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ABSTRACT

Elizabeth Koehler Rowley: Comparison of Variable Selection Methods
(Under the direction of Annie Green Howard and Chirayath Suchindran)

Use of classic variable selection methods in public health research is quite common. Many

criteria, and various strategies for applying them, now exist including forward selection,

backward elimination, stepwise selection, best-subset selection and so on, but all suffer from

similar drawbacks. Chief among them is a failure to account for the uncertainty contained in

the model selection process. Ignoring model uncertainty can cause several serious problems.

Variance estimates are generally underestimated, p-values are generally inflated, prediction

ability is overestimated, and results are not reproducible in another dataset.

Modern variable selection methods have become increasingly popular, especially in

applications of high-dimensional or sparse data. Some of these methods were developed to

address the short-comings of classic variable selection methods, such as backward elimination

and stepwise selection methods. However, it remains unclear how modern variable selection

methods behave in a classical, meaning non-high-dimensional, setting.

A simulation study investigates the estimation, predictive performance and variable selec-

tion capabilities of three representative modern variable selection methods: Bayesian model

averaging (BMA), stochastic search variable selection (SSVS), and the adaptive lasso. These

three methods are considered in the setting of linear regression with a single variable of

interest which is always included in the model.

A second simulation study compares BMA to classical variable selection methods, in-

cluding backward elimination, two-stage method, and change-in-effect method in the setting

of logistic regression. Additionally, the data generated in both simulation studies closely
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mimic a real study and reflect a realistic correlation structure between potential covariates.

Sample sizes ranging from 150 to 20000 are investigated. BMA is demonstrated in an example

building a predictive model using data from the China Health and Nutrition Survey.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

Statistical models are a fundamental tool for the public health researcher. Successful

analysis certainly depends on studying the appropriate group of patients, selecting the correct

model family, and accurately interpreting the results. However, selecting the variables to

include in the model is crucial not only for answering the scientific question, but variable

selection is also critical in understanding the replicability of the conclusions. This dissertation

explores the effects of modern and classical variable selection techniques relating to three

central goals of statistical models: effect estimation, outcome prediction, and understanding

variable relationships.

In the 1970s, several statistics were introduced for the purpose of selecting between

competing models including Akaike Information Criterion (AIC)(Akaike 1974), Mallow’s

Cp (Mallows 1973), and Bayesian Information Criterion (BIC) (Schwarz et al. 1978). Many

more criteria, and various strategies for applying them now exist including forward selection,

backward elimination, stepwise selection, best-subset selection and so on, but all suffer from

similar drawbacks. Chief among them is a failure to account for the uncertainty contained

in the model selection process. Considering multiple models and then proceeding with the

selected model as if it were known to be the correct model can cause several serious problems.

Variance estimates are generally underestimated, p-values are generally inflated, prediction

ability is overestimated, and results are not reproducible in another dataset (Harrell 2001,
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Viallefont et al. 2001, Sun et al. 1996, Hurvich and Tsai 1990).

Model uncertainty can be appropriately represented if estimates from every model consid-

ered are somehow accounted for (Buckland et al. 1997). Bayesian model averaging (BMA)

provides an opportunity for exploring many possible models while appropriately accounting

for the uncertainty surrounding variable selection (Draper 1995, Raftery 1995, Raftery et al.

1997, Hoeting et al. 1999). BMA is only one of several statistical methods developed for

appropriately accounting for model uncertainty but has the advantage of providing the best

predictive qualities (George 2000). Stochastic search variable selection (SSVS) is a Bayesian

variable selection method initially proposed as a clever way to focus on promising subsets of

variables (George and McCulloch 1993). Although both methods have been applied in other

fields, methods which account for model uncertainty have yet to see much use in public health

(Walter and Tiemeier 2009).

Large population studies typically contain many related variables and selecting between

these related variables can be quite challenging. Failure to acknowledge model uncertainty

can hinder the public health researcher’s ability to coalesce seemingly disparate results from

multiple studies of the same scientific question into knowledge. According to a study by

Walter and Tiemeier (2009) of the articles presented in American Journal of Epidemiology,

Epidemiology, European Journal of Epidemiology, and International Journal of Epidemiology

in 2008, 27.7% of authors used only prior knowledge to build their model, 19.7% used a

form of stepwise methods, 14.7% used change in effect methods, and 3% used other methods

such as propensity scores or principal components. None of the 300 articles reviewed used

ridge regression or shrinkage methods, while a 35% did not disclose their model building

strategy, rendering their results uninterpretable. This report suggests methods which directly

account for model uncertainty, such as BMA, are either unknown or not easily accessed by

those publishing in public health journals.

This dissertation presents a set of simulations to compare BMA with other variable
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selection methods both modern (SSVS and adaptive lasso) and classic (backward elimination,

two-stage method, and change-in-effect). Variable selection methods are compared on their

abilities to estimate a coefficient, to predict an outcome, and to select variables belonging in

the true model. These methods are applied to linear and logistic regression in a study where

a single variable of interest exists in the presence of several correlated potential covariates.

BMA is also used in an applied setting to demonstrate its use and its advantages. In these

comparisons and example, this work aims to make BMA better known and more accessible to

public health researchers.

1.2 Some Modeling Challenges in the China Health and Nutrition Survey

1.2.1 About CHNS

The China Health and Nutrition Survey (CHNS) collected health data in 361 communities

(15 provinces and autonomous cities/districts of Beijing, Chongqing, Guangxi, Guizhou, Hei-

longjiang, Henan, Hubei, Hunan, Jiangsu, Liaoning, Shaanxi, Shandong, Shanghai, Yunnan,

and Zhejiang) throughout China in ten survey rounds from 1989 to 2015. Using a multistage,

random cluster design, a stratified probability sample was used to select counties and cities

stratified by income and urbanicity. Communities and households were then randomly selected

from these strata. Survey procedures have been described elsewhere (Popkin 2010). The study

was approved by the Institutional Review Board at the University of North Carolina at Chapel

Hill, the China-Japan Friendship Hospital, the Ministry of Health and China, and the Institute

of Nutrition and Food Safety, China Centers for Disease Control. Participants gave informed

consent.

The most obvious challenge of using CHNS in modeling is the shear number of variables

available. CHNS records very detailed information about a participant’s diet, health, socioe-

conomic situation, physical activity and community which leave the investigator with tens

of thousands of variables available for study. It would not be hard to develop a model which

3



suffered from collinearity or over-parameterization.

1.2.2 Predicting Visceral Adipose Tissue

A more specific challenge arises from a particular scientific interest. There is heterogeneity

in the metabolic risk of obesity, some obese individuals are at very high metabolic risk,

while others are not and being able to predict people who fall in this category is critical

for targeting intervention and for understanding the health of a population. While there is

debate about which depot of fat may be causally responsible for metabolic complications

of obesity (Fabbrini et al. 2009, Klein 2004), visceral fat has been shown to be associated

with metabolically abnormal obesity (Pouliot et al. 1992, Banerji et al. 1995, Gastaldelli

et al. 2002). Visceral fat has stronger associations with cardio-metabolic diseases than BMI

(Wajchenberg 2000, Fontana et al. 2007, Saito et al. 2012, Beaumont et al. 2016), the standard

measure of obesity.

Visceral adipose tissue (VAT) can be expensive to measure and may not be historically

available in large population studies. Computed tomography (CT) and magnetic resonance

imaging (MRI) are considered the gold standard of VAT measurement (Rankinen et al. 1999,

Seidell et al. 1990, Koester et al. 1992, Ross et al. 1992, Van der Kooy et al. 1993). Dual-

energy x-ray absorptiometry (DXA) whole body scans have been suggested as an alternative

(Snijder et al. 2002, Bertin et al. 2000, Direk et al. 2013). None of these measuring techniques

are feasible in large population studies. Instead, a variety of anthropometric measures have

been suggested as indices of VAT. Waist circumference (Pouliot et al. 1994, Grundy et al. 2013,

Ross et al. 1996) and waist-to-hip ratio (Ashwell et al. 1985, Rankinen et al. 1999) have been

found to correlate with visceral fat. Body mass index (BMI) is used to define obesity and is

commonly used in clinical and epidemiological studies (Smalley et al. 1990, Spiegelman et al.

1992). Other measures considered with varying success in multivariable models have included

BMI (Janssen et al. 2002, Goel et al. 2008), waist-to-height ratio (Swainson et al. 2017), hip

4



circumference (Goel et al. 2008), conicity index (Pinho et al. 2017), sagittal diameter (Pinho

et al. 2017), neck circumference (Pinho et al. 2017). Investigating the predictive ability of

more readily accessible anthropometric and demographic measures in a multivariable model is

an important step in exploiting the richness of existing population studies to better understand

the role of visceral fat in the development of metabolically abnormal obesity. Further, a

predictive model could help establish better identification of metabolically abnormal obesity

in a clinical setting.

1.3 Notation

1.3.1 Linear Model Review

To better understand the competing methods of variable selection, we need to first review

linear models. Linear models are devised to investigate the relationship between the response,

Yi and the explanatory variables xi0, . . . , xip. Assume there are n subjects, i = 1 . . . , n, with p

variables recording their traits. A linear model is of the form

Yi = β0 + β1φ1(Xi1) + . . . + βpφp(Xip) + εi (1.1)

εi ∼ N(0, σ2) (1.2)

Note, φ1, . . . φM , can be nonlinear functions. The predicted values of Y are denoted and are

defined as

Ŷi = β̂0 + β̂1φ1(Xi1) + . . . + β̂pφp(Xip) (1.3)

5



where β̂j are the estimates which minimize the squared error, also called the residual sum of

squares, RSS.

RSS =
n

∑
i=1

(Yi − β̂0 − β̂1φ1(Xi1) − . . . − β̂pφp(Xip))2 (1.4)

For convenience, we will use matrix notation as shown below.

Y = (Y1, . . . , Yn)′ (1.5)

Xi = (Xi1, . . . ,Xip) (1.6)

X = (X1, . . . ,Xn)′ (1.7)

β = (β0, . . . , βm)′ (1.8)

Y
n×1

= X
n×p

β
p×1

+ ε
n×1

(1.9)

Continuing with the matrix notation, the estimates of β, predicted values and RSS are shown.

β̂ = (X′X)−1X′Y (1.10)

Ŷ =Xβ̂ (1.11)

RSS = ∥Y − Ŷ∥2 (1.12)

Ideally, we would use every available variable in our model, but we are often limited by n or

run into problems where two or more variables are trying to represent the same concept, called

collinearity. In very large studies, where sample size poses no real limitation on modeling,

we are still limited by our ability to understand and draw conclusions from a very large and

complicated model and can benefit by introducing some parsimony to the model.
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CHAPTER 2: LITERATURE REVIEW

It is helpful to review types of modeling error. We the describe the various variable

selection strategies used in this dissertation. Lastly, we examine existing comparisons and

critiques of these methods.

2.1 Defining Modeling Error

In order to be able to determine an appropriate parsimonious model, it is useful to consider

ways to quantify model error beyond the RSS. Here we define modeling error, ME, and

prediction error, PE. Consider two independent samples drawn from a single population,

sample A and sample B. Suppose we use sample A to build a model and sample B to examine

the model’s prediction ability (Seber and Lee (2003)).

YA
′ = (YA1, . . . , YAn) (2.1)

YB
′ = (YB1, . . . , YBm) (2.2)

Again, Y represents the response and we assume YA and YB have covariance matrices of

σ2In and σ2Im respectively. Let X represent the covariates with X ′

ai and X ′

bi as (p + 1) × 1

vectors with the first entry equal to 1.
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XA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X ′

a1

⋮

X ′

an

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

XB =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X ′

b1

⋮

X ′

bm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.3)

The least squares estimate of model based on sample A is β̂A = (XA
′XA)−1XA

′YA.

Using these estimates, we can determine predicted values for YB, YB
∗ =XBβ̂A. We define

prediction error, PE, in the way Seber and Lee do, as the expectation with respect to sample B

of the sum of the squared errors.

PE = EYB
[
n

∑
i=1

(YBi −X ′

biβ̂A)2] (2.4)

= nσ2 +
n

∑
i=1

(EYB
[YBi] −X ′

biβ̂A)2

In this way, the prediction error is seen as a function of the underlying variability of the data,

mσ2, and a term which describes how well the model fits the data, which we define as model

error or ME. Because sample A and sample B are from the same population and further have

identical probability structures, we can further simplify ME. For example, let XA =XB which

implies n =m and E[YA] = µA = µB. Define ε =YA − µA and P =XA(X′

AXA)−1X′

A.

ME =
n

∑
i=1

(µA −X ′

aiβ̂A)2 (2.5)

= µ′(In − P )µ + ε′Pε
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The expected value for ME is

E [ME] = µ′(In − P )µ + σ2k (2.6)

=
n

∑
i=1

(µ −E [XAβ̂A])2 + σ2tr(P ) (2.7)

= TotalBias2 + TotalV ariance (2.8)

Further, when XA =XB the expected prediction error is a sum of E [nσ2] and E [ME].

E [PE] = (n + p + 1)σ2 + TotalBias2 (2.9)

From these we see that adding variables to a model will affect our expected errors in a

variety of ways. As we add more variables, our total variance will increase as p increases,

while total bias should decrease unless the new variables linearly depend on the old. The

model with the lowest expected ME will also have the lowest expected PE. Including all

possible variables can indeed lead to poor prediction qualities. Deciding weather unbiased

estimates or better prediction is desired will be key to determining which variable selection

method to use.

2.2 Sequential Testing Techniques: Forward, Backward, and Stepwise

Sequential testing techniques in variable selection are data-driven methods of developing

a model. As the name suggests, this method consists of steps beginning with either the full

model, one which includes all possible variables and steps backward to a concise reduced

model, or of steps beginning with a null model, one which only includes the most essential

variables perhaps only the intercept term and steps forward to an adequate model. At each

step, a model criterion is assessed to determine when the steps are complete. There are a
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variety of established criterion including the Akaike information criterion (AIC), Bayesian

information criterion (BIC), as well as individual variable p-values. Additionally, forward and

backward selection can be combined in an algorithm that can move in either direction called

stepwise.

2.2.1 Variable Selection Criteria Used in Comparing Models

When faced with many possible variable combinations, we would usually like to find

the model that most closely fits with reality. Unsurprisingly, there are a variety of ways to

quantify how closely any model fits the unobservable truth. Perhaps it could be sensible to

select the model with the lowest prediction error, or the model with the best fit to the observed

data, or the model with the least overall differences in the distribution of Y and the modeled

distribution of Y,Ŷ, or lastly, maybe we can estimate a probability that each model is the true

model and select the model which is deemed most likely. These concepts are the driving force

behind statistics such as Mallows’ Cp, R2, Akaike Information Criterion (AIC), and Bayesian

Information Criterion (BIC). We focus on the selection criteria which are most commonly

used.

Akaike Information Criterion, AIC

Akaike Information Criterion, AIC, attempts to quantify the difference between the

distribution of the data, Y , and the distribution specified by the model in question. Specifically,

the AIC estimates the Kullback-Leibler discrepancy between the true model, noted here as f ,

and the estimates from competing models, g (Seber and Lee (2003)).

AIC = −2logg(Y, θ̂(Y )) + 2r (2.10)

where r is the dimension of the parameter vector θ (Akaike (1998)). Essentially AIC is a

measure of the log-likelihood with a penalty based on the number of parameters estimated.
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While many modifications to the AIC exist, this is the formulation we will be using throughout

this work.

For the purposes of elucidating model comparison criteria, one useful modification to AIC

arises if we assume σ2 is known. Then there are only p parameters to estimate and

−2logg(Y, θ̂(Y )) = nlog(2πσ2) + (y −Xβ̂)′(y −Xβ̂)
σ2

. (2.11)

In this way, up to a constant, nlog(2πσ2), which does not depend on the model, AIC can be

defined as

AIC = RSSp
σ2

+ 2p. (2.12)

Note, if we replace σ2 above with an estimate, σ̂2, and add n we arrive at Mallows’ Cp.

Additionally, if we replace the penalty term of 2p with a penalty of nlogp, which depends on

n, we arrive at the Bayesian Information Criterion discussed below.

Bayesian Information Criterion, BIC

Introduced by Schwartz in 1978, BIC is based on an approximation to the posterior

probability of a model. Although Bayesian is in the name, and the criterion is motivated by

Bayesian ideas, the priors do not form part of the criterion. In general, Bayesian methods take

an investigator’s prior beliefs about parameters and update these beliefs based on the observed

data. In the case of BIC, the prior belief is in regard to the probability that a model is correct

and the criterion selects the model with the highest probability after updating the priors with

the observed data, also called the posterior probability. Seber and Lee (2003) show how the

log of the posterior probability can be approximated by

−RSSp
2σ2

− 1

2
plogn +O(1). (2.13)

11



Thus, selecting the model with the highest posterior probability is asymptotically equivalent

to selecting the model which minimizes

BIC = RSSp
σ2

+ plogn. (2.14)

When there are 8 or more observations, BIC imposes a stronger penalty for adding a new

parameter than AIC, and as n increases the two criterion continue to diverge (Schwarz et al.

(1978)).

2.2.2 Backward Elimination

Backward elimination begins with a model which is as full as possible, in our notation, it

would contain p variables. Then p models are fit each missing a single variable from the full

model. The best model is chosen from among these and the process is repeated fitting next

p− 1 models. The eliminations are deemed complete when a chosen criteria is met. Backward

elimination is particularly useful in a study suffering from collinearity. If two variables are

equally explicatory of the outcome and are correlated with each other, then included together

neither may appear significant. However, backward elimination can only remove one at a time,

not both and the stronger one would be retained in the model (Mantel (1970)). This will not

be the case in a combined forward and backward stepwise procedure.

2.2.3 Forward Selection

Forward select begins with a null model. Each of p models are fit each containing a

single new variable and the best among these is chosen. This process repeatedly adds the best

variable until stopping criteria are met. Mantel (1970) also cautions against forward selection

in favor of backward elimination. He claims that when two variables only jointly effect the

outcome and have no effect individually, the forward selection procedure will exclude them,

while the backward procedure will retain them.
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2.2.4 Two-Stage Selection

Another form of forward selection consists of pre-screening explanatory variables in

models which include each variable alone. Then, only variables that are determined to be

individually important are included in a multivariable model. Note, for the two-stage method

to function adequately, a higher p-value cut-off, such as 0.2, should be considered (Mickey

and Greenland 1989). This two-stage method has been shown to grossly underestimate the

final p-value and will miss confounders which may be insignificant alone, but important to

include in the model (Sun et al. 1996) (Viallefont et al. 2001).

2.3 Change in Effect, CIE

As presented in Kleinbaum et al. (1998), methods that eliminate variables based on whether

their coefficients are different from zero do not address confounding. Consider a very simple

situation with only three variables. We are interested in whether T is related to Y and have a

possible confounder, C. We fit two models, one we call crude and the other adjusted.

Y = β0,crude + β1,crudeT + ε (2.15)

Y = β0,adj + β1,adjT + β2C + ε (2.16)

Confounding is present when β1,crude ≠ β1,adj . However, Kleinbaum et al. (1998) states that

this inequivalence is a subjective decision and not meant to be based on a statistical test.

This idea was previously presented by Kleinbaum et al. (1982). Statistical tests and other

non-subjective criteria applied to this assessment of confounding proved too tempting in

practice and it did not take long for rules of thumb to appear. Mickey and Greenland (1989)

investigate using percent change cut-offs of 5, 10, 15, 20, or 25% in simulation studies,

ultimately suggesting 10%.

CIE (also called change in estimate) is a procedure that begins with a full model. Then
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models with one variable removed are fit for each variable and the change in the variable of

interest is recorded. The variable that changed the variable of interest the least is dropped

and the procedure is repeated until dropping any variable results in a percent change greater

than some threshold. The commonly recommended threshold is 10%. Lee (2014) suggests a

procedure to determine a threshold specific to study with the following steps:

1. Simulate a random variable that follows a standard normal distribution.

2. Fit a model of the standardized outcome by the standardized exposure.

3. Compute the percentage difference of the regression slope, with and without adjusting

for the random variable.

4. Repeat the above procedure r times.

5. Obtain the 95th percentile and use this as the threshold.

Statistical properties of CIE are less explored than stepwise techniques.

2.4 Bayesian Model Averaging

Rather than settling on just one of the many possible models, Bayesian model averaging

techniques take a weighted average of all the models. Consider the setting where an investi-

gator has a proposed (finite) class of models M for a univariate outcome. When prediction

is the primary interest, it can be shown that Bayesian Model Averaging (BMA) provides

better average predictive ability than using any single model under the logarithmic scoring

ruleMadigan and Raftery (1994). We define BMA in the following paragraph.

Suppose that ∆ is a quantity of interest such as a future observation, and that the class of

proposed models M contains elements M1, . . . ,MK . Then the posterior distribution given

data D is given by

p(∆ ∣D) =
K

∑
k=1

p(∆ ∣Mk,D)p(Mk ∣D) (2.17)
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by the law of total probability. Next, an application of Bayes’ rule gives us

p(Mk ∣D) = p(D ∣Mk)p(Mk)
∑Kh=1 p(D ∣Mh)p(Mh)

(2.18)

where

p(D ∣Mk) =
ˆ
p(D ∣θk,Mk)p(θk ∣Mk)dθk (2.19)

for θ a vector of parameters of model Mk. In our case this would be a vector of the form

(β′, σ2)′. We will often refer to p(Mk ∣D) as the Posterior Model Probability (PMP), as

is convention. Then BMA refers to the process of constructing a weighted-average model

through the use of the PMP as the weights. Another very useful posterior probability from

this process is the posterior inclusion probability, or PIP. PIP is the probability of a variable

appearing in a model and can be found by summing the PMP’s of all model’s which include

the variable. PIP can also be thought of as P (βj ≠ 0∣D).

