by weight loss/insomnia, weight gain/
insomnia and hypersomnia (see Supplementary
Methods for more details). The predominant latent
class was consistent with ‘typical’ MDD58,59 and we
analyzed cases indexed by this class.

Results

In the discovery stage, we conducted a GWAS mega-
analysis for MDD in 18 759 independent and unre-
lated subjects of recent European ancestry (9240 MDD
cases and 9519 controls, Table 1). There were
considerable similarities across samples: all subjects
were of European ancestry, all cases were assessed
with validated methods and met DSM-IV criteria for
lifetime MDD, and most controls were ascertained
from community samples and screened to remove
individuals with lifetime MDD (Supplementary
Methods and Supplementary Figures S6–S9).

Table 1 Cases and controls used in discovery and replica-
tion phases

Phase Sample Subjects MDD
case

Control

Discovery GAIN 3461 1696 1765
GenRED 2283 1030 1253
GSK 1751 887 864
MDD2000-QIMR_610 1184 433 751
MDD2000-QIMR_317 1977 1017 960
MPIP 913 376 537
RADIANTþBonn/
Mannheim

2225 935 1290

RADIANT 3213 1625 1588
STAR*D 1752 1241 511

MDD
replication

deCODE 34 229 1067 33 162
GenPod/NEWMEDS 5939 477 5462
Harvard i2b2 902 460 442
PsyCoLaus 2794 1303 1491
SHIP-LEGEND 1806 313 1493
TwinGene 9562 1861 7701
GenRED2/
DepGenesNetworks

2246 1302 944

MDD-BIP PGC MDD 17 277 9238 8039
cross-disorder PGC BIP 14 773 6998 7775

Totals Discovery 18 759 9240 9519
MDD replication 57 478 6783 50 695
MDD-BIP cross-
disorder

32 050 16 236 15 814

Abbreviations: BIP, bipolar disorder; MDD, major depres-
sive disorder; PGC, Psychiatric GWAS Consortium.
Sample acronyms are defined in the Supplementary
Methods. Sample sizes differ from the primary publications
due to varying quality control procedures and re-allocation
of controls that were used in multiple studies.
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An overview of the results is in Figure 1. The
quantile–quantile plot shows conformity of the
observed results to those expected by chance.
The overall l [ref. 60] (the ratio of the observed
median w2 to that expected by chance) was 1.056 and
l1000 was 1.006 (that, l rescaled to a sample size of
1000 cases and 1000 controls).61 The Manhattan plot
depicts the association results in genomic context,
and no region exceeded genome-wide significance
(P < 5� 10�8).62 We conducted imputation with Hap-
Map2 [ref. 63] and 1000 Genomes Project data52 in
addition to HapMap3 and obtained similar genome-
wide association results.

The minimum P-values for the main analysis were
at rs11579964 (chr1: 222 605 563 bp, P = 1.0�10�7)
and rs7647854 (chr3:186 359 477 bp, P = 6.5�10�7;
Supplementary Tables S16 and S17). Bioinformatic
analyses of 201 SNPs with P < 0.0001 and the 1655
SNPs in moderate linkage disequilibrium (LD, r2 > 0.5)
showed no overlap with literature findings in the
NHGRI GWAS catalog,14 with transcripts differen-
tially expressed in post-mortem brain samples of
individuals with MDD,64 or with SNPs that were
genome-wide significant or notable in the PGC
association analyses of ADHD, BIP, or schizophrenia.
We noted that a few of these 201 SNPs were ±20 kb of
genes previously studied in MDD (ADCY9 and
PDLIM5),65 or notable in prior hypotheses of the
etiology of psychiatric disorders (GRM7, HTR7 and
RELN).

In the analyses of chrX, no SNP achieved genome-
wide significance in analysis of all samples or in
separate analyses of females and males. The most
significant SNP across all analyses was rs12837650 in
the female-only analysis (P = 5.6�10�6).

