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ABSTRACT
KEVIN J. ROSS: Stochastic Singular Control Problems with State

Constraints.
(Under the direction of Amarjit Budhiraja.)

Singular control is an important and challenging class of problems in stochastic con-

trol theory. Such control problems can rarely be solved explicitly and thus numerical

approximation schemes are necessary. In this work we develop approximation schemes

for singular control problems with state constraints.

The first problem we consider arises in problems of optimal consumption and in-

vestment under transaction costs. We use Markov chain approximations to develop a

convergent numerical scheme. Proof of convergence uses techniques from the theory of

weak convergence. Specific features that make the analysis nontrivial include unbound-

edness of state and control spaces and cost function; degeneracies in the dynamics; and

presence of both singular and absolutely continuous controls. We present a computational

algorithm and the results of a numerical study.

Numerical schemes for singular control problems can be computationally quite in-

tensive, and thus it is of great interest to develop less expensive schemes that exploit

specific features of the underlying dynamics. To this end we investigate connections

between singular control and optimal stopping problems. A key technical step in estab-

lishing such connections is proving existence of an optimal singular control. We prove

such a result for a general class of singular control problems with linear dynamics and

state constrained to be in a polyhedral cone. A particular example of this class of mod-

els are the so-called Brownian control problems (BCPs) and thus existence of optimal

controls for BCPs follows as a consequence.

Armed with this existence result, we consider a two-dimensional singular control

problem that arises from queueing networks. We prove rigorously an equivalence of this
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problem with an optimal stopping problem. We exploit this connection in developing

simple computational schemes for the singular control problem, and we investigate per-

formance of the schemes in a numerical study.
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Chapter 1

Introduction

Stochastic Control Theory is an active area of research in applied probability with ap-

plications in diverse disciplines such as aerospace engineering, management science, eco-

nomics, mathematical finance, and queuing networks. The area is quite well developed

and now there are several excellent texts that are available ([19], [18], [30], [32], [52]).

The basic problem can be described as follows. There is a stochastic dynamical system

whose evolution can be influenced by exercising a control with a view towards achieving

a desired goal. For example, if the dynamical system is described via a stochastic dif-

ferential equation then a control may be in terms of modifying the drift or the diffusion

coefficient. The control may be modulated continuously over time. It could be a bounded

function of the current and past states of the controlled process or it may be unbounded,

of the singular or impulsive type. Frequently, the desired goal in a stochastic control

problem is to optimize a cost (or reward) function which may depend on both the state

process and the control. From a computational point of view the main objective is to

compute the minimal cost function, the so-called value function, and the control policies

that either achieve or well approximate this optimal cost.

One of the main approaches in the computation of the value function is via the

method of dynamic programming. For the diffusion control problems of interest in the

current work, the nonlinear evolution equations of dynamic programming become the,



so-called, Hamilton-Jacobi-Bellman (HJB) partial differential equations (PDEs). Rarely

can such nonlinear PDEs be solved explicitly and thus in practice one needs to resort to

numerical approximations. For diffusion control problems where the value function has

suitable smoothness properties and is the unique classical solution of the corresponding

HJB equation, there are well established finite difference methods that can be used for

computing such approximations. However, many interesting modern applications involve

diffusion control problems where due to degeneracies in the dynamics, non-smoothness

of the boundary, singular nature of the control process, form of the boundary condition

and other complexities, the associated value function is not necessarily smooth and the

existence/uniqueness theory of the corresponding HJB equations is not well understood.

Despite the fact that over the past twenty-five years there has been a rapid development in

the theory of viscosity solutions of HJB equations for such diffusion control problems (cf.

[10], [18], [49]), the PDE approach to the approximation of the value function becomes

much more difficult.

Over the last thirty years, Kushner, Dupuis and co-workers (see [32] and references

therein) have developed a powerful machinery for computational problems in stochastic

control theory using a probabilistic approach. The main idea is to approximate the

original controlled diffusion process by a suitable controlled Markov chain on a finite

state space. The approximation should be defined so that the local properties of the

controlled diffusion are similar to those of the approximating chain. Next, one introduces

an appropriate Markov decision problem (MDP), a discrete time, discrete state analog of

the continuous time control problem of interest. “Almost optimal” control policies and

value functions for the MDP can be computed using classical iterative procedures such

as value space and/or policy space approximations and their refinements. This in turn

yields approximations of the value function and optimal control policy for the original

control problem. Convergence analysis of the algorithm involves establishing convergence

of the value function of the MDP to the value function of the original diffusion control
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problem as various approximation parameters approach suitable limits. This convergence

analysis is completely probabilistic and is based on the theory of weak convergence of

probability measures (e.g. [4]).

Although every Markov chain approximation corresponds to some particular finite

difference approximation of the corresponding HJB equation, there are two main ad-

vantages of the above probabilistic approach to the approximation problem. First, the

Markov chain approach is flexible, and it enables use of physical insights derived from

dynamics of the controlled diffusion in choosing the approximating chain, or equivalently,

the precise form of the finite difference approximation. It is well known that if the finite

difference approximation is not chosen appropriately, it may lead to serious instabilities

in the numerical procedure. Markov chain approximations allow one to naturally select

the appropriate finite difference scheme for a given application. Frequently, numerically

unstable schemes can be avoided by incorporating such insights. Second, Markov chain

approximation schemes do not require smoothness of the cost or value functions; nor

do they rely on associated HJB equations. This is a great advantage in many problems

where complex features of the dynamics make the PDE theory for the associated HJB

equation hard to tackle, as is true for problems in the current work.

In this work we are interested in two problems in stochastic optimal control of diffu-

sions. The first one arises from problems in optimal consumption and portfolio selection

with transaction costs, while the second is motivated by scheduling control problems

for queuing networks in heavy traffic. Although, there are many important differences

between the two control problems, both are problems of singular control with state con-

straints in domains with corners. State constraints refers to the requirement that the

state process must remain within a certain feasibility region at all times. By singular

control we mean that the control terms in the dynamics of the state process need not be

absolutely continuous with respect to Lebesgue measure, and are only required to have

paths of bounded variation.
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Singular control is perhaps one of the most difficult classes of problems in stochastic

control theory. We refer the reader to [5], especially the sections at the end of each

chapter, for a thorough survey of the literature. The HJB equations for such problems,

which are variational inequalities with gradient constraints, are notoriously difficult to

work with. Finite difference approximations for some singular control problems have been

studied in [26] and [50]. In particular, the problem we study in Chapter 2 is precisely the

one undertaken in [50]. However, our approach to the approximation problem is quite

different in that all our techniques are probabilistic. We follow the Markov chain approach

of Kushner and Dupuis and in contrast to [50] we prove convergence of the approximation

scheme. Markov chain approximations along with convergence proofs for a singular

control problem have been studied by Kushner and Martins in [33]. Although the work in

Chapter 2 borrows significantly from the ideas in [33], specific features of the dynamics

and the model under consideration make the convergence analysis quite delicate. In

particular, the model features that make our analysis considerably harder than that

in [33] include: unboundedness of the cost function, domain and control space, mixed

boundary conditions (Dirichlet-Neumann), degeneracies in the dynamics and presence

of both singular and absolutely continuous control. The main convergence result of the

chapter is Theorem 2.4.12. This result, and the corresponding proofs, illustrate how the

Markov chain approach can be adapted to handle complex dynamical features. While the

analysis is for a specific two-dimensional problem, we believe that many of the techniques

introduced in this chapter can be applied more generally.

In Section 2.5 we present a computational algorithm for obtaining near optimal con-

trol policies for the control problem of Chapter 2. Theorem 2.4.12 and the analysis of

Section 2.5 guarantees convergence of the numerical scheme. A similar approach can be

taken to develop numerical schemes for other classes of singular control problems. One

advantage of such an approach is the ability to establish convergence of the computa-

tional algorithms. However, such numerical schemes are often computationally intensive.
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Thus, whenever possible one would like to take advantage of specific problem features

to simplify the numerical scheme. One such simplification results from exploiting con-

nections between singular control and so-called obstacle/optimal stopping problems (see

[45]). Although numerical schemes for singular control problems are notoriously hard,

there are relatively simple schemes available for optimal stopping problems.

Chapter 3 undertakes a key technical step in establishing connections between singu-

lar control and optimal stopping problems. In this chapter, we consider a broad family of

multi-dimensional singular control problems with linear dynamics and state constrained

to lie in a convex cone (see Section 3.2). The main result of this chapter is Theorem

3.2.3, which establishes existence of an optimal control for the singular control problem.

The proof uses weak convergence arguments and a time rescaling technique. Existence

of optimal controls for Brownian control problems [20], associated with a broad family

of controlled stochastic networks, follows as a consequence. To the best of our knowl-

edge, the current work is the first to address existence of an optimal control for a general

multi-dimensional singular control problem with state constraints. Classical compact-

ness arguments which are used for establishing existence of optimal controls for problems

with absolutely continuous control terms (cf. [6]) do not naturally extend to singular

control problems. For one-dimensional models one can typically establish existence con-

structively, by characterizing the optimal controlled process as a reflected diffusion (cf.

[2, 3, 23]). In higher dimensions, one approach is through studying regularity of solutions

of the variational inequalities associated with singular control problems and the smooth-

ness of the corresponding free boundary. Such smoothness results are the starting points

in the characterization of the optimal controlled process as a constrained diffusion with

reflection at the free boundary. Except for specific models (cf. [46, 47]), this approach

encounters substantial difficulties, even for linear dynamics (cf. [51]). A key difficulty

is that little is known about the regularity of the free boundary in higher dimensions.

Alternative approaches for establishing existence of optimal controls based on compact-
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ness arguments are developed in [40, 25, 15]. The first of these papers considers linear

dynamics while the last two consider models with nonlinear coefficients. In all three

papers the state space is all of IRd, i.e. there are no state constraints. It is important

to note that, in our model, although the drift and diffusion coefficients are constant, the

state constraint requirement introduces a (non-standard) nonlinearity in the dynamics.

While our method does not provide any characterization of the optimal control, it is quite

general and should be applicable for other families of singular control problems (with or

without state constraints).

The existence result of Chapter 3 (Theorem 3.2.3) is critical to establishing con-

nections between singular control and optimal stopping problems. In Chapter 4 we

investigate such connections for a two-dimensional singular control problem that arises

from a scheduling control problem for the so-called criss-cross network (see Figure 4.1).

This network has been studied by several authors (see [24], [9], [34], [38], and [8]). In

the current work, we focus on the parameter regime IIb of [38], (Condition 4.6.1 of the

current work), a regime which to date has not yielded an analytical solution. Using

Theorem 3.2.3, we establish in Theorem 4.7.1 equivalence between the singular control

problem and an optimal stopping problem. In Section 4.9 we exploit this connection to

develop a computational scheme for the singular control problem which is much simpler

than one based on a Markov chain approximation of the controlled process. The main

idea is to numerically approximate the optimal stopping time and value function of the

optimal stopping problem, and then use these quantities and Theorem 4.7.1 to obtain an

approximation to the optimal control and value function for the singular control problem.

Through several examples we illustrate how such an algorithm performs better numeri-

cally than one based on a Markov chain approximation for the original singular control

problem.

Notation. We will use the following notation throughout. The set of nonnegative real
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numbers is denoted as IR+. All vectors are column vectors and vector inequalities are

to be interpreted componentwise. For x ∈ IRn, |x| denotes the Euclidean norm. For a

point x ∈ IRn and a set A ∈ IRn, dist(x, A) will denote the distance of x from A. Given

a Polish space E, a function f : [0,∞) → E is RCLL if it is right-continuous on [0,∞)

and has left limits on (0,∞). We define the class of all such functions by D([0,∞) : E).

The subset of D([0,∞) : E) consisting of all continuous functions will be denoted by

C([0,∞) : E). A process is RCLL if its sample paths lie in D([0,∞) : E) a.s. For T ≥ 0

and φ ∈ D([0,∞) : E) let |φ|∗T .
= sup0≤t≤T |φ(t)|. The Borel σ-field for a Polish space E

will be denoted by B(E). We will denote generic constants in (0,∞) by c, c1, c2, · · · ; their

values may change from one theorem (lemma, proposition) to the next. By convention,

the infimum of an empty set is ∞.

All other notation will be introduced within each chapter. Such notation will be self-

contained within each chapter. To simplify notation, we may reuse variables, symbols,

etc. from one chapter to the next.
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Chapter 2

Convergent Numerical Scheme for a

Problem of Optimal Consumption

and Portfolio Selection with

Transaction Costs

2.1 Problem Description and Motivation

In this chapter we consider a problem of optimal consumption and portfolio selection

with proportional transaction costs that has been studied by several authors ([36, 12, 48,

50, 35]). The basic problem can be described as follows. Consider a single investor who

has two instruments available for investment: a risk free asset such as a bank account

which pays a fixed interest rate r > 0 and a risky asset, a stock, whose price evolution is

modeled via a geometric Brownian motion with a mean value of return b > r and constant

volatility σ > 0. We assume that the investor may buy or sell stock continuously over

time in not necessarily integer valued quantities. The investor is assumed to consume

wealth at some time dependent rate C(t) and without loss of generality we assume that

the consumption is deducted from the bank account. The investor may instantaneously



transfer money from the bank account to stock and vice-versa by paying a proportional

transaction cost; namely, there are λ ∈ (0,∞) and µ ∈ (0, 1) such that the investor

pays λ times the amount moved from the bank account to stock as a transaction fee,

and similarly, he pays µ times the amount moved from stock to the bank account as

a transaction fee. All transaction fees are charged from the bank account. The basic

constraint on the consumption control C and the portfolio selection control, denoted

(M, N), is that the investor must be solvent at all times. More precisely, if X(t) and

Y (t) represent the amount of investment in the bank account and the stock, respectively,

at time t, then we require (X(t), Y (t)) ∈ S for all t ≥ 0, where

S .
= {(x, y) ∈ IR2 : x + (1 + λ)y ≥ 0 and x + (1− µ)y ≥ 0}.

The goal of the investor is to maximize the expected total discounted utility of consump-

tion, IE
∫∞

0
e−βtf(C(t))dt, where β ∈ (0,∞) is the discount factor and the utility function

f : [0,∞) → [0,∞) is a continuous function satisfying f(0) = 0. The condition f(0) = 0

can be relaxed if f is nondecreasing and f(0) > −∞ by replacing f by f − f(0).

In absence of transaction costs, Merton proved in the classical paper [41] that when

the utility function is f(c) = cp/p, p < 1, p 6= 0 or f(c) = log c (note that the latter utility

function does not satisfy the conditions of the current chapter) the investor’s optimal

policy is to keep a constant proportion of total wealth in the risky asset and to consume

at a rate proportional to total wealth. (For a simple and self-contained treatment see

[12]). This “Merton line” target can always be achieved since transactions can be made

continuously and instantaneously without affecting wealth. However, when transaction

costs apply such a policy results in immediate bankruptcy. Magill and Constantinides

first conjectured in [36] that there must exist a “no-transaction region” taking the form

of a wedge in the wealth space. When wealth is inside this region consumption is the

only control that can be exercised. Purchase or sale of stock only occurs when the wealth

9



attempts to exit the no-transaction region. The formal arguments of [36] were put on a

rigorous footing by Davis and Norman in [12] for the cases f(c) = cp/p or f(c) = log c. In

their work, under suitable conditions on model parameters, the free boundary problem

associated with optimal consumption in the presence of proportional transaction costs is

solved explicitly and C2 regularity of the value function is established. The authors show

that the (optimal) no-transaction region is a wedge, in particular, the optimal policy is to

exercise the minimal amount of trading necessary to keep wealth inside the no-transaction

region. Inside the region, consumption occurs at a finite rate. In [48] Shreve and Soner

consider the same problem as in [12] but with conditions on the model parameters that are

weaker and much more explicit. Once more, regularity properties of the value function

and the associated free boundary are proved. A more general utility function which

satisfies suitable smoothness, concavity and growth properties was considered in [50].