BMA requires the user to define p(Mj), also called the prior model probability. This

allows the investigator to place a heavier weight on models which are deemed more likely.

If there is not information available to inform this decision, each model can be assumed to

be equivalently likely, or each variable could be assumed to have a 50% chance of being

included.

While some settings allow for a completely Bayesian approach to model averaging, the

BMA approach taken in this paper is one that is more widely applicable across settings which

differ in model type and number of parameters considered.

One difficulty with BMA is calculating the integral in 4.7 above. As suggested in Yeung

et al. (2005) we apply the BIC approximation presented in Raftery (Yeung et al. (2005),

Raftery (1995)). Raftery suggests

p(D ∣Mk) ∝ exp(−1

2
BIC ′) (2.20)
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Using a Taylor series expansion Raftery shows

BIC ′

k = χ2
k0 + pklogn (2.21)

where χ2
ko is that likelihood ratio test statistic reported from a model.

See Hoeting et al. (1999)for a thorough history of BMA and a practical guide to BMA

implementation.

Instead of enumerating every possible model, it has been argued that it more closely

mirrors the scientific process to restrict the model set (Madigan and Raftery 1994, Raftery et al.

1997). Also, in settings with routinely large datasets it is not always possible to examine every

possible model. Note, with K variables, this would result in 2K models. With 15 variables,

we would need to examine 32,768 models. The Occam’s window idea described in detail

in Madigan and Raftery (1994) provides a systematic method for wading through the large

number of possible models resulting in a computationally efficient searching algorithm while

accounting for model uncertainty. The Occam’s window approach used in this work excludes

models from consideration that are significantly less likely than the most likely model and/or

contain sub-models which are dramatically more likely (Hoeting et al. 1999).

2.5 Stochastic Search Variable Selection (SSVS)

SSVS was presented in great detail by George and McCulloch in 1993. SSVS is a

hierarchical fully Bayesian model which uses latent variables to model variable inclusion. For

example, in the setting of variable selection, βj can be modeled as a mixture of two normal

distributions with different variances (George and McCulloch 1993; 1997). Consider a latent

variable, γj , where P (γj = 1) = πj . The mixture distribution for βj is

βj ∣γj ∼ (1 − γj)N(0, τ 2j ) + γjN(0, c2jτ 2j ). (2.22)
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Selecting τj to be a small positive number and cj a large number greater than 1, ensures that

when γj = 0, βj is likely to be zero and when γj = 1, βj is unlikely to be zero. In this way, πj

can be thought of as the prior probability that variable Xj should be included in the model

(George and McCulloch 1993). The above can be achieved with a multivariate normal prior

β∣γ ∼ Np(0,DγRDγ) (2.23)

where γ = (γ1, ...γp),R is the prior correlation matrix, and

Dγ = diag[a1τ1, ..., apτp] (2.24)

with ai = 1 if γi = 0 and ai = ci if γi = 1. An inverse gamma prior is used for σ2∣γ,

σ2∣γ ∼ IG(νγ
2
,
νγλγ

2
). (2.25)

Using the interpretation that νγ is the number of observations and νγ
(νγ−2)

λγ is the estimate of

σ2 in an imaginary previous experiment can be helpful in selecting the hyper-parameters. For

a detailed discussion about all the prior specifications, see George and McCulloch (1993).

In standard Bayesian form, these prior distributions are combined with the observed data

to to form posterior distributions. SSVS uses a Gibbs sampler to characterize the posterior

distribution (George and McCulloch 1993; 1997). The estimated posterior mean value of γj

approximates PIP and the estimated posterior mean of the vector γ approximates PMP. This

technique is not ideal but running the chain until stationarity is reached helps (George and

McCulloch 1993).

When introduced, the authors cautioned that SSVS may be slow to converge if multiple

models had high posterior probability. This can frequently happen when variables are collinear.

They suggest eliminating collinearities before using SSVS, or performing two rounds of
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selection this first using SSVS and the second using SSVS again or backward elimination

(BE) (George and McCulloch 1993).

2.6 Adaptive Lasso

Ridge regression, lasso and adaptive lasso all seek a model which minimizes a penalized

residual sum of squares (RSS) by simultaneous estimation and variable selection. Ridge

regression penalizes with a tuning parameter, λ, multiplied by the sum of the squared coef-

ficients and the lasso penalizes with a tuning parameter times the sum of the absolute value

of the coefficients (Tibshirani 1996). While ridge regression can shrink estimates, it cannot

eliminate them from the model by forcing the estimates to be zero thereby simplifying the

results. Lasso was developed as a way to combine the shrinkage idea in ridge regression and

the selection idea of best subsets to both improve predictive performance and simplify the

model(Tibshirani 1996). The adaptive lasso generalizes the lasso by using a penalty which

allows weights to be applied to the absolute value of the coefficients as follows (Zou 2006).

RSS(β) + λ
p

∑
j=1

ŵj ∣βj ∣ (2.26)

Unlike the lasso, adaptive lasso has what is known as an oracle property, meaning, under

certain conditions, and as n increases the adaptive lasso will find the correct model (Zou 2006).

Adaptive lasso is selected in this study to allow investigation of the setting where there is a

particular variable of interest that must be included in every model. By setting wj = 0 for the

variable of interest, inclusion is guaranteed (Friedman et al. 2010). See Hastie and Qian for an

introduction to running these computationally intensive procedures with glmnet package in

RHastie and Qian (2016), Simon et al. (2011).

Since introduction, the lasso has provided a computationally efficient approach for ex-

ploring large sparse data (Tibshirani 2011). However, Tibshirani acknowledges that it is
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difficult to obtain standard error estimates from the lasso (Tibshirani 1996). Zou suggests

an approximation for standard errors with adaptive lasso. Zou’s approximation is not easily

implemented. Chatterjee et al. (2013) suggest using residual bootstrap methods. To mimic use

by a non-expert user, neither are included in this study.

2.7 Previous Work Comparing Variable Selection Criteria and Methods

Model building sits squarely on the line between science and art. Almost every investigator

has their own strategy for selecting variables and assessing model fit. This goes against the

urge to have scientific uniformity and, therefore, much has been written about methods for

variable selection. Presented here are the works most relevant to our endeavor of comparing

popularly used methods in epidemiology.

2.7.1 Popularity of Variable Selection Methods

Walter and Tiemeier (2009) presents a survey of the articles presented in American Journal

of Epidemiology, Epidemiology, European Journal of Epidemiology, and International Journal

of Epidemiology in 2008. He shows 27.7% of authors used only prior knowledge to build their

model, 19.7% used a form of stepwise methods, 14.7% used change-in-effect methods, and

3% used other methods such as propensity scores or principal components. None of the 300

articles reviewed used ridge regression or shrinkage methods, while a 35% did not disclose

their model building strategy. This report suggests BMA methods are either unknown or not

easily accessed by those publishing in epidemiological journals.

37.3% reported using a method of variable selection beyond relying solely on prior

knowledge (Walter and Tiemeier 2009). To put 37.3% in perspective, consider a separate

study of commonly used statistical methods in published public health research journals

which included the above four in addition to American Journal of Public Health, Bulletin

of World Health Organization, and American Journal of Preventive Medicine. Hayat et al.
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(2017) reports that 25.9% of studies report a Chi-squared test or a Fishers exact test, 38.4%

report using logistic regression, and 40.7% report an odds ratio (Hayat et al. 2017). Variable

selection methods are reported more often in public health research than linear models and

Cox proportional hazards models combined, 19.4% and 15.3% respectively (Hayat et al. 2017).

While many articles have been published using results from a variable selection method, these

methods are not without potentially alarming flaws.

Model uncertainty can be appropriately represented if estimates from every model con-

sidered are somehow accounted for (Buckland et al. 1997). Model averaging and Bayesian

methods have different approaches for accounting for the various models considered (Draper

1995, Raftery 1995, Raftery et al. 1997, Hoeting et al. 1999, George and McCulloch 1993).

Bayesian variable selection methods were initially proposed as a clever way to focus on

promising subsets of variables without enumerating 2p models (George and McCulloch 1993).

Shrinkage techniques were developed to build predictive models more stable and with less

variance than those built by the discrete process of classic variable selection methods (Tib-

shirani 1996). All of these modern methods have seen rapid increase in use. Figure 2.1

shows citation frequency for three popular representatives of these modern method categories:

Bayesian model averaging (BMA), Bayesian variable selection with stochastic search variable

selection (SSVS), and least absolute shrinkage and selection operator (lasso). As modern

methods grow in popularity, they spur adaptations for specific problems and become more

computationally accessible to researchers. Application of these modern methods will only

become more wide-spread. It is vital to understand how these modern methods behave in a

real-data setting (George 2000).

2.7.2 Debates about Best Criterion in Sequential Analysis

Both the variable selection method and the specific criterion used within these methods has

been debated. George (2000) provides a concise, helpful history and summary of the methods
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Figure 2.1: Citations of Modern Variable Selection Methods.
All included citations were counted on until September 10, 2018 from ISI Web of Knowledge.
BMA includes citations from Raftery (1995), Raftery et al. (1997), Hoeting et al. (1999).
Bayesian includes citations from George and McCulloch (1993), Green (1995). Lasso includes
citations fromTibshirani (1996).

described here. First we consider the differences in AIC and BIC. A good deal of discussion

exists about which criteria AIC or BIC will select the best model (Burnham and Anderson

2004). Recall AIC was derived as an approximation to the Kullback-Leibler distance between

the distribution of Y as modeled in the γth model and the true distribution of Y . (Stone

1977) showed model selection with AIC is asymptotically equivalent to model selection with

cross-validation. BIC was derived as an approximation to the log of the posterior probability

of a model. (Schwarz et al. 1978) shows this is asymptotically equivalent to choosing a model

based on Bayes factors.

According to Yang (2005), AIC, and other estimators of this type such as Mallows’ Cp,

usually yield minimax-rate optimal estimators of the regression function under a squared-

error loss. Yang (2005) describes BIC as a consistent model selector, meaning that if the

true model is among the models considered, as n increases, the probability that BIC will
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identify the true model converges to 1. The same cannot be said of AIC. However, unlike

AIC, BIC cannot be said to be a minimax-rate optimal estimator. This would suggest that

the common practice of first selecting a best model and then drawing inference from this

“best model”, could be a deeply flawed procedure. If an investigator uses AIC as the model

building criterion, they would yield asymptotically good estimates of the coefficients included

but could quite easily be good estimates from a seriously flawed model. Similarly, relying on

BIC is asymptotically likely to land on the correct variables to include in the model, if the true

model is under consideration, but could yield seriously biased estimates of coefficients. Yang

(2005) nicely summarizes their investigation by stating “... when model selection instability is

high, combining the models can substantially improve the accuracy of estimation/prediction.

On the other hand, when the best model can be easily identified, combining the models usually

loses out to model selection.”

Using p-values as criteria also has drawbacks particularly in the presence of confounders.

As stated by Kleinbaum et al. (1998), testing H ∶ β2,adj = 0 does not address confounding,

but precision. In other words, such a test evaluates whether significant additional variation

in Y is explained by adding C to the model. For questions of etiology, confounding likely

takes precedence over precision. Also, β2 ≠ 0 does not imply that β1,crude ≠ β1,adj . Although

CIE directly assesses whether β1,crude ≠ β1,adj , it suffers in its common use with a percent

cutoff. Specifically, Lee (2014) investigates how study traits such as sample size, effect size,

variance, and exposure correlation with the confounder affect what percentage cutoff would

yield 80% power and 5% type I error in linear and logistic regression. Perhaps unsurprisingly,

these study traits greatly affect how CIE performs demonstrating that a general rule-of-thumb

cutoff should be avoided. Instead, careful examination of the traits of the study should be

undertaken to better understand CIE’s operational characteristics in specific scenarios. Indeed,

Lee (2014) proposes an interesting procedure to determine a situation specific cut-off.

Also reliant on the p-value criterion, so-called two-stage analyses which first individually
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test the relationship between explanatory variables and the outcome and proceed to a multivari-

able model only with variables found significant in the first stage have been shown to grossly

underestimate the final p-value (Viallefont et al. (2001)). Sun et al. (1996) caution strongly

that this method will miss confounders which may be insignificant alone, but important to

include in the model. Mickey and Greenland (1989) compare a two-stage method in the setting

of a logistic regression model in a case-control study to other methods to identify confounders,

in particular CIE. The two-stage methods they explore are not quite as straightforward as what

we have described so far, but the conclusion drawn is the same. When confounding is present,

the two-stage method too easily dismisses important variables. For the two-stage method to

function adequately a higher p-value cut-off, such as 0.2, should be considered. Also, a lower

percentage cut-off for CIE could also be preferable (Mickey and Greenland (1989)).

A strikingly similar conclusion is drawn in a set of simulations investigating confounder

selection in Poisson models (Maldonado and Greenland (1993)). Maldonado and Greenland

(1993) find that CIE performs best when the cut-point is set to a “low” 0.10, while the two-

stage methods required a higher cut-off of 0.20. They further suggest the CIE estimator

“...does not start to adjust for the confounder until the magnitude of confounding is about half

of the cut-point value; at this degree of confounding and below, this estimator has about the

same amount of bias as the crude estimator. This bias occurs even when the sample size is

large, but setting the cut-point to a tolerable level of bias seems to ensure that bias will be held

well below that level. For example, using a 20 percent cut-point yields a point estimator with

an average bias of about 10 percent when confounding is weak.”

2.7.3 Model Uncertainty

AIC, BIC, p-values and CIE have so far been discussed in the context of comparing many

models, selecting a single “best” model and proceeding with our analysis. This model selection

process changes the meaning of the p-values in the “best” model and leads to underestimation
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(Draper 1995, Raftery 1995, Raftery et al. 1997, Hoeting et al. 1999). A proper accounting for

the uncertainty in the actual model selection procedure needs to be incorporated to correct

for this underestimation. An alternative to building the “best” single model is to fit multiple

models and combine them in a sensible way. According to Hoeting et al. (1999), the idea to

combine models first saw a rush of interest in the 1960s in economics journals and flourished

again in the 1990s when new advancements were made and computing power was sufficient.

Hoeting et al. (1999) provides a thorough history of BMA and a practical guide to BMA

implementation. Madigan and Raftery (1994) note that averaging over all the models as BMA

does provides better average predictive ability, as measured by a logarithmic scoring rule, than

using any single model. BMA may not be a simple method to implement in every statistical

analysis program, however Raftery (1995) show how to use BIC to approximate the posterior

probability of a model making BMA more accessible to the analyst.

2.7.4 Previous Variable Selection Comparisons

Others have previously used simulation to compare some of the above methods. Viallefont

et al. (2001) compares the two-stage analysis of individually testing possible explanatory

variables before including then in the final model, backward stepwise regression and BMA

in the setting of a case-control study. This study focuses on the difference in the p-values

and posterior inclusion probabilities but doesn’t explore how these methods differ in their

estimates of the main effect or their predictive abilities. Genell et al. (2010) also compares

variables selected by stepwise (forward with AIC criterion) to BMA. Oddly though, they

require variables to have p-value<0.05 after stepwise and a posterior inclusion probability

greater than 50% to be considered “selected” variables. Wang et al. (2004) compare backward

elimination, forward inclusion, backward stepwise and forward stepwise to BMA in the

context of logistic regression, claiming that BMA accounts for model uncertainty unlike

the step-wise procedures. They find that BMA tends to outperform the other methods at
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selecting the correct model and at predicting the outcome (using the prediction score by

Good). However, their simulation is limited to only 10 replications in each of two settings.

All of the explanatory variables used in the simulation are independent and therefor this

simulation does not address confounding. Wiegand (2010) compare backward elimination,

forward selection and stepwise methods in logistic and proportional hazards setting. They

particularly investigate the agreement between these methods. While many comparisons of

various variable selection methods exist, comparisons of the change in effect method and

Bayesian model averaging do not. Further, comparisons of stepwise regression and BMA

focus heavily on which variables are included and less on how the method performs in terms

of estimation and prediction.

Comparisons between modern variable selection methods have already been made (Srivas-

tava and Chen 2009, Xu 2007, Yazdani and Dunson 2015, Blattenberger et al. 2014, Rockova

et al. 2012). While interesting and well-tailored to the high-dimensional analysis setting,

these previous studies all lack three key traits necessary for understanding behavior in a

non-high-dimensional setting. First, all of these studies only report variable selection method

performance in terms of prediction abilities and/or variable selection characteristics and do

not report estimation capabilities. Second, most of these studies assume predictor variables

are either uncorrelated or have a very simple correlation structure. Independent variables or

minimal correlation is unlikely to appear in non-high-dimensional practice. Third, all of these

studies report simulations based on 100 or fewer subjects. A few other studies show compar-

isons of some modern methods highlighted here in the non-high-dimensional setting (Swartz

et al. 2008, Viallefont et al. 2001, Genell et al. 2010). In addition to lacking comparisons

between all the methods of interest here, SSVS, BMA and adaptive lasso, these also fail to

report on the quality of estimation (e.g., bias, coverage, etc.) of the variable selection methods.

Finally, previous simulation studies have examined effects of various priors, tuning parameters,

cut-offs and computational specification to understand how to maximize the capabilities of
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selection methods (Rockova et al. 2012, O’Hara et al. 2009). A naive user may not understand

the effects of these selections on results and rely on the suggested defaults. Non-expert’s use

of variable selection methods needs careful examination to understand the actual impact of

variable selection methods to applied research.

2.8 Summary

Many of the methods above have been shown to have excellent qualities. AIC and BIC

are asymptotically consistent as p and n go to infinity respectively. BMA strong predictive

performance, asymptotically. Sadly, our models do not live in the land of asymptotia. These

models are squarely rooted in a finite reality, a reality in which we cannot know if the

true model is in our group of examined models. We must instead turn to simulations to

help us understand the finite sample behavior of these techniques. There are other variable

selection techniques not discussed here. Methods such classification and regression trees, and

bootstrapping the entire model selection process can be useful for fitting predictive models

and each have their own merit. We focus our investigations here to mimic the use of these

variable selection methods in public health practice. In chapter 3 we compare SSVS, adaptive

lasso and BMA in a non-high-dimensional linear regression setting. In chapter 4 we rigorously

compare backward selection based on AIC, BIC and p-values to CIE and BMA in the setting

of logistic regression models. Finally, chapter 5 applies BMA to the CHNS example and acts

as an introduction of BMA to the field of obesity epidemiology.
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CHAPTER 3: APPLYING MODERN VARIABLE SELECTION TECHNIQUES TO
A CLASSIC LINEAR REGRESSION SETTING

3.1 Introduction

Several variable selection techniques were introduced at the end of the 20th century. Com-

puting advancements continue to make these methods more accessible, resulting in booming

popularity for these modern methods. Simultaneous advancements in data collection, partic-

ularly in the “-omics” fields, continue to encourage further development and refinement of

modern variable selection techniques. Many of these modern variable selection methods were

developed specifically for high-dimensional data, where the number of variables considered is

significantly larger than the number of subjects. As the popularity of modern methods grows,

it remains unknown how these methods behave in a classical regression model.

Classical regression models were first introduced in the early 19th century (Stigler 1986)

and have been used to predict outcomes, estimate specific effects, and understand the rela-

tionship between many variables in a model. Unlike the high-dimensional setting, the classic

regression setting builds a model with fewer parameters than subjects. In the 1970s, several

statistics were introduced for the purpose of selecting between competing models includ-

ing Akaike Information Criterion (AIC)(Akaike 1974), Mallow’s Cp (Mallows 1973), and

Bayesian Information Criterion (BIC) (Schwarz et al. 1978). Many more criteria, and various

strategies for applying them now exist including forward selection, backward elimination,

stepwise selection, best-subset selection and so on, but all suffer from similar drawbacks.

Chief among them is a failure to account for the uncertainty contained in the model selection

27



process. Considering multiple models and then proceeding with the selected model as if it

were known to be the correct model can cause several serious problems. Variance estimates are

generally underestimated, p-values are generally inflated, prediction ability is overestimated,

and results are not reproducible in another dataset (Harrell 2001, Viallefont et al. 2001, Sun

et al. 1996, Hurvich and Tsai 1990). In addition to causing problems with estimation and

prediction, these classic variable selection methods can also lead to a final model that is not a

good representation of the relationships between the variables. For example, if two variables

only jointly affect the outcome, forward selection may exclude them both (Mantel 1970).

Similarly, if two variables are equally explicatory of the outcome and are correlated with each

other, backward elimination would only retain one of them (Mantel 1970). Lastly, classic

variable selection methods may not perform well or be impossible to utilize when the number

of variables, p, is large. To completely examine every model, 2p models would need to be

examined. Even though these short-comings were well known as long ago as the 1980s (Miller

1984, Freedman and Freedman 1983, Flack and Chang 1987, Freedman et al. 1988), classic

variable selection techniques continue to be widely used (Walter and Tiemeier 2009).