In the MDD replication phase, 554 SNPs with
P < 0.001 from the discovery mega-analysis were
evaluated in independent samples totaling 6783
MDD cases and 50 695 controls (Table 1). For these
SNPs, the replication samples did not produce
logistic regression b coefficients in the same direc-
tions as the discovery analysis more frequently than
expected by chance (sign test, P = 0.05). No SNP
exceeded genome-wide significance for a joint analy-
sis of the discovery and replication samples (Supple-
mentary Table S18). The minimum P-value was for
rs1969253 (P = 4.8�10�6, chr3:185 359 206), located
in an intron of the disheveled 3 gene (DVL3). Given
the probable etiological heterogeneity of MDD, we
also conducted replication analyses of subtypes of
MDD. For analyses restricted to female cases and
controls, the direction of effects tended to be
consistent between the discovery and replication
samples (sign test, P = 0.006) although no SNP
neared genome-wide significance (minimum
P = 4.8�10�6 at rs1969253, chr3: 185 359 206). For
male cases and controls, the sign test was not
significant (P = 0.17), and no SNP was genome-wide
significant (minimum P = 3.8� 10�7 at rs2498828,
chr14:91 491 028). For recurrent MDD, there was
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Figure 1 Overview of results from the discovery genome-wide association study mega-analysis for major depressive
disorder. The inset shows the quantile–quantile plot (observed by expected P-values on the �log10 scale) showing conformity
of the observed results to expectations under the null. The main part of the figure shows the Manhattan plot (�log10 of the
P-value by genomic location) of the association results in genomic context. No region exceeded genome-wide significance in
the discovery sample.
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greater evidence of consistency of effects between
the discovery and replication samples (sign test,
P = 0.006), and the minimum P-value was 1.0�10�6

at rs2668193 (chr3:185 419 374).
In the MDD-BIP cross-disorder analyses, we evalu-

ated support for a broader mood disorders phenotype.
Due to the need to resolve overlapping subjects, the
sample sizes and P-values differ from the numbers
given above. There were 32 050 independent subjects
(9238 MDD cases/8039 controls and 6998 BIP cases/
7775 controls), 160 SNPs with P < 0.0001 in the MDD
discovery phase and 659 SNPs in the BIP discovery
phase (no SNP had P < 0.0001 for both MDD and BIP).
First, in aggregate, SNPs selected from the BIP
discovery phase showed evidence of replication in
MDD (65 of 100 independent SNPs had logistic
regression b-coefficients in the same direction in both
BIP and MDD, sign test, P = 0.0018). However, the
reverse comparison was near chance level (46 of 76
independent SNPs selected from MDD analyses had
consistent effects in BIP, sign test P = 0.042). Second, in
the combined analysis of these 819 SNPs, 15 exceeded
genome-wide significance (P < 5� 10�8) and all
were in a 248 kb interval of high LD on 3p21.1
(chr3:52 425 083–53 822 102, minimum P = 5.9� 10�9

at rs2535629; Supplementary Table S19, Supplemen-
tary Figure S20). The 116 SNPs in this region were all
selected from the BIP sample (P < 0.0001), and none
from the MDD sample. The region of strongest signal
contained 84 SNPs from rs2878628 to rs2535629
(chr3:52 559 755–52 808 259). This region contains
multiple genes: PBRM1 (chromatin remodeling and
renal cell cancer), GNL3 (stem cell maintenance and
tumorgenesis), GLT8D1, SPCS1, NEK4, the ITIH1-
ITIH3-ITIH4 gene cluster (possibly involved in cancer),
four micro-RNA and three small nucleolar RNA genes.
This region had genome-wide significant findings in

three prior GWAS: rs1042779 (chr3:52 796 051) for
BIP,66 rs736408 (chr3:52 810 394) for a combined
BIP-schizophrenia phenotype36 and rs2251219
(chr3:52 559 827) for a combined MDD-BIP pheno-
type67 (although a reanalysis suggested most of the
signal arose from the BIP group).68 The PGC analyses
include nearly all subjects in the prior reports, and
thus cannot be considered independent evidence. As
discussed below, we advise caution in interpreting this
result.