Using viscosity solution methods the authors sketch a proof for unique solvability of

the associated HJB equation by the value function. A finite difference approximation

scheme for approximating the value function is introduced; however, convergence of the

proposed scheme for the portfolio selection problem is not proved. The authors do provide

results from several numerical studies which identify near optimal control policies and

the (numerical) free boundary.

In the current work, we do not impose any concavity, smoothness or growth conditions

on the utility function; the key condition (Condition 2.2.1) that we require is that the

value function is finite and continuous. In particular, we do not claim nor use that the

value function is the unique solution of the associated HJB equation. The main goal of

the study is to obtain convergent numerical approximations for the value function. The

basic approach, as in [32], is to introduce a Markov Decision Problem (MDP) for an

approximating, finite state, discrete time, controlled Markov chain. The main result of

this chapter (Theorem 2.4.12) shows that the value function of the MDP converges to

the value function of the original singular control problem as various parameters in the
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approximation approach their limits suitably. In Section 2.5 we use the approximating

MDP to obtain computational schemes for obtaining near optimal control policies. The

key result of Section 2.5 is Lemma 2.5.1, which allows us to characterize the value function

and optimal control policies via solution of suitable dynamic programming equations (see

Theorem 2.5.2). Finally in Section 2.6 results from a numerical study using the algorithm

of Section 2.5 are described. In particular, Figure 2.3 shows the numerical no transaction

region and the associated (numerical) free boundary obtained by an implementation of

the algorithm.

The only paper (to the best of our knowledge) that carries out a complete convergence

analysis for a numerical scheme for a singular control problem is [33]. Although the

current chapter crucially uses several ideas developed in [33], there are key differences in

the model that make our analysis substantially delicate. First, the above paper considers

a queuing problem with “finite buffers” which essentially means that the state space and

control space are bounded. In the current study we first have to suitably approximate

the original unbounded model by one where the consumption control and the state space

are bounded. This two stage approximation procedure is carried out in Propositions

2.2.2 and 2.2.4. This is the only place where the assumption on the continuity of the

value function (Condition 2.2.1) is used. Next, in contrast to [33], in addition to singular

control terms, we also have an absolutely continuous control term (consumption control)

that appears in a nonlinear fashion in the cost (reward) criterion through the utility

function f . This requires us to introduce the relaxed formulation for the stochastic

control problem in order to carry out the convergence analysis. Lemma 2.4.1 ensures that

the relaxed formulation does not change the value function of the control problem. The

next substantial difficulty in our analysis is the state constraint feature of the dynamics.

Although, in [33] the state is constrained to be in a bounded polyhedral region, the

state constraints can be easily handled by introducing the, so-called, “Skorohod map”.

However, in the problem considered in this chapter, the directions of control do not point

11



inward into the state space (see Figure 2.1) and therefore do not allow for a similar

Skorohod reduction. Nonetheless, one useful feature of the dynamics (see (2.1)) is that

once the state of the system reaches the boundary of S, the only admissible control

corresponds to moving the state process instantaneously to the origin and keeping it

there at all times. This observation allows us to convert an infinite horizon cost to an

exit time criterion (see equations (2.2)-(2.4)). This reformulation makes some aspects

of the convergence analysis simpler, however, degeneracies in the state dynamics make

treatment of convergence properties of exit times quite subtle. To see the basic difficulty

consider the following simple example. Let ξn be a sequence of positive reals such that

ξn → 0 as n →∞. Let xn be the solution of the ODE ẋ = x with initial condition ξn and

x the solution of the same ODE with 0 initial condition. Clearly xn → x uniformly on

compacts, however if τn
.
= inf{t|xn(t) = 0} and τ

.
= inf{t|x(t) = 0}, then clearly τn 6→ τ .

In other words, convergence of processes in general need not imply the convergence of

the corresponding exit times. The issue is especially problematic when, as is the case for

the controlled dynamics considered in this chapter, the diffusion coefficients in the state

dynamics are not uniformly non-degenerate. This is another key difference between the

current model and the problem studied in [33].

One of the major obstacles in proving the convergence of the value function of a

sequence of approximating discrete MDPs to the value of the original singular control

problem is proving the tightness of the sequence of singular control terms in the Skorohod

D[0,∞) space. A powerful technique for bypassing this tightness issue, based on suitable

stretching of time scale was introduced in [33]. Although such time transformation ideas

go back to the work of of Meyer and Zheng [42] (see also Kurtz [31]), the papers [33, 37]

were the first to use such ideas in stochastic control problems. A similar technique was

also recently used in [7]. A key ingredient to this technique is the uniform moment

estimate obtained in Lemma 2.3.5. In [33] such a moment estimate follows easily from

the form of the cost function where a strictly positive proportional cost is incurred for
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exercising the singular control. In the current problem there is no direct contribution to

the (cost) reward function from the singular control term and as a result, the proof of

this uniform estimate becomes more involved. Roughly speaking, the main idea of the

proof is that a controller cannot make too much use of a singular control without pushing

the process to the boundary of the domain.

The chapter is organized as follows. In Section 2.2 we give a precise formulation of the

control problem of interest. We also present here two propositions (Propositions 2.2.2 and

2.2.4) which allow approximation of the original control problem by one with a bounded

state space and bounded consumption actions. Section 2.3 introduces the discrete MDP

that approximates the original singular control problem. It also introduces the continuous

time interpolations and the time transformation that are key to the convergence analysis.

In Section 2.4 we present the main convergence result that establishes the convergence of

the value function of the MDP to that of the original singular control problem. Section

2.5 is devoted to computational methods for the MDP. A key result here is Lemma

2.5.1 which allows, via Theorems 2.5.2 and 2.5.3, iterative methods for computation

of the value function and optimal control policies for the MDP. In problems with only

absolutely continuous controls, estimates of the form in Lemma 2.5.1 are straightforward

consequences of a contraction property that follows from the strictly positive discount

factor in the cost (cf. Chapter 6 of [32]). However for singular control problems, due to the

instantaneous nature of the control, such contraction estimates are typically unavailable.

Here, once again, we use the special feature of the dynamics, which says that too much

use of the singular control will rapidly bring the process to the boundary, in obtaining

such an estimate. Finally, in Section 2.6 we present results from a numerical study of

the algorithm.

Notation. The following notation will be used in this chapter. For a RCLL path {ξ(t)},
the jump at t > 0 will be denoted by δξ(t). As a convention we take δξ(0)

.
= ξ(0). For
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a sequence of random variables {ξn}n≥0, we will use the notation δξn for the increment

ξn+1 − ξn.

2.2 Optimal Consumption and Portfolio Selection

with Transaction Costs

We begin with a precise mathematical formulation of the optimal consumption-investment

problem described in the previous section. Let (Ω,F , IP ) be a probability space on which

is given a filtration {Ft}t≥0 satisfying the usual hypothesis. Let W be a real-valued {Ft}-
Brownian motion. We will denote the probability system (Ω,F , IP, {Ft}, W ) by Φ. The

Wiener process represents the source of uncertainty of the risky asset. The state process,

which represents the wealth of the investor, is a controlled Markov process Z ≡ (X, Y )

given on the above probability system via the equations:

dX(t) = (rX(t)− C(t))dt− (1 + λ)dM(t) + (1− µ)dN(t),

dY (t) = bY (t)dt + σY (t)dW (t) + dM(t)− dN(t), (2.1)

with initial condition X(0−) = x, Y (0−) = y, where z
.
= (x, y) ∈ S . Here C is

an {Ft}-progressively measurable process such that for all t ∈ [0,∞), C(t) ≥ 0 a.s.

and IE
∫ t

0
e−rsC(s)ds < ∞. Also, M and N are {Ft}-adapted, non-decreasing, RCLL

processes satisfying M(0) ≥ 0 and N(0) ≥ 0 a.s. The processes X and Y represent

the amounts invested in the bond and the stock, respectively; M(t), N(t) denote the

cumulative purchases and sales of stock, respectively, over [0, t]. The process C represents

the consumption of the investor. The processes C, M , and N are the control processes.

Since M and N are not required to be absolutely continuous (with respect to the Lebesgue

measure), they are referred to as singular controls. Denote by A(Φ, z) ≡ A(z) the set of

“admissible controls”, i.e. all U ≡ (C, M, N) of the form described above. Let ∂S denote
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S

Figure 2.1: State space and singular control directions.

the boundary of S. From the dynamical description of Z it follows that if z ∈ ∂S then

the only control that keeps the investor solvent takes Z to the origin instantly and keeps

it there at all times (see Figure 2.1).

Recall the utility function f of Section 2.1. Since f(0) = 0, one can reformulate the

state constraint control problem on an infinite time horizon described in Section 2.1 to

an exit time control problem, as follows. For z ∈ S and U ∈ A(z), let τ ≡ τ(z, U) be

defined as

τ
.
= inf{t ∈ [0,∞) : Z(t) /∈ So}, (2.2)

where Z is the controlled process corresponding to initial condition z and control U .

Define the cost, J(z, U), for using the control U by

J(z, U)
.
= IE

∫

[0,τ)

e−βtf(C(t))dt. (2.3)

The value function of the control problem is then given by

V (z) = sup
Φ

sup
U∈A(z)

J(z, U), (2.4)

where the outside supremum is over all probability systems Φ. The following will be a

standing assumption in this chapter.

Condition 2.2.1 For all z ∈ S, V (z) < ∞ and V : S→ IR+ is a continuous map.
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We refer the reader to [28, 48, 50] for some sufficient conditions for the above assumption

to hold.

State and Control Space Truncation. In order to develop numerical methods for

computing V (z), we will need to first approximate the control problem by an analo-

gous control problem with a bounded state space and control set. We now present the

convergence result which says that the value function of the “truncated control prob-

lem” converges to V as the truncation parameters approach their limits. We begin by

considering the control space truncation.

For p ∈ (0,∞), let Ap(Φ, z) ≡ Ap(z) be the subset of A(z) consisting of U =

(C,M,N) which satisfy 0 ≤ C(t) ≤ p, for all t ≥ 0, a.s. Define Vp(z) by replacing

A(z) with Ap(z) in (2.4). The following is the first convergence result.

Proposition 2.2.2 Vp converges to V , uniformly on compact subsets of S, as p →∞.

Proof. We first establish pointwise convergence, i.e. Vp(z) → V (z) as p → ∞. Since

Vp(z) ≤ V (z), it suffices to show that, for all z ∈ S,

lim inf
p→∞

Vp(z) ≥ V (z).

Fix ε > 0 and choose an “ε-optimal control”, i.e. Uε ∈ A(z) such that V (z)−ε < J(z, Uε).

Suppose τε is the associated exit time from So. Define a control Ũp ≡ (C̃p, M̃p, Ñp) by

C̃p(t)
.
= Cε(t) ∧ p, M̃p(t)

.
= Mε(t), Ñp(t)

.
= Nε(t), t ≥ 0. It follows from the fact that

C̃p ≤ Cε and standard comparison results for solutions of stochastic differential equations

(cf. Proposition 5.2.18 of [29]) that the wealth process under control Ũp is never less than

the wealth process under control Uε. In particular, denoting by τp the exit time from So

by the controlled process corresponding to the control Ũp, we have τp ≥ τε. Combining

this with the observations that C̃p(t) ↑ Cε(t) as p → ∞ a.s. for all t ≥ 0 and f is
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continuous, we have from Fatou’s lemma

lim inf
p→∞

J(z, Ũp) ≥ lim inf
p→∞

IE

∫

[0,τε)

e−βtf(C̃p(t))dt ≥ IE

∫

[0,τε)

e−βtf(Cε(t))dt ≥ V (z)− ε.

Since ε > 0 is arbitrary, the pointwise convergence of Vp to V follows. Next we show that

for each p, Vp is lower semicontinuous (l.s.c.) Fix z ∈ S and let S 3 zn → z as n → ∞.

To prove that Vp is l.s.c. it suffices to show that

lim inf
n→∞

Vp(zn) ≥ Vp(z). (2.5)

Fix ε > 0 and let Uε = (Cε,Mε, Nε) ∈ Ap(z) be an ε-optimal control, i.e. Vp(z) − ε <

J(z, Uε). Let Zε be the controlled process according to Uε and define τε via (2.2) with Z

replaced by Zε. Define Un ≡ (Cn,Mn, Nn) as Cn
.
= Cε, Mn(t)

.
= Mε(t)1t<τε + M∗

n1t≥τε ,

Nn(t)
.
= Nε(t)1t<τε + N∗

n1t≥τε , where M∗
n, N∗

n ≥ 0 are chosen so that the controlled

process Zn corresponding to Un and initial condition zn satisfies Zn(τε) /∈ So. (Note,

clearly Un ∈ Ap(zn).) This insures that τn
.
= inf{t : Zn(t) /∈ So} is at most τε. Note

that on the set {τε = ∞}, we have Un(t) = Uε(t) for all t ≥ 0. We claim that on the set

{τε < ∞} we have lim infn→∞ τn ≥ τε a.s., which implies τn → τε a.s. as n → ∞ on the

set {τε < ∞}. To see the claim, suppose that lim inf τn < τε − δ for some δ > 0. Then

there exists N0 ≥ 1 such that τn < τε − δ/2 for all n ≥ N0. Also, from the choice of the

control Un we see that, for all δ > 0 and L ∈ (0,∞), sup0≤t≤(τε−δ/2)∧L |Zn(t)−Z(t)| → 0,

in probability, as n → ∞. Combining this with the fact that Zn(τn) /∈ So we have that

Z(t) /∈ So for some t ≤ τε − δ/2. However, this contradicts the definition of τε. Thus we

have shown τn → τε a.s. on the set {τε < ∞}.
Next, recalling the choice of Uε and that Cε(t) = Cn(t) for all t ≥ 0 on the set
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{τε = ∞}, we have

Vp(z)− Vp(zn) ≤ J(z, Uε)− J(zn, Un) + ε

= IE
[
1{τε<∞}

∫

[τn,τε)

e−βt(f(Cε(t))− f(Cn(t)))dt
]

+ ε

≤ f∗(p)IE
[
1{τε<∞}

∫

[τn,τε)

e−βtdt
]

+ ε,

where f∗(p)
.
= sup0≤c≤p f(c) < ∞. Since τn → τε a.s. on the set {τε < ∞}, the first term

on the right in the last line above approaches 0 as n → ∞. The inequality (2.5) now

follows from the above display on taking n → ∞ and then ε → 0. Finally note that for

each z, V (z)− Vp(z) ↓ 0. The result now follows from Dini’s Theorem (cf. Theorem M8

[4]).

Next, we consider the truncation of the state space. The reduction will be achieved

by replacing the original dynamical system given by (2.1) with one which evolves exactly

as before in the interior of some compact domain but is instantaneously reflected back

when the controlled process is about to exit the domain. The reflection mechanism is

made precise via the notion of a Skorohod map. We begin with the following definition.

Fix ` ∈ (0,∞).

Definition 2.2.3 Let φ ∈ D .
= D([0,∞) : IR2) be such that φ(0) ∈ (−∞, `] × (−∞, `].

We will denote the space of all such φ by D0. We say a pair (ψ, η) ∈ D × D solves the

Skorohod problem (SP) for φ in (−∞, `]×(−∞, `], with normal reflection, if the following

hold: (i) ψ(0) = φ(0). (ii) ψ(t) = φ(t)− η(t), t ∈ (0,∞). (iii) ψ(t) ∈ (−∞, `]× (−∞, `]

for all t ≥ 0. (iv) η(·) is componentwise nondecreasing. (v) ηi(t) =
∫
(0,t]

1{ψi(t)=`}dηi(t),

i = 1, 2, where η(t) = (η1(t), η2(t))
′, ψ(t) = (ψ1(t), ψ2(t))

′.