Several modern variable selection methods were developed as a direct response to the

short-comings of classic variable selection. The modern methods discussed in this paper

represent three broad categories of methods: model averaging, Bayesian models, and shrinkage

techniques. Model uncertainty can be appropriately represented if estimates from every model

considered are somehow accounted for (Buckland et al. 1997). Model averaging and Bayesian

methods have different approaches for accounting for the various models considered (Draper

1995, Raftery 1995, Raftery et al. 1997, Hoeting et al. 1999, George and McCulloch 1993).

Bayesian variable selection methods were initially proposed as a clever way to focus on

promising subsets of variables without enumerating 2p models (George and McCulloch

1993). Shrinkage techniques were developed to build predictive models more stable and with

less variance than those built by the discrete process of classic variable selection methods
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Figure 3.1: Citations of Modern Variable Selection Methods.
All included citations were counted on until September 10, 2018 from ISI Web of Knowledge.
BMA includes citations from Raftery (1995), Raftery et al. (1997), Hoeting et al. (1999).
Bayesian includes citations from George and McCulloch (1993), Green (1995). Lasso includes
citations fromTibshirani (1996).

(Tibshirani 1996). All of these modern methods have seen rapid increase in use. Figure 3.1

shows citation frequency for three popular representatives of these modern method categories:

Bayesian model averaging (BMA), Bayesian variable selection with stochastic search variable

selection (SSVS), and least absolute shrinkage and selection operator (lasso). As modern

methods grow in popularity, they spur adaptations for specific problems and become more

computationally accessible to researchers. Application of these modern methods will only

become more wide-spread. It is vital to understand how these modern methods behave in a

real-data setting (George 2000).

Comparisons between modern variable selection methods have already been made (Srivas-

tava and Chen 2009, Xu 2007, Yazdani and Dunson 2015, Blattenberger et al. 2014, Rockova

et al. 2012). While interesting and well-tailored to the high-dimensional analysis setting,

these previous studies all lack three key traits necessary for understanding behavior in a

29



non-high-dimensional setting. First, all of these studies only report variable selection method

performance in terms of prediction abilities and/or variable selection characteristics and do

not report estimation capabilities. Second, most of these studies assume predictor variables

are either uncorrelated or have a very simple correlation structure. Independent variables or

minimal correlation is unlikely to appear in non-high-dimensional practice. Third, all of these

studies report simulations based on 100 or fewer subjects. A few other studies show compar-

isons of some modern methods highlighted here in the non-high-dimensional setting (Swartz

et al. 2008, Viallefont et al. 2001, Genell et al. 2010). In addition to lacking comparisons

between all the methods of interest here, SSVS, BMA and adaptive lasso, these also fail to

report on the quality of estimation (e.g., bias, coverage, etc.) of the variable selection methods.

Finally, previous simulation studies have examined effects of various priors, tuning parameters,

cut-offs and computational specification to understand how to maximize the capabilities of

selection methods (Rockova et al. 2012, O’Hara et al. 2009). A naive user may not understand

the effects of these selections on results and rely on the suggested defaults. Non-expert’s use

of variable selection methods needs careful examination to understand the actual impact of

variable selection methods to applied research.

The study presented here compares estimation, prediction, and variable selection perfor-

mance among modern variable selection methods, specifically BMA, SSVS and adaptive lasso.

This study also includes comparisons to classic variable selection techniques. These methods

are applied to linear regression in a study where a single variable of interest exists in the

presence of possible confounding. A variety of sample sizes ranging from 150 to 20,000 are

investigated. Freely available and easily executable methods with default tuning parameters

and simple priors are used to mimic use by non-expert users.

Before exploring the merits of these methods more carefully via simulation, a brief

background and description of the variable selection methods compared in this study are

presented in Section 2. Section 3 presents the motivating example for this simulation study.
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The simulation design follows in Section 4 with simulation results described in Section 5.

Section 6 summarizes the detailed results presented in Section 4. Lastly, summary conclusions

are made in the final section.

3.2 Background and Review of Representative Modern Variable Selection Methods

This simulation study focuses on the application of variable selection in a linear model.

Linear models are employed to investigate the relationship between the response, Yi and the p

possible explanatory variables xi0, . . . , xip. Assume there are n subjects, i = 1 . . . , n. A linear

model is of the form

Yi = β0 + β1Xi1 + . . . + βpXip + εi (3.1)

εi ∼ N(0, σ2) (3.2)

Note, Xi1, . . .Xip, could also be nonlinear functions. The predicted values of Y are denoted

by and are defined as

Ŷi = β̂0 + β̂1Xi1 + . . . + β̂pXip (3.3)

In classical linear regression the β̂j minimize the squared error, also called the residual sum of

squares, RSS.

Many modern variable selection methods exist. Three representative methods are studied

in this paper and are described below along with a brief description of the classic methods.

3.2.1 Bayesian Model Averaging

Regardless of the method used to select a best model, most researchers will acknowledge

that it is difficult to ascertain whether the correct model has in fact been chosen, but will

proceed with inference and prediction as if the model they use is indeed correct. Bayesian
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model averaging (BMA) provides an opportunity for exploring many possible models while

appropriately accounting for the uncertainty surrounding variable selection (Draper 1995,

Raftery 1995, Raftery et al. 1997, Hoeting et al. 1999). BMA is only one of several statistical

methods developed for appropriately accounting for model uncertainty but has the advantage

of providing optimal predictive performance (George 2000, Madigan and Raftery 1994).

Madigan and Raftery (1994) measured predictive performance in a logistic regression model

using a logarithmic scoring rule. However, given their reported lack of use, BMA methods are

either unknown or not easily accessed by many researchers (Walter and Tiemeier 2009).

Bayesian model averaging performs inference using a weighed average of model-specific

results from all the models considered. Consider the setting where a researcher has a proposed

(finite) class of models M . Suppose that ∆ is a quantity of interest, such as a predicted value

of a future observation or an effect estimate, and that the set of proposed models M contains

as elements the models M1, . . . ,MK . Then the posterior distribution given data D is defined

by the following weighted average

p(∆ ∣D) =
K

∑
k=1

p(∆ ∣Mk,D)p(Mk ∣D). (3.4)

If the model building goal includes understanding the relationships between variables, it

can be helpful to know the probability that each model is correct. It is convention to refer to

p(Mk ∣D), or the probability model Mk is correct given the observed data, as the Posterior

Model Probability (PMP).

p(Mk ∣D) = p(D ∣Mk)p(Mk)
∑Kh=1 p(D ∣Mh)p(Mh)

(3.5)

where

p(D ∣Mk) =
ˆ
p(D ∣θk,Mk)p(θk ∣Mk)dθk (3.6)

for θ a vector of parameters of model Mk. In the case of the linear model, θ would be a
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vector of the form (β′, σ2)′. BMA constructs a weighted-average model by using PMP as the

weights. Another very useful posterior probability from this process is the posterior inclusion

probability, or PIP. PIP is the probability of a variable appearing the true model and can be

found by summing the PMP’s of all models which include the variable. PIP can also be

thought of as P (βj ≠ 0∣D).

BMA requires the user to define p(Mj), also called the prior model probability. This

allows the researcher to place heavier weight on models which are deemed more likely. If

there is not information available to inform this decision, each model can be assumed to be

equivalently likely, or each variable could be assumed to have a 50% chance of being included.

While some settings allow for a completely Bayesian approach to model averaging, the

BMA approach taken in this paper is one that is more widely applicable across settings

which differ in model type and number of parameters considered. This study applies the BIC

approximation presented in Raftery for the integral in (4.7) (Yeung et al. 2005, Raftery 1995).

Instead of enumerating every possible model, it has been argued that it more closely mirrors

the scientific process to restrict the model set (Madigan and Raftery 1994, Raftery et al. 1997).

The Occam’s window approach used in this paper excludes models from consideration that

are significantly less likely than the most likely model and/or contain sub-models which are

dramatically more likely (Hoeting et al. 1999). In settings with many variables, Occam’s

window is a less computationally intensive option. See Hoeting et al. (1999)for a thorough

history of BMA and a practical guide to BMA implementation.

3.2.2 Stochastic Search Variable Selection (SSVS)

SSVS was presented in great detail by George and McCulloch in 1993. SSVS is a

hierarchical fully Bayesian model which uses latent variables to model variable inclusion. For

example, in the setting of variable selection, βj can be modeled as a mixture of two normal

distributions with different variances (George and McCulloch 1993; 1997). Consider a latent
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variable, γj , where P (γj = 1) = πj . The mixture distribution for βj is

βj ∣γj ∼ (1 − γj)N(0, τ 2j ) + γjN(0, c2jτ 2j ). (3.7)

Selecting τj to be a small positive number and cj a large number greater than 1, ensures that

when γj = 0, βj is likely to be zero and when γj = 1, βj is unlikely to be zero. In this way, πj

can be thought of as the prior probability that variable Xj should be included in the model

(George and McCulloch 1993). The above can be achieved with a multivariate normal prior

β∣γ ∼ Np(0,DγRDγ) (3.8)

where γ = (γ1, ...γp),R is the prior correlation matrix, and

Dγ = diag[a1τ1, ..., apτp] (3.9)

with ai = 1 if γi = 0 and ai = ci if γi = 1. An inverse gamma prior is used for σ2∣γ,

σ2∣γ ∼ IG(νγ
2
,
νγλγ

2
). (3.10)

Using the interpretation that νγ is the number of observations and νγ
(νγ−2)

λγ is the estimate of

σ2 in an imaginary previous experiment can be helpful in selecting the hyper-parameters. For

a detailed discussion about all the prior specifications, see George and McCulloch (1993).

In standard Bayesian form, these prior distributions are combined with the observed data

to to form posterior distributions. SSVS uses a Gibbs sampler to characterize the posterior

distribution (George and McCulloch 1993; 1997). The estimated posterior mean value of γj

approximates PIP and the estimated posterior mean of the vector γ approximates PMP. This

technique is not ideal but running the chain until stationarity is reached helps (George and

McCulloch 1993).
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When introduced, the authors cautioned that SSVS may be slow to converge if multiple

models had high posterior probability. This can frequently happen when variables are collinear.

They suggest eliminating collinearities before using SSVS, or performing two rounds of

selection this first using SSVS and the second using SSVS again or backward elimination

(BE) (George and McCulloch 1993). The two-round selection is not employed here.

3.2.3 Adaptive Lasso

Ridge regression, lasso and adaptive lasso all seek a model which minimizes a penalized

residual sum of squares (RSS) by simultaneous estimation and variable selection. Ridge

regression penalizes with a tuning parameter, λ, multiplied by the sum of the squared coef-

ficients and the lasso penalizes with a tuning parameter times the sum of the absolute value

of the coefficients (Tibshirani 1996). While ridge regression can shrink estimates, it cannot

eliminate them from the model by forcing the estimates to be zero thereby simplifying the

results. Lasso was developed as a way to combine the shrinkage idea in ridge regression and

the selection idea of best subsets to both improve predictive performance and simplify the

model(Tibshirani 1996). The adaptive lasso generalizes the lasso by using a penalty which

allows weights to be applied to the absolute value of the coefficients as follows (Zou 2006).

RSS(β) + λ
p

∑
j=1

ŵj ∣βj ∣ (3.11)

Unlike the lasso, adaptive lasso has what is known as an oracle property, meaning, under

certain conditions, and as n increases the adaptive lasso will find the correct model (Zou 2006).

Adaptive lasso is selected in this study to allow investigation of the setting where there is a

particular variable of interest that must be included in every model. By setting wj = 0 for the

variable of interest, inclusion is guaranteed (Friedman et al. 2010). See Hastie and Qian for an

introduction to running these computationally intensive procedures with glmnet package in

RHastie and Qian (2016), Simon et al. (2011).
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Since introduction, the lasso has provided a computationally efficient approach for ex-

ploring large sparse data (Tibshirani 2011). However, Tibshirani acknowledges that it is

difficult to obtain standard error estimates from the lasso (Tibshirani 1996). Zou suggests

an approximation for standard errors with adaptive lasso. Zou’s approximation is not easily

implemented. Chatterjee et al. (2013) suggest using residual bootstrap methods. To mimic use

by a non-expert user, neither are included in this study.

3.2.4 Classical Variable Selection Methods

For the purposes of understanding how modern variable selection techniques behave

in a non-high-dimensional regression setting, classic variable selection techniques are also

included in the simulation. Popular classic variable selection methods include forward selec-

tion, backward elimination, stepwise, best-subset, and two-phase (all significant univariate

relationships included in a multivariate model) (Walter and Tiemeier 2009). Classical variable

selection techniques have been described and compared in detail elsewhere (Mantel 1970,

Miller 2002, Mickey and Greenland 1989, Sun et al. 1996, Viallefont et al. 2001). It is known

that backward elimination is more appropriate than forward or step-wise in settings with

collinearity (Mantel 1970). This study evaluates BE with selection criteria of AIC, BIC,

p=0.05 and p=0.20, however for simplicity, only BE with BIC is shown. BE with BIC was

found to be the least likely of these to suffer from an underestimate of model uncertainty in

our full simulation and behaved similarly to BMA in regards to variable selection.

3.3 Motivating Example

The China Health and Nutrition Survey (CHNS) collected health data in 361 communities

(15 provinces and autonomous cities/districts of Beijing, Chongqing, Guangxi, Guizhou, Hei-

longjiang, Henan, Hubei, Hunan, Jiangsu, Liaoning, Shaanxi, Shandong, Shanghai, Yunnan,

and Zhejiang) throughout China in ten survey rounds from 1989 to 2015. Using a multistage,
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random cluster design, a stratified probability sample was used to select counties and cities

stratified by income and urbanization. Communities and households were then randomly

selected from these strata. Survey procedures have been described elsewhere (Popkin 2010).

The study was approved by the Institutional Review Board at the University of North Carolina

at Chapel Hill, the China-Japan Friendship Hospital, the Ministry of Health and China, and

the Institute of Nutrition and Food Safety, China Centers for Disease Control. Participants

gave informed consent.

For the purposes of demonstrating the traits of variable selection methods, this paper

considers the specific goal of modeling whether waist-to-height ratio greater is than 0.5 among

participants who were surveyed in at least two rounds while they were between the ages

of 18 and 30 and have their waist circumference and height recorded. After excluding all

missing data, N=1195. The specific variable of interest is a measure of urbanization and

potential explanatory variables include the following: age, sex, income, years of education,

physical activity, caloric intake, sodium, potassium, whether the participant smokes, whether

the participant consumes alcohol, and whether the participant drinks coffee. Coffee drinking

was included because it was highly correlated to urbanization, but was not believed to be

related to waist-to-height ratios. Although perhaps unlikely to be included in an actual research

setting, coffee drinking was included to investigate how the model selection methods would

handle this type of relationship between variables. The simulation study generates data meant

to mimic this example. All explanatory variables were standardized. The correlation between

the explanatory variables, the effect sizes, and the error variance found in the example data

guide the simulation parameters.

3.4 Design of the Simulation Study

All simulations were performed in R version 3.4.3 and all results presented are based on

5000 replications(R Core Team 2013). Note, 5000 replications results in Monte Carlo Error
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less than 0.7% for a proportion, such as the probability of including a variable (Koehler et al.

2009).

3.4.1 Data Generation

Table 3.1 shows the correlations between the explanatory variables. Explanatory variables

are labeled with an X if continuous and B if binary. XINTEREST represents the variable of

interest which is forced to be included in every model. Among the remaining explanatory

variables, a subscript of E represents a variable with a true non-zero effect, and C represents

a variable which is correlated with the variable of interest. Two variables are constructed with

both an effect on the outcome as well as a correlation with the variable of interest (X1,EC ,

B11,EC). Also included are four variables completely independent of the others. Two of

these are binary (B12, B13,E), and two are normally distributed (X14, X15,E). This correlation

matrix, with the additional rows for the uncorrelated variables, is used to generate data from a

multivariate normal of size 2n with all means equal to zero. The first n observations are used

to build the model (i.e. the training set) and the second n are treated as an external sample for

assessing predictive ability of the models (i.e. the testing set).
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Table 3.1: Explanatory Variable Correlations for Data Generation.

XINTEREST X1,EC X2,C X3,C X4,C X5 X6 X7,C B8 B9,E B10 B11,EC

XINTEREST 1 0.1 0.2 -0.5 -0.2 0.5 0.2
X1,EC 0.1 1 0.2 -0.1 0.2
X2,C 0.2 1 -0.1 -0.1 0.2 0.1
X3,C -0.5 0.2 -0.1 1 0.1 -0.4 -0.1
X4,C -0.2 -0.1 0.1 1 0.4 0.6 -0.1 0.2 0.2 -0.3 -0.1
X5 -0.1 0.4 1 0.3
X6 0.6 0.3 1 0.1 0.1 -0.1

X7,C 0.5 0.2 -0.4 -0.1 1 0.1 -0.1 0.2
B8

* 0.2 0.1 1 0.5 -0.5
B9,E

* 0.2 0.1 0.1 0.5 1 -0.4
B10

* 0.2 -0.3 -0.1 -0.1 -0.5 -0.4 1 0.1
B11,EC

* 0.2 0.1 -0.1 -0.1 0.2 0.1 1
* Some of the variables are transformed from normally distributed variables into binary variables with a cut

point determined at a random quantile. For example, it is desired that on average 25% of observations have
B8 = 1. At each replication of the simulation a cut point varied uniformly between 20% and 30% to achieve
an average of 25%. Desired observed proportions for B8 through B13 are 0.25, 0.25, 0.5,0.05, 0.7, and 0.3
respectively.
Four variables, B12, B13,E , X14, X15,E are uncorrelated with all other variables and are not included here.

39



Lastly, the outcome variable is generated in the following manner:

Y = 0.45 + 0.01XINTEREST + 0.01X1,EC − 0.01B9,E − 0.01B11,EC + 0.005B13,E+ (3.12)

0.005X15,E + ε

Sample sizes of n = 150,250,500,1000,2500,5000,10000, and 20000 are investigated. Error

is distributed normally with mean of zero and variance of 0.0016 for all n, resulting in an

r2 ∼ 0.13. When n = 1000, error variances of .0625, 0.01 and 0.0004 are also considered in

order to investigate models with higher and lower predictive abilities than what was observed

in the CHNS example. These error variances result in r2 of approximately 0.40, 0.03, and

0.01 respectively. Also for the setting of n = 1000, the situation where the variable of interest

has no effect is considered. Although this data is more complicated than is generally reported

in simulations comparing variable selection methods, it is a more accurate depiction of the

conditions of a large observational study (Wang et al. 2004, Wiegand 2010, Lee 2014). A

table outlining the full design of the simulation study is available in the supplemental material,

Table A.1.

3.4.2 Variable Selection

After the data are generated, Bayesian model averaging (BMA), stochastic search variable

selection (SSVS), adaptive lasso, and classic backward elimination are performed using the

first n observations. Adaptive lasso and classic variable selection yield final models. BMA and

SSVS do not reduce the number of variables but instead report the average estimates for all

variables. In practice a researcher may still want to report a final model after using averaging

techniques. This study considers the model with the highest PMP (top model), and the model

resulting from including all variables with PIP¿0.5 (median model) as likely candidates for

selecting a reduced model and are therefore also recorded. The variables included in these
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final models, the coefficient estimates, the standard error estimates and predicted values of the

outcome for these selected models are recorded. BMA and SSVS provide averaged estimates

of coefficients, standard errors and predicted values of the outcome which are also recorded.

For BMA and SSVS, PMP and PIP values for each replication are recorded. Lastly, coefficient

estimates from the final model or the averaged model from each method are applied to the last

n of the 2n observations and predicted outcomes are recorded.

BMA uses the bic.glm function in the BMA package (Raftery et al. 2017). Occam’s

window with a maximum exclusion ratio of 20 as suggested in Madigan and Raftery is

used(Madigan and Raftery 1994). SSVS is implemented with the BoomSpikeSlab package

(Scott 2017). For both BMA and SSVS, prior probabilities for variable inclusion are 1 for

the variable of interest, guaranteeing inclusion, and 0.5 for all remaining variables. A prior

probability of inclusion of 0.5 indicates that, prior to collecting data, a researcher believes

a variable is related to the outcome just as much as they believe the same variable is not

related to the outcome. This is sometimes called an indifference prior. Adaptive lasso is

implemented with glmnet package (Simon et al. 2011). For adaptive lasso, lambda was

selected automatically using 10-fold cross-validation, penalty factors for the intercept and

variable of interest were set to 0 to force their inclusion in every model, all other variables

were set at the default of 1 (which glmnet rescales). Both adaptive lasso and SSVS allow

for several other user-defined specifications. For example, other user-specified parameters for

adaptive lasso allowed every variable to be included and no limits were set on what values the

coefficients could be. In order to most most closely mimic performance of these methods in

research applications, the default settings are used. BE to minimize BIC is performed using

the step function provided in base R.
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3.4.3 Quantities of Interest

Model Selection and Variable Inclusion Probabilities

The first of four key modeling aims this simulation will investigate is selecting the correct

model. The model selected by each procedure is recorded, and the probability of selecting

any particular model is the number of replications selecting a specific model and dividing by

r, here 1000. Because so many variables are examined, the variety of models chosen by the

selection methods considered here are well over 1000. For this reason, the models selected

are summarized by determining if they select all, some or none of the variables with β ≠ 0

(X1,EC , B9,E , B11,EC , B13,E , and X15,E),and all, some, or none of the variables related to

XINTEREST but with β = 0 (X2,C , X3,C , X4,C , and X7,C). These two groups are referred to

as the E group, for effect, and the C group, for correlated. Note, the true model includes only

the E group. Ideally the methods will select the true model, but if that cannot be achieved, the

model should at least include all of the E group.