We conducted a set of pre-planned secondary
analyses using the discovery samples. These analyses
presume that observable clinical features allow the
ability to index etiological genetic heterogeneity. The
clinical features we chose—sex, age of onset, recur-
rence and typicality—had a rationale from genetic
epidemiological studies, and were comparably as-
sessed in most of the discovery samples (Supplemen-
tary Methods). The results are summarized in Table 2,
and detail on regions with P < 1� 10�5 provided in
Supplementary Table S21. Parallel analyses of chrX
SNPs for these secondary phenotypes also failed to
identify convincing associations. Given the level of
resolution afforded by our sample size and genotyp-
ing, none of these clinical features successfully
indexed the clinical heterogeneity of MDD (all l1000

values were small and no P-value approached
genome-wide significance). However, we note that
the total samples available for these analyses were
small for a GWAS of a complex and modestly
heritable trait. Moreover, as described above, SNPs
identified in analyses by sex and for recurrent MDD
did not yield genome-wide significance in replication
in external samples.

Finally, under the assumptions that MDD is highly
polygenic and that power is not optimal,69,70 we
conducted risk profile analyses using the MDD

Table 2 Summary of secondary analyses

Secondary analysis Cases Controls l1000 Best finding

Primary analyses as reference
Discovery phase 9240 9519 1.008 rs11579964, chr1:222,605,563, P = 1.0� 10�7

Combined discovery plus
replication

16 023 60 214 NA rs1969253, chr3:185,359,206, P = 3.4� 10�6

(a) By sex
Females 6118 5366 1.005 rs1969253, chr3:185,359,206, P = 1.0� 10�7

Males 3122 4153 0.999 rs7296288, chr12:47,766,235, P = 2.3� 10�7

(b) Onset and recurrence
Recurrent 6743 9519 1.006 rs4478239, chr4:188,428,300, P = 4.7� 10�7

Recurrent early onset (p 30 years) 4710 9519 1.007 rs1276324, chr18:19,172,417, P = 6.7� 10�7

Childhood onset (p 12 years) 774 6077 1.015 rs4358615, chr6:27,106,546, P = 2.3� 10�6

Age of onset as a continuous trait 8920 — 0.998 rs16948388, chr17:45,242,175, P = 1.0� 10�6

(c) Sub-type analysis
Latent class 1 (weight loss and insomnia) 3814 9519 1.007 rs9830950, chr3:61,097,358, P = 1.0� 10�7

l1000 is the genomic inflation factor scaled to a constant sample size of 1000 cases and 1000 controls. Age of onset analyzed
using a square root transformation.
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discovery phase samples. We split these samples into
two sets and used 80% to develop a risk profile to
predict case–control status in the remaining 20% of
the samples (Supplementary Methods). These ana-
lyses showed a modest (R2 = 0.6%) but highly sig-
nificant (P < 10�6) predictive capacity.

Discussion

This is the largest and most comprehensive genetic
study of MDD. There were 18 759 subjects in the MDD
discovery phase, 57 478 subjects in the MDD replica-
tion phase and 32 050 subjects in cross-disorder
analyses of MDD and BIP. Analyses included the
primary phenotype of MDD, three sets of autosomal
imputation data (HapMap3, HapMap2 and 1000
Genomes), analysis of chrX, and multiple sub-pheno-
types selected based on prior epidemiological and
genetic epidemiological studies (Table 2).