It is well known (cf. [16], [22]) that for every φ ∈ D0, there is a unique solution (ψ, η) to

the above SP. We will write ψ = Γ(φ) and refer to the map Γ : D0 → D0 as the Skorohod

map. The following Lipschitz property (cf. [16]) is quite useful in various estimates.
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There exists κ ∈ (0,∞), independent of `, such that, for all φ1, φ2 ∈ D0,

|Γ(φ1)− Γ(φ2)|∗T ≤ κ|φ1 − φ2|∗T , T ∈ (0,∞). (2.6)

We will now introduce the modified constrained dynamics of the controlled Markov

process. Set S`
.
= S ∩ (−∞, `]× (−∞, `]. Let Z` ≡ (X`, Y`) solve the following system of

equations:

dX`(t) = (rX`(t)− C(t))dt− (1 + λ)dM(t) + (1− µ)dN(t)− dR1(t),

dY`(t) = bY`(t)dt + σY`(t)dW (t) + dM(t)− dN(t)− dR2(t), (2.7)

where Z`(0−) = z, U ≡ (C, M,N) ∈ Ap(z), z = (x, y) ∈ S` and R = (R1, R2)
′ is a

componentwise nondecreasing, RCLL, Ft-adapted process satisfying

∫ ∞

0

1{X`(t)<`}dR1(t) = 0,

∫ ∞

0

1{Y`(t)<`}dR2(t) = 0. (2.8)

The unique solvability of (2.7) and (2.8) follows from the Lipschitz continuity property

(2.6) of the Skorohod map and the usual Picard iteration method. Define τ` and J`(z, U)

as in (2.2) and (2.3) with Z replaced by Z` in (2.2) and τ replaced by τ` in (2.3). Define

V`,p as

V`,p(z) = sup
Φ

sup
U∈Ap(Φ,z)

J`(z, U). (2.9)

The following is the second convergence result of this section.

Proposition 2.2.4 For all p ∈ (0,∞), V`,p converges to Vp, uniformly on compact sub-

sets of S, as ` →∞.

Proof. Let Z ≡ (X,Y ) be as in (2.1) and τ as in (2.2), with C ≡ 0. It is easy to check

that for each T ∈ (0,∞) and compact subset S0 ⊂ S, there exists Λ ≡ Λ(T ) ∈ (0,∞)
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such that

sup
Φ

sup
(M,N)

sup
z∈S0

IE sup
0≤t≤T∧τ

(X+(t) + Y +(t)) ≤ Λ,

where the supremum is taken over all {F(t)}-adapted, nondecreasing, RCLL processes

M and N such that M(0) ≥ 0, N(0) ≥ 0; and over all systems Φ. Thus in particular we

have that

sup
`

sup
Φ

sup
U∈Ap(Φ,z)

sup
z∈S0

IE sup
0≤t≤T∧τ`

(X+
` (t) + Y +

` (t)) ≤ Λ, (2.10)

where Z` ≡ (X`, Y`) are as defined in (2.7), and τ` is as introduced below (2.8).

Fix δ > 0. Let z ∈ S0 and ε > 0 be arbitrary. Let Φ and U ∈ Ap(z, Φ) be such

that V`,p(z) ≤ J`(z, U) + ε. Choose T ∈ (0,∞) such that f∗(p)e−βT /T < ε. Then

V`,p(z) ≤ IE
∫ T∧τ`

0
e−βtf(C(t))dt + 2ε.

Choose `0 ≡ `0(δ) such that `0 > (Λf∗(p))/(δβ). Define

A`0
.
= {ω : sup

0≤t≤T∧τ`

(X+
` (t) + Y +

` (t)) > `0}.

Then

IE

∫ T∧τ`

0

e−βtf(C(t))dt = IE[ 1A`0

∫ T∧τ`

0

e−βtf(C(t))dt] + IE[ 1Ac
`0

∫ T∧τ`

0

e−βtf(C(t))dt].

(2.11)

It follows from Markov’s inequality and (2.10) that IP [A`0 ] ≤ Λ/`0. Thus the first integral

on the right side of (2.11) is bounded by (f∗(p)/β)IP [A`0 ] ≤ δ. Next, for ` ≥ `0, on the

set Ac
`0

, Z`(· ∧ T ∧ τ`) = Z(· ∧ T ∧ τ`). In particular, T ∧ τ ≥ T ∧ τ`. Thus

IE[ 1Ac
`0

∫ T∧τ`

0

e−βtf(C(t))dt] ≤ IE[

∫ T∧τ

0

e−βtf(C(t))dt] ≤ Vp(z).

Combining the above bounds, we have V`,p(z) ≤ Vp(z) + δ + 2ε. Since ε > 0 is arbitrary,

we have that, for all ` ≥ `0 and z ∈ S0, V`,p(z) ≤ Vp(z) + δ. It is easily seen that the

roles of Vp and V`,p can be interchanged in the above argument. Thus we have that, given

20



δ > 0, there exists an `0 such that |V`,p(z)− Vp(z)| ≤ δ if ` > `0, for all z ∈ S0. Since S0

is an arbitrary compact subset of S, the result follows.

Corollary 2.2.5 For all z ∈ S, limp→∞ lim`→∞ V`,p(z) = V (z).

2.3 An Approximating Markov Decision Problem

In this section we will present the Markov decision problem whose value function ap-

proximates V`,p. Since throughout this section `, p will be fixed, we will drop them from

the notations: V`,p, τ`, J`,Ap(z) and Z` ≡ (X`, Y`). We will introduce a discrete time,

discrete state controlled Markov chain to approximate the continuous time process given

by (2.7).

Fix h > 0 and define the two-dimensional h-grid, Lh .
= {(jh, kh) : −∞ < j, k < +∞}.

The symbol h denotes the approximation parameter and as h approaches 0, a suitable

interpolation of the controlled Markov chain, to be introduced below, “approaches” a

controlled diffusion process of the form in (2.7). We will assume for simplicity that ` is

an integer multiple of h.

A natural definition of the state space for the approximating chain is Sh
`

.
= S` ∩ Lh.

However, due to reflection terms in the dynamics of the controlled process, it is convenient

to consider a slightly “enlarged” state space, namely, Sh+
`

.
= S`+h ∩ Lh. The “solvency

boundary” of the space Sh+
` is defined as

∂h .
= {(x, y) ∈ Sh+

` : x + (1 + λ)y ≤ h(1 + λ) or x + (1− µ)y ≤ h}.

The points (x, y) ∈ Sh+
` for which x = ` + h or y = ` + h form the reflecting boundary,

∂h
R.

Let {Zh
n , n = 0, 1, 2, . . .} be a discrete time controlled Markov chain with state space

Sh+
` , with Zh

n = (Xh
n , Y h

n ). The transition probabilities will be defined so that the chain’s
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Figure 2.2: The discrete state space Sh+
` .

evolution law well approximates the local behavior of the controlled diffusion (2.7). For

each n, the increments of the chain δZh
n will approximate exactly one of the following

dynamical descriptions:

• “Controlled diffusion step”: (rXt − Ct, bYt)
′dt + (0, σ)′dWt.

• “Purchase control step”: (−(1 + λ), 1)′dMt.

• “Sales control step”: (1− µ,−1)′dNt.

• “Reflection step”: dRt.

Each of these steps is described precisely in what follows. We also introduce a family of

“interpolation intervals” {∆h, h > 0} used in defining the approximating cost function

and in the convergence arguments. For each pair (z, c) ∈ Sh+
` × [0, p] we first define a

family ∆̃h(z, c). For the controlled diffusion steps, if the state of the chain is z and the

exercised consumption control is c, ∆h will be taken to be ∆̃h(z, c); whereas for singular

control steps and reflection steps ∆h will be taken to be 0. This reflects the fact that

for the controlled diffusion (2.7), reflection and singular control terms can change the

state instantaneously. Suitable conditions on ∆̃h(z, c) in order to obtain convergence

of the continuous time interpolated processes to corresponding controlled diffusions are

introduced below.

Controlled Diffusion Steps and Local Consistency. By a controlled diffusion step

we mean that the Markov chain evolves according to a transition law which is “locally
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consistent” in the sense of [32], with a (controlled) diffusion given as:

dX̃(t) = (rX̃(t)− C(t))dt, dỸ (t) = bỸ (t)dt + σỸ (t)dW (t).

Formally, given h > 0, we choose for each c ∈ [0, p] and z ∈ Sh+
` \ ∂h a probability

measure q
(0)
h (z, c, dz̃) on Lh along with an interpolation interval ∆̃h(z, c) which satisfy

the following local consistency conditions for some ρ > 0 :

m0(z, c)
.
=

∫

Lh

(z̃ − z)q
(0)
h (z, c, dz̃) =




rx− c

by


 ∆̃h(z, c) + O(hρ∆̃h(z, c)), (2.12)

σ0(z, c)
.
=

∫

Lh

(z̃ − z −m0(z, c))(z̃ − z −m0(z, c))
′q(0)

h (z, c, dz̃)

=




0 0

0 |σy|2


 ∆̃h(z, c) + O(hρ∆̃h(z, c)). (2.13)

In the above displays z̃ = (x̃, ỹ) and throughout, by the symbol O(k) we will mean an

expression which is bounded above by α|k| where α is a constant depending only on the

coefficients of the model and the truncation parameters `, p. In addition we assume that

there exists ζ ∈ (0,∞) such that q
(0)
h (z, c, Bζh(z)) = 1 for all c ∈ [0, p] and h > 0, where

Bζh(z) is a ball of radius ζh centered at z. The interpolation intervals are required to

satisfy:

∆̃h
∗

.
= sup

z,c
∆̃h(z, c) → 0 as h → 0, inf

z,c
∆̃h(z, c) > 0 for each h > 0, (2.14)

where the sup and inf in the above displays are taken over all (z, c) ∈ Sh+
` × [0, p]. For

the sake of specificity we make the following choice for q
(0)
h . Let Q(x, y) ≡ Qh(x, y)

.
=
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hr|x|+ hp + hb|y|+ σ2y2. Define for all (x, y) ∈ Sh+
` \ ∂h:

q
(0)
h ((x, y), c, (x + h, y))

.
=

hrx+

Q(x, y)
, q

(0)
h ((x, y), c, (x− h, y))

.
=

hrx− + hc

Q(x, y)
,

q
(0)
h ((x, y), c, (x, y + h))

.
=

hby+ + 1
2
σ2y2

Q(x, y)
, q

(0)
h ((x, y), c, (x, y − h))

.
=

hby− + 1
2
σ2y2

Q(x, y)
,

q
(0)
h ((x, y), c, (x, y))

.
=

h(p− c)

Q(x, y)
,

∆̃h(z, c)
.
=

h2

Q(x, y)
. (2.15)

It is easy to check that q
(0)
h , ∆̃h defined above satisfy (2.12), (2.13) and (2.14).

Singular Control Steps. The singular control terms in the controlled diffusion are the

nondecreasing RCLL processes M and N . The process M pushes the state process in

the direction v1 = (−(1 + λ), 1)′, whereas N pushes the state process in the direction

v2 = ((1 − µ),−1)′. For the approximating chain we will assume that at most one

among the sales control and purchase control are exercised at any given time instant

and the magnitude of the corresponding displacement is O(h). In order to capture the

“singular” behavior of the limit diffusion — namely the feature that the state process can

instantaneously be displaced by large amounts — we will take the interpolation interval

for all singular control steps in the approximating chain to be 0.

In order to obtain weak convergence of the interpolated chain to the controlled dif-

fusion, we need to ensure that the control directions match asymptotically those for the

physical problem. More precisely, given h > 0 we define for each z ∈ Sh+
` two probability

measures q
(i)
h (z, dz̃), i = 1, 2, on Lh as follows. For states (x, y) ∈ Sh+

` \ ∂h:

q
(1)
h ((x, y), (x− h, y)) = λ/(λ + 1) , q

(1)
h ((x, y), (x− h, y + h)) = 1/(λ + 1);(2.16)

q
(2)
h ((x, y), (x, y − h)) = µ , q

(2)
h ((x, y), (x + h, y − h)) = 1− µ. (2.17)

It is easy to check that q
(1)
h and q

(2)
h introduced above satisfy the following consistency
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conditions:

mi(z)
.
=

∫

Lh

(z̃ − z)q
(i)
h (z, dz̃) = hvi, (2.18)

σi(z)
.
=

∫

Lh

(z̃ − z −mi(z))(z̃ − z −mi(z))′q(i)
h (z, dz̃) = O(h2). (2.19)

Reflection Steps. We will define a transition kernel that with probability 1 moves

a state in ∂h
R to some state in Sh

` . Once more, since reflection in the diffusion control

problem occurs instantaneously, we take the interpolation interval at reflection steps to

be 0. Since the directions of reflection in the diffusion control problem are normal, a

natural choice of the transition kernel for reflection step is as follows for z ∈ ∂h
R:

q
(3)
h ((`+h, y), (`, y)) = 1, q

(3)
h ((x, `+h), (x, `)) = 1, q

(3)
h ((`+h, `+h), (`, `)) = 1. (2.20)

For z /∈ ∂R, q
(3)
h (z, ·) can be defined arbitrarily. It will be seen from the definition of

admissible controls given below that for such states the definition of q
(3)
h is immaterial.

The Controlled Markov Chain. As described above, the control at each step is first

specified by the choice of an action: controlled diffusion, singular control, or reflection.

Therefore, we define a sequence of control actions {Ih
n , n = 0, 1, 2, . . .} with Ih

n = 0, 1, 2, 3

if the nth step in the chain is a controlled diffusion step, purchase control step, sales

control step, or a reflection step, respectively. In the case of a controlled diffusion step,

the magnitude of the consumption control must also be specified. Consequently, the

space of controls is given by U .
= {0, 1, 2, 3} × [0, p].

The probability measures associated with each of the control actions will now be

combined into a single probability measure for use in defining the controlled Markov

chain. For each z ∈ Sh+
` \ ∂h, u ∈ U (u = (i, c)), we define a probability measure
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ph(z, u, dz̃) on Lh by:

ph(z, u, dz̃) = q
(0)
h (z, c, dz̃) 1{i=0} + q

(i)
h (z, dz̃) 1{i∈{1,2,3}}. (2.21)

The definition of the transition function for z ∈ ∂h is not important since in the analysis

of the control problem the chain will be stopped the first time it hits ∂h. For sake of

specificity we set ph(z, u, z) = 1 for all z ∈ ∂h and u ∈ U .

We are now ready to specify the controlled Markov chains. Given a sequence Uh =

{Uh
n , n = 0, 1, 2, . . .} (where Uh

n = (Ih
n , Ch

n)) of U -valued random variables we construct a

controlled Markov chain {Zh
n , n = 0, 1, 2, . . .} with initial condition zh = (xh, yh) ∈ Sh+

`

and state space Sh+
` , as follows:

Zh
0 = zh, IP [Zh

n+1 ∈ E|Fh
n ] = ph(Z

h
n , Uh

n , E), n ≥ 0, E ∈ B(Sh+
` ), (2.22)

where Fh
n = σ{Zh

0 , . . . , Zh
n , Uh

0 , . . . , Uh
n}. The following definition of admissible controls

ensures that Zh
n ∈ Sh+

` for all n and so the definition in (2.22) is meaningful.

Definition 2.3.1 The control sequence Uh = {Uh
n , n = 0, 1, 2, . . .} is said to be admissi-

ble for the initial condition zh and {Zh
n} ({Zh

n , Uh
n}) is called the corresponding controlled

Markov chain (resp. controlled pair) if:

1. Uh
n is σ{Zh

0 , · · · , Zh
n , Uh

0 , · · · , Uh
n−1}-adapted.