Additionally, the variable inclusion probabilities (IP) are presented. For all methods

except BMA and SSVS, IP is the percent of simulation replicates selecting each variable

in the final model. Average PIP across replications is reported for BMA and SSVS. The

individual variable’s IP are essential for understanding how these selection methods function

with variables that differ in effect size, correlation, and type (binary vs. continuous). If the

true model is not selected, these IP can help determine why.

Estimation of Main Effect

The second key modeling aim investigated is the estimation of the effect of XINTEREST .

If a researcher is mostly interested in the size of the association between the variable of interest

and the outcome, it matters less which specific variables are included, and instead the accuracy

and precision of β̂INTEREST matter much more. Much like in practice, this study considered

one variable to be the variable of interest and required all the models in consideration to
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include this variable. The bias, standard error of the coefficient estimates, ratio of the standard

deviation of the coefficient estimates and the mean estimated standard error, coverage, and

the probability of type I error or power, depending on the scenario, are recorded. The ratio

of the standard deviation of the coefficients and the mean estimated standard deviation is a

measure of how well methods account for model uncertainty. The standard deviation of the

coefficients reflects the variance of the coefficient estimate including the variance attributed

to the uncertainty in the model selection process. The mean of the standard error estimates

represents the value likely to be reported by a researcher using a variable selection technique.

If this ratio is greater than 1, the reported standard deviations are too small which in turn

results in overly optimistic p-values.

Predictive Performance

The third modeling goal is predicting the outcome. Predictive performance is measured by

the Pearson correlation between the predicted values of Y and the actual values of Y ,ρYorig ,Ŷ ,

in the simulated original and external datasets. The difference between these two correlations

reveals a degree of over-fitting, ω (Harrell 2001).

Ŷorig =Xorigβ̂orig (3.13)

Ŷexternal =Xexternalβ̂orig (3.14)

ω = ρYorig ,Ŷorig − ρYexternal,Ŷexternal (3.15)

The ideal model has the highest ρYexternal,Ŷexternal and the lowest ω. Negative ω would indicate

the model performed better in the external dataset than it did in the original.
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Agreement

Agreement is not really a modeling goal but aids our understanding of how these methods

relate to each other. The fourth and final quantity investigated is the probability that these

variable selection strategies agree with each other. With so many variable selection methods

available, one suggested technique is to perform multiple methods and declaring a model final

if it is chosen by both methods (Wiegand 2010). Investigating method agreement will also

highlight the similarities between the selection methods.

3.5 Simulation Results

3.5.1 Model Probabilities

Variable selection methods are often used with the expectation that they can uncover

the true model. Figure 3.2 shows the probability of selecting the true model by n. Reliable

selection of the true model does not occur for any method until n ≥ 5000. BMA and BE BIC

largely outperform SSVS and adaptive lasso until n = 10000, when SSVS catches up and

remains similar for all larger sample sizes. Even when n = 20000, adaptive lasso only selects

the true model in 5.3% of the replications. This suggests the oracle property of adaptive

lasso may require an extremely large sample size, or the default settings are not adequate in

this example. Investigating specific variable IP helps explain why the methods fall short of

selecting the true model.

44



0 5000 10000 15000 20000

0.0

0.2

0.4

0.6

0.8

1.0

n

P
er

ce
nt

 o
f R

ep
lic

at
es

 S
el

ec
tin

g 
C

or
re

ct
 M

od
el

1000

SSVS Top
SSVS Median
BE BIC
BMA BIC Top
BMA BIC Median

Adaptive Lasso

Figure 3.2: Probability of Selecting the True Model.
BMA Top and BMA median were almost always identical to each other and are both repre-
sented with the short dashed line. BE BIC also matched these two and is represented with a
dotted line, giving the appearance of a single dot-dash line.
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Figure 3.2 shows the probability that each method reports the model that contains all

variables with β ≠ 0 with no other variables. Adaptive lasso struggles to find B11,EC , the only

variable with an effect in the opposite direction of its correlation with XINTEREST .

3.5.2 Variable Probabilities

Variable IP for a subset of the sample sizes is shown in Figure 3.3. The variables have

been arranged with the most important group at the top, variables with both an effect and a

correlation withXINTEREST and haveEC as a subscript. These are followed by variables with

an effect but no correlation (E subscript), variables with correlation but no effect (C subscript),

and lastly variables with neither an effect nor a correlation (noise, no subscript). Other noise

variables are not shown in the plot. The noise variables shown here had no correlation with

the variable of interest and no correlation with any other variables considered. Also not

shown are the IP from SSVS and BMA top and median models. The top and median models

closely match their corresponding averages for IP. Variable IPs vary considerably not only by

method but also by the variable effect size, potential correlation with XINTEREST , variable

type (continuous or binary), and sample size. Complete tables of inclusion probabilities for

n = 1000 and n = 20000 can be found in the appendix.

All selection methods included our strongest variable, X1,EC , which had a true effect and

was positively correlated with the variable of interest, in 100% of the replications except

when n = 250. B11,EC and B9,E have the same negative effect size, but B11,EC has a positive

correlation with XINTEREST while B9,E in uncorrelated with all other variables. This correla-

tion makes it harder for all the methods to include this variable, but it is particularly hard for

adaptive lasso. Other models eventually find B11,EC as n increases, but adaptive lasso lags

far behind. The difference in IP for B11,EC and B9,E when n = 20000 is particularly large.

B11,EC , a variable with an effect in the opposite direction of its correlation with the variable

of interest, prevents adaptive lasso from selecting the true model, even when n = 20000.
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Binary variables were more difficult to find than continuous variables. This is particularly

striking for adaptive lasso. When n ≤ 1000, BMA was approximately 1.5 times more likely to

include B9,E , B11,EC , and B13,E than SSVS. All methods did well at excluding the variables

with no effect. The probability of including these noise variables when n = 250 is 2% with

BE BIC, and 6% with BMA. The selection rate of noise variables is the same regardless of

correlation with XINTEREST . This suggests that, unlike confounding, collinearity alone is

not problematic for selecting variable with a true effect. It also suggests these methods alone

cannot be used to gain understanding of the underlying relationships between all the variables.
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3.5.3 Estimation of the Main Effect

The estimates of percent bias in βINTEREST by n are shown in Table 3.2 along with the

95% Monte Carlo confidence intervals. All of the methods have some bias when n ≤ 5000,

but this bias tends to shrink. However, adaptive lasso never reaches unbiasedness. Also, the

averaged coefficients from BMA and SSVS are less biased than the coefficients from the

top or median models. The average standard errors did not differ much by method and all

decreased with increasing n and are not presented here.
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Table 3.2: Estimation of Variable of Interest: Percent Bias.

Percent Bias % *

Selection Method n=250 n=1000 n=5000 n=20000

BMA -0.652 -1.099 -0.31 0.068

(-1.414,0.11) (-1.465,-0.733) (-0.47,-0.151) (-0.012,0.148)

BMA Top -1.134 -1.264 -0.274 0.076

(-1.909,-0.36) (-1.634,-0.895) (-0.435,-0.114) (-0.005,0.156)

BMA Median -1.133 -1.264 -0.275 0.076

(-1.904,-0.361) (-1.633,-0.895) (-0.435,-0.114) (-0.005,0.156)

SSVS 0.487 -1.762 -0.653 0.066

(-0.253,1.227) (-2.123,-1.402) (-0.812,-0.493) (-0.013,0.146)

SSVS Top -0.142 -1.904 -0.639 0.067

(-0.889,0.606) (-2.265,-1.543) (-0.799,-0.479) (-0.013,0.146)

SSVS Median -0.144 -1.903 -0.635 0.067

(-0.887,0.6) (-2.265,-1.542) (-0.795,-0.475) (-0.013,0.146)

Adaptive Lasso -2.287 -2.179 -2.292 -2.133

(-3.008,-1.565) (-2.541,-1.816) (-2.45,-2.134) (-2.214,-2.052)

BE BIC -1.152 -1.258 -0.273 0.075

(-1.929,-0.375) (-1.628,-0.887) (-0.434,-0.112) (-0.005,0.156)

* The interval shown is the Monte Carlo confidence interval calculated using the standard

deviation of the estimates of the coefficients.

Variable selection methods are frequently criticized for underestimating the variance

resulting in p-values which are too small and confidence intervals which are too narrow. The

standard deviation of the beta coefficients can be compared to the mean estimates of the

standard error in a simulation setting. Table 3.3 shows the ratio of these two. Values greater
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than 1 indicate the model selection method reports an under-estimate of the standard error of

the coefficient. BMA and SSVS report ratios less than one indicating these methods do not

suffer from under-estimation of the standard error of β̂INTEREST . BMA top, BMA median,

SSVS top, SSVS median and BE BIC all have ratio’s close to one. Adaptive lasso does not as

readily provide standard error estimates as the other methods do. A combination of bias and

standard error, coverage, is also shown in Table 3.3. Only BMA and SSVS had Monte Carlo

intervals for coverage which included 0.95 for n=250, 1000, 5000 and 20000 (intervals not

shown). By the time n = 20000 all methods have intervals which include 0.95.

An ideal method has low bias and standard error ratios close to or less than 1. Figure 3.4

shows these traits simultaneously. BMA and SSVS have conservative standard error ratios.

As n increases, all methods except for adaptive lasso move closer to the ideal of no bias and

standard error ratio of one.
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Figure 3.3: Variable Inclusion Probabilities.
All the methods do well at excluding variables with no effect. All the methods have a hard
time identifying B11,EC when n < 5000, but adaptive lasso (AL) struggles to find it even when
n = 20000.
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Table 3.3: Estimation of Variable of Interest: Variance and Coverage.

Ratio of sd(β̂INT.) and mean(ŝe(βINT.)) * Coverage †

Selection Method n=250 n=1000 n=5000 n=20000 n=250 n=1000 n=5000 n=20000

BMA 0.995 0.989 0.983 1.000 0.949 0.951 0.949 0.952

BMA Top 1.078 1.040 1.013 1.011 0.931 0.942 0.945 0.947

BMA Median 1.074 1.039 1.013 1.011 0.934 0.943 0.945 0.947

SSVS 0.990 0.998 0.994 1.004 0.952 0.949 0.947 0.949

SSVS Top 1.039 1.017 1.011 1.005 0.941 0.944 0.945 0.947

SSVS Median 1.034 1.018 1.011 1.005 0.942 0.944 0.945 0.947

Adaptive Lasso NA NA NA NA NA NA NA NA

BE BIC 1.081 1.043 1.013 1.011 0.932 0.942 0.945 0.947

* Ratio

† Coverage is the percent of replications whose 95% confidence interval for β̂INTEREST includes the true

value, 0.01. Coverage less than 0.95 suggest the interval is either too narrow or too biased. Since bias has

been shown to be small, any problems with coverage are likely to be caused by an underestimate of the

standard error of βINTEREST .

3.5.4 Predictive Performance

A selection method with high ρYexternal,Ŷexternal . Ideal models also have a lower difference,ω,

between this external correlation and the correlation between the observed and predicted out-

comes in the original dataset, which was used to build the model. Figure 3.5 presents these

values as n increases. Increasing n improves prediction in all methods, both in increasing

correlation and decreasing ω. Adaptive lasso had the lowest ω values of all the methods for

all n. For small studies, n < 500, adaptive lasso does quite well having one of the highest

external correlations as well as the lowest ω. The SSVS average model had the most noticeable

problem with over-fitting, while the SSVS top model and the SSVS median model performed
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much better. BE BIC only did slightly better than the SSVS average model in ω. By n = 1000,

BMA, BMA top model and BMA median model all converge to having low ω with high

external correlation and are joined by SSVS top and median models when n > 1000.
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Figure 3.4: Percent Bias by SE Ratio.
Ideal estimates have bias of zero and an SE ratio close to one. This target is indicated by the
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Table 3.4: Agreement.

Selection Method n=250 n=1000 n=5000 n=20000

BMA Top and BMA Median 0.901 0.958 0.994 1.000
SSVS Top and SSVS Median 0.968 0.977 0.996 1.000

SSVS Top and BMA Top 0.371 0.404 0.661 0.986
SSVS Median and BMA Median 0.380 0.405 0.664 0.987

Adaptive Lasso and SSVS Top 0.591 0.151 0.027 0.053
Adaptive Lasso and SSVS Median 0.591 0.151 0.027 0.053

Adaptive Lasso and BMA Top 0.316 0.019 0.008 0.054
Adaptive Lasso and BMA Median 0.324 0.020 0.008 0.054

BE BIC and BMA Top 0.956 0.989 0.998 1.000
BE BIC and BMA Median 0.885 0.954 0.994 1.000

3.5.5 Agreement

Agreement between the methods is shown Table 3.4 as the percent of simulation replicates

were the methods selected the same final model. Because they do not result in a final reduced

model BMA and SSVS average models are excluded. The model from BMA and SSVS with

the highest PMP (top) very often matched the model which included all variables with PIP¿0.5

(median). Recall the BMA method employed here uses a BIC approximation for (4.7) (Yeung

et al. 2005, Raftery 1995), and indeed the models selected by BMA and BE BIC usually

agree, with agreement being higher between BE BIC and BMA Top. BMA and SSVS do not

see strong agreement until n > 5000. Adaptive lasso had shows its strongest agreement with

SSVS when n ≤ 250, roughly 60%.
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3.6 Summary and Limitations

This study aims to illustrate the capabilities of modern variable selection methods applied

to a non-high-dimensional setting of linear regression. A brief overview of the results is shown

in Table 3.5. First, consider estimation as the modeling goal. Based on three measures, bias,

underestimation of the standard error of β̂INTEREST , and coverage, BMA and SSVS are the

only methods that succeed on all three at most n. Although no methods were technically

unbiased for n=1000 and 5000, bias was quite small. Adaptive lasso is biased at all n and

does not easily provide standard errors. Next, consider prediction the modeling goal. When

n < 500 adaptive lasso is the clear choice, indeed this was the only bright spot for adaptive

lasso in this study. Once n = 1000 adaptive lasso is overtaken by all three BMA models and

SSVS top and median. SSVS average and BE BIC both have a high level of overfitting, ω,

and should be avoided. Lastly, consider the goal of understanding the relationship between

the variables by studying the selected model. All methods neglect to find the true model for

smaller samples of n ≤ 1000. This emphasizes the difficulty of variable selection. It is not

until n = 5000 that the true model is selected with any reliability, with BMA top and median

models and BE BIC all finding it roughly 70% of the time. Even when n = 20000 adaptive

lasso only selects the true model in 5.3% of the replications. This suggests the conditions for

the attractive oracle property of adaptive lasso have not been met. At small n, the methods are

missing variables with small effects and often miss the confounding variable. Finally as n

increases to 20000, all methods except adaptive lasso settle on the truth, and are unbiased.

This simulation study does have limitations. It could be argued that criteria used to

judge a good model in Table 3.5 are too stringent. For example, with bias rarely over 5%

almost all the methods perform reasonably well. Modern variable selection methods have

been applied to other regression models including logistic, Cox proportional hazards, and

multinomial models. Linear regression was chosen to demonstrate the ”best-case scenario”.

All the selection methods are expected to perform more poorly in more complex models.
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Additional parameters of the simulation set-up could have been explored, such as a greater

variety of effect sizes, strength of correlation, types of variables and number of variables

under consideration. However, this study does glean valuable information about how these

variable selection methods behave in a realistic setting and it does not seem that modifying

the simulation parameters would drastically change the overall conclusions.

This study cannot claim to exhaustively include all of the many variable selection methods,

both modern and classic, employed by researchers. Methods presented have existing packages

in R allowing for relative ease of use. While SSVS and adaptive lasso in particular have

a variety of user-controllable options, this study assumes naive use by keeping all defaults

in place. Champions of SSVS and adaptive lasso could argue both of these methods may

perform better in the hands of an expert practitioner than what is shown here. While many

previous studies have focused on these methods’ ability to discover the true model, this

study acknowledges that recovering the correct model in practice not typically of the highest

importance in a non-high-dimensional setting, rather effect estimation and outcome prediction

are often more valuable.

3.7 Discussion

Modern variable selection techniques are seeing a rapidly increasing rate of use. Comput-

ing advances have allowed these methods to be applied to high-dimensional and sparse data

settings. In particular, the lasso family of methods are extremely computationally efficient

for these large data settings (Tibshirani 2011). As the excitement around modern methods

builds, researchers will be more likely to apply modern methods to the classic regression

setting, or in other words, to a non-high-dimensional setting where classic variable selection

techniques have more commonly been employed. Classic variable selection techniques have

known deficiencies in estimation, prediction and model selection. Modern methods make bold

claims to solve some of these shortcomings. It is imperative to understand the behavior of
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these modern methods in a classic setting.

The bold claims made by modern variable selection deserve close examination. Both

BMA and Bayesian variable selection claim to account for model uncertainty (Draper 1995,

Raftery 1995, Raftery et al. 1997, Hoeting et al. 1999, George and McCulloch 1993). In this

study, BMA was found to be superior to SSVS in not underestimating the standard error or in

over-fitting the predicted values. BMA also better accounted for uncertainty than the classic

variable selection method, BE BIC. BMA claims to provide better average predictive ability

than using any single model under the logarithmic scoring rule(Madigan and Raftery 1994).

BMA was found to result in a high correlation between observed and predicted values in an

external dataset with minimal amounts of over-fitting. However, BMA was outperformed by

adaptive lasso when n ≤ 250. Lasso was designed to increase prediction ability at the cost of

bias. Increased prediction was only seen at the small sample sizes and bias did not go away as

n increased. Adaptive lasso in particular claims to have the oracle property in some settings

(Zou 2006). The oracle property was certainly not demonstrated in this study.

Beyond addressing the claims of modern variable selection method capabilities, the study

provides a few unexpected results. SSVS resulted in a higher level of over-fitting than

anticipated. SSVS over-fitting was more dramatic in the averaged model than in the SSVS

top or median model. However, the SSVS average model did a better job of accounting for

model uncertainty in estimating the coefficient of interest. When introduced, it was suggested

that SSVS could serve as a first step for eliminating variables and could be followed by

an additional step of SSVS or other variable selection method on the reduced set (George

and McCulloch 1993). However, in this study SSVS did not select unnecessary variables.

Although cautioned that SSVS and lasso will select only one of a group of collinear variables

(Tibshirani 2011, George and McCulloch 1993), the difficulty all methods exhibited in finding

B11,EC was surprising. Recall, B11,EC was a binary variable with a positive effect on the

outcome and a negative correlation with the effect of interest. It was the only EC variable to
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have effects in opposing directions. While neglecting to include this confounder had seemingly

small effects of prediction or estimation, failing to include a confounder can have serious

consequence for model interpretation.

Of the modern methods included in this study, BMA performed best overall in modeling

goals of estimation, prediction and variable selection. BMA also had fewer user-specified

parameters to set, making it slightly easier for a non-expert to employ. In addition to being

superior in estimation, prediction, and variable selection, BMA along with SSVS provide the

researcher with helpful PIP without requiring a simulation. Often, the p-value is misinterpreted

as the probability that a variable belongs in a model(Greenland et al. 2016). This is in fact

the interpretation of PIP, while a p-value is the probability of observing a coefficient of

this magnitude or greater when in fact there is no relationship between the outcome and

predictor variable, assuming the correct model has been used. In spite of these appealing

characteristics, BMA has yet to see wide-spread use in many areas of application. In public

health, for example, a survey of papers in 2009 revealed no authors had chosen any modern

variable selection methods (Walter and Tiemeier 2009). The ultimate aim of this article is to

provide researchers with information to guide one of the most critical parts of their choice

in data analysis. Just like every other analysis tool, no single variable selection method can

be recommended for use in every study. By presenting direct comparisons of these varied

modern variable selection methods in a simulation setting where the truth is both well-defined

and complex enough to represent a real analysis, this study allows the researcher to judge their

own study’s traits and goals and select the method that fits best.
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Figure 3.5: Predictive Performance: ρYexternal,Ŷexternal and ω.
Ideal models result in high correlation between the predicted and observed outcomes in an
external dataset, which was not used to build the model. Ideal models also have a lower
difference,ω, between this external correlation and the correlation between the observed and
predicted outcomes in the original dataset, which was used to build the model.
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Table 3.5: Summary.

n=250 n=1000 n=5000 n=20000

Estimation

No Underestimate BMA BMA BMA BMA
of se(β̂)
Ratio ¡1 SSVS SSVS SSVS

Unbiased
MC Interval BMA BMA
Includes 0 BMA Med,Top

SSVS SSVS
SSVS Med,Top SSVS Med,Top

BE BIC

Coverage
MC Interval BMA BMA BMA BMA
Includes 0.95 BMA Med,Top BMA Med,Top

SSVS SSVS SSVS SSVS
SSVS Med,Top SSVS Med,Top SSVS Med,Top

BE BIC BE BIC

Predictive BEST: BEST: BEST: BEST:
Performance Adaptive Lasso
Highest ρYexternal,Ŷexternal BMA BMA BMA
and lowest ω BMA Med,Top BMA Med,Top BMA Med,Top

SSVS Med,Top SSVS Med,Top SSVS Med,Top

AVOID: AVOID: AVOID: AVOID:
Adaptive Lasso Adaptive Lasso Adaptive Lasso

SSVS SSVS SSVS SSVS
SSVS Med,Top
BE BIC BE BIC BE BIC BE BIC

Variable Selection
Selected True Model BE BIC (69.6%) BE BIC (98.5%)

BMA Med,Top (69.6%) BMA Med,Top (98.5%)
SSVS Med,Top(>99%)
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CHAPTER 4: A COMPARISON OF TRADITIONAL VARIABLE SELECTION
METHODS WITH BAYESIAN MODEL AVERAGING IN LOGISTIC

REGRESSION MODELS

4.1 Introduction

Public health researchers use statistical models to estimate effect sizes, predict outcomes

and to understand underlying relationships between variables. A good data analyst is taught

there is no substitute for subject area expertise, and the ideal situation is to rely on the body of

knowledge to guide model building. However, the ideal is not always attainable. Perhaps a

small sample size hinders the complexity of the desired model, or a new scientific area is being

explored that does not yet have the benefit of pre-existing knowledge. Data-driven variable

selection techniques have existed for at least fifty years. These variable selection techniques

have been a popular method for public health researchers and many varieties and strategies

exist. A fair number of warnings about the dangers of relying on these popular methods

also exist. The lack of accounting for uncertainty that stems from selecting a single model

among many possibilities lies at the root of many of these complaints. As data collecting

and storage capabilities advance, public health researchers are likely to become more reliant

on data-driven techniques to build statistical models. This paper compares the most popular

data-driven variable selection techniques to a variable selection method that was designed

specifically to account for model uncertainty, called Bayesian model averaging. The models’

ability to estimate effects, predict outcomes and accurately include important variables is

investigated in a realistic logistic regression setting, with correlated variables and a single
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variable of interest which is always included.