The primary finding of this paper is that no locus
reached genome-wide significance in the combined
discovery and replication analysis of MDD. Our
results are consistent with null results from other
MDD meta-analyses using subsets of the present
sample.22,23,25,28 The risk profile analyses are consis-
tent with the presence of genetic effects, which our
analysis was underpowered to detect. Although not
significant, several analyses (that is, MDD, females-
only and recurrent MDD) pointed at a region on
chr3:185.3 Mb near the gene (DVL3) encoding the
Wnt-signaling phosphoprotein disheveled 3. DVL3
transcripts are decreased in the nucleus accumbens of
individuals with MDD71 and are overexpressed in the
leukocytes of individuals reporting social isolation,72

and the DVL3 protein product is upregulated in
rats after treatment with antipsychotics.73,74 The
chr3:185.3 Mb region also contains several serotonin
receptors (HTR3D, HTR3C and HTR3E). However,
none of these analyses were strongly compelling.

We advise caution in interpreting the evidence for
association of SNPs on 3p21.1 with a broad mood
disorder phenotype based on the combined PGC MDD
and BIP discovery samples (minimum P = 5.9�10�9

at rs2535629, chr3:52808259). Evidence to date
suggests that this locus is associated with BIP66 and
schizophrenia,36 and an even broader association was
suggested by a PGC meta-analysis of MDD, BIP,
schizophrenia, ADHD and autism. This separate
PGC analysis included nearly all of the samples
reported here, and the top finding was again for
rs2535629 (P = 2.5�10�12).75 The BIP sample made
the strongest contribution to the combined analysis
(OR = 1.15) followed by schizophrenia (OR = 1.10),
MDD (OR = 1.10), ADHD (OR = 1.05) and autism
(OR = 1.05). Although a five-disorder model was
statistically the most likely and significant hetero-
geneity of ORs across disorders was not detected, the
MDD replication data reported here raise some
questions whether MDD also has an association in
this region. We obtained MDD replication data for two
SNPs on 3p21.1 (Supplementary Table S18), and

observed no additional support for association for
rs2535629 (discovery P = 0.0001, replication P = 0.56,
combined P = 0.002) or rs3773729 (discovery
P = 0.00022, replication P = 0.022 with different direc-
tion of association, combined P = 0.0095). Similarly,
replication samples for the PGC BIP study36 provided
little additional evidence for two SNPs in this region
(rs736408 and rs3774609). In contrast, stronger
evidence for association was observed in the PGC
SCZ study after adding data from replication samples
(rs2239547, chr3:52 830 269; discovery P = 2.2�10�6,
replication P = 0.003, combined P = 6� 10�8).37 The
PGC analyses reported here include most samples
used in previous reports of genome-wide significant
association in this region for BIP,66 BIP-SCZ36 and
MDD-BIP,67 underscoring the need for analysis of
independent samples.

Thus, this locus has produced genome-wide sig-
nificant evidence for association to BIP,66 with
evidence for broader set of associated phenotypes
(especially SCZ).36,75 The inconsistency of results in
large MDD and BIP replication samples suggests that
the current finding should be viewed with caution. If
specific genetic variants can be identified that under-
lie the BIP association in this region, it will be
possible to evaluate their degree of association with
other phenotypes including MDD. A continuing
challenge in this field is the differentiation between
true pleiotropy (genetic risk factors associated with
distinct phenotypes) versus diagnostic misclassifica-
tion (phenotypic overlap in cases with different
genetic risk factors, leading to diagnostic ‘error’).
There is a robust and evolving literature in psychia-
tric genetic epidemiology regarding the degree of
independence versus co-segregation of current diag-
nostic categories, as well as the occurrence and
familial risks of cases with mixed syndromes and
changes in clinical syndromes over time. It is likely
that analyses of large-scale genomic data will provide
new perspectives on these issues.

On the whole, these results for MDD are in sharp
contrast to the now substantial experience with
GWAS for other complex human traits. GWAS has
been a widely applied ( > 860 studies) and remarkably
successful technology in the identification of > 2200
strong associations for a wide range of biomedical
diseases and traits.14 The vast majority of GWAS with
sample sizes > 18 000 found at least one genome-wide
significant finding (178/189 studies, 94.2%),14 and yet
we found no such associations for MDD. What
implications do these null results have for research
into the genetics of MDD? Why might the results have
turned out this way? We frame our discussion around
a series of implications and hypotheses for future
research.