2. IP [Ih
n = 3|Zh

n ∈ Sh
` ] = 0 and IP [Ih

n = 3|Zh
n ∈ ∂h

R \ ∂h] = 1 for all n.

3. Condition (2.22) holds.

The class of all admissible control sequences for initial state zh will be denoted by Ah(zh).

26



We also define for each z ∈ Sh+
` and u = (i, c) ∈ U the interpolation intervals

∆h(z, u) = ∆̃h(z, c) 1{i=0}. (2.23)

For an admissible pair {Zh
n , Uh

n}, we denote the associated sequence of interpolation

intervals ∆h(Zh
n , Uh

n ) by {∆h
n, n = 0, 1, 2, . . .}. Define, th0

.
= 0 and thn

.
=

∑n−1
i=0 ∆h

i for

n ≥ 1.

Markov Decision Problem (MDP) for the Chain. Given an admissible pair

{Zh
n , Uh

n} let ηh
.
= inf{n : Zh

n ∈ ∂h}. The cost function for the controlled Markov

chain is defined as:

Jh(zh, U
h) = IE

ηh−1∑
n=0

e−βthnf(Ch
n)

(1− e−β∆h
n

β

)
. (2.24)

Note that we have used the factor (1 − e−β∆h
n)/β rather than the more intuitive (and

asymptotically equivalent) ∆h
n. This somewhat simplifies the convergence proofs without

affecting the limiting results. The value function of the MDP is defined as:

V h(zh) = sup
Uh∈Ah(zh)

Jh(zh, U
h). (2.25)

Continuous Time Interpolation. One of the main goals of the study is to show that

the value function of the MDP defined in (2.25) converges, as h → 0, to the value function

of the limit diffusion control problem. This convergence result allows the computation of

near optimal policies for the diffusion control problem introduced below (2.6) by numer-

ically solving the above MDP. We next introduce the continuous time interpolation and

time rescaling techniques that will be used in the proof of our main convergence result.

The continuous time interpolations of various processes will be constructed to be

piecewise constant on the time intervals [thn, thn+1), n ≥ 0. For use in this construction
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we define nh(t)
.
= max{n : thn ≤ t}, t ≥ 0. Note that nh(t) is an {Fh

n}-stopping time.

Setting Fh(t)
.
= Fh

nh(t)
we obtain a continuous time filtration {Fh(t), t ≥ 0}. Define

Uh(t)
.
= Uh

nh(t)
, t ≥ 0. Also, define the continuous time processes associated with the

controlled diffusion steps as follows. First let Bh
0 = 0 and Sh

0 = 0 and define for n ≥ 1,

Bh
n

.
=

n∧ηh−1∑

k=0

IE[δZh
k |Fh

k ] 1{Ih
k =0}, Sh

n
.
=

n∧ηh−1∑

k=0

(
δZh

k − IE[δZh
k |Fh

k ]
)

1{Ih
k =0}. (2.26)

Define the continuous time process Bh by setting Bh(0)
.
= 0 and Bh(t)

.
= Bh

nh(t)
for t > 0.

The process Sh is defined in a similar manner. We define the interpolations associated

with the purchase control and sales control as follows. Let Mh
0 = 0, Nh

0 = 0, Eh
i,0 = 0,

i = 1, 2 and define for n ≥ 1:

Mh
n

.
=

n∧ηh−1∑

k=0

h 1{Ih
k =1}, Nh

n
.
=

n∧ηh−1∑

k=0

h 1{Ih
k =2}, Eh

i,n
.
=

n∧ηh−1∑

k=0

(δZh
k − hvi) 1{Ih

k =i}.

The continuous time processes Mh and Nh are defined as Mh(0)
.
= 0, Nh(0)

.
= 0 and

Mh(t)
.
= Mh

nh(t)
, Nh(t)

.
= Nh

nh(t)
for t ≥ 0. The processes Eh

1 and Eh
2 are defined analo-

gously. The continuous time process associated with reflection is defined as follows. If

nh(t) = 0 define Rh(t) = 0; otherwise let

Rh(t)
.
= −

nh(t)−1∑

k=0

δZh
k 1{Ih

k =3}. (2.27)

We define the continuous time interpolation Zh of the controlled Markov chain Zh
n intro-

duced in Definition 2.3.1 by Zh(t)
.
= Zh

nh(t)
, t ≥ 0. The following representation for Zh(t)

is easily verified:

Zh(t) = zh + Bh(t) + Sh(t) + v1M
h(t) + v2N

h(t) + Eh
1 (t) + Eh

2 (t)−Rh(t), t ≥ 0. (2.28)
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Also, it follows from condition (2.12) that on the set {Ih
n = 0, ηh > n},

IE[δZh
n |Fh

n ] =




rXh
n − Ch

n

bY h
n


 ∆h(Zh

n , 0, Ch
n) + O(hρ∆h(Zh

n , 0, Ch
n)) a.s.

This fact, together with the piecewise constant nature of the processes, yields

Bh(t) =

∫ t∧τh

0




rXh(s)− Ch(s)

bY h(s)


 ds + δh

1 (t), (2.29)

where τh .
= thηh

and δh
1 is an {Fh(t)}-adapted process which, in view of (2.14), satisfies

for all t ≥ 0 and m ≥ 1

sup
0≤s≤t

IE|δh
1 (s)|m → 0 as h → 0.

A similar calculation gives the following representation of the cost function (2.24):

Jh(zh, U
h) = IE

∫

[0,τh]

e−βtf(Ch(t))dt. (2.30)

Time Rescaling. A common approach for proving the convergence of V h to V as

h → 0 is to begin by showing that the collection {(Zh(·), τh), h ≥ 0} is tight and then

characterize the subsequential weak limits suitably. However, for problems with singular

controls, showing the tightness of the above family becomes problematic since, in general,

the processes {(Mh(·), Nh(·)), h ≥ 0} may fail to be tight. A powerful method for

handling this tightness issue was introduced by Kushner and Martins [37]. The basic

idea is to suitably stretch out the time scale so that the various processes involved in the

convergence analysis, in the new time scale, are tight; carry out the weak convergence

analysis with the rescaled processes; and finally revert back to the original time scale to

argue the convergence of V h to V .

We now introduce the time rescaling that will be used in our study. The rescaled time
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increments, {∆̂h
n, n = 0, 1, 2, . . .}, are defined as ∆̂h

n
.
= ∆h

n 1{Ih
n=0} + h 1{Ih

n∈{1,2}}. Define

t̂h0
.
= 0 and t̂hn

.
=

∑n−1
i=0 ∆̂h

i for n ≥ 1.

Definition 2.3.2 The rescaled time process T̂ h(t) is the unique continuous nondecreasing

process satisfying: (1) T̂ h(0) = 0; (2) the derivative of T̂ h(t) is 1 for t ∈ (t̂hn, t̂hn+1) if

Ih
n = 0; (3) the derivative of T̂ h(t) for t ∈ (t̂hn, t̂

h
n+1) is 0 if Ih

n = 1, 2, 3.

It is easy to check that T̂ h(t̂hn) = thn and that T̂ h(t̂hn+1) − T̂ h(t̂hn) = ∆h
n. Let n̂h(t)

.
=

max{n : t̂hn ≤ t}, t ≥ 0. Using the observation that every reflection step must be followed

by either a singular control step or a diffusion control step, it follows that n̂h(t) is a

bounded {Fh
n}-stopping time, with bound

n̂h(t) ≤ 2
( t

h
+

t

infz,c ∆̂h(z, 0, c)

)
< ∞. (2.31)

Define the continuous time filtration {F̂h(t), t ≥ 0} by setting F̂h(t)
.
= Fn̂h(t).

The rescaled processes (denoted with a ˆ ) are defined in a manner similar to the

processes defined below (2.26) with appropriate adjustments to the time variable. For

example, we define B̂h(0) = 0 and B̂h(t)
.
= Bh

n̂h(t)
if n̂h(t) > 0. We define the processes

Ûh(t), Ŝh(t), M̂h(t), N̂h(t), Êh
1 (t), Êh

2 , R̂h(t), Ẑh(t) analogously (that is, by replacing

nh(t) with n̂h(t) in the definitions below (2.26)). Then we have the following rescaled

version of (2.28)

Ẑh(t) = zh + B̂h(t) + Ŝh(t) + v1M̂
h(t) + v2N̂

h(t) + Êh
1 (t) + Êh

2 − R̂h(t). (2.32)

Remark 2.3.3 From the definition of T̂ h(t) if follows that n̂h(t) = nh(T̂ h(t)). This

equality yields a straightforward relationship between the original interpolated processes

and the rescaled processes. For example, B̂h(t) = Bh(T̂ h(t)). Similar equations hold

between Uh(t), Sh(t), Mh(t), Nh(t), Eh
1 (t), Eh

2 , Rh(t), Zh(t) and their corresponding

rescaled versions.
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Using the fact that T̂ h(t̂hn+1)− T̂ h(t̂hn) = ∆h
n which is 0 for singular control and reflection

steps, a calculation similar to that which produced (2.29) yields

B̂h(t) =

∫ t∧τ̂h
1

0




rX̂h(s)− Ĉh(s)

bŶ h(s)


 dT̂ h(s) + δ̂h

1 (t), (2.33)

where τ̂h
1

.
= inf{t : Ẑh(t) ∈ ∂h} and δ̂h

1 is an {F̂h(t)}-adapted process satisfying for all

m ≥ 1,

IE sup
0≤s≤t

|δ̂h
1 (s)|m → 0 as h → 0. (2.34)

We now state several lemmas related to the time rescaling. The following “change of

variables” formula (cf. Theorem IV.3.45 [43]) will be used several times in our analysis.

Lemma 2.3.4 Let Ĝ : [0,∞) → [0,∞) be a continuous and nondecreasing function.

Suppose that Ĝ(t) → ∞ as t → ∞. Define the inverse G : [0,∞) → [0,∞) as G(t) =

inf{s : Ĝ(s) > t}. Then for all bounded and measurable functions g : [0,∞) → [0,∞),

∫

[0,G(t)]

g(s)dĜ(s) =

∫

[0,t]

g(G(s))ds. (2.35)

The following lemma is at the heart of the time transformation idea. It ensures that the

weak limits of T̂ h(t) increase to ∞ as t → ∞ and thus makes the reverting back to the

original time scale, in the limit, possible (see Theorem 2.4.6).

Lemma 2.3.5 Let {Uh
n , n = 0, 1, 2, . . .}h>0 be a family of admissible control sequences.

Then for all t ≥ 0

sup
h

IE|Mh(t) + Nh(t)| < ∞. (2.36)

Proof. Without loss of generality, assume h ∈ (0, 1). Define

Y h
i (t)

.
=

nh(t)∧ηh−1∑

k=0

δZh
k 1{Ih

k =i} , nh
i (t)

.
=

nh(t)∧ηh−1∑

k=0

1{Ih
k =i}, i = 1, 2.
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Writing Y h
i ≡ (Y h

i,1, Y
h
i,2)

′, it follows from (2.16) and (2.17) that,

IEY h
1,2(t) = h

1

1 + λ
IE[nh

1(t)], IEY h
2,1(t) = h(1− µ)IE[nh

2(t)].

A straightforward calculation shows |Bh(t)| ≤ c1(1 + t) and IE|Sh(t)| ≤ c2(1 + t), where

the constants c1, c2 are independent of h and t. From (2.16), (2.17) we see that hnh
1(t) =

Mh(t) = Y h
1,1(t) and hnh

2(t) = Nh(t) = Y h
2,2(t). Thus from (2.28) there is c̃1 ∈ (0,∞) such

that

hnh
1(t) ≤ c̃1(1 + t) + |Sh

1 (t)|+ Y h
2,1(t), hnh

2(t) ≤ c̃1(1 + t) + |Sh
2 (t)|+ Y h

1,2(t). (2.37)

Combining the above inequalities we have, for some c3 ∈ (0,∞), hIE[nh
1(t)] ≤ c3(1 + t) +

h(1−µ)IE[nh
2(t)] and hIE[nh

2(t)] ≤ c3(1+ t)+hIE[nh
1(t)]/(1+λ). It follows that hIE[nh

1(t)]

and hIE[nh
2(t)] are “close” to each other. More precisely, there exist constants α ≥ 1,

c4 > 0, L0 > 0 such that for L ≥ L0

h(IE[nh
1(t)] ∨ IE[nh

2(t)]) > L ⇒ h(IE[nh
1(t)] ∧ IE[nh

2(t)]) > αL− c4.

In particular, we have suph hIE[nh
1(t)] = ∞ if and only if suph hIE[nh

2(t)] = ∞. Now sup-

pose suph hIE[nh
1(t)] = ∞ and suph hIE[nh

2(t)] = ∞. By Cramer’s theorem (see Theorem

2.1.24 [13]), for all δ > 0 there exists a constant c(δ) ∈ (0,∞) such that for all k0 ∈ IN0

and h > 0

max
{

IP [|Y h
2,1 − h(1− µ)nh

2(t)| > δhnh
2(t), n

h
2(t) = k0],

IP [|Y h
1,2 − h(1/(1 + λ))nh

1(t)| > δhnh
1(t), n

h
1(t) = k0]

}
≤ c(δ)e−k0c(δ).

Choose δ such that µ + δ < 1 and 1/(1 + λ) − δ > 0 (which is possible since µ ∈ (0, 1)

and λ ∈ (0,∞)). Define α1 = 1 − (1 − µ − δ)(1/(1 + λ) − δ) < 1 and θ = α1/4. Fix
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ε ∈ (0, 1) and choose K large enough so that

c(δ)

1− e−c(δ)
e−c(δ)(K+1) <

ε

8
and

c2(1 + t)

θK − c̃1(1 + t)
<

ε

8
. (2.38)

Since, by assumption suph hIE[nh
1(t)] = suph hIE[nh

2(t)] = ∞, there exists h′ ≤ 1 such

that

IP [nh′
1 (t) >

K

h′
, nh′

2 (t) >
K

h′
] > ε. (2.39)

Then for all t ≥ 0,

IP [|Y h′
2,1(t)− h′(1− µ)nh′

2 (t)| > δh′nh′
2 (t), nh′

2 (t) >
K

h′
]

=
∞∑

j=[K/h′]+1

IP [|Y h′
2,1(t)− h′(1− µ)nh′

2 (t)| > δh′nh′
2 (t), nh′

2 (t) = j]

≤
∞∑

j=[K/h′]+1

c(δ)e−c(δ)j =
c(δ)

1− e−c(δ)
e−c(δ)([ K

h′ ]+1) <
ε

8
,

where the last inequality follows from the choice of K in (2.38). Similarly,

IP [|Y h′
1,2(t)− h′

1+λ
nh′

1 (t)| > δh′nh′
1 (t), nh′

1 (t) > K
h′ ] < ε

8
. Hence, in view of (2.39) we have

IP [|Y h′
2,1(t)− h′(1− µ)nh′

2 (t)| ≤ δh′nh′
2 (t),

|Y h′
1,2(t)−

h′

1 + λ
nh′

1 (t)| ≤ δh′nh′
1 (t), min{nh′

1 (t), nh′
2 (t)} >

K

h′
] >

ε

2
.