Data-driven variable selection is frequently used in public health research. In a survey of

the 300 articles presented in American Journal of Epidemiology, Epidemiology, European

Journal of Epidemiology, and International Journal of Epidemiology in 2008, 37.3% reported

using a method of variable selection beyond relying solely on prior knowledge (Walter and

Tiemeier 2009). To put 37.3% in perspective, consider a separate study of commonly used

statistical methods in published public health research journals which included the above four

in addition to American Journal of Public Health, Bulletin of World Health Organization,

and American Journal of Preventive Medicine. Hayat et al. (2017) reports that 25.9% of

studies report a Chi-squared test or a Fishers exact test, 38.4% report using logistic regression,

and 40.7% report an odds ratio (Hayat et al. 2017). Variable selection methods are reported

more often in public health research than linear models and Cox proportional hazards models

combined, 19.4% and 15.3% respectively (Hayat et al. 2017). While many articles have

been published using results from a variable selection method, these methods are not without

potentially alarming flaws.

All varieties of variable selection methods have been criticized. Sequential methods,

and therefore results from sequential methods, rely heavily on the cut-off chosen. Various

recommendations when using a p-value cut-off exist and depend on the desired balance

between including important variables and including noise (Harrell 2001). For example, a

high p-value cut-off will be less likely to exclude important variables but more likely to include

noise variables. Other criterion such as Akaike Information Criterion (AIC), or Bayesian

Information Criterion (BIC) are often used and were developed with different modeling

goals. Theoretically, BIC is a consistent model selector, meaning that if the true model

is among the models considered, as n increases, the probability that BIC will identify the

true model converges to 1 (Yang 2005). Unlike BIC, AIC does not possess the property of

consistency. Variable selection with AIC is asymptotically equivalent to model selection
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with cross-validation (Stone 1977). The AIC criterion usually yields minimax-rate optimal

estimators of the regression function under a squared-error loss(Yang 2005). The probability

of selecting the true model using the AIC criterion converges to 1 as the number of variables

considered increases. In a setting with many more variables considered, AIC may surpass

BIC in selection ability. A good deal of discussion exists about which criteria AIC or BIC

will select the best model (Burnham and Anderson 2004). The traits of change-in-effect

methods are also highly dependent on the cut-point selected (Maldonado and Greenland 1993).

Beyond the challenge of selecting an appropriate cut-off, any variable selection method which

examines several models only to select a single model fails to account for model uncertainty.

For this reason, sequential methods, such as stepwise regression, are known to provide R2

which are deceptively high, estimates which are more impressive than they should be, and

p-values which are too small (Harrell 2001). Model averaging was developed to directly

combat this understatement of variability.

Even with these flaws, variable selection is seen as a useful tool in approaching a large set

of variables to build a concise model both when the researcher cannot reasonably be expected

to identify all relevant variables and when variables are collinear (Harrell 2001). Even though

these short-comings were well known as long ago as the 1980s (Miller 1984, Freedman and

Freedman 1983, Flack and Chang 1987, Freedman et al. 1988), use of sequential selection

methods is still common (Walter and Tiemeier 2009). Further, because data collection, storage

and analysis techniques have advanced, public health researchers will only be faced with more

variables to choose from and will need to rely on “automated” methods more. Instead of

abandoning such a frequently used technique, we aim to finesse its use by addressing problems

of model uncertainty. Model uncertainty can be appropriately represented if estimates from

every model considered are somehow accounted for (Buckland et al. 1997). One modern and

simple way of addressing model uncertainty is through Bayesian model averaging (Draper

1995, Raftery 1995, Raftery et al. 1997, Hoeting et al. 1999).
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This study compares sequential methods, change-in-effect methods and BMA. Others

have previously used simulation to compare some of the above methods in a variety of settings

(Viallefont et al. 2001, Genell et al. 2010, Wang et al. 2004, Wiegand 2010, Mickey and

Greenland 1989). Change-in-effect (CIE) has only been compared to the two-phase inclusion

method of sequential selection(Mickey and Greenland 1989, Maldonado and Greenland

1993). Bayesian model averaging (BMA) is compared to a few sequential methods (i.e.

backward elimination, stepwise, forward inclusion) in three papers, but in two of these,

only variable inclusion probabilities and p-values are reported with no indication of how the

models performed at effect estimation or outcome prediction(Viallefont et al. 2001, Genell

et al. 2010). In the third, none of the explanatory variables are correlated and the simulation

includes only 10 replications (Wang et al. 2004). The study we present is the first not only

to compare all these methods simultaneously, but also to assess performance in all three

goals of model building: estimation, prediction and variable inclusion. This comparison is

made in the common setting of logistic regression where there is a single variable of interest,

with correlated explanatory variables acting as possible confounders. Before exploring the

criticisms as well as the merits of these methods more carefully via simulation, a brief

background and description of the variable selection methods compared in this study are

presented in Section 2. Section 3 presents the motivating example for this simulation study.

The simulation design follows in Section 4 with simulation results described in Section 5.

Section 6 summarizes the detailed results presented in Section 4. Lastly, summary conclusions

are made in the final section.

4.2 Background and Review of Commonly Used Variable Selection Methods

The application of variable selection in a logistic models is the focus of the what is

presented here. Logistic models are devised to investigate the relationship between the binary

response, Yi and the p possible explanatory variables Xi0, . . . ,Xip. Assume there are n
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subjects, i = 1 . . . , n. A logistic model is of the form

log
P (Yi = 1)
P (Yi = 0) = β0 + β1Xi1 + . . . + βpXip (4.1)

Note, Xi1, . . .Xip, could also be nonlinear functions. The predicted values of P (Yi = 1) are

denoted and are defined as

P̂ (Yi = 1) = exp(β̂0 + β̂1Xi1 + . . . + β̂pXip)
1 + exp(β̂0 + β̂1Xi1 + . . . + β̂pXip)

(4.2)

where β̂j are the estimates.

4.2.1 Sequential Testing Techniques: Forward, Backward, and Stepwise

Sequential testing techniques in variable selection are data-driven methods of developing a

model. Roughly 20% of public health articles use some form of sequential variable selection

techniques(Walter and Tiemeier 2009). As the name suggests, this method consists of steps

beginning with either the full model, one which includes all possible variables and steps

backward to a concise reduced model, or of steps beginning with a null model, one which

only includes the most essential variables, perhaps only the intercept term, and steps forward

to an adequate model. At each step, a model criterion is assessed to determine when the

steps are complete. There are a variety of established criterion including the Akaike infor-

mation criterion (AIC), Bayesian information criterion (BIC), as well as individual variable

p-values. Additionally, forward selection and backward elimination (BE) can be combined in

an algorithm that can move in either direction called stepwise.

Backward elimination is particularly useful in a study suffering from collinearity. Further,

when two variables only jointly effect the outcome and have no effect individually, the forward

selection procedure will exclude them, while the backward procedure will retain them (Mantel

1970). If two variables are equally explicatory of the outcome and are correlated with each
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other, then included together neither may appear significant. However, backward elimination

can only remove one at a time, not both, and the stronger one would be retained in the model

(Mantel 1970). Because public health data often includes collinear variables, this study focuses

on BE with selection criteria of AIC, BIC, and p=0.05. Another common criteria is p=0.20,

however the AIC criteria is equivalent to using a p-value of 0.157, and for the sake of brevity

results using p=0.20 are shown in the appendix.

Another form of forward selection consists of pre-screening explanatory variables in

models which include each variable alone. Then, only variables that are determined to be

individually important are included in a multivariable model. Note, for the two-stage method

to function adequately, a higher p-value cut-off, such as 0.2, should be considered (Mickey

and Greenland 1989). This two-stage method has been shown to grossly underestimate the

final p-value and will miss confounders which may be insignificant alone, but important to

include in the model (Sun et al. 1996) (Viallefont et al. 2001).

4.2.2 Change-in-Effect Methods, CIE

Methods that eliminate variables based on whether their coefficients are different from zero

do not address confounding (Kleinbaum et al. 1998). Consider a very simple situation with

only three variables. It is of interest to know whether E is related to Y and there is a possible

confounder, C. Two models can be estimated, one called crude and the other adjusted.

log
P (Y = 1)
P (Y = 0) = β0,crude + β1,crudeE (4.3)

log
P (Y = 1)
P (Y = 0) = β0,adj + β1,adjE + β2C (4.4)

Confounding is present when β1,crude ≠ β1,adj . However, this inequivalence is a subjective

decision and not meant to be based on a statistical test (Kleinbaum et al. 1998; 1982). Statistical

tests and other non-subjective criteria applied to this assessment of confounding proved too
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tempting in practice and many rules of thumb exist. Mickey investigates using percent change

cut-offs of 5, 10, 15, 20, or 25% in simulation studies, ultimately suggesting 10% (Mickey

and Greenland 1989).

CIE (also called change-in-estimate) is a procedure that begins with a full model. Models

with one variable removed are fit for each variable and the change in the variable of interest

is recorded. The variable that changed the variable of interest the least is dropped and the

procedure is repeated until dropping any variable results in a percent change greater than

some threshold, commonly 10%. A data-dependent threshold which depends on both β1 and

correlation between E and C has been suggested (Lee 2014). Roughly 15% of public health

research articles employ change-in-effect methods of variable selection (Walter and Tiemeier

2009).

4.2.3 Bayesian Model Averaging

Regardless of the method used to select a best model, most researchers will acknowledge

that it is difficult to ascertain whether the correct model has in fact been chosen, but will

proceed with inference and prediction as if the model they use is indeed correct. Bayesian

model averaging (BMA) provides an opportunity for exploring many possible models while

appropriately accounting for the uncertainty surrounding variable selection (Draper 1995,

Raftery 1995, Raftery et al. 1997, Hoeting et al. 1999). BMA is only one of several statistical

methods developed for appropriately accounting for model uncertainty but has the advantage

of providing the best predictive qualities (George 2000, Madigan and Raftery 1994). However,

given their reported lack of use, BMA methods are either unknown or not easily accessed by

many researchers (Walter and Tiemeier 2009).

Bayesian model averaging takes a weighted average of all the models examined. Consider

the setting where a researcher has a proposed (finite) class of models M . Suppose that ∆ is

a quantity of interest, such as a predicted value of a future observation or an effect estimate,
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and that the class of proposed models M contains elements M1, . . . ,MK . Then the posterior

distribution given data D is defined by the following weighted average

p(∆ ∣D) =
K

∑
k=1

p(∆ ∣Mk,D)p(Mk ∣D). (4.5)

If the model building goal includes understanding the relationships between variables, it

can be helpful to know the probability that each model is correct. It is convention to refer to

p(Mk ∣D), or the probability model Mk is correct given the observed data, as the Posterior

Model Probability (PMP). PMP is used as the weight in the weighted average.

p(Mk ∣D) = p(D ∣Mk)p(Mk)
∑Kh=1 p(D ∣Mh)p(Mh)

(4.6)

where

p(D ∣Mk) =
ˆ
p(D ∣θk,Mk)p(θk ∣Mk)dθk (4.7)

for θ a vector of parameters of model Mk. In the case of the logistic model, θ would be a

vector of β. BMA constructs a weighted-average model by using PMP as the weights. Another

very useful posterior probability from this process is the posterior inclusion probability, or PIP.

PIP is the probability of a variable appearing the true model and can be found by summing the

PMP’s of all models which include the variable. PIP can also be thought of as P (βj ≠ 0∣D).

BMA requires the user to define p(Mj), also called the prior model probability. This

allows the researcher to place heavier weight on models which are deemed more likely. If

there is not information available to inform this decision, each model can be assumed to be

equivalently likely, or each variable could be assumed to have a 50% chance of being included.

This study applies the BIC approximation presented in Raftery for the integral in (4.7) (Yeung

et al. 2005, Raftery 1995) . In settings with many variables it is computationally prohibitive to

explore every possible model. Instead, the model space can be explored with methods beyond

enumerating every possible model. One of these methods is using the Occam’s window
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approach (Madigan and Raftery 1994, Raftery 1995, Hoeting et al. 1999). In this approach,

models are excluded from consideration if they are significantly less likely and/or contain

sub-models which are dramatically more likely. See hoeting1999bayesian for a thorough

history of BMA .

4.3 Motivating Example

The China Health and Nutrition Survey (CHNS) collected health data in 228 communities

(nine diverse provinces: Guangxi, Guizhou, Heilongjiang, Henan, Hubei, Hunan, Jiangsu,

Liaoning and Shandong) throughout China in ten survey rounds from 1989 to 2015. Using a

multistage, random cluster design, a stratified probability sample was used to select counties

and cities stratified by income and urbanization. Communities and households were then

randomly selected from these strata. Survey procedures have been described elsewhere

(Popkin 2010). The study was approved by the Institutional Review Board at the University of

North Carolina at Chapel Hill, the China-Japan Friendship Hospital, the Ministry of Health

and China, and the Institute of Nutrition and Food Safety, China Centers for Disease Control.

Participants gave informed consent.

One modeling challenge for investigations using CHNS is the relationships between

variables. For example, consider including alcohol consumption as a variable. CHNS contains

as either survey responses or derived variables the frequency of alcohol consumption, number

of bottles of beer per week, whether beer was consumed in the last week, whether the person

drinks alcohol, whether liquor was consumed in the last year, three day average of alcohol

by volume, a three day average of alcohol by weight, amount of wine consumed in the last

week, whether the person drinks wine, whether the person drinks liquor, and possibly others.

CHNS also records very detailed information about a participant’s diet, health, socioeconomic

situation, physical activity and community which leaves the public health researcher with

thousands of variables available for study. Given the related nature of variables available,
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it is not hard to develop a model which suffers from collinearity, over-parameterization, or

overlooking a useful variable.

For the purposes of demonstrating the traits of variable selection methods, this paper

considers the specific goal of modeling waist-to-height ratio among participants who were

surveyed in at least two rounds while they were between the ages of 18 and 30 and have their

waist circumference and height recorded. After excluding all missing data, N=1195. The

specific variable of interest is a measure of urbanization and potential explanatory variables

include the following: age, sex, income, years of education, physical activity, caloric intake,

sodium, potassium, whether the participant smokes, whether the participant consumes alcohol,

and whether the participant drinks coffee. Coffee drinking was included because it was highly

correlated to urbanization, but was not believed to be related to waist-to-height ratios. The

simulation study generates data meant to mimic this example. All explanatory variables were

standardized. The correlation between the explanatory variables, the effect sizes, and the error

variance found in the example data guide the simulation parameters.

4.4 Design of the Simulation Study

All simulations were performed in R version 3.4.3 and all results presented are based on

5000 replications(R Core Team 2013). Note, 5000 replications results in Monte Carlo Error

less than 0.7% for a binary result, such as the probability of including a variable (Koehler et al.

2009).

4.4.1 Data Generation

Table 4.1 shows the correlations between the explanatory variables. Explanatory variables

are labeled with an X if continuous and B if binary. XINTEREST represents the variable of

interest. Among the remaining explanatory variables, a subscript of E represents a variable

with a true non-zero effect, and C represents a variable which is correlated with the variable
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of interest. Four variables are constructed which had both an effect on the outcome as well

as a correlation with the variable of interest (X1,EC , X2,EC , X7,EC , B11,EC). Of these four,

two have correlations in the opposite direction of the effect (X7,EC , B11,EC). Also included

are four variables completely unrelated to the others. Two of these are binary (B12, B13,E),

two are normally distributed (X14, X15,E). Variables with no letter subscript, such as X5

and X6, are noise variables with no direct effect on the outcome and no correlation with the

variable of interest. The correlation matrix shown in Table 4.1, with the additional rows for

the uncorrelated variables, is used to generate data from a multivariate normal of size 2n with

all means equal to zero. The first n observations are used to build the model and the second n

are treated as an external sample for assessing predictive ability of the models.
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Table 4.1: Explanatory Variable Correlations for Data Generation.

XINTEREST X1,EC X2,C X3,C X4,C X5 X6 X7,C B8 B9,E B10 B11,EC

XINTEREST 1 0.1 0.2 -0.5 -0.2 0.5 0.2
X1,EC 0.1 1 0.2 -0.1 0.2
X2,C 0.2 1 -0.1 -0.1 0.2 0.1
X3,C -0.5 0.2 -0.1 1 0.1 -0.4 -0.1
X4,C -0.2 -0.1 0.1 1 0.4 0.6 -0.1 0.2 0.2 -0.3 -0.1
X5 -0.1 0.4 1 0.3
X6 0.6 0.3 1 0.1 0.1 -0.1

X7,C 0.5 0.2 -0.4 -0.1 1 0.1 -0.1 0.2
B8

* 0.2 0.1 1 0.5 -0.5
B9,E

* 0.2 0.1 0.1 0.5 1 -0.4
B10

* 0.2 -0.3 -0.1 -0.1 -0.5 -0.4 1 0.1
B11,EC

* 0.2 0.1 -0.1 -0.1 0.2 0.1 1

Blanks indicate no correlation.
* Some of the variables are transformed from normally distributed variables into binary variables with a cut

point determined at a random quantile. For example, it is desired that on average 25% of observations have
B8 = 1. At each replication of the simulation a cut point varied uniformly between 20% and 30% to achieve
an average of 25%. Desired observed proportions for B8 through B13 are 0.25, 0.25, 0.5,0.05, 0.7, and 0.3
respectively.
Four variables, B12, B13,E , X14, X15,E are uncorrelated with all other variables and are not included here.
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Lastly, the outcome variable is generated in the following manner:

Y ∼ Binomial(P (Waist − to −Height Ratio > 0.5)) (4.8)

log
P (Waist − to −Height Ratio > 0.5)

1 − P (Waist − to −Height Ratio > 0.5) = −1.4 + 0.3XINTEREST + 0.4X1,EC

+ 0.2X2,EC − 0.25X7,EC − 0.75B9,E − 0.3B10,E − 1.1B11,EC + 0.2B13,E − 0.2X15,E

(4.9)

Sample sizes of n = 150,250,500,1000,2500,5000,10000, and 20000 are investigated. The

coefficients in (4.9) result in approximately 18.5% of the sample having Y = 1. Also for the

setting of n = 1000, the situation where the variable of interest had no effect was considered.

Although this data is more complicated than is generally reported in simulations compar-

ing variable selection methods, it is a more accurate depiction of the conditions of a large

observational study (Wang et al. 2004, Wiegand 2010, Lee 2014).

4.4.2 Variable Selection

After the data are generated, backward elimination (BE), two-stage analysis, change-in-

effect procedures (CIE), and Bayesian model averaging (BMA), are performed using the

first n observations. BE, two-stage, and CIE procedures yield final models and the variables

included in these final models, coefficient estimates, standard error estimates and predicted

values of the outcome for these selected models are recorded. BMA does not reduce the

number of variables but instead reports the average estimates for all variables. In practice a

researcher may still want to report a final model after using averaging techniques. This study

considers the model with the highest PMP (top model), and the model resulting from including
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all variables with PIP¿0.5 (median model) as likely candidates for selecting a reduced model

and are therefore also recorded. BMA provides averaged estimates of coefficients, standard

errors and predicted values of the outcome. PMP and PIP values for each replication are

recorded. Lastly, the final model or the averaged model from each method is applied to the

last n of the 2n observations and predicted outcomes, P̂ (Yi = 1), are recorded.