Caveat: genome coverage
The genotyping chips used by the primary studies
had good coverage of common variation across the
genome. It is possible that genetic variation important
in the etiology of MDD was missed if LD was

MDD GWAS mega-analysis
MDD working group of the PGC

502

Molecular Psychiatry



insufficient with genotyped variants. In particular, we
had suboptimal or poor coverage of uncommon
variation (MAF 0.005–0.05), and we have not yet
analyzed copy number variation (PGC analyses of
copy number variants are underway). In addition, the
discovery studies used eight genotyping platforms,
and it is possible that causal common variation was
missed because not all platforms had good coverage
in the same regions. However, these caveats should be
interpreted in the context of the many successful
GWAS meta-analyses that faced similar limitations.

Implication: exclusions
For the phenotype of MDD, we can exclude combina-
tions of MAF and effect size with 90% power. The
exclusionary regions are genotypic relative risks
(GRRs) X1.16 for MAF 0.30–0.50, X1.18 for MAF
0.20–0.25, X1.21 for MAF 0.15, X1.25 for MAF 0.10
and X1.36 for MAF 0.05. The technologies we used
for genotyping probably captured the more common
variation well, but were progressively less compre-
hensive at lower MAF. These exclusion GRRs equate
to a variance in liability of B0.5%. Since this study
was conceived, we have gained considerable knowl-
edge about the likely effect sizes of variants con-
tributing to common complex disease. Therefore,
these exclusion architectures are not unexpected.

Implication: future sample sizes
Association studies in psychiatry have traditionally
had small sample sizes ( < 1000 total subjects). For
even a modest amount of genotyping in a candidate
gene (10 SNPs), 90% power to detect a genotypic
relative risk of 1.16 at MAF 0.30 requires 3600 cases
and 3600 controls. It is possible to speculate that
larger genetic effects exist at smaller MAF (0.005–
0.05). Investigators, reviewers and editors need to be
cognizant of these requirements, as smaller samples
may be difficult to interpret due to inadequate power.

Hypothesis: suboptimal phenotype
MDD is defined descriptively without reference to any
underlying biology, biomarker or pathophysiology.76,77

Genetic epidemiological studies have suggested that
subtypes of MDD might be more familial or have
higher heritability (for example, recurrent MDD,10

recurrent early-onset MDD11 and clinically ascertained
MDD12). It is possible that well-powered genetic
studies of these less common and arguably more
heritable forms of MDD would have greater success.
However, a sizable fraction of our cases were from
hospital sources and our analyses of recurrent MDD
and recurrent early-onset MDD were unrevealing,
although these observations are qualified by the
smaller sample sizes. The selection of a phenotype
for genetic studies presents a dilemma for MDD
researchers: larger samples which are more represen-
tative of the population can be achieved for broadly
defined MDD, whereas restricted phenotypes may be
more familial but are more difficult to recruit in large
numbers from the population. Some other forms of

MDD can only be defined using methods that are
difficult to operationalize in large samples (for exam-
ple, extensive clinical interviews, biological assays like
repeated hormone measures or brain imaging).

Hypothesis: MDD is particularly heterogeneous
An early criticism of GWAS meta-analysis was that
combining samples from multiple sites to increase
sample size would introduce crippling heterogeneity.
This concern was not borne out by experience.
Indeed, the number of significant associations has
increased as more individual studies have been
combined using meta-analysis for other heteroge-
neous diseases such as Type 2 diabetes mellitus,32

inflammatory bowel disease78 and multiple can-
cers79,80 along with anthropometric traits like height29

and body mass.30 It is possible that MDD might be
exceptional, and have greater clinical and etiological
heterogeneity, as well as non-genetic phenocopies.
The different endorsement rates of the MDD criteria
between cohorts may support this conjecture (Sup-
plementary Table S12). Higher heterogeneity implies
reduced statistical power as the genetic effect size
distribution will be diluted. Higher heterogeneity—
that is, many different ‘types’ of MDD—would suggest
that identifying more optimal MDD-related pheno-
types may be a practical step forward if adequate
sample sizes could be achieved.