Let E denote the event in the equation above. From (2.37) and (2.38)

IP [h′nh′
1 (t)− Y h′

2,1(t) ≥ θK] ≤ IP [|Sh′
1 (t)| ≥ θK − c̃1(1 + t)]

≤ IE|Sh′
1 (t)|

θK − c̃1(1 + t)

≤ c2(1 + t)

θK − c̃1(1 + t)
<

ε

8
.
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Similarly, IP [h′nh′
2 (t)− Y h′

1,2(t) ≥ θK] < ε
8
. Thus

ε

2
< IP [E] ≤ IP [E, h′nh′

1 (t)− Y h′
2,1(t) < θK, h′nh′

2 (t)− Y h′
1,2(t) < θK]

+ IP [h′nh′
1 (t)− Y h′

2,1(t) ≥ θK] + IP [h′nh′
2 (t)− Y h′

1,2(t) ≥ θK]

≤ IP [Ẽ] +
ε

8
+

ε

8
,

where Ẽ is the event in the first term on the right side above. It follows that IP [Ẽ] > ε/4

and thus Ẽ is nonempty. Now for any ω ∈ Ẽ we have from the definition of Ẽ that

h′nh′
1 (t)− h′(1− µ− δ)nh′

2 (t) < θK, h′nh′
2 (t)− h′(1/(1 + λ)− δ)nh′

1 (t) < θK.

A straightforward calculation using these inequalities shows that for such ω

h′nh′
1 (t) ≤ 2θ

1− (1− µ− δ)(1/(1 + λ)− δ)
K =

K

2
.

However, this contradicts the fact that h′nh′
1 (t) > K on Ẽ. Thus we must have that both

suph hIE[nh
1(t)] and suph hIE[nh

2(t)] are finite. The result now follows on recalling that

Mh(t) = hnh
1(t) and Nh(t) = hnh

2(t).

An important consequence of the above lemma is the following.

Lemma 2.3.6 There exists an h0 ∈ (0,∞) such that for all h < h0, T̂ h(t) → ∞ with

probability 1 as t →∞.

Proof. Since ∆̃h
∗ → 0 as h → 0, we can find an h0 such that ∆̃h

∗ < 1 for all h < h0. We

will argue via contradiction. Suppose h < h0 and IP [supt≥0 T̂ h(t) < ∞] > 0. Then there

exist ε > 0 and T0 > 0 such that

IP [sup
t≥0

T̂ h(t) < T0 − 1] > ε. (2.40)
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Using Lemma 2.3.5 we can find a K large enough so that

IP [Mh(T0) ≥ K] ≤ IEMh(T0)

K
<

ε

4
, IP [Nh(T0) ≥ K] ≤ IENh(T0)

K
<

ε

4
.

We will now show that

IP [T̂ h(T0 + 2K) < T0 − 1] ≤ ε

2
. (2.41)

This will lead to a contradiction in view of (2.40) and hence prove the lemma. Note that

IP [T̂ h(T0 + 2K) < T0 − 1]

≤ IP [T̂ h(T0 + Mh(T0) + Nh(T0)) < T0 − 1,Mh(T0) < K,Nh(T0) < K]

+ IP [Mh(T0) ≥ K] + IP [Nh(T0) ≥ K]

≤ IP [T̂ h(T0 + Mh(T0) + Nh(T0)) < T0 − 1] +
ε

4
+

ε

4
. (2.42)

Furthermore, for each fixed t, t + Mh(t) + Nh(t) ≥ ∑nh(t)−1
k=0 (∆h

k 1{Ih
k =0} + h 1{Ih

k =1,2}).

Since T̂ h is nondecreasing and T̂ h(t̂hn) = thn,

T̂ h(t + Mh(t) + Nh(t)) ≥ T̂ h(

nh(t)−1∑

k=0

(∆h
k 1{Ih

k =0} + h 1{Ih
k =1,2}))

= T̂ h(t̂hnh(t)) = thnh(t) =

nh(t)−1∑

k=0

∆h
k 1{Ih

k =0} ≥ t− ∆̃h
∗ .

The last inequality above is a consequence of the inequalities:
∑nh(t)−1

k=0 ∆h
k 1{Ih

k =0} ≤ t ≤
∑nh(t)

k=0 ∆h
k 1{Ih

k =0}. Recalling that ∆̃h
∗ < 1 we see that T̂ h(t + Mh(t) + Nh(t)) ≥ t− 1 for

all t ≥ 0. Using this inequality in (2.42) proves (2.41) and hence the result.

Let T h(t)
.
= inf{s : T̂ h(s) > t}. Observe that T̂ h(T h(t)) = t and that, due to Lemma

2.3.6, T h(t) < ∞ almost surely for all t ≥ 0. Define τ̂h .
= T h(τh).
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Lemma 2.3.7 For zh ∈ Sh+
` and {Uh

n} ∈ Ah(zh),

Jh(zh, U
h) = IE

∫

[0,τ̂h
1 ]

e−βT̂ h(t)f(Ĉh(t))dT̂ h(t).

Proof. Note that

τ̂h
1 = inf{t : Ẑh(t) ∈ ∂h} = inf{t : Zh(T̂ h(t)) ∈ ∂h} = inf{t : T̂ h(t) ≥ τh}.

If τh = ∞ then clearly τ̂h
1 = ∞. Suppose τh < ∞. Then the above display shows that

τ̂h
1 = T h(τh−). Also, clearly T̂ h is constant over the interval (T h(τh−), T h(τh)]. The

result now follows from (2.30) and Lemma 2.3.4.

2.4 Main Convergence Result

In this section we show that V h(zh) converges to V (z) whenever zh → z. The basic

approach will be as follows. First we establish tightness of the continuous time (rescaled)

processes defined in the previous section and characterize their subsequential limits. Then

we define a time transformation for the limit processes to revert back to the original

scale. We will show that the time transformed versions of the limit processes have the

same laws as those of the various processes in the diffusion control problem. Using

this characterization result we will show that, given a sequence of admissible controls

{Uh, h > 0}, the lim sup of the corresponding cost functions is bounded above by the

cost for an admissible control for the diffusion control problem. This will establish that

lim suph→0 V h(zh) ≤ V (z) whenever zh → z. Finally we prove convergence of the value

functions by proving the reverse inequality. The main idea of this proof is to select a

near optimal control for the limit diffusion control problem and to construct from this an

admissible control for the controlled Markov chain which is asymptotically near optimal.

We begin by introducing the following “relaxed control” formulation which arises
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naturally in the weak convergence arguments for convergence of the cost functions.

Relaxed control formulation. Let M̃ denote the space of all Borel measures ϑ on

[0, p]× [0,∞) such that if ϑ(dα, dt) = ϑt(dα)ν(dt), then: (i) ϑt is a probability measure

on [0, p] for ν-almost every t, and (ii) ν(a, b] ≤ b − a for all 0 ≤ a ≤ b < ∞. Let

M be the subset of M̃ consisting of ϑ that satisfy for all t ≥ 0, ϑ([0, p] × [0, t]) = t.

Given a probability system Φ and initial condition z ∈ S`, let Āp(Φ, z) be the set of all

processes Ū ≡ (m,M, N) where M and N are as introduced below (2.1), m ∈M a.s. and

m(A× [0, t]) is Ft-adapted for all t ∈ [0,∞), A ∈ B[0, p]. Set C(t)
.
=

∫
[0,p]

αmt(dα) where

mt, a probability measure on [0, p], is defined by the relation m(dα, dt) = mt(dα)dt.

Let Z be defined via (2.7) with (C, M, N) as above and τ be given by (2.2). Define

for Ū ∈ Āp(Φ, z)

J̄(z, Ū)
.
= IE

∫

[0,p]×[0,τ)

e−βtf(α)m(dα, dt),

and let

V̄ (z)
.
= sup

Φ
sup

Ū∈Ā(Φ,z)

J̄(z, Ū).

The following lemma establishes the equivalence between the relaxed control formulation

and the precise control formulation.

Lemma 2.4.1 For all z ∈ S, V̄ (z) = V (z).

Proof. The inequality V (z) ≤ V̄ (z) is immediate since every exact control can be ex-

pressed as a relaxed control. Consider now the reverse inequality. Let Φ be a probability

system and Ū = (m̄,M, N) ∈ Ā(Φ, z) be such that V̄ (z) ≤ J̄(z, Ū)+ ε. From the bound-

edness of the cost function it follows that, without loss of generality, we can assume

that there is a T ∈ (0,∞) such that M(t) = M(t ∧ T ) and N(t) = N(t ∧ T ) for all

t ∈ (0,∞), and m̄t(dα) = δp for all t ≥ T . Also, T can be chosen large enough so that

f∗(p)e−βT /β < ε.
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Let Z be defined via (2.7) with C(t)
.
=

∫
[0,p]

αm̄t(dα), and τ as before. Then

J̄(z, Ū) ≤ IE

∫

[0,p]×[0,T∧τ)

e−βtf(α)m(dα, dt) + ε. (2.43)

Also, by modifying m,M , and N if needed, we can assume that

M(t) = M(T ∧ τ), N(t) = N(T ∧ τ) and m̄t(dα) = δp for all t ≥ T ∧ τ. (2.44)

Following the proof of Theorem 1.2.1 in [6] one can show that there exists a sequence of

exact controls Cn ∈ Ap(Φ, z) which satisfy

sup
0≤t≤T1

|
∫

[0,p]×[0,t]

e−βtf(α)m(dα, dt)−
∫

[0,t]

e−βtf(Cn(t))dt| → 0 a.s., and (2.45)

sup
0≤t≤T1

|
∫

[0,t]

(Cn(s)− C(s))ds| → 0 a.s. (2.46)

as n → ∞ for all T1 ∈ (0,∞). In fact the cited theorem shows that, for each n, Cn can

be chosen such that it takes values in a finite set and there is a sequence 0 < tn1 < tn2 · · ·
such that Cn is constant over [tnk , tnk+1) for all k ∈ IN0.

Let Zn be defined via (2.7) with C replaced by Cn and M and N as introduced

above. A straightforward application of Gronwall’s inequality and (2.46) shows that for

each T1 ∈ (0,∞), there is a c ≡ c(T1) ∈ (0,∞) such that

sup
0≤t≤T1

IE|Zn(t)− Z(t)| ≤ c sup
0≤t≤T1

IE|
∫

[0,t]

(Cn(s)− C(s))ds|. (2.47)

Hence Zn → Z, in probability, uniformly on [0, T ].

If τ = ∞, Z(t) ∈ So for all t ≥ 0. Thus, (2.47) implies that there exists N0 such that

if n > N0 then Zn(t) ∈ So for all t ≥ 0, and therefore τn = ∞ for all n > N0. Then

clearly τn → τ a.s. as n → ∞ on the set {τ = ∞}. Next note that, almost surely on
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the set {τ < ∞} and for every δ > 0, there exist t ∈ [τ, τ + δ) and ε > 0 such that

dist(Z(t), S) > ε. This is because, in view of (2.44), Z(τ + t), t ≥ 0 is described via (2.7)

with initial condition Z(τ) and M ≡ N ≡ 0. If Z(τ) = 0 the property is satisfied trivially

since C(t) = p for all t ≥ τ . Otherwise, the property follows from a standard argument

based on the law of the iterated logarithm for Brownian motion (cf. pages 260-261,

[32]). This, along with the convergence of Zn to Z shows that τn
.
= inf{t : Zn(t) /∈ So}

converges to τ a.s. as n → ∞. In proving this statement we also use the observation

that if Z(t−) /∈ S then Z(t) /∈ S. Thus τn ∧ T → τ ∧ T . Combining these observations

with (2.45) we obtain

IE

∫

[0,τn∧T ]

e−βtf(Cn(t))dt → IE

∫

[0,p]×[0,τ∧T ]

e−βtf(α)m(dα, dt). (2.48)

The result now follows on using this observation in (2.43).

Next note that the space M̃ can be metrized using the Prohorov metric in the usual

way (see pages 263-264 of [32]). Furthermore, with this metric M̃ is a compact space

and a sequence ϑn ∈ M̃ converges to ϑ if and only if for all continuous functions ψ on

[0, p]× [0,∞) with compact support,

∫

[0,p]×[0,∞)

ψ(α, t)mn(dα, dt) →
∫

[0,p]×[0,∞)

ψ(α, t)m(dα, dt). (2.49)

We now define M̃-valued random variables m̂h by the relation

m̂h(A× [0, t])
.
=

∫

[0,t]

1A(Ĉh(s))dT̂ h(s), A ∈ B([0, p]), t ∈ [0,∞).

Noting that the right side above is equal to
∫

[0,t]
(
∫

A
δĈh(s)(dα))dT̂ h(s), where δx is the

probability measure concentrated at x, we can write m̂h(dα, dt) as m̂h
t (dα)ν̂h(dt) where

m̂h
t and ν̂h are given by, for A ∈ B([0, p]) and 0 ≤ a ≤ b < ∞, m̂h

t (A) = δĈh(t)(A),

ν̂h(a, b] = T̂ h(b)− T̂ h(a).
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Convergence of the Time Rescaled Processes. We begin by showing that the

processes Êh
1 and Êh

2 converge weakly to the 0 process as h → 0.

Lemma 2.4.2 Let Êh
i , i = 1, 2 be as defined above (2.27). Then Êh

i converges in proba-

bility to 0 in D([0,∞) : IR2).

Proof. The local consistency condition (2.18) and property (2.22) imply that Eh
i,n is an

{Fh
n}-martingale. As n̂h(t) is a bounded stopping time (cf. (2.31)) and the increments

of Eh
i,n are bounded, it follows from the optional sampling theorem that the continuous

time process Êh
i (t) is an {F̂h(t)}-martingale, the trace of the quadratic variation of

which is given by Tr〈Êh
i 〉(t) =

∑n̂h(t)∧ηh−1
k=0 IE[|δzh

k − hvi|2 1{Ih
k =i}|Fh

k−1]. Finally, applying

Doob’s inequality, (2.19) and the observation that the maximum number of steps of either

singular control in the first n̂h(t) steps is t/h, we have for i = 1, 2 IE[sups≤t |Êh
i (s)|]2 ≤

4IETr〈Êh
1 〉(t) ≤ O(h2)(t/h) = O(h). The result now follows.

Define the process Âh by Âh(t)
.
=

∫
[0,t)

Ĉh(s)dT̂ h(s). Let ĪR denote the one point

compactification of IR. The following proposition gives the tightness of the various time

rescaled processes. The proof is similar to that of Theorem 5.3 of [33] and is therefore

omitted.

Proposition 2.4.3 Let Ĥh .
= (Ẑh, T̂ h, Âh, M̂h, N̂h, R̂h, B̂h, Ŝh). Then {(Ĥh, τ̂h

1 , m̂h),

h > 0} is a tight family in D([0,∞) : E)× ĪR×M where E = Sh+
` × IR6

+ × IR4.

We now turn our attention to characterizing subsequential limit points of {(Ĥh, τ̂h
1 , m̂h),

h > 0}. Suppose that the initial condition sequence {zh} converges to some z ∈ S`.

Slightly abusing notation, let h index a weakly convergent subsequence of (Ĥh, τ̂h
1 , m̂h)

with weak limit, (Ĥ, τ̂1, m̂), where Ĥ
.
= (Ẑ, T̂ , Â, M̂ , N̂ , R̂, B̂, Ŝ), given on some proba-

bility space (Ω,F , IP ). Let F̂∗(t) .
= σ(Ĥ(s), m̂(A × [0, s))|A ∈ B([0, p]), 0 ≤ s ≤ t) and

let F̂(t)
.
= F̂∗(t+) ∨N where N denotes the collection of all IP -null sets.

Theorem 2.4.4 The limit point (Ĥ, τ̂1, m̂) has the following properties.
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1. T̂ is nondecreasing and Lipschitz continuous with Lipschitz coefficient 1.

2. There exists an {F̂(t)}-progressively measurable process Ĉ with Ĉ(t) ∈ [0, p] for all

t ≥ 0, such that

B̂(t) =

∫ t∧τ̂1

0




rX̂(s)− Ĉ(s)

bŶ (s)


 dT̂ (s). (2.50)

3. Ŝ1(t) = 0 for all t ≥ 0 and Ŝ2 is a continuous {F̂(t)}-martingale with quadratic

variation 〈Ŝ2〉t =
∫ t

0
|σŶ (s)|2dT̂ (s), t ≥ 0.