Three BE strategies are considered, one based on a p-value cut-offs of 0.05, one on

minimizing AIC, and another on minimizing BIC. The p-value cut-off BE is performed

with the fastbw function in the rms package in R (Harrell Jr 2018). BE to minimize

AIC is performed using the stepAIC function in the MASS package (Venables and Ripley

2002) and BE to minimize BIC is performed using the step function. The functions

fastbw,stepAIC and step are only used to determine the final model. Estimates of the

coefficients are made using the variables identified by these functions in a logistic regression

model fit with glm. Two-stage analysis did not use an existing function. A cut-off of p=0.05

is used. CIE is not available in a mainstream R package and a function was created to perform

this selection strategy which is shown in the appendix. Thresholds of 5%, 10%, and 20% were

applied. CIE with 5% performed best of these three and is presented here, while results for

10% and 20% can be found in the appendix. Results from a p-value cut-off of 0.05 are shown

here, and the p-value cut-off of 0.2 is shown in the appendix. Note, when variables have only

one degree of freedom as the ones in this simulation study, the AIC cut-off is equivalent to the

p-value cut-off of 0.157 (Steyerberg et al. 2000).

BMA uses the bic.glm function in the BMA package (Raftery et al. 2017). Occam’s

window with a maximum exclusion ratio of 20 as suggested in Madigan and Raftery is

used(Madigan and Raftery 1994). Prior probabilities for variable inclusion are 1 for the

variable of interest, guaranteeing inclusion, and 0.5 for all remaining variables. A prior

probability of inclusion of 0.5 indicates that, prior to collecting data, a researcher believes a

variable is related to the outcome just as much as they believe the same variable is not related
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to the outcome. This is sometimes called an indifference prior. In order to most most closely

mimic performance of these methods in public health applications, the default settings are

used.

4.4.3 Quantities of Interest

Model Selection and Variable Inclusion Probabilities

The first of four key modeling aims this simulation will investigate is selecting the correct

model. The model selected by each procedure is recorded, and the probability of selecting

any particular model is the number of replications selecting a specific model and dividing by

r, here 1000. Because so many variables are examined, the variety of models chosen by the

selection methods considered here are well over 1000. For this reason, the models selected are

summarized by determining if they select all, some or none of the variables with β ≠ 0 (X1,EC ,

X2,EC ,X7,EC ,B9,E , B10,E ,B11,EC , B13,E , and X15,E),and all, some, or none of the variables

related to XINTEREST but with β = 0 (X3,C and X4,C). These two groups are referred to as

the E group, for effect, and the C group, for correlated. Ideally the methods will select the

true model, but if that cannot be achieved, the model should at least include all of the E group.

Additionally, the variable inclusion probabilities (IP) are presented. For all methods except

BMA, IP is the percent of simulation replicates selecting each variable in the final model.

Average PIP across replications is reported for BMA. The individual variable’s IP are essential

for understanding how these selection methods function with variables that differ in effect

size, correlation, and type (binary vs. continuous). If the true model is not selected, these IP

can help determine why.

Estimation of Main Effect

The second key modeling aim investigated is the estimation ofXINTEREST . If a researcher

is mostly interested in the size of the association between the variable of interest and the
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outcome, it matters less which specific variables are included, and instead the accuracy and

precision of β̂INTEREST matter much more. Much like in practice, this study considers one

variable to be the variable of interest and requires all the models a variable selection method

considers to include this variable. The bias, standard error of the coefficient estimates, ratio

of the standard deviation of the coefficient estimates and the mean estimated standard error,

coverage, and the probability of type I error or power, depending on the scenario, are recorded.

Percent bias is calculated as 100 ∗ β̂INTEREST−0.3
0.3 . The ratio of the standard deviation of the

coefficients and the mean estimated standard deviation is a measure of how well methods

account for model uncertainty. If this ratio is greater than 1, the reported standard deviations

are too small which in turn results in overly optimistic p-values.

Predictive Performance

The third quantity addresses how well each model predicts the outcome. Prediction is

measured by Somers’ D rank correlation of P̂ (Y = 1) and the actual values of Y in the

simulated original and external datasets. The difference between these two correlations reveals

a degree of over-fitting (Harrell 2001).

over − fit =DYorig ,P̂ (Y =1)orig
−DYexternal,P̂ (Y =1)external

(4.10)

The ideal model has the highest DYexternal,P̂ (Y =1)external
and the lowest over-fit. Note Somers’

D ranges from -1 to 1 where 1 indicates the highest concordance between the Y and P̂ (Y = 1).

Also, D+12 is the area under the curve, or AUC.

Agreement

Agreement is not really a modeling goal but aids our understanding of how these methods

relate to each other. The fourth and final quantity investigated is the probability that these

variable selection strategies agree with each other. With so many variable selection methods
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available, one suggested technique is to perform multiple methods, declaring a model final

if it is chosen by both methods (Wiegand 2010). Investigating method agreement will also

highlight the similarities between the selection methods.

4.5 Simulation Results

4.5.1 Model Probabilities

Variable selection methods are often used with the expectation that they can uncover

the true model. Figure 4.1 shows the probability of selecting the true model by n. Reliable

selection of the true model does not occur for any method until n ≥ 5000. At n = 5000, BE

p=0.05 selects the true model most frequently with 45% of the replications finding the true

model. Once n ≥ 10000, BE p=0.05 is no longer the top performer with BE BIC and BMA

more frequently finding the true model. CIE and the Two-Stage method very rarely select the

true model, even when n = 20000. Investigating specific variable IP helps explain why the

methods fall short of selecting the true model.
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Figure 4.1: Probability of Selecting the True Model.
Both CIE and Two-Stage variable selection methods fail dramatically at selecting the correct
model.
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4.5.2 Variable Probabilities

Variable inclusion probabilities (IP) are helpful for investigating how variable selection

models operate. In practice, unless using BMA, sequential variable selection methods and

CIE do not report an IP but instead report a final model. Figure 4.2 shows the IP for

n = 250, 1000, 5000, and 20000. Variables appearing at the top of the plot have both an effect

and a correlation with the variable of interest and have EC as a subscript, next appear the

variables with only an effect, then those with only a correlation, and lastly appear a few of the

noise variables. Other noise variables are not shown in the plot. The noise variables shown

here had no correlation with the variable of interest and no correlation with any other variables

considered. Only IP from the BMA average model are shown here, not the IP from BMA top

and median models. The top and median models closely match their corresponding averages

for IP.

First, consider CIE. CIE most stands out from the other methods for variables which

are correlated with the variable of interest. CIE erroneously includes X4,C and X3,C very

often when n ≤ 1000 although this decreases with n. However, as n increases CIE fails to

include variables with an effect and no correlation with XINTEREST . This suggests CIE is

very sensitive to the correlation of variables with the variable of interest, but is not really

finding variables with a relationship to the outcome.

Next, consider the Two-Stage method. The Two-Stage methods has IP similar to that of

the BE methods and BMA with two striking exceptions: B10,E and X4,C . The Two-Stage

method is failing to include B10,E . Recall the correlation matrix of the variables shown in

Table 4.1. B10,E has some of the strongest correlations present with B8 and B9,E . B9,E has a

much larger effect size than B10,E . The other variable in Table 4.1 with strong correlations

is X4,C . However, it has strong correlations with X5 and X6, which have no effect. Unlike

B10,E , Two-Stage methods are including X4,C more than it should. In this way, the Two-Stage

method is quite susceptible to collinearity not only with the variable of interest, but with all
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the variables.

BE methods perform similarly to each other, in that, as n increases, they tend to include

variables with an effect and exclude those without. BE AIC does include variables with an

effect at a higher rate than BE BIC and BE p=0.05, however, BE AIC also includes noise

variables at a higher rate. The rate of inclusion of noise variables for BE p=0.05 and BE AIC

does not change with n. These constant rates of including noise of 5% and 15.7% explain

why Figure 4.1 displays a striking leveling off of the probability of BE AIC and BE p=0.05

selecting the true model. BE BIC does not have a constant error rate and is therefore able

to improve as n increases. Lastly, BMA selects variables very similarly to BE BIC, with

inclusion of noise decreasing with n, inclusion of variables with an effect increasing with

n. Ignoring CIE, all the methods had a harder time including variables having a correlation

with the variable of interest in the opposite direction of the effect like B11,EC and X7,EC . The

methods also had an easier time identifying continuous rather than binary variables.
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Figure 4.2: Variable Inclusion Probabilities.
From top to bottom, variables have both an effect and a correlation with the variable of interest
(EC subscript), an effect but no correlation (E subscript), a correlation but no effect (C
subscript), and neither an effect nor a correlation (noise, no subscript).
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4.5.3 Estimation of the Main Effect

The estimates of percent bias in βINTEREST by n are shown in Table 4.2 along with the

95% Monte Carlo confidence intervals. Unlike any of the other methods, CIE has an odd

property of increasing bias as n increases. Most of the methods have some bias when n ≤ 5000,

but this bias tends to shrink and the Monte Carlo interval includes zero. However, the Two-

Stage model and CIE 5% models both show bias even when n = 20000. The Two-Stage

methods shows an alarming amount of bias for n < 20000, particularly when compared to the

other methods. Also, the averaged coefficients from BMA are less biased than the coefficients

from the BMA top or median model.
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Table 4.2: Estimation of Variable of Interest: Percent Bias.

Percent Bias % *

Selection Method N=250 N=1000 N=5000 N=20000

BE p=0.05 -10.932 -5.785 0.550 0.050

(-12.967,-8.897) (-6.863,-4.706) (0.121,0.98) (-0.166,0.266)

BE AIC 6.259 -0.590 0.625 0.083

(3.993,8.525) (-1.633,0.452) (0.180,1.070) (-0.141,0.308)

BE BIC -9.912 -14.069 0.286 0.055

(-11.922,-7.902) (-15.179,-12.960) (-0.138,0.711) (-0.154,0.265)

CIE 5% 12.689 0.785 -0.225 -1.098

(10.356,15.021) (-0.250,1.819) (-0.672,0.222) (-1.313,-0.883)

Two-Stage -28.150 -30.569 -12.084 1.537

(-29.740,-26.560) (-31.451,-29.688) (-12.685,-11.482) (1.315,1.759)

BMA Average -7.766 -13.315 0.209 0.053

(-9.667,-5.865) (-14.346,-12.284) (-0.217,0.635) (-0.157,0.262)

BMA Top -9.991 -14.436 0.286 0.055

(-11.995,-7.987) (-15.542,-13.33) (-0.138,0.711) (-0.154,0.265)

BMA Median -10.998 -14.404 0.279 0.056

(-12.998,-8.999) (-15.52,-13.287) (-0.145,0.703) (-0.153,0.265)

* Percent Bias is calculated as 100 ∗ β̂INTEREST−0.3
0.3 . The interval shown is the Monte Carlo confidence

interval calculated using Monte Carlo error (MCE).

Variable selection methods are frequently criticized for underestimating the variance of

coefficient estimates which results in p-values which are too small and confidence intervals

which are too narrow. In a simulation setting, the standard deviation across simulation

replicates of the estimates of the coefficients can be compared to the mean estimates of the

standard error. Table 4.3 shows the ratio of these two. Values greater than 1 indicate the model

underestimates the standard error of the coefficient. With n < 20000, all methods have a ratio
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greater than one, with the exception of the Two-Stage method at n = 250. Although not less

than 1, BMA tends to provide the lowest ratio of the methods. CIE 5% and the Two-Stage

method also occasionally provide lower ratios but this is not as consistent across n as the

BMA trend is. Coverage is the probability that the true effect, 0.3, is found in the confidence

interval for β̂INTEREST . Coverage less than 0.95 suggests either the interval is too narrow

(standard error too small), or β̂INTEREST is too biased. When n is small, n ≤ 250, only Monte

Carlo intervals for BMA Average include 0.95(intervals not shown). When n = 20000, BE

BIC and all three BMA estimates include 95% coverage in the Monte Carlo interval(intervals

not shown).

An ideal method has low bias and standard error ratios close to or less than 1. Figure 4.3

shows these traits simultaneously. BMA is closest to this ideal when n = 250. As n increases,

BE BIC and all three BMA methods move closer to the ideal of no bias and standard error

ratio of one. BE p=0.05 and BE AIC move towards unbiasedness, but fail to achieve a ratio of

1 or less. CIE and Two-Stage achieve neither goal.
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Table 4.3: Estimation of Variable of Interest: Variance and Coverage.

Ratio of sd(β̂INT.) and mean(ŝe(βINT.)) * Coverage †

Method N=250 N=1000 N=5000 N=20000 N=250 N=1000 N=5000 N=20000

BE p=0.05 1.206 1.197 1.024 1.033 0.901 0.884 0.948 0.941

BE AIC 1.210 1.103 1.047 1.059 0.904 0.925 0.943 0.937

BE BIC 1.201 1.298 1.019 1.006 0.902 0.830 0.949 0.947

CIE 5% 1.081 1.031 1.038 1.035 0.932 0.943 0.945 0.941

Two-Stage 0.958 1.052 1.494 1.037 0.933 0.803 0.698 0.942

BMA Average 1.031 1.080 1.009 1.003 0.946 0.896 0.952 0.947

BMA Top 1.200 1.297 1.019 1.006 0.903 0.829 0.949 0.947

BMA Median 1.199 1.308 1.018 1.006 0.901 0.826 0.949 0.947

* Ratio

† Coverage is the percent of replications whose 95% confidence interval for β̂INTEREST includes the true

value, 0.3. Coverage less than 0.95 suggest the interval is either too narrow or too biased.

4.5.4 Predictive Performance

A selection method with high D
Yexternal,

ˆP (Y =1)external
and small over-fit is ideal. Figure

4.4 presents these values as n increases. Increasing n improves predictive performance in all

methods, both in increasing Somers’ D and decreasing the over-fit. For small studies, n = 250,

all methods have a low D and high level of over-fit. Most methods, except BMA Average, BE

AIC and CIE 5%, result in D close to 0.18 and an over-fit around 0.14. This is equivalent

to an AUC of 0.59 in an external sample, and an overestimate of AUC of 0.07. The other

three methods, BMA Average, BE AIC and CIE 5%, are better at external prediction, but

this comes with the price of worse over-estimation. As n increases, CIE 5% has the lowest

over-fit, but is the worst method for predictive performance in the external sample. Conversely,

BE AIC had close to the best D
Yexternal,

ˆP (Y =1)external
, but always had the most over-fit. BE
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BIC, BMA Average, BMA Top, and BMA Median predict very similarly as n increases and

approach the ideal represented by the bottom right of the plots of lowest over-fit and highest

D
Yexternal,

ˆP (Y =1)external
.

4.5.5 Agreement

Although every pairwise agreement was recorded in the simulation, only the interesting

ones are shown in Table 4.4. BE BIC often matched the BMA model with the highest PMP.

BMA Top also very often matched the model which included all variables with PIP¿0.5 (BMA

Median). Recall the BMA method employed here uses a BIC approximation for (4.7) (Yeung

et al. 2005, Raftery 1995), and indeed the models selected by BMA and BE BIC are quite

similar. BE BIC and BE AIC show little to no agreement. BE p=0.05 shows its highest

agreement with BE BIC. This agreement shows an odd trend of first decreasing as n goes

from 250 to 5000 then increasing as n goes to 20000. Two-Stage method showed highest

similarity to BMA and BE p=0.05 at small n, approximately 32 and 38%, but this decreases to

zero as n increases. CIE never agreed with the other methods. Table 4.5 shows the probability

that given two sequential methods agree on the model, the model they are agreeing on is the

truth. Agreement rates between sequential methods are never greater than 67%. Further, only

when BE p=0.05 and BE BIC, or BE AIC and BE BIC agree do they have a good chance,

greater than 95%, of agreeing on the true model, but the chance of these agreeing is only

67% and 28% respectively. In fact, randomly selecting any pair of these sequential methods,

when n = 20000, yields only 20.4% chance of the two sequential methods agreeing on the true

model. Only considering BE p=0.05, BE AIC and BE BIC yields only 40.6% chance that two

of these methods will agree and agree on the true model. At the same time, using BE BIC

alone finds the correct model 94% of the time. As others have suggested, using agreement

between sequential variable selection techniques as a selection method is unwise (Wiegand

2010).
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Table 4.4: Agreement.

Selection Method n=250 n=1000 n=5000 n=20000

BE p=0.05 and BE BIC 0.621 0.163 0.366 0.668
BE p=0.05 and BMA Top 0.604 0.155 0.365 0.667

BE p=0.05 and BE AIC 0.036 0.102 0.369 0.449
BE AIC and BE BIC 0.027 0.011 0.110 0.275

BE p=0.05 and Two-Stage 0.381 0.129 0.015 0.003
Two-Stage and BMA Top 0.316 0.133 0.027 0.003

Two-Stage and BMA Median 0.335 0.140 0.027 0.003
CIE 5% and Two-Stage 0 0 0 0
BE BIC and BMA Top 0.956 0.967 0.998 1.000

BE BIC and BMA Median 0.820 0.851 0.983 0.999
BMA Top and BMA Median 0.836 0.865 0.984 0.999

Table 4.5: Probability that Agreement is on the True Model.

Sequential Method n=250 n=1000 n=5000 n=20000

BE p=0.05 and BE BIC No Agreement 0.002 0.442 0.986
BE p=0.05 and BMA Top No Agreement 0.003 0.442 0.986

BE p=0.05 and BE AIC No Agreement 0.033 0.525 0.642
BE AIC and BE BIC No Agreement 0.018 0.631 0.988

BE p=0.05 and Two-Stage No Agreement 0 0.425 0.625
Two-Stage and BMA Top No Agreement No Agreement 0.119 1

Two-Stage and BMA Median No Agreement No Agreement 0.117 1
CIE 5% and Two-Stage No Agreement No Agreement No Agreement No Agreement
BE BIC and BMA Top No Agreement 0 0.219 0.934

BE BIC and BMA Median No Agreement 0 0.221 0.935
BMA Top and BMA Median No Agreement 0 0.221 0.935
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Figure 4.3: Percent Bias by SE Ratio.
Ideal estimates have bias of zero and an SE ratio close to one. This target is indicated by the
crossing white lines. If the target is not achieved, conservative methods have negative bias and
ratio less than one. Not until n = 20000 do any of these methods come close to the target of
no bias and SE ratio equal to one. Note for n = 5000 the Two-Stage method with bias -12.08
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4.6 Summary and Limitations

In order to simultaneously consider variable selection method performance in variable

selection, effect estimation and prediction, findings are condensed into one last table, Table

4.6. To begin, consider selecting a method when estimation of the variable of interest is the

primary goal of a study. Unless n is quite large, ≥ 20000, no method provides an estimate

without bias, without underestimation of the standard error of β̂INTEREST , and with at least

95% coverage. When n = 20000 BE BIC, BMA average, BMA top, and BMA median models

achieve all three of these ideals. Although there is still technically underestimation of the

standard error, BMA has the least underestimation and is unbiased with good coverage when

n = 5000. Likewise, CIE 5% has the least underestimation and is unbiased with good coverage

when n = 1000.

Next, consider prediction the modeling goal. Although BMA methods were developed to

possess some of the best predictive qualities, there was not an overwhelming indication that

this is indeed the case. When n = 250, BMA had the lowest over-fit of the models with better

external prediction. As n increases, BMA approaches the ideal of high external prediction

and low over-fit, but it is accompanied by BE BIC. BE AIC always had the highest over-fit,

and usually CIE 5% had the worst external prediction ability.

Finally, consider the goal of understanding the relationship between the variables by

studying the selected model. All methods neglect to find the true model for smaller samples

of n = 150,250,500 and 1000. Even at n = 5000, the best model selector, BE p=0.05, only

selects the true model 45.3% of the time. This emphasizes the difficulty of variable selection.

It is not until n = 10000 that the true model is selected with any reliability, with the BMA

Top, BMA Median, BE BIC, and BE 0.05 all finding it roughly 62% of the time. At small

n, the methods are missing variables with small effects (in Group E) and too often including
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correlated variables with no effect (Group C). Then as n increases, the methods still miss

variables with small effects but no longer include any variables from Group C. Lastly as n

increases to 20000, many methods settle on the truth, but methods that by design allow a high

level of noise, like BE AIC, or that fail to eliminate collinear variables, like Two-Stage, never

achieve the true model.

This simulation study does have limitations. It could be argued that criteria used to judge

a good model in Table 4.6 are too stringent. This study cannot claim to exhaustively include

all of the many variable selection methods, both ad-hoc and data driven, employed by public

health researchers. However, the most commonly used techniques are represented. Similarly,

logistic regression is one of the most frequently used types of regression in public health

studies. A simulation with these variable selection methods used in linear regression was

performed, but is not presented here. All the methods performed better in the linear setting,

but conclusions were not substantively different. Additional parameters of the simulation

set-up could have been explored, such as strength of the coefficient of interest, strength of

correlation, types of variables and number of variables under consideration. However, this

study does glean valuable information about how these variable selection methods behave

in a realistic public health setting and it does not seem that these modifying the simulation

parameters would drastically change the overall conclusions.
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Table 4.6: Summary.

n=250 n=1000 n=5000 n=20000

Estimation
No Underestimate Two-Stage BE BIC
of se(β̂) BMA Average

Ratio ¡1 BMA Med,Top

Smallest Ratio ¿1 BMA Average CIE 5% BMA Average
(1.06) (1.02) (1.03)

Unbiased
BE AIC BE AIC BE AIC

MC Interval for Bias CIE 5% CIE 5%
Overlaps with 0 BE BIC BE BIC

BE p=0.05 BE p=0.05
BMA Average BMA Average
BMA Med,Top BMA Med,Top

Coverage
BMA Average BMA Average BMA Average

MC Interval CIE 5% CIE 5%
Includes 0.95 BMA Med,Top BMA Med,Top

BE BIC BE BIC
BE AIC

Two-Stage

Predictive BEST: BEST: BEST: BEST:
Performance
Highest D

Yext., ˆP (Y =1)ext.
BMA Average BMA Average BMA Average BMA Average

and lowest over − fit BMA Med,Top BMA Med,Top
BE BIC BE BIC BE BIC
Two-Stage

AVOID: AVOID: AVOID: AVOID:
CIE 5% CIE 5% CIE 5% CIE 5%
BE AIC BE AIC BE AIC BE AIC

BE p=0.05
Two-Stage

Variable Selection
Selected True Model BE p=0.05 (48%) BE p=0.05 (69%)

BMA Med,Top BMA Med,Top
(22%) (94%)
BE BIC (22%) BE BIC (94%)
BE AIC (23%) BE AIC (31%)
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4.7 Discussion

This study attempts to provide insight into one of the most commonly used analysis tool,

variable selection. While sometimes there are enough subjects in a study that a researcher

could include every variable available to them and not over-extend the model, there are,

however, studies where variable selection is necessary. Often variable selection is not formally

reported in an article, but many combinations of variables were tried until the final model is

decided. This simulation study shows the dramatic effects variable selection can have on goals

of estimation, prediction and model recovery in logistic regression setting with a variable

of interest and other possible confounders and leaves the us with three key thoughts. First,

although quite popular, change-in-effect methods fail to effectively select variables with an

effect on the outcome, fail to estimate the effect without bias or overstating the p-value, and

fail to predict the outcome well. Second, success of sequential methods relies heavily on the

cut-point or criteria chosen. Third, BMA promises to solve issues related to model uncertainty,

and succeeds with diminishing returns.