Hypothesis: MDD has a divergent genetic architecture
The unquestionable success of GWAS in identifying
strong and replicable associations for so many human
diseases is intriguing given that the additive logistic
regression model generally used is rudimentary. The
dependent variable is disease status (1 = yes, 0 = no),
the continuous independent variable is a SNP
genotype (coded as the number of copies of the minor
allele or as the imputed allelic dosage, 0–2), plus
covariates like principal components to adjust for
ancestry. It is possible that MDD is distinctive, and
that the additive logistic model is not an adequate
approximation of the genetic architecture of MDD (see
Kohli et al.26). There are numerous alternative genetic
architectures, although many are at least partly
detectable using an additive model.

There has been considerable speculation that gene–
environment interactions are particularly salient for
MDD. It is possible that MDD can only be understood
if genetic and environmental risk factors are modeled
simultaneously. The most prominent example for
MDD is the moderation of environmental stress by
genetic variation in a functional polymorphism near
the serotonin transporter (5-HTTLPR).81 As in the
initial report in 2003, some evidence has supported
this GxE interaction82,83 other analyses have not84,85

and the original finding (from a longitudinal study in
Dunedin, New Zealand) did not replicate in an
independent longitudinal study in Christchurch,
New Zealand.86 A practical issue is again the tradeoff
between relatively inexpensive, cross-sectional as-
sessments of MDD case and control status and the
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detailed longitudinal data required to accurately
characterize environmental stressors.

Hypothesis: insufficient power
Although this is one of the largest GWAS analyses
ever conducted in psychiatry (second only to the PGC
schizophrenia study),37 the sample size may still
have been too small. The very small but highly
significant variance explained in the polygenic risk
score analyses (P < 10�6 testing one hypothesis) is
consistent with a hypothesis of insufficient power in
this study.

The overlapping hypotheses listed above imply that
an association study for MDD has less power than for
studies of many other complex genetic disorders.
However, even if the hypotheses listed above were not
the contributing factors, we may still conclude that
insufficient power underpins the dearth of results
from this mega-analysis by considering the epidemiol-
ogy of MDD. MDD is highly prevalent in the popula-
tion, implying that cases are less extreme in the
population compared with the controls and therefore
larger sample sizes are required. For example, we have
calculated that sample sizes 2.4 times larger are
needed for GWAS of MDD (prevalence 0.15) compared
with schizophrenia (prevalence 0.007).25,87 Further-
more, if we assume as a first approximation that the
number and frequency distribution of risk alleles is
the same for MDD and schizophrenia, then samples
sizes five times larger are needed to account for the
lower heritability of MDD (0.37)10 compared with
schizophrenia (0.81),88 implying lower effect sizes at
each locus (see Wray et al.25 and Yang et al.87 for
details). Obtaining a total sample size on the order of
100 000 MDD cases plus controls would require a
significant investment for ascertainment, phenotyp-
ing, DNA collection and genotyping, but could be
accomplished using national registers or via electronic
medical records of large health care organizations.
Such sample sizes have been achieved in studies of
quantitative traits and yielded large numbers of
genome-wide significant results.29,30

Conclusion

This report contributes important new data about the
nature of MDD.33 Unlike a large number of other
GWAS that provide precious etiological clues, our
analyses are more informative about what MDD is not.
The path to progress is likely to be more difficult for
MDD, but there are a number of rational next steps.
We have offered some ideas about how progress might
be achieved. The PGC is conducting GWAS meta-
analyses across ADHD, autism, BIP, MDD and schizo-
phrenia, and these very large analyses could identify
genetic variants that predispose or protect to psychia-
tric disorders in general, and thus provide key initial
findings that could be used to disentangle the etiology
of MDD. Analysis of copy number variation has
provided important leads for autism and schizophre-
nia, and might prove informative for MDD.
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