4. M̂ and N̂ are nondecreasing and continuous.

5. R̂ is a vector of nondecreasing continuous processes which satisfy

∫ ∞

0

1{X̂(t)<`}dR̂1(t) = 0,

∫ ∞

0

1{Ŷ (t)<`}dR̂2(t) = 0. (2.51)

6. Ẑ is a continuous process satisfying IP [Ẑ(t) ∈ S`] = 1 for all t ≥ 0 and

Ẑ(t) = z + B̂(t) + Ŝ(t) + v1M̂(t) + v2N̂(t)− R̂(t). (2.52)

7. Writing m̂(dα, dt) as m̂t(dα)ν̂(dt) we have ν̂(a, b] = T̂ (b)− T̂ (a), 0 ≤ a ≤ b < ∞.

8. Ĉ(t) =
∫
[0,p]

αm̂t(dα) for ν̂-almost every t ∈ [0,∞).

Proof. By appealing to Skorohod representation theorem and by relabeling the conver-

gent subsequence we can assume without loss of generality that Ĥh → Ĥ a.s. The fact

that the process T̂ is nondecreasing and Lipschitz continuous with Lipschitz coefficient

1 follows easily from similar properties for T̂ h. Since |Âh(t)− Âh(s)| ≤ p|T̂ h(t)− T̂ h(s)|
it follows that Â is absolutely continuous with respect to T̂ . Therefore there exists

a [0, p]-valued process Ĉ, progressively measurable with respect to {F̂∗(t)} such that

Â(t) =
∫ t

0
Ĉ(s)dT̂ (s). This fact, together with (Ẑh, T̂ h) → (Ẑ, T̂ ) a.s. and an application
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of the dominated convergence theorem yield 2. We next show that Ŝ has continuous

paths. First note that by local consistency ((2.12), (2.13)) there exists ζ ∈ (0,∞) such

that for all u ≥ 0, h ≥ 0 j(Ŝh, u)
.
= supt≤u |Ŝh(t) − Ŝh(t−)| ≤ 2ζh. Thus for h small

enough j(Ŝh)
.
=

∫∞
0

e−u(j(Ŝh, u) ∧ 1)du ≤ 2ζh. Therefore, by Theorem 3.10.2 in [17] the

limiting process Ŝ has continuous paths. One can check that the quadratic variation of

Ŝh, which is an {F̂h(t)}-martingale, is given by

〈Ŝh〉(t) =




0 0

0 1




∫ t∧τ̂h
1

0

|σŶ h(s)|2dT̂ h(s) + δ̂h
2 (t), (2.53)

where due to (2.14) and using (2.31) the process δ̂h
2 satisfies for all m ≥ 1,

IE sup
s≤t

|δ̂h
2 (s)|m → 0 as h → 0.

From (2.53) it follows that Ŝ1(t) = 0 for all t ≥ 0. From (2.53) and the Burkholder-Gundy

inequalities we also have

IE|Ŝh
2 (t)|4 ≤ α[T 2 + IE sup

0≤u≤t
|δ̂h

2 (u)|2].

Thus the family {(Ŝh
2 (t))2, h > 0} is uniformly integrable. A standard argument (cf.

pages 1457-1458 [33]) shows that Ŝ2 is an F̂t-martingale with quadratic variation as

given in 3. Part 4 is immediate on noting that M̂h, N̂h are nondecreasing and since the

maximum number of purchase or sales steps over (n̂h(t), n̂h(t + s)) is s/h + 1,

|M̂h(t + s)− M̂h(t)| ≤ s + h, |N̂h(t + s)− N̂h(t)| ≤ s + h.

From Definition 2.3.1 (3) it follows that (2.51) holds with (X̂, Ŷ , R̂) replaced by (X̂h, Ŷ h,

R̂h). Also clearly Ẑh ∈ (−∞, `]×(−∞, `]. Parts 5 and 6 are now immediate consequences

42



of (2.32) and continuity properties of the Skorohod map (see (2.6)). Next, write m̂(dα, dt)

as m̂t(dα)ν̂(dt). Since m̂h([0, p], (a, b]) = T̂ h(b)− T̂ h(a) for 0 ≤ a ≤ b < ∞, taking limits

yields ν̂(a, b] = T̂ (b)− T̂ (a). This proves 7. Part 8 is immediate from the representation
∫
(a,b]

Ĉh(s)dT̂ h(s) =
∫
(a,b]×[0,p]

αm̂h(dα, ds), 0 ≤ a ≤ b < ∞ and the fact that (see proof

of 2)
∫
(a,b]

Ĉh(s)dT̂ h(s) converges to
∫

(a,b]
Ĉ(s)dT̂ (s).

Time Inversion. We now define an inverse time transformation that will revert the limit

processes back to the original time scale. We will see that the time inverted processes

lead to an admissible control pair for the diffusion control problem in (2.7)-(2.9). The key

step in returning to the original time scale is the following result analogous to Lemma

2.3.6.

Lemma 2.4.5 T̂ (t) →∞ with probability 1 as t →∞.

Proof. We will argue via contradiction. Suppose IP [supt≥0 T̂ (t) < ∞] > 0. Then there

exist ε > 0 and T0 > 0 such that

IP [sup
t≥0

T̂ (t) < T0 − 1] > ε. (2.54)

As in the proof of Lemma 2.3.6 we can find a K ∈ (0,∞) such that lim infh→0 IP [T̂ h(T0 +

2K) < T0 − 1] ≤ ε/2. The weak convergence T̂ h ⇒ T̂ now implies IP [T̂ (T0 + 2K) <

T0 − 1] ≤ ε/2. This contradicts (2.54) and hence the result follows.

Let T be the inverse of T̂ , defined as T (t)
.
= inf{s : T̂ (s) > t}. From Lemma 2.4.5

it follows that T (t) < ∞ almost surely for all t ≥ 0. Since T̂ (t) is nondecreasing and

continuous it follows that T (t) is nondecreasing and right-continuous. Also note the

following properties for all t ≥ 0:

T (t) ≥ t, T̂ (T (t)) = t, T (T̂ (t)) ≥ t,

T (t) ↑ ∞ as t ↑ ∞, T (t) < ∞ a.s., T̂ (s) ∈ [0, t] ⇔ s ∈ [0, T (t)]. (2.55)

43



Let Ĥ be as in Theorem 2.4.4. Define H(t)
.
= Ĥ(T (t)). We will use similar notation for

the various components of H; for example, Z(t)
.
= Ẑ(T (t)), etc. Let τ1

.
= T̂ (τ̂1). Then

by (2.52), for t ≥ 0

Z(t) = z + B(t) + S(t) + v1M(t) + v2N(t)−R(t). (2.56)

Before characterizing the various terms in (2.56) we note that for t ≥ 0, {T (s) <

t} = {T̂ (t) > s} ∈ F̂(t) since T̂ (t) is F̂(t)-measurable. Therefore, since F̂(t) is right-

continuous T (s) is an F̂(t)-stopping time for each s ≥ 0. Let F0(t)
.
= F̂(T (t)) and note

that H(t)
.
= Ĥ(T (t)) and m(A× [0, t])

.
= m̂(A× [0, T (t)]) are F0(t)-measurable. Define

F(t)
.
= σ(H(s),m(A× [0, s]) : A ∈ B([0, p]), 0 ≤ s ≤ t). Then F(t) ⊆ F0(t).

Theorem 2.4.6 The processes in (2.56) have the following properties.

1. B(t) =
∫ t∧τ1
0




rX(s)− C(s)

bY (s)


 ds.

2. S1 ≡ 0 and S2 is a continuous {F0(t)}-martingale with quadratic variation

〈S2〉(t) =

∫ t∧τ1

0

|σY (s)|2ds. (2.57)

There exists an enlargement of the probability space (Ω,F , IP ) and the filtration

{F0(t)} that supports a Wiener process W that is a martingale with respect to the

enlarged filtration and such that

S2(t) =

∫ t∧τ1

0

σY (s)dW (s). (2.58)

3. The process C is {F0(t)}-progressively measurable with C(t) ∈ [0, p] a.s. for all t ≥
0. In addition, M(0), N(0) ≥ 0 and the processes M and N are right-continuous,

nondecreasing and {F0(t)}-adapted. Hence defining Φ
.
= (Ω,F , IP , {F0(t)}, W ) we
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have U ≡ (C, M,N) ∈ Ap(Φ, z).

4. For all t ≥ 0, Z(t) ∈ (−∞, `] × (−∞, `] a.s., R is a vector of nondecreasing

right continuous processes and the representation (2.7) holds with (X`, Y`, Z`) there

replaced by (X, Y, Z).

Remark 2.4.7 Note that Theorem 2.4.6 does not prove that (Z, R) is a solution to the

Skorohod problem introduced in Definition 2.2.3, since in general (2.8) may fail to hold

for the process R. However, note that if (Z∗, R∗) is the solution of (2.7) and (2.8)

with U = (C, M, N) as in (3) of Theorem 2.4.6 then by classical comparison results for

(reflected) stochastic differential equations one can show that Z∗(t) ≥ Z(t) for all t, a.s.

and so τ ∗ ≥ τ , where τ is as in (2.2) and τ ∗ is defined by the right side of (2.2) with Z

replaced by Z∗. This in particular shows that

∫

[0,p]×[0,τ ]

e−βtf(α)dmt(dα)dt ≤
∫

[0,p]×[0,τ∗]
e−βtf(α)dmt(dα)dt. (2.59)

Proof of Theorem 2.4.6. Part 1 is an immediate consequence of Theorem 2.4.4 (2)

and Lemma 2.3.4 on noting that

∫
1[T (τ1−),T (τ1)]dT̂ (s) = 0 a.s. (2.60)

Clearly, S1(t)
.
= Ŝ1(T (t)) ≡ 0 a.s. From Theorem 2.4.4 we have that {Ŝ2(t), F̂(t)} is a

continuous martingale. Thus for all n ≥ 1, IE[Ŝ2(T (t) ∧ n)|F̂(T (s))] = Ŝ2(T (s) ∧ n) a.s.

Also as Ŝ2 has continuous paths and T (t) < ∞ a.s. we have as n → ∞ for all t ≥ 0,

Ŝ2(T (t) ∧ n) → Ŝ2(T (t)) = S2(t) a.s. Furthermore, from Theorem 2.4.4 (3), there exists

α ∈ (0,∞) such that IE|Ŝ2(T (t) ∧ n)|2 ≤ αt for all t ≥ 0, n ∈ IN . Hence, for each fixed

t, the family {Ŝ2(T (t) ∧ n), n ≥ 1} is uniformly integrable and therefore Ŝ2(T (t) ∧ n) →
Ŝ2(T (t)) in L1. Taking limits as n →∞, it follows that IE[Ŝ2(T (t))|F̂(T (s))] = Ŝ2(T (s));

that is IE[S2(t)|F0(s)] = S2(s). This proves that {S2(t),F0(t)} is a martingale. Although
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T in general may fail to be continuous, S2(·) .
= Ŝ2(T (·)) has continuous paths a.s. This is

a consequence of the fact that {Sh
2 (·)}h>0 is tight in D([0,∞)), and an argument similar

to one for {Ŝh
2 } in the proof of Theorem 2.4.4 shows that any weak limit point, S̃2, of

{Sh
2 } must have continuous paths a.s. Also, since Ŝh

2 (·) = Sh
2 (T̂ h(·)), we must have that

if (S̃2, Ŝ2, T̂ ) is a limit point of the tight sequence (Sh
2 , Ŝh

2 , T̂ h) then Ŝ2(t) = S̃2(T̂ (t)) and

thus from (2.55) S(t)
.
= Ŝ2(T (t)) = S̃2(t). Thus we have shown that S2 is a continuous

F0(t)-martingale. We next consider its quadratic variation. By the Burkholder-Davis-

Gundy inequalities (c.f. Theorem 3.3.28 in [29]) there exists a constant α independent of

n such that

IE[|Ŝ2
2(T (t) ∧ n)|2] ≤ IE[( sup

0≤s≤T (t)

|Ŝ2(s ∧ n)|)4] ≤ α(α2
1t

2).

Thus the families {Ŝ2
2(T (t) ∧ n), n ≥ 1} and {〈Ŝ2〉(T (t) ∧ n), n ≥ 1} are uniformly inte-

grable for each fixed t ≥ 0. Since Ŝ2
2 (respectively 〈Ŝ2〉) has continuous paths and T (t) <

∞ almost surely, Ŝ2(T (t) ∧ n) → Ŝ2
2(T (t)) (respectively 〈Ŝ2〉(T (t) ∧ n) → 〈Ŝ2〉(T (t)))

almost surely as n →∞. By the uniform integrability, this convergence also holds in the

L1 sense. Thus

IE[Ŝ2
2(T (t) ∧ n)− 〈Ŝ2〉(T (t) ∧ n)|F̂(T (s))] → IE[Ŝ2

2(T (t))− 〈Ŝ2〉(T (t))|F̂(T (s))]. (2.61)

The above relation and the fact that Ŝ2
2 − 〈Ŝ2〉 is an F̂t-martingale now show that

IE[S2
2(t) − 〈Ŝ〉(T (t))|F0(s)] = S2

2(s) − 〈Ŝ〉(T (s)). Thus the quadratic variation of S2

is given by 〈S2〉(t) = 〈Ŝ2〉(T (t)). The representation (2.57) now follows on using The-

orem 2.4.4, Lemma 2.3.4 and (2.60). By the martingale representation theorem (e.g.

Theorem 3.4.2 in [29]) it now follows that there exists a one-dimensional Brownian mo-

tion W , possibly defined on an enlarged probability space, that is a martingale with

respect to an enlargement of the filtration {F0(t)} and is such that (2.58) holds.
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The {F0(t)}-progressive measurability (respectively, adaptedness) of C (respectively,

M and N) follows from the {F̂(t)}-progressive measurability of Ĉ (respectively, adapt-

edness of M̂ and N̂). Also, since Ĉ takes values in [0, p], the same is true of C. Right

continuity of M and N is a consequence of the fact that M̂ and N̂ are continuous and

T is right continuous. This proves 3. Part 4 is once more an immediate consequence of

Theorem 2.4.4 (part (5)) and Lemma 2.3.4.

Until now the parameters `, p have been fixed and thus excluded from the notation.

It is convenient to include these parameters in the notation for the remainder of this

section.

Convergence of the Value Functions. Let z ∈ S` and let {zh, h > 0} be a sequence

with zh ∈ Sh
` such that zh → z as h → 0. Our main goal in this section is to show that

V h(zh) → V`,p(z) as h → 0. We begin with the following proposition.

Proposition 2.4.8 Let {zh}, z be as above. Then lim suph→0 V h(zh) ≤ V`,p(z).

Proof. Fix for each h > 0, Uh ≡ {Uh
n , n ≥ 1} ∈ Ah(zh). In order to prove the proposition

it suffices to show that

lim sup
h→0

Jh(zh, U
h) ≤ V`,p(z). (2.62)

Using Lemma 2.3.7 and boundedness of f , we can find for each ε ∈ (0,∞), a c ≡ c(ε) ∈
(0,∞) such that

Jh(zh, U
h) ≤ IE

∫

[0,τ̂h
1 ∧c]×[0,p]

e−βT̂ h(t)f(α)m̂h(dα, dt) +
ε

2
. (2.63)

Let (Ĥh, τ̂h
1 , m̂h) be as in Proposition 2.4.3 and (Ĥ, τ̂1, m̂) be one of its weak limit points.

Once more, as in the proof of Theorem 2.4.4 we can assume, by relabeling and appealing

to the Skorohod representation theorem, that (Ĥh, τ̂h
1 , m̂h) → (Ĥ, τ̂1, m̂) a.s. Taking
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limits as h → 0 in (2.63), we have

lim sup
h→0

Jh(zh, U
h) ≤ IE

∫

[0,p]×[0,τ̂1∧c]

e−βT̂ (t)f(α)m̂(dα, dt) +
ε

2
.

As ε > 0 and c = c(ε) are arbitrary,

lim sup
h→0

Jh(zh, U
h) ≤ IE

∫

[0,p]×[0,τ̂1]

e−βT̂ (t)f(α)m̂(dα, dt). (2.64)

Let, as before, τ̂
.
= inf{t ≥ 0 : Ẑ(t) /∈ So}. Recall that τ̂1 ≥ τ̂ . Then clearly

IE
[
1{τ̂=∞}

∫

[0,p]×[0,τ̂1]

e−βT̂ (t)f(α)m̂(dα, dt)
]

= IE
[
1{τ̂=∞}

∫

[0,p]×[0,τ̂ ]

e−βT̂ (t)f(α)m̂(dα, dt)
]
.

(2.65)

Now suppose that τ̂ < ∞. Let τ ∗ denote the first point of increase of T̂ in [τ̂ , τ̂1]. More

precisely, let τ ∗ .
= inf{t ∈ [τ̂ ,∞) : T̂ (t + δ) > T̂ (t) for all δ > 0} ∧ τ̂1. Note that

IE
[
1{τ̂<∞}

∫

(τ̂ ,τ̂1]

e−βT̂ (t)
(∫

[0,p]

f(α)dm̂t(dα)
)
dT̂ (t)

]

= IE
[
1{τ̂<∞}

∫

[τ∗,τ̂1]

e−βT̂ (t)
(∫

[0,p]

f(α)dm̂t(dα)
)
dT̂ (t)

]
. (2.66)

We now show that the above quantity is equal to 0. Consider the evolution of the

process Ẑ over the interval [τ̂ , τ ∗]. By definition Ẑ(τ̂) /∈ So. Since T̂ is constant over

this time interval, we see from Theorem 2.4.4 (2), (3) that B̂1 and Ŝ are both constant

over this interval and since neither v1 nor v2 can push the process into the interior of

S, we see that Ẑ(τ ∗) /∈ So. Define s∗ .
= T̂ (τ ∗). Since τ ∗ is a point of increase of T̂

we have T (s∗) = T (T̂ (τ ∗)) = τ ∗. Thus Z(s∗) = Ẑ(τ ∗) /∈ So, where Z is defined by

(2.56). Consider first the case Z(s∗) 6= 0; then from (2.57), 〈S2〉 is strictly increasing

at s∗. From this it follows that for all δ > 0 there exists sδ ∈ [s∗, s∗ + δ] such that

dist(Z(sδ), S) > 0, i.e. dist(Ẑ(T (sδ)),S) > 0. Now since Sh → S and Ẑh → Ẑ as h → 0

we have dist(Ẑh(T (sδ)),Sh) > 0 for all h small enough. Therefore, by definition of τ̂h
1
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we must have τ̂h
1 ≤ T (sδ) for all h small enough. This implies τ̂1 ≤ T (sδ). Now, taking

δ → 0 and using the right continuity of T at s∗ it follows that τ̂1 ≤ T (s∗) = τ ∗. Hence

the quantity in (2.66) is equal to 0.

Finally consider the case when Z(s∗) = 0 (and τ̂ < ∞). Let s∗∗ .
= inf{s > s∗|Z(s∗) 6=

0}. From the dynamics of Z (see (2.56)) it follows that for every δ > 0, there exists

sδ ∈ [s∗∗, s∗∗ + δ] such that dist(Z(sδ),S) > 0. Arguing as before, we have τ̂1 ≤ T (s∗∗).

Define mt(dα)
.
= m̂T (t)(dα) for t ≥ 0. Since C(t) = 0 for t ∈ [s∗, s∗∗] we get that

mt = δ0 for t in this interval. Thus since f(0) = 0, we have
∫
[0,p]

f(α)dmt(dα) = 0 for all

t ∈ [s∗, s∗∗]. Combining this with the fact that [τ ∗, τ̂1] ⊂ [T (s∗), T (s∗∗)] we now see that

the expression in (2.66) is 0. Thus

IE
[
1{τ̂<∞}

∫

[0,p]×[0,τ̂1]

e−βT̂ (t)f(α)m̂(dα, dt)
]

= IE
[
1{τ̂<∞}

∫

[0,p]×[0,τ̂ ]

e−βT̂ (t)f(α)m̂(dα, dt)
]
.

(2.67)

Combining (2.64), (2.65), and (2.67) we now get

lim sup
h→0

Jh(zh, U
h) ≤ IE

∫

[0,τ̂ ]

e−βT̂ (t)(

∫

[0,p]

f(α)dm̂t(dα))dT̂ (t).

We next consider the time inversion. Recall that τ
.
= inf{t : Z(t) /∈ So}. Note that

τ ≥ T̂ (τ̂). Using this inequality and Lemma 2.3.4 we have

IE

∫

[0,τ̂ ]

e−βT̂ (t)(

∫

[0,p]

f(α)dm̂t(dα))dT̂ (t) ≤ IE

∫

[0,τ ]

e−βt(

∫

[0,p]

f(α)dmt(dα))dt.

The inequality (2.62) now follows from the above inequality and Remark 2.4.7.

We now proceed to the proof of the the reverse inequality

lim inf
h→0

V h(zh) ≥ V`,p(z). (2.68)

We begin with the following lemma which allows to restrict attention to controls that
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have several simplifying features.

Lemma 2.4.9 Let Φ be a probability system and U ∈ Ap(Φ, z) be a control with corre-

sponding cost function J`(z, U). Then for any δ > 0 there exists Uδ ∈ Ap(Φ, z) such that

|J`(z, U)− J`(z, Uδ)| < δ and Uδ satisfies the following.

1. There exists T ∈ (0,∞) such that Mδ(t) = Mδ(T ), Nδ(t) = Nδ(T ), and Cδ(t) = 0

for all t ≥ T .

2. There exists L ∈ (0,∞) such that

sup
0≤t<∞

sup
ω

(Mδ(t ∧ τ, ω) + Nδ(t ∧ τ, ω)) ≤ L.

3. There exist η, θ ∈ (0,∞) and K ∈ IN such that C(t),M(t), N(t) take values in

the finite set {kη : k = 0, 1, 2, . . . K}. Furthermore, C, M , and N are piecewise

constant with possible time points of change being {0, θ, 2θ, 3θ, . . .}.

4. There exists a γ ∈ (0,∞) such that θ is an integer multiple of γ and the chosen

control U = (C,M,N) satisfies the following equality for m ≥ 1:

IP [(C(mθ), δM(mθ), δN(mθ)) = kη|U(s), s < mθ; W (s), s ≤ mθ]

= IP [(C(mθ), δM(mθ), δN(mθ)) = kη|U(nθ), n < m; W (lγ), lγ ≤ mθ],

(2.69)

where k = (k1, k2, k3) and k1, k2, k3 are integers, at most one of which is nonzero.

5. Denoting for m ≥ 1, Ψ(m)
.
= {C(nθ), δM(nθ), δN(nθ), n < m}, k

.
= (k1, k2, k3),

and W(m)
.
= {W (lγ), lγ ≤ mθ} rewrite the above probability as

IP [C(mθ) = k1η, δM(mθ) = k2η, δN(mθ) = k3η|Ψ(m),W(m)]

.
= qm,k(Ψ(m), z,W(m)). (2.70)
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Denote IP [U(0) = (k1η, k2η, k3η)] by q0,k(z). For each m ≥ 0, the function qm,k can

be chosen so that the function (z, w) → qm,k(ψ, z, w) is continuous for every ψ.

Proof. Let ε > 0 be arbitrary and let T ∈ (0,∞) be such that f∗(p)e−βT /β < ε. Consider

Ũ = (C̃, M̃ , Ñ) given by: C̃(t) = C(t)1t<T ; M̃(t) = M(t ∧ T ) and Ñ(t) = N(t ∧ T ),

t ≥ 0. Clearly Ũ ∈ Ap(z) and it is easy to check that |J`(z, U) − J`(z, Ũ)| < ε. This

proves 1. Henceforth we will assume, without loss of generality, that 1 holds for U in

the statement of the lemma. Using (2.7) and the bounds on the state and control space

it is easy to show sup0≤t≤T [M(t ∧ τ, ω) + N(t ∧ τ, ω)] ≤ c1 + c2 sup0≤t≤T |W (t)|, where

c1 and c2 are nonnegative constants that may depend on T . Let L ∈ (0,∞) be large

enough so that c2IE sup0≤t≤T |W (t)|/(L− c1) < ε. Define Ũ by C̃ ≡ C, M̃(t)
.
= M(t)∧L,

Ñ(t)
.
= N(t)∧L. Let Z̃ be the corresponding controlled process and τ̃ the corresponding

hitting time. Let T be as in part 1 and define A
.
= {sup0≤t≤T [M(t∧ τ) + N(t∧ τ)] < L}.

Then

J`(z, Ũ) = IE[ 1A

∫

[0,τ̃ ]

e−βtf(C̃(t))dt] + IE[ 1Ac

∫

[0,τ̃ ]

e−βtf(C̃(t))dt]. (2.71)

Using the bound on f , choice of L and Markov’s inequality, the second term on the right

side of the above inequality is bounded by ε. Also, since on the set A, M(t) < L and

N(t) < L for all t ≤ τ ∧ T , we have that the evolution of Z̃ is the same as that of Z.

Therefore τ̃ in the first expression on the right side of (2.71) can be replaced by τ . This

shows that |J`(z, Ũ)− J`(z, U)| ≤ 2ε and hence 2 follows.

We now consider 3. Let U ≡ (C,M,N) be an admissible control satisfying properties

1 and 2 above and let Z be the solution to (2.7) under (C, M,N) defined on some

probability system. Following Theorem 1.2.1 of [6] (see comments below (2.46)) we can

assume without loss of generality that C takes values in a finite set, is RCLL and piecewise

constant with finitely many points of change over [0, T ]. We also assume without loss of

generality (by modifying controls if needed) that M(t) = M(t∧ τ), N(t) = N(t∧ τ) and
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C(t) = C(t)1t<τ + p1t≥τ . Fix η, θ ∈ (0,∞) and define the piecewise constant processes

Cη,θ, Mη,θ, and Nη,θ as follows. For m = 0, define Mη,θ(mθ) = Mη,θ(0) = kη if M(0) ∈
[kη, kη + η). For m ≥ 1, set δMη,θ(mθ) = kη if M(mθ)−M(mθ − θ) ∈ [kη, kη + η). By

property 2, we only need to consider the finite set {kη : k = 0, 1, 2, . . . , K} where K is

some positive integer. Then let Mη,θ(t) = Mη,θ(mθ) for t ∈ [mθ, mθ + θ). Define Nη,θ

analogously based on N . Define Cη,θ(mθ) = kη if C(mθ) ∈ [kη, kη + η) and Cη,θ(t) =

Cη,θ(mθ) for t ∈ [mθ,mθ + θ). The constructed process Uη,θ ≡ (Cη,θ,Mη,θ, Nη,θ) is an

admissible control. Let Zη,θ denote the solution to (2.7) under this control, defined on

some probability system, and let τη,θ denote the first time this process exits So
` . Choose

a sequence (ηk, θk) such that ηk, θk → 0 as k → ∞. Denote Zηk,θk
by Zk. Similar

abbreviations are used for Uηk,θk
, τηk,θk

. One can easily check that (Zk, Uk) → (Z, U) in

D([0, T ], IR2 × [0, p] × [0, L] × [0, L]) (in probability) as k → ∞. If τ = ∞, the uniform

convergence Zk → Z implies that there exists K0 such that for all k > K0 we have

Zk(t) ∈ So for all t ≥ 0, and thus τk = ∞ for all k > K0. Therefore τk → τ a.s. as

k →∞ on the set {τ = ∞}. Next note that, almost surely on the set {τ < ∞}, for every

δ > 0 there exists t ∈ [τ, τ + δ) and ε > 0 such that dist(Z(t),S) > ε. This is because,

on this set, by our choice of U , Z(τ + t), t ≥ 0 is described via (2.7) with M ≡ N ≡ 0

and initial condition Z(τ). In the case Z(τ) = 0 the property is satisfied trivially since

C(t) = p for all t ≥ τ . Otherwise, the property follows from an argument analogous to

proof of Theorem 9.4.3 of [32](see pages 260-261). Next, recalling that Zk → Z, Z(t)

is continuous for all t ≥ τ and the observation that Z(τ−) ∈ (So
`)

c ⇒ Z(τ) ∈ (So
`)

c, we

conclude τk ∧ T → τ ∧ T in probability. The convergence of J(z, Uk) to J(z, U) now

follows. This proves 3.

The proofs of 4 and 5 are quite standard and we only provide a sketch; the reader

is referred to the proof of Theorem 10.3.1 of [32] (pages 285-287) for details. Assume

that U satisfies properties 1 through 3 and let γ > 0. Part 4 is essentially a consequence

of the martingale convergence theorem on noting that the σ-fields Gγ
.
= σ{U(nθ), n <

52



m; W (lγ), lγ ≤, θ} increase to the σ-field G .
= σ{U(nθ), n < m; W (s), s ≤, θ} as γ ↓

0. The main idea is to define controls Uγ and controlled processes Zγ recursively over

intervals [mθ, (m + 1)θ) by using the right side of (2.69) in defining the law of Uγ over

[mθ, (m + 1)θ). Proving the weak convergence of (Zγ, Cγ) to (Z,C) is straightforward.

The convergence of hitting times is argued as in the proof of part 3. Finally, part 5 is

proved by convolving qm,k, defined in (2.70), in the (z, w) variables by a parametrized

family of mollifiers and arguing weak convergence of the resulting controlled pair to (Z, C)

as the mollifying parameter approaches a suitable limit. Convergence of stopping times

is argued, once more, as in 3.

Construction of asymptotically near optimal admissible controls for MDP.

Fix a probability system Φ, z ∈ S`, and a sequence {zh} such that zh ∈ Sh and zh → z

as h → 0. Let ε > 0 be arbitrary. Let U ∈ Ap(Φ, z) be such that U satisfies properties

1 through 5 of Lemma 2.4.9 and V`,p(z) − ε ≤ J`(z, U). For each h > 0, we construct

from U an admissible control sequence {Uh
n , n ≥ 0} for the MDP in Definition 2.3.1 with

initial condition zh such that the cost for Uh asymptotically agrees with the cost of U .

We outline below the main steps in the construction of such a control sequence. Let K .
=

{(k1, k2, k3) : ki = 0, 1, . . . , K; i = 1, 2, 3 such that at most one of k1, k2, k3 is positive}.
Step 1. We begin by taking a random draw, denoted by κ = (κ1, κ2, κ3) from the

probability distribution {q0,k(zh), k ∈ K}. Set Ũh
0 = κη, Zh

0 = zh, and Ψh(1)
.
= Ũh

0 . Also

set ñ0 = 0. Note that at most one of κ2 and κ3 will be nonzero. If both κ2 and κ3 are 0,

set n1 = 0, skip step 2 below and go to step 3. Otherwise proceed to Step 2.

Step 2 (A). Recall the kernel ph defined in (2.21). If κ2 > 0 let Uh
0 = (1, 0) and take

a random draw, denoted by Zh
1 from ph(Z

h
0 , Uh

0 , dz̃). We express this as “the chain takes a

purchase control step”. If Zh
1 ∈ ∂h

R, we set Uh
1 = (3, 0) and draw Zh

2 from ph(Z
h
1 , Uh

1 , dz̃),

i.e. the chain takes a reflection step. Otherwise set Uh
1 = (1, 0) and draw Zh

2 from

ph(Z
h
1 , Uh

1 , dz̃). Define (Uh
n , Zh

n), n = 1, 2, . . . recursively by either taking a purchase
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control step or, if needed, a reflection step, until a total of [κ2η/h] purchase control steps

have been taken. Denote by n1 the index of the state after the last purchase control has

been exercised.

Step 2 (B). If κ3 > 0 let Uh
0 = (2, 0) (that is, the chain takes a sales control step)

and proceed as in Step 2(A) above, alternating sales control steps and reflection steps

(when needed) until [κ3η/h] sales control steps have been taken. Again, let n1 denote

the index of the state after the last sales control has been exercised.

Step 3. If Zh
n1
∈ ∂h

R set Uh
n1

= (3, 0) and the chain takes a reflection step. Otherwise

set Uh
n1

= (0, κ1η) and draw Zh
n1+1 from ph(Z

h
n1

, Uh
n1

, dz̃), i.e. the chain takes a diffusion

step with c = κ1η. Let thn be as defined below (2.23). Define (Uh
n , Zh

n+1, n = n1, n1 +

1, n1 + 2, . . . , ñ1 − 1 recursively, where ñ1
.
= inf{n : thn ≥ θ}, as follows. If Zh

n ∈ ∂h
R, set

Uh
n = (3, 0); otherwise set it to be (0, κ1η). Draw Zh

n+1 from ph(Z
h
n , Uh

n , dz̃).

Step 4. Next we define the “pre-Wiener process” that is needed to obtain the control

at the next step. Let {νn, n ≥ 1} be an i.i.d. sequence of N(0, 1) random variables,

independent of (Uh
n , Zh

n+1)
ñ1−1
n=0 . Define Sh

n for n ≤ ñ1 − 1 as in (2.26); here we only

consider the second component Sh
n,2. Set Sh

0 ≡ 0 and for ñ0 < n ≤ ñ1 − 1,

Sh
n

.
=

Sh
n+1,2 − Sh

n,2

σY h
n

1{|Y h
n |6=0} + νn

√
∆h

n 1{|Y h
n |=0}.

Next define W h
ñ0

= 0 and W h
n

.
= W h

ñ0
+

∑n−1
i=0 Sh

i . Now define for 0 ≤ t ≤ θ,

W h(t)
.
= W h

nh(t) −W h
ñ0

. (2.72)

Finally define Wh(1)
.
= {W h(lγ), l ∈ IN0, lγ ≤ θ}.

Step 5. Suppose we have, for j = 1, · · · ,m, defined ñj
.
= inf{n : thn ≥ jθ}; (Zh

n+1, U
h
n ),

n = 0, 1, · · · , ñj−1; Ψh(j) and Wh(j). Consider now the case j = m+1. Take a random

draw, denoted once more by κ = (κ1, κ2, κ3), from {qm,k(Ψ
h(m), zh,Wh(m)), k ∈ K}. Set
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Ũh
m = κη and Ψh(m + 1) = (Ũh

0 , · · · Ũh
m). Follow step 2 with Ũh

0 replaced by Ũh
m and the

starting index of Uh replaced with ñm. Denote by nm+1 the index of the state obtained

after the last singular control step in step 2. Follow step 3 with n1 replaced by nm+1. Let

ñm+1 = inf{n : thn ≥ (m + 1)θ}. This defines (Zh
n+1, U

h
n ), i = 0, 1, . . . , ñm+1 − 1. Define

W h(t)−W h(mθ), for t ∈ [mθ, (m+1)θ), by the right side of (2.72) as in Step 4 with ñ0, ñ1

replaced by ñm, ñm+1 respectively. Now setWh(m+1)
.
= {W h(lγ), l ∈ IN, lγ ≤ (m+1)θ}.

Noting that ñm is strictly increasing in m, we obtain the the controlled chain {(Zh
n , Uh

n ),

n = 0, 1, 2, . . .} via the recursion:

({(Zh
n+1, U

h
n )}ñm−1

n=0 , Ψh(m),Wh(m)) → ({(Zh
n+1, U

h
n )}ñm+1−1

n=0 , Ψh(m + 1),Wh(m + 1)).

The main step in the proof of (2.68) is showing that if interpolated processes (Zh, Uh)

using the above control sequence are defined as below (2.25) and W h is defined by (2.72)

then as h → 0,

(Zh, Uh,W h) converges weakly in D([0,∞) : IR5) to (Z, U,W ), (2.73)

where W is a standard Brownian motion and Z is defined by (2.7) with the initial

condition Z(0−) = z. This convergence is established by proving convergence over the

period [jθ, (j+1)θ) for each j in a recursive manner. Note that given the initial condition

Z(jθ−) = z and the control value U(jθ) = kη, the dynamics of Z for t ∈ [jθ, (j + 1)θ)

are particularly simple and are given as

X(t) = x + (1− µ)κ3η − (1 + λ)κ2η +

∫ t

jθ

(rX(s)− κ1η)ds,

Y (t) = y + κ2η − κ3η +

∫ t

jθ

bY (s)ds +

∫ t

jθ

σY (s)dW (s). (2.74)

The following lemma provides the convergence of (Zh, Uh,W h) over one fixed period
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[jθ, (j + 1)θ) given the initial data at jθ. The proof follows via straightforward weak

convergence arguments and thus is omitted.

Lemma 2.4.10 Fix z ∈ S` and let k = (k1, k2, k3) ∈ K. Let (Z(t),W (t)) given on some

probability system Φ be defined for t ∈ [0, θ] by (2.7) with Z(0−) = z and (C(t),M(t), N(t))

= kη for t ∈ [0, θ]. Consider a sequence {zh} such that zh ∈ Sh and zh → z as h → 0.

Define ñ1 and the sequence {Uh
n , Zh

n}ñ1
n=0 via steps 2 and 3 and {Sh

n,W h
n }ñ1

n=0 by step 4. Let

{δh} be a sequence of nonnegative reals such that δh → 0 as h → 0. Define, for t ∈ [0, θ],

the interpolated process (Zh,W h, Uh, Eh) as before (see (2.72) and below (2.26)) with the

change that ∆h(Zh
0 , Uh

0 ) is replaced by δh +∆h(Zh
0 , Uh

0 ). Denote the laws of (Zh,W h, Uh)

and (Z, W,U) on D([0, θ] : IR5) by Πk,δh

h and Πk, respectively. Then Πk,δh

h → Πk as h → 0.

In the following proposition we show that the cost, Jh(zh, U
h), corresponding to the above

constructed control sequence, converges to J`(z, U) as h → 0. The desired inequality in

(2.68) then follows since V h(zh) ≥ Jh(zh, U
h), J`(z, U) ≥ V`,p(z)−ε and ε > 0 is arbitrary.

Proposition 2.4.11 Let ε > 0 be arbitrary and fix z ∈ S`. Let Φ be a probability system

and U ≡ U(ε) ∈ Ap(Φ, z) be such that U satisfies properties 1 through 5 of Lemma 2.4.9

and V`,p(z) − ε ≤ J`(z, U). Let for each h > 0, {Uh
n} be an admissible control sequence

as constructed via steps 1 through 5 above. Then Jh(zh, U
h) → J`(z, U) as h → 0 and

consequently (2.68) holds.

Proof. For t ≥ 0, let nh(t), Zh(t), Mh(t), Nh(t), Ch(t) be as defined below (2.25). Define

Uh ≡ (Mh, Nh, Ch) and let W h be as in (2.72). We begin by establishing (2.73). Define

for j ∈ IN0 and t ∈ [0, θ)

Uh
j (t)

.
= Uh(t + jθ), Zh

j (t)
.
= Zh(t + jθ), W h

j (t)
.
= W h(t + jθ)−W h(jθ)

and set (Uh
j (θ), Zh

j (θ),W h
j (θ)) = (Uh

j (θ−), Zh
j (θ−),W h

j (θ−)). Define processes Uj, Zj,

Wj, j ∈ IN0 in a similar manner. Recall the sequence {Uh
j } constructed above Lemma
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2.4.10 and let ζh
j

.
= (Ũh

j , Uh
j ,W h

j , Zh
j ), ζj

.
= (Ũj, Uj,Wj, Zj), where Ũj

.
= (C(jθ), δM(jθ),

δN(jθ)), j ∈ IN0. Due to the piecewise constant feature of the control U , in order to

prove (2.73), it suffices to show that:

For all n ∈ IN0, Υn
h

.
= {ζh

j }n
j=0 converges weakly to Υ

.
= {ζj}n

j=0 as h → 0. (2.75)

We will prove (2.75) via induction (on n). The case n = 0 is immediate from Lemma

2.4.10 and continuity of the kernel q0,k on noting that for k ∈ K and E ∈ B(D([0, θ], IR5)

IP (Ũh
0 = kη, (Uh

0 ,W h
0 , Zh

0 ) ∈ E) = q0,k(zh)Π
k,0
h (E),

IP (Ũ0 = kη, (U0,W0, Z0) ∈ E) = q0,k(z)Πk(E).

Suppose now that (2.75) holds for n = 0, · · · ,m and consider the case n = m + 1.

Denote the law of Υh
n, Υn by $h

n and $ respectively. By induction hypothesis $h
m → $m

as h → 0. Furthermore, $h
m+1 can be expanded in terms of $h

m as follows.

d$h
m+1(υm+1) =

∑

k∈K
qm+1,k(zh, ũ

∗,m, w∗,m)Π
k,δh(υm)
h (ςm+1)d$h

m(υm), (2.76)

where υm = {ςj}m
j=0; ςj = (ũj, uj, wj, zj); ũj = kη, k ∈ K; (uj, wj, zj) ∈ D([0, θ] : IR5);

ũ∗,m = {ũj}m
j=0; w∗,m = {wj(lγ), l ∈ IN, lγ ≤ θ}m

j=0 and δh is a measurable map from the

state space of Υm to [0, 1] satisfying 0 ≤ δh(υm) ≤ ∆̃h
∗ .

From the continuity properties of the kernel {qm+1,k} and the weak convergence of

$m to $, we have for all continuous and bounded functions F1, F2 defined on suitable

spaces, as h → 0,

∫
F1(υm)

∑

k∈K
qm+1,k(z, ũ

∗,m, w∗,m)(

∫
F2(ζm+1)dΠk(ζm+1))d$h

m(υm)

→
∫

F1(υm)
∑

k∈K
qm+1,k(z, ũ

∗,m, w∗,m)(

∫
F2(ζm+1)dΠk(ζm+1))d$m(υm). (2.77)
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Next, from Lemma 2.4.10, for all sequences {δh} converging to 0 and compact sets E (of

Euclidean space of appropriate dimension), as h → 0,

sup
k∈K,ũ∗,m∈ηKm+1,w∗,m∈E

∣∣∣∣
∫

F2(ζm+1)qm+1,k(zh, ũ
∗,m, w∗,m)dΠk,δh

h (ζm+1)

−
∫

F2(ζm+1)qm+1,k(zh, ũ
∗,m, w∗,m)dΠk(ζm+1)

∣∣∣∣ → 0. (2.78)

The weak convergence of $h
m+1 to $m+1 now follows on combining (2.76), (2.77) and

(2.78). This proves (2.73).

We now address convergence of the cost functions. First let T be as in Lemma 2.4.9.

Recall ηh = inf{n ≥ 0 : Zh
n ∈ ∂h} and τh = th

ηh . Note that τh = inf{t ≥ 0 : Zh(t) ∈ ∂h}
due to the piecewise constant nature of Zh(t).

Let τ = inf{t ≥ 0 : Z(t) /∈ So}. It can be shown in a manner similar to that

used in the proof of Lemma 2.4.1 that τh → τ as h → 0 on the set {τ = ∞}. Also,

on the set {τ < ∞} for every δ > 0 there exists t ∈ [τ, τ + δ) and ε > 0 such that

dist(Z(t), S) > ε. Furthermore, |Zh(t) − Z(t)| uniformly on [0, T ] and ∂h → ∂S as

h → 0. Together these three facts imply τh ∧ T → τ ∧ T as h → 0. Therefore, since

(zh, Z
h, Uh, W h, τh) → (z, Z, U,W, τ), by the dominated convergence theorem

Jh(zh, U
h) = IE

∫

[0,τh∧T )

e−βtf(Ch(t))dt → IE

∫

[0,τ∧T )

e−βtf(C(t))dt = J`(z, U).

Combining Corollary 2.2.5 and Propositions 2.4.8, 2.4.11 we have the following theorem.

Theorem 2.4.12 Let z ∈ S and let {zh, h > 0} be a sequence with zh ∈ Sh
` such that

zh → z as h → 0. Then limp→∞ lim`→∞ limh→0 V h(zh) = limp→∞ lim`→∞ V`,p(z) = V (z).
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2.5 Computational Methods for the MDP

The convergence results in the previous section ensure that for small values of h, the

MDP defined in Section 3 provides a good approximation to the diffusion control problem

defined in Section 2. In this section we outline the numerical methods for solving the

MDP. Specifically, we provide the algorithm through which we compute the value function

(2.25) and the associated optimal control for each initial state zh ∈ Sh
` . In practice, we

fix a value of h and use the associated MDP to provide approximations to the diffusion

control problem. Thus, for the remainder of the section, we will take h as a fixed value

and suppress it from the notation.

Specifying the controlled Markov chain. In Section 3, we specified a choice of

transition probabilities and interpolation intervals which satisfy the local consistency

criteria; see (2.15) - (2.17) and (2.20). Many variations of this choice are possible; when

specifying the particular controlled Markov chain, consideration must be given to the

numerical implementation. For example, note that the neither the denominators of the

probabilities nor the interpolation intervals in (2.15) depend on the value of c. This was

accomplished by allowing the self transition (x, y) to (x, y). Also, we have separated the

pure diffusion effects from the effects of the consumption control. That is, as consumption

always decreases wealth, we associate it with the transition from (x, y) to (x−h, y) only.

Recall that ∆(z, u) = 0 for all z if u = (3, c); that is, the interpolation interval is

0 if reflection occurs. Hence, using (2.24), a reflection step incurs no cost and thus

V (` + h, y) = V (`, y), V (x, ` + h) = V (x, `). It is a consequence of Definition 2.3.1 that

IP [In = 3|Zn ∈ ∂R \ ∂h] = 1 for all n; that is, reflection is the only admissible action

for states in the reflecting boundary. Therefore, by adjusting the transition probabilities

associated with the diffusion and singular controls it is possible to eliminate states in

the reflecting boundary without affecting the cost function. This modification helps in

speeding up the convergence of the numerical scheme.
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In what follows, we will assume that the reflecting boundary states have been elimi-

nated and the appropriate adjustments to the transition probabilities made. Thus, the

state space of the controlled Markov chain used in the numerical schemes is given by

SMDP

.
= Sh+

` \ ∂R and the control space is UMDP

.
= {0, 1, 2} × [0, p].

Dynamic programming equation. Let U ≡ {Un, n = 0, 1, 2, . . .} be an admissible

control sequence (see Definition 2.3.1) for the MDP with state space SMDP, control space

UMDP, and initial state z. For the numerical methods it is convenient to work with the

cost function

J(z, U) = IE

η−1∑
n=0

e−βtnf(Cn)∆̃(Zn, Cn) 1{In=0}, (2.79)

which is asymptotically equivalent to (2.24). Recall that the value function is given as

V (z) = supU∈A(z) J(z, U).

We now present the dynamic programming equation that characterizes the value

function. We begin by introducing the class of feedback controls. A feedback control is

a measurable function u : SMDP → UMDP. We write u = (i, c) where i and c are the two

coordinates of the function u. Using such a function one can construct an admissible

control pair (Zn, Un) recursively by setting Z0 = z0, Un = u(Zn), n ≥ 0, and

IP [Zn+1 ∈ ·|Z0, . . . , Zn, U0, . . . , Un] = p(Zn, Un, ·).

With an abuse of terminology we