CIE, designed to discover confounders, never reliably found the potential confounders, but

instead focused on variables correlated with the variable of interest. It is also not surprising

that CIE fails to estimate well. CIE is known to allow bias up to one half of the cut-off

(Maldonado and Greenland 1993). For example, CIE 20% can result in up to 10% bias.

However, this study found bias rates greater than 2.5% for CIE 5%. One of the early studies

on CIE which is frequently cited (over 1600 times in fact) only examines CIE in a small

case-control study with one variable of interest and one confounder cautions the reader about

using CIE in cohort studies and suggests instead a variety of the Two-Stage approach (Mickey

and Greenland 1989). Interestingly, in this study the Two-Stage approach fared little better

than CIE, and resulted in greater bias and over-fit. Although popular and somewhat easily

implemented, both CIE and Two-Stage variable selection should be avoided. Other easily

implemented techniques are far more effective.
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Effectiveness in estimation, prediction and variables selection varied dramatically among

the other sequential variable selection methods. In samples of n = 10000 or fewer BE p=0.05

was the most effective at discovering the true model. However, this model struggles with bias

and over-fitting the predicted values. For n ≥ 10000 BE BIC performed very well in terms of

bias, overstating the significance, and over-fitting the predicted values. BIC was derived as

an approximation to the log of the posterior probability of a model where each model has an

equal prior probability and is asymptotically equivalent to choosing a model based on Bayes

factors (Schwarz et al. 1978). Theoretically, BIC is a consistent model selector, meaning that

if the true model is among the models considered, as n increases, the probability that BIC will

identify the true model converges to 1 (Yang 2005). This property is reflected in the successful

variable selection of BE BIC Figure 4.1 demonstrates. In the data-scenario investigated by

our simulation, this consistency required a much larger n than expected. One rule of thumb

suggests good model fit can be achieved in logistic regression when the number of subjects in

the smaller of the outcome groups is 10 times the number of variables included in the model

(Peduzzi et al. 1996). When n = 10000, our simulation averaged 1850 subjects with Y = 1

and used a maximum of 16 variables, or 115 events-per-variable. Variable selection with

AIC is asymptotically equivalent to model selection with cross-validation (Stone 1977). The

probability of selecting the true model using the AIC criterion converges to 1 as the number

of variables considered increases. In a setting with many more variables considered, AIC may

surpass BIC in selection ability. However, none of these sequential methods directly address

model uncertainty. Sequential testing techniques have been said to over-state the variable

magnitude and significance, be unstable (a small change in the data can lead to a different

model), and the p-value cut-off is considered quite arbitrary (Simon and Altman 1994, Harrell

et al. 1996, Harrell 2001).

BMA was designed to directly account for model uncertainty, and therefor it was expected

not to underestimate the variance of the coefficients and not over-fit the predicted values. This
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trait has been theoretically shown and claimed before (Draper 1995, Raftery 1995, Raftery

et al. 1997, Hoeting et al. 1999). In this simulation we find that BMA does quite well at

predicting the outcome with the least amount of over-fitting. However, BMA is beaten slightly

by BE BIC. In this study we relied on the easily implementable BMA which relies on a

BIC approximation. BMA proponents may claim it is possible that in it’s purest form BMA

would surpass BE BIC. However, the goal of this study was to investigate how these variable

selection methods perform in the hands of public health researchers. In addition to accounting

for model uncertainty, BMA provides the researcher with the helpful PIP without needing a

simulation. Often, the p-value is misinterpreted as the probability that a variable belongs in

a model(Greenland et al. 2016). This is in fact the interpretation of PIP, while a p-value is

the probability of observing a coefficient of this magnitude or greater when in fact there is

no relationship between the outcome and predictor variable, assuming the correct model has

been used. This interpretation is often what researchers are wanting a p-value to be when they

misinterpret a p-value (Greenland et al. 2016).

Given the relative success BE p=0.05 has at selecting the correct model for moderately

sized n, it would be interesting to investigate other corrections to account for model uncertainty.

Applying the bootstrap to account for model uncertainty is one option that may address these

concerns (Harrell 2001, Draper 1995, Buckland et al. 1997, Harrell et al. 1996). Harrell

1996 provides a tutorial for using the bootstrap to account for the optimism in multivariable

models (Harrell et al. 1996). A shrinkage penalty can also be used after sequential selection to

improve the final model (Harrell et al. 1996, Steyerberg et al. 2000). If BMA is unavailable, it

may that BE performs quite similarly, however, adjustment needs to be made to account for

model uncertainty. BE with a specific p-value could be chosen based on how much noise one

is willing to tolerate in the model, or BIC could be chosen.

The ultimate aim of this article is to provide the public health researcher with information

to guide one of the most critical parts of their choice in data analysis. Just like every other
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analysis tool, no single variable selection method can be recommended for use in every study.

By presenting direct comparisons of these varied variable selection methods in a simulation

setting where the truth is both well-defined and complex enough to represent a real analysis,

this study allows the researcher to judge their own study’s traits and goals and select the

method that fits best. These results should also serve as a reminder that popularity of a method

can have little to do with it’s objective abilities.
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CHAPTER 5: PREDICTING VISCERAL ADIPOSE TISSUE WITH BAYESIAN
MODEL AVERAGING IN THE CHINA HEALTH AND NUTRITION SURVEY

5.1 Introduction

There is heterogeneity in the metabolic risk of obesity, some obese individuals are at very

high metabolic risk, while others are not and being able to predict people who fall in this

category is critical for targeting intervention and for understanding the health of a population.

While there is debate about which depot of fat may be causally responsible for metabolic

complications of obesity (Fabbrini et al. 2009, Klein 2004), visceral fat has been shown to

be associated with metabolically abnormal obesity (Pouliot et al. 1992, Banerji et al. 1995,

Gastaldelli et al. 2002). Visceral fat has stronger associations with cardio-metabolic diseases

than BMI (Wajchenberg 2000, Fontana et al. 2007, Saito et al. 2012, Beaumont et al. 2016),

the standard measure of obesity.

Visceral adipose tissue (VAT) can be expensive to measure and may not be historically

available in large population studies. Computed tomography (CT) and magnetic resonance

imaging (MRI) are considered the gold standard of VAT measurement (Rankinen et al. 1999,

Seidell et al. 1990, Koester et al. 1992, Ross et al. 1992, Van der Kooy et al. 1993). Dual-

energy x-ray absorptiometry (DXA) whole body scans have been suggested as an alternative

(Snijder et al. 2002, Bertin et al. 2000, Direk et al. 2013). None of these measuring techniques

are feasible in large population studies. Instead, a variety of anthropometric measures have

been suggested as indices of VAT. Waist circumference (Pouliot et al. 1994, Grundy et al.

2013, Ross et al. 1996) and waist-to-hip ratio (Ashwell et al. 1985, Rankinen et al. 1999) have
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been found to correlate with visceral fat. Body mass index (BMI) is used to define obesity and

is commonly used in clinical and epidemiological studies (Smalley et al. 1990, Spiegelman

et al. 1992). Investigating the predictive ability of more readily accessible anthropometric and

demographic measures in a multivariable model is an important step in exploiting the richness

of existing population studies to better understand the role of visceral fat in the development

of metabolically abnormal obesity. Further, a predictive model could help establish better

identification of metabolically abnormal obesity in a clinical setting.

Other studies have investigated the predictive ability of a variety of anthropometric mea-

sures of visceral fat, but these studies have small sample sizes (Pinho et al. 2017, Goel et al.

2008, Swainson et al. 2017), are limited to only including overweight patients (Pinho et al.

2017), have poor predictive performance (Pinho et al. 2017), or only examine one anthro-

pometric measure at a time (Swainson et al. 2017). The China Health and Nutrition Survey

(Popkin 2010) offers a large sample with a wide range of BMI. Using a single anthropometric

measure at time avoid problems of collinearity, but there is always debate about which an-

thropometric measure is the best to include. Although stepwise procedures can help choose

between variables to include, they are prone to over-estimating the predictive ability of a

model, rendering a seemingly good model unable to replicate its predictive abilities in another

study. Bayesian model averaging (BMA) provides an opportunity for exploring many possible

models while appropriately accounting for the uncertainty surrounding variable selection

(Draper 1995, Raftery 1995, Raftery et al. 1997, Hoeting et al. 1999). BMA is only one

of several statistical methods developed for appropriately accounting for model uncertainty

but has the advantage of providing the best predictive qualities (George 2000, Madigan and

Raftery 1994). By averaging over many possible models, BMA de-emphasizes the importance

of selecting a perfect model and instead harnesses the usefulness of a variety of plausible

variable combinations. BMA also provides a useful estimate of the probability of any explored

model being the true model given the observed data. We employ BMA to investigate a
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predictive model of VAT using anthropometric measures in CHNS to help understand which

combinations of anthropometric measures are most predictive.

5.2 Methods

5.2.1 The China Health and Nutrition Survey

The China Health and Nutrition Survey (CHNS) collected health data in 361 communities

(15 provinces and autonomous cities/districts of Beijing, Chongqing, Guangxi, Guizhou, Hei-

longjiang, Henan, Hubei, Hunan, Jiangsu, Liaoning, Shaanxi, Shandong, Shanghai, Yunnan,

and Zhejiang) throughout China in ten survey rounds from 1989 to 2015 using a multistage,

random cluster design. Survey procedures have been described elsewhere (Popkin 2010). The

study was approved by the Institutional Review Board at the University of North Carolina at

Chapel Hill, the China-Japan Friendship Hospital, the Ministry of Health and China, and the

Institute of Nutrition and Food Safety, China Centers for Disease Control. Participants gave

informed consent.

This analysis includes adults at least 18 and no more than 70 years old in the 2015 survey,

with VAT measured (n=12,272) who were not pregnant (n=12,258). Participants with VF score

values within five standard deviations from the mean were eligible for inclusion (n=12,219).

5.2.2 Visceral Adipose Tissue

VAT was measured as a Visceral fat (VF) score was measured in light clothing without

shoes and socks to the nearest 0.1 kg on Tanita BC601 Bioelectric Impedance Analysis (BIA)

scale (Tokyo, Japan), which measures segmental body composition based on the electrical

impedance value of a current passing through the body (Lee and Gallagher 2008).
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5.2.3 Anthropometry

Weight was measured without shoes and in light clothing to the nearest 0.1 kg on a

calibrated beam scale. Height was measured without shoes to the nearest 0.2 cm using a

portable SECA stadiometer. BMI was calculated as kg/m2. Waist circumference was measured

midway between lowest rib and iliac crest using SECA tape.

5.2.4 Demographic Variables

Ever smoked (Y/N) and whether beer or alcohol was consumed in the last year (Y/N) were

reported at each exam.

5.2.5 Statistical Analyses

Analyses were done in R version 3.5 (R Core Team 2013) using the BMA package (Raftery

et al. 2018). Anthropometric and demographic variables are summarized across VF quartiles

with percentages for categorical variables and with the median and 25th and 75th percentiles

for continuous variables. A model to predict VF from anthropometric and demographic

measures was built using Bayesian model averaging with the BIC approximation (Draper

1995, Raftery 1995, Raftery et al. 1997, Hoeting et al. 1999). In order to allow this prediction

to be useful outside of CHNS, we limited our model to commonly collected variables: age,

sex, weight (kg), height (cm), waist circumference (cm), hip circumference (cm), smoking

history (Y/N), and alcohol consumption in the past year (Y/N). Additionally, transformations

of these basic anthropometric variables are also included: BMI (kg/m2), waist-to-height ratio

and waist-to-hip ratio. All of these anthropometric measures are correlated with each other

and a model which includes them all may make little sense. Using BMA allows us to use the

strengths of all of these measures and gauge which is the most important.

Stepwise procedures are frequently used to determine a single best model. BMA does

not select a single model, but instead investigates all possible models. Each model then
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contributes to a weighted average of models, in this case, the weight depends on the Bayesian

Information Criterion, or BIC. Both the estimates of the coefficients, and estimates of the

predicted outcome are averaged over all the models. This averaging scheme provides better

predictions than any single model could (George 2000, Madigan and Raftery 1994). Further,

BMA provides a measure of the likelihood of the data being supported by each model, given

the observed data, relative to the other models considered (posterior model probability, PMP)

and a probability that each coefficient is not equal to zero (posterior inclusion probability,

PIP). PMP are the weights for the weighted average and the sum of PMP across all models is

one. For a more thorough introduction to BMA see Hoeting et al. (1999) and Raftery (1995).

Separate predictive models are built for men and women. Because smoking prevalence

was so low (1.7%), ever smoked was only included in the men’s model. We specify the prior

as our belief that each variable is included in the model. In this case, we selected our prior

inclusion probabilities to be 0.5 indicating that we believe each variable is as likely to be

included in the model predicting VAT as it is to be excluded. We used Occam’s window

approach to examining all the possible models with an OR=20 (Madigan and Raftery 1994).

Example code to run the model and summarize the results can be found in the appendix.

5.3 Results

5.3.1 Participant Characteristics

Compared with the overall eligible CHNS population (n=12,219), the group included in

the study (n=12,143) was (older, of lower weight, shorter and from less-urbanised areas, and

had smoked more TBD) than the excluded group (n= 73).

Table 5.1 presents the characteristics of the potential predictor variables by sex. Among

both men and women, weight, waist circumference, hip circumference, waist-to-weight ratio,
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Table 5.1: Sample Characteristics by Sex.

MEN WOMEN Missing
n=5593 n=6626

Age (years) 49.7 (40.9, 60.1) 48.9 (39.7, 59.5) 0
Ever Smoked 50.6% (2818) 1.7% (109) 25

Consumed Alcohol 55.8% (3123) 6.6% (437) 0
Weight (kg) 68.4 (60.0, 75.8) 59.1 (52.5, 65.0) 7
Height (cm) 167.6 (163.0, 172.0) 156.8 (153.0, 160.8) 4

Waist Circumference (cm) 87.0 (80.0, 94.0) 82.3 (75.0, 89.0) 66
Hip Circumference (cm) 95.4 (91.0, 100.5) 94.1 (89.7, 99.7) 15

Waist-to-Height Ratio 0.52 (0.48, 0.56) 0.53 (0.48, 0.57) 68
Waist-to-Hip Ratio 0.93 (0.86, 0.95) 0.90 (0.82, 0.91) 71

BMI (kg/m2) 24.3 (21.8, 26.6) 24.0 (21.5, 26.2) 7

Consumed alcohol indicates reported beer or alcohol consumption in previous year.

waist-to-hip ratio and BMI increased with increasing quartile of VF score (Table 5.2). Only

height did not increase with VF score quartile.
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Table 5.2: Anthropometry by Visceral Fat Score.

Quartile 1 Quartile 2 Quartile 3 Quartile 4 Missing
[0, 6) [6, 8) [8,12) [12,31]

MEN
N=719 N=542 N=1503 N=2829

Weight (kg) 56.3 (51.4, 60.4) 61.3 (55.6, 66.9) 65.2 (59.5, 70.2) 74.6 (67.5, 80.7) 4
Height (cm) 167.3 (163.0, 172.0) 166.7 (162.0, 172.0) 167.5 (163.0, 172.0) 167.9 (163.5, 172.0) 3
Waist Circ. (cm) 75.7 (70.0, 80.0) 81.1 (75.0, 86.0) 84.1 (79.0, 88.4) 92.5 (87.0, 97.8) 32
Hip Circ.(cm) 88.9 (85.0, 92.3) 91.6 (87.7, 96.0) 93.5 (90.0, 98.0) 98.9 (95.0, 103.0) 9
Waist-to-Ht Ratio 0.45 (0.42, 0.48) 0.49 (0.45, 0.51) 0.50 (0.47, 0.53) 0.55 (0.52, 0.58) 34
Waist-to-Hip Ratio 0.86 (0.80, 0.89) 0.90 (0.83, 0.92) 0.91 (0.85, 0.93) 0.96 (0.89, 0.96) 34
BMI (kg/m2) 20.1 (18.6, 21.1) 22.0 (20.5, 23.1) 23.2 (21.5, 24.5) 26.4 (24.4, 28.1) 4

WOMEN
N=2142 N=2092 N=2157 N=235

Weight (kg) 51.3 (47.2, 55.3) 58.4 (54.3, 62.0) 66.3 (61.0, 71.6) 70.8 (60.4, 79.8) 3
Height (cm) 157.3 (153.3, 161.0) 156.6 (152.5, 160.5) 156.4 (152.5, 160.2) 156.7 (152.5, 161.8) 1
Waist Circ. (cm) 74.1 (69.0, 78.6) 81.6 (77.3, 85.0) 90.0 (85.0, 95.0) 93.9 (85.0, 95.0) 34
Hip Circ. (cm) 88.7 (85.8, 93.0) 93.4 (90.6, 97.4) 99.4 (96.0, 104.0) 101.9 (95.2, 111.0) 6
Waist-to-Ht. Ratio 0.47 (0.44, 0.50) 0.52 (0.49, 0.55) 0.58 (0.54, 0.61) 0.60 (0.54, 0.67) 34
Waist-to-Hip Ratio 0.85 (0.78, 0.87) 0.90 (0.82, 0.90) 0.93 (0.86, 0.94) 0.98 (0.86, 0.95) 37
BMI (kg/m2) 20.7 (19.4, 22.0) 23.8 (22.7, 24.8) 27.1 (25.5, 28.7) 28.9 (24.5, 33.2) 3

For continuous variables we present Mean(25th percentile, 75th percentile), and for categorical Percent (N).
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5.3.2 Prediction of VF with Anthropometrics

The model predicting VF score for men included 10 potential predictor variables, leading

to 210, or 1024, potential sets of predictors. Table 5.3 shows the top 5 most likely models of

the 1024 for men and the top 5 of the 512 for women (29, smoking variable not included). For

men and women, no top model attains more than 47% posterior model probability, signaling

uncertainty among the models. There are, however, striking similarities across the ten models.

For example, age and weight are always included while alcohol consumption and waist-to-hip

ratio are never included.

For men, the top model includes waist circumference, weight, height, BMI and hip circum-

ference with posterior model probability (PMP) of 0.346. The next most likely model includes

waist-to-height ratio instead of waist circumference and height (PMP=0.246). Between the

second and third most likely models, height is added (PMP=0.237). In all the top 5 models

for men, if waist circumference was not included, waist-to-height ratio was. In general, men

have a core model of age, weight, BMI and hip circumference and then some combination of

waist-to-height ratio, waist circumference and height.

The top model two models for women account for 76.5% of the posterior model probability,

compared to only 59.2% of the top two models for the men. Unlike men, hip circumference is

not included in the top 5 models for women. The top model for women includes age, weight,

BMI and waist-to-height ratio (PMP=0.474). The second most likely model includes waist

circumference instead of BMI (PMP=0.291). The third most likely model is like the first,

but substitutes waist circumference for waist-to-height ratio (PMP=0.172). In general, the

women’s models always include age and weight and includes no more than two of waist

circumference, waist-to-height ratio and BMI.

Table 5.4 provides the posterior inclusion probabilities (PIP) determined by summing the

posterior model probabilities of the models including each variable, with the interpretation

for these PIP (Kass and Raftery 1995). Average effect estimates and standard error estimates
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weighted by PMP are also provided. Predicted VF scores for men from the averaged model

have a correlation with the observed VF scores of 0.828, or R2 = 0.685. Predicted VF scores

for women from the averaged model have a correlation with the observed VF scores of 0.781,

or R2 = 0.610. Figure 5.1 shows the predicted VF score by the observed VF score. The

predicted scores are higher than the observed scores for men and women with low observed

VF score. In women especially, predicted VF scored is lower than the observed VF score for

those with a high observed VF score.

Table 5.3: Summary of Top 5 Models

MEN WOMEN

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Model Probability 0.346 0.246 0.237 0.075 0.031 0.474 0.291 0.172 0.035 0.029

Age (years) ● ● ● ● ● ● ● ● ● ●

Alcohol (yes)

Waist (cm) ● ● ● ● ●

Height (cm) ● ● ● ●

Weight (kg) ● ● ● ● ● ● ● ● ● ●

Waist-to-Height ● ● ● ● ● ● ●

Waist-to-Hip

BMI (kg/m2) ● ● ● ● ● ● ● ●

Hip ● ● ● ● ●

Ever Smoke (in men)

The ● indicates which variables are included in each model. When the prior probability of each model

is equal, like we have here, the model probability is determined as the BIC for a particular model

divided by the sum of the BIC for all models investigated.
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Table 5.4: Estimation of Variable of Interest.

Variable Inclusion Average Average

Probability* Effect SE

MEN

R2=0.685dagger

Intercept 100 -10.976 7.773

Age (10yr) 100 very strong 1.361 0.029

Alcohol 0 evi. against 0

Smoke 0 evi. against 0

Height (cm) 65.5 weak -0.055 0.046

Weight (kg) 100 very strong 0.143 0.052

Waist (cm) 44.5 evi. against 0.019 0.022

Hip (cm) 93.4 positive 0.015 0.006

Waist-to-Height 55.5 weak 4.075 3.714

Waist-to-Hip 0 evi. against 0

BMI 96.9 strong 0.381 0.144

WOMEN

R2=0.610

Intercept 100 -9.604 1.050

Age (10yr) 100 very strong 0.567 0.019

Alcohol 0 evi. against 0

Height (cm) 2.9 evi. against -0.001 0.007

Weight (kg) 100 very strong 0.098 0.066

Waist (cm) 49.7 evi. against -0.058 0.095

Hip (cm) 0 evi. against 0

Waist-to-Height 82.8 positive 12.873 14.911

Waist-to-Hip 0 evi. against 0

BMI 70.9 positive 0.243 0.162

* Inclusion probability means given the data we observe, what is the probability that a particular variable

is included in the model. This probability is determined as the sum of the posterior model probabilities

of the models which include the variable. Evidences against includion is abbreviated evi. against.

R2 is the Pearson correlation between the predicted VF score and the observed VF score squared.
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Figure 5.1: Predicted VF Score by Observed VF Score

5.4 Discussion

This study develops predictive models of VAT using commonly collected anthropometric

measures in the China Health and Nutrition Survey. Employing Bayesian Model Averaging

techniques accounts for uncertainty in predictor selection and ensures good predictive qualities.

VAT has been shown to be associated with metabolically abnormal obesity, and determining

an inexpensive and widely available measure of VAT is an essential step to investigating the

role of VAT in large epidemiological studies.

Previous studies of VAT and anthropometrics have suggested a variety of anthropometric

predictors. Waist-to-hip ratio has been suggested over waist or BMI for men ¡40 years of age

(Rankinen et al. 1999) and more generally for all ages of men (Ross et al. 1992). Waist-to-hip

ratio was suggested to be a useful predictor of VAT in women in a small study (n=28) as

well (Ashwell et al. 1985). Waist circumference has also been selected as the preferred

predictor of VAT (Ross et al. 1996, Pouliot et al. 1994). Waist-to-height ratio has been touted

as the best predictor of VAT (Swainson et al. 2017). Other measures considered with varying

success in multivariable models have included BMI (Janssen et al. 2002, Goel et al. 2008),
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hip circumference (Goel et al. 2008), conicity index (Pinho et al. 2017), sagittal diameter

pinho2017predictive, neck circumference pinho2017predictive. By exploring all possible

models and quantifying the uncertainty related to selecting a single “best” model, BMA is

ideally suited to this scenario and can help us understand the variety of sometimes conflicting

previous results.

We found the models for men almost always included age, weight, BMI, hip circumference,

and a representation of waist circumference as either the circumference, or waist-to-height

ratio. The models for women always included age, weight, and typically two of the following:

BMI, waist circumference or waist-to-height ratio. While hip circumference had a high PIP

for men, waist-to-hip ratio was never included for men or women. The predictive ability of

our models (R2 = 0.685 in men and r2 = 0.610 in women) is similar to what has previously

been observed (Janssen et al. 2002, Swainson et al. 2017), and in some cases much better

(Pinho et al. 2017, Goel et al. 2008). Models including BMI and waist circumference to

predict VAT with n=341 reported an R2 = 0.76 in men and R2 = 0.57 in women (Janssen

et al. 2002). Another study individually examined waist-to-height ratio, waist circumference,

BMI, waist-to-hip ratio and the ratio of waist to the square root of height in n=41 men and

n=32 women and found waist-to-height to be the best predictor (R2 = .71 in men, R2 = 0.65

in women)(Swainson et al. 2017). An un-stratified model for VAT which included age, BMI,

waist and hip circumference in n=124 was less successful than our model R2 = 0.521 (Goel

et al. 2008). Lastly, a model predicting VAT which included abdominal circumference, waist-

to-hip ratio, and conicity index in n=28 men had an R2 = 0.669 and a model using age, sagittal

diameter, conicity index and neck circumference in n=81 women had an R2 = 0.462 (Pinho

et al. 2017).

Although BMA did not provide a markedly higher R2, it provides two significant ad-

vantages. First, because BMA explicitly accounts for the variability attributed to variable

selection, our estimate of predictive ability is more likely to be replicable in other studies
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which examine the relationship between anthropometric measures and VF scores among

Chinese individuals. By incorporating all the possible models and not selecting just one “best”

model, we are less likely to have stumbled upon a statistical fluke. Harnessing the uncertainty

in the variable selection also provides our second advantage. In predicting VAT, there have

been a variety of combinations of related variables investigated. We learn more about the

relationship between these correlated variables and VAT by investigating every possible model

and seeing which 5 are the most supported by the data than we would by just selecting one.

For example, backward stepwise regression with BIC would have likely selected the model in

men that included age, waist circumference, height, BMI and hip circumference. However,

by examining the next 4 most likely models we see that waist circumference is somewhat

inter-changeable with waist-to-height ratio as far as which model the data most support, which

is a substantively different conclusion than saying waist circumference is more important than

waist-to-height ratio.

BMA’s ability to account for variable selection uncertainty make it useful in any modeling

situation where there is a question about which variables to include that goes beyond prior

knowledge. BMA is particularly useful in situations where there are related variables to select

from, as there were here with the anthropometric measures. BMA can be easily applied

to linear models, logistic regression, poisson regression, and survival models (Raftery et al.

2018).

The strengths of this study were that the sample size (n=12,219) was large and repre-

sentative of the current Chinese population (Popkin et al. 2009). The main limitation in our

study is that BIA was the only measurement tool for VAT. BIA has been compared to MRI

for measuring VF in a smaller study of Chinese individuals (n=200) where BIA tended to

overestimate at lower levels of VF and underestimate at higher levels of VF (Xu et al. 2011).

BIA scale is inexpensive, non-invasive, portable, and a practical screening technique(Lee and

Gallagher 2008).
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CHAPTER 6: CONCLUSION

Variable selection techniques continue to be commonly employed in public health research.

We have provided a comprehensive comparison of both modern and classical variable selection

techniques in a setting with realistic variable relationships. We compare the variable selection

techniques in terms of their abilities not only to correctly include and exclude variables,

but also their abilities to estimate the effects and to predict the outcome. We first compare

modern methods in a linear regression setting. The best method from among these, Bayesian

model averaging, is then compared to classical variable selection techniques in the logistic

regression setting. A predictive model is built using the China Health and Nutrition Survey

which showcases the strengths of Bayesian model averaging in practice.

As computing capabilities continue to improve, modern variable selection methods have

seen increasing use particularly in high-dimensional data analysis. As excitement around

methods such as least absolute shrinkage and selection operator (lasso), stochastic search

variable selection (SSVS) and Bayesian model averaging (BMA) grows, it is increasingly

likely that we will see these methods applied to non-high-dimensional data. It is imperative

that we understand how these methods behave in a non-high-dimensional setting. We have

found that BMA did a better job than adaptive lasso or SSVS at accounting for model

uncertainty. BMA performed prediction better than the other methods when n was greater

than 250, for smaller studies adaptive lasso had better predictive performance. Lastly, BMA

tended to have less bias than the other methods, with all methods, except for adaptive lasso,

becoming less biased as n increased. BMA performance was next examined is a logistic
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regression setting. This time, the comparison was not to more modern selection methods, but

instead was with the methods most popular to public health practitioners: sequential methods,

change-in-effect methods and two-stage methods. We found the very popular change-in-effect

methods performed exceptionally poorly at variable selection, effect estimation and prediction.

Surprisingly, 15% of public health research articles use this sub-optimal method. Although

it performs better than the CIE methods, the two-stage method of using a univariate test to

pre-screen variable to include in a multivariable model also performs poorly. BMA was best

at estimation, and prediction. However, backward elimination with p<0.05 and AIC criteria

were best at selecting the true model when n<10000. This suggests that another method for

addressing model uncertainty might have useful gains for these two methods in particular.

BMA is ideally suited to a particular prediction problem in the China Health and Nutrition

Survey. Metabolically abnormal obesity is an important health problem and being able to

predict people who fall in this category is critical for targeting intervention and for understand-

ing the health of a population. The standard methods for measuring VAT include MRI and

computed tomography, neither of which are typically available in large population studies

which were designed to examine obesity trends. Predicting VAT from typically available

anthropometric measures is of great importance. BMA provides not only strong predictive per-

formance qualities, but provides useful statistics about plausible models which are particularly

helpful given correlations between the anthropometric variables.

BMA is one way of dealing with model uncertainty. Future work could include more

careful examination of other methods, particularly bootstrapping methods. This work also

highlights the importance of healthy collaboration between statisticians and researchers.

Although there are several short-comings, if not failures, of sequential, two-stage, and change-

in-effect methods, they are used with considerable frequency. Efforts need to be made to allow

better methods to be more accessible and better-known to the public health researcher.
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APPENDIX A: SUPPLEMENTAL MATERIALS FOR CHAPTER 3

Table A.1: Simulation Design.

Model Type n Error Variance Effect Size

Linear 150 σ2 = 0.0016, r2 ∼ 0.13 0.01

Linear 250 σ2 = 0.0016, r2 ∼ 0.13 0.01

Linear 500 σ2 = 0.0016, r2 ∼ 0.13 0.01

Linear 1000 σ2 = 0.0016, r2 ∼ 0.13 0.01

Linear 1000 σ2 = 0.0016, r2 ∼ 0.13 0

Linear 1000 σ2 = 0.0625, r2 ∼ 0.40 0.01

Linear 1000 σ2 = 0.01, r2 ∼ 0.03 0.01

Linear 1000 σ2 = 0.0004, r2 ∼ 0.01 0.01

Linear 2500 σ2 = 0.0016, r2 ∼ 0.13 0.01

Linear 5000 σ2 = 0.0016, r2 ∼ 0.13 0.01

Linear 10000 σ2 = 0.0016, r2 ∼ 0.13 0.01

Linear 20000 σ2 = 0.0016, r2 ∼ 0.13 0.01
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Table A.2: Variable Inclusion Probabilities n = 1000.

Variable True Corr† BMA* BMA BMA SSVS* SSVS SSVS Adaptive BE
Name Effect PIP Top Median PIP Top Median Lasso BIC

XINT. 0.01 1 100 100 100 100 100 100 100 100
X1,EC 0.01 0.1 100 100 100 100 100 100 100 100
X2,C 0 0.2 2.94 0.68 0.66 0.82 0.06 0.06 0.30 0.68
X3,C 0 -0.5 2.88 0.76 0.78 0.92 0 0 0.20 0.82
X4,C 0 -0.2 3.08 1 0.88 1 0.18 0.18 0.42 1.26
X5 0 0 2.76 0.66 0.70 0.76 0.02 0.02 0.28 0.66
X6 0 0 3.04 1 0.94 0.88 0.06 0.08 0.30 1.10
X7,C 0 0.5 3.04 0.78 0.84 0.98 0.04 0.06 0.36 0.88
B8 0 0 3.74 1.34 1.1 1.52 0.36 0.3 0.02 1.32
B9,E -0.01 0 74.74 76.76 76.30 50.96 50.08 49.62 1.96 76.86
B10 0 0 3.38 1.18 1.08 1.38 0.16 0.14 0 1.26
B11,EC -0.01 0.20 24.62 20.36 20.30 8.88 5.48 5.46 0.02 20.54
B12 0 0 2.92 0.70 0.72 0.92 0.04 0.04 0.06 0.7
B13,E 0.005 0 25.16 20.58 20.36 11.52 7.46 7.40 0.42 20.66
X14 0 0 3.04 0.72 0.70 0.82 0.02 0.02 0.34 0.72
X15,E 0.005 0 88.24 90.06 90.00 68.82 69.94 70.08 11.06 90.02

† Corr. here refers to the correlation between the variable and XINTEREST .
* The BMA PIP and SSVS PIP columns provide the average PIP across the replications instead of

the proportion of models including each variable as the other columns present.
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Table A.3: Variable Inclusion Probabilities n = 20000.

Variable True Corr† BMA* BMA BMA SSVS* SSVS SSVS Adaptive BE
Name Effect PIP Top Median PIP Top Median Lasso BIC

XINT. 0.01 1 100 100 100 100 100 100 100 100
X1,EC 0.01 0.1 100 100 100 100 100 100 100 100
X2,C 0 0.2 0.46 0.08 0.08 0.20 0.02 0.02 0.48 0.08
X3,C 0 -0.5 0.52 0.1 0.1 0.22 0 0 0.18 0.10
X4,C 0 -0.2 0.54 0.14 0.14 0.22 0.02 0.02 1 0.14
X5 0 0 0.66 0.20 0.20 0.26 0.04 0.04 0.52 0.20
X6 0 0 0.64 0.20 0.20 0.20 0.02 0.02 0.82 0.20
X7,C 0 0.5 0.72 0.24 0.24 0.28 0.04 0.04 1.18 0.24
B8 0 0 0.68 0.12 0.10 0.24 0.02 0.02 0.02 0.14
B9,E -0.01 0 100 100 100 100 100 100 99.84 100
B10 0 0 0.54 0.10 0.10 0.24 0 0 0 0.12
B11,EC -0.01 0.20 99.98 99.98 99.98 99.84 99.92 99.92 7.08 99.98
B12 0 0 0.52 0.10 0.10 0.20 0 0 0 0.1
B13,E 0.005 0 100 100 100 100 100 100 64.52 100
X14 0 0 0.66 0.18 0.18 0.18 0 0 0.68 0.18
X15,E 0.005 0 100 100 100 100 100 100 100 100

† Corr. here refers to the correlation between the variable and XINTEREST .
* The BMA PIP and SSVS PIP columns provide the average PIP across the replications instead of

the proportion of models including each variable as the other columns present.
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APPENDIX B: SUPPLEMENTAL MATERIALS FOR CHAPTER 4

Table B.1: Selection of the True Model

Probability of Selecting True Model %

Selection Method n=150 n=250 n=500 n=1000 n=2500 n=5000 n=10000 n=20000

BE AIC 0 0 0.0036 0.0314 0.1594 0.248 0.296 0.2888

BE p=0.20 0 0 0.004 0.0318 0.124 0.1786 0.2098 0.2016

CIE 5% 0 0 0 0 0 0 0 0

CIE 10% 0 0 0 0 0 0 0 0

CIE 20% 0 0 0 0 0 0 0 0
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Table B.2: Estimation of Variable of Interest: Percent Bias.

Percent Bias % *

Selection Method n=250 n=1000 n=5000 n=20000

N=250 N=1000 N=5000 N=20000

BE AIC 6.259 -0.590 0.625 0.083

(-12.967,-8.897) (-6.863,-4.706) (0.121,0.980) (-0.166,0.266)

BE p=0.20 3.479 -0.1 0.59 0.118

(3.993,8.525) (-1.633,0.452) (0.18,1.07) (-0.141,0.308)

CIE 5% 12.689 0.785 -0.225 -1.098

(-11.922,-7.902) (-15.179,-12.96) (-0.138,0.711) (-0.154,0.265)

CIE 10% 10.81 2.303 3.581 3.903

(10.356,15.021) (-0.250,1.819) (-0.672,0.222) (-1.313,-0.883)

CIE 20% 9.945 9.816 17.859 18.471

(-29.740,-26.560) (-31.451,-29.688) (-12.685,-11.482) (1.315,1.759)

* The interval shown is the Monte Carlo confidence interval calculated using the standard deviation

of the estimates of the coefficients.
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Table B.3: Estimation of Variable of Interest: Variance and Coverage.

Ratio of sd(β̂INT.) and mean(ŝe(βINT.)) * Coverage †

Selection Method n=250 n=1000 n=5000 n=20000 n=250 n=1000 n=5000 n=20000

BE AIC 1.21 1.103 1.047 1.059 0.904 0.925 0.943 0.937

BE p=0.20 1.21 1.09 1.051 1.063 0.904 0.928 0.943 0.936

CIE 5% 1.081 1.031 1.038 1.035 0.932 0.943 0.945 0.941

CIE 10% 1.105 1.119 1.297 1.242 0.928 0.92 0.863 0.863

CIE 20% 1.139 1.218 1.109 1.021 0.923 0.89 0.737 0.277

* Ratio

† Coverage is the percent of replications whose 95% confidence interval for β̂INTEREST includes the true

value, 0.01. Coverage less than 0.95 suggest the interval is either too narrow or too biased. Since bias has

been shown to be small, any problems with coverage are likely to be caused by an underestimate of the

standard error of βINTEREST .

Table B.4: Prediction: External Somers’ D and Overfit.

External Somers’ D Over-fit †

Selection Method n=250 n=1000 n=5000 n=20000 n=250 n=1000 n=5000 n=20000

BE AIC 0.2367 0.3236 0.3557 0.3608 0.2204 0.0666 0.0138 0.0036

BE p=0.2 0.2293 0.3240 0.3555 0.3608 0.2193 0.0675 0.0143 0.0038

CIE 5% 0.2310 0.2780 0.2900 0.2911 0.2045 0.0491 0.0089 0.0021

CIE 10% 0.2124 0.2470 0.2567 0.2641 0.1725 0.0384 0.0085 0.0018

CIE 20% 0.1893 0.1996 0.1791 0.1768 0.1387 0.0296 0.0042 0.0007

* Ratio

† Over-fit is the difference in Somers’ D in the original and external sample. Positive values indicate

Somers’ D is greater in the original sample than the external sample.
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cie<-function(plim=0.1, init.model=lm(y˜xbin+x1+x2),

var.interest="xbin")

{

plimit<-plim

full<-init.model

mainx<-coefficients(full)[var.interest]

d<-full$model[,c(-1)]

nuisance<-dim(d)[2]-1

nuisance2<-nuisance

pchange<-rep(NA,nuisance)

for(m in 1:nuisance){

for(k in 2:(nuisance-m+2)){

if(dim(d)[2]>2) newm<-lm(y˜., d[,-k])

if(dim(d)[2]==2) newm<-lm(as.formula(paste("y˜",

var.interest)),d)

pchange[k-1]<-abs((mainx-coefficients(newm)

[var.interest])/mainx)

}

if(min(pchange, na.rm=TRUE)>plimit) return(names(

full$model)[-1])

if(min(pchange, na.rm=TRUE)>plimit) break
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dropvar<-names(full$model)[

which(pchange==min(pchange, na.rm=TRUE))+2]

d<-d[,-which(names(full$model)[-1] %in% dropvar)]

if(m<nuisance) full<-lm(y˜., d)

pchange<-rep(NA,nuisance-m)

}

return(names(full$model[-1]))

}
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APPENDIX C: SUPPLEMENTAL MATERIALS FOR CHAPTER 5

library(BMA)

# read in data

dex<-read.csv("file path")

# create datasets for men and women

dexF<-dex[which(dex$sex==2),]

dexM<-dex[which(dex$sex==1),]

# linear models

modAll<-lm(VATBIA˜age+sex+smoke+drink+

waist+height+weight+waisttoheight+waisttohip+BMI+waist,

data=dex)

modF<-lm(VATBIA˜age+drink+

waist+height+weight+waisttoheight+waisttohip+BMI+waist,

data=dexF)

modM<-lm(VATBIA˜age.x+smoke+drink+

waist+height+weight+waisttoheight+waisttohip+BMI+waist,

data=dexM)

# use data matrices created in linear models to run BMA

bmaall<-bicreg(x=modAll$model[,-1], y=modAll$model[,1],

drop.factor.levels=FALSE)

bmaF<-bicreg(x=modF$model[,-1], y=modF$model[,1],
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drop.factor.levels=FALSE)

bmaM<-bicreg(x=modM$model[,-1], y=modM$model[,1],

drop.factor.levels=FALSE)

# summary of BMA models, includes both estimates and

# top models

summary(bmaF)

summary(bmaM)

# plot predicted values by observed values for men

#and women

predictionF<-predict(bmaF, modF$model[,-1], quantiles=

c(.05, .95))

plot(predictionF[[1]], modF$model[,1], xlim=c(0,30),

ylim=c(0,30), xlab="Observed VAT", ylab="Predicted VAT",

main="Women")

abline(0,1, col="red")

predictionM<-predict(bmaM, modM$model[,-1], quantiles=

c(.05, .95))

plot(predictionM[[1]], modM$model[,1], xlim=c(0,30),

ylim=c(0,30), xlab="Observed VAT", ylab="Predicted VAT",

main="Men")

abline(0,1, col="red")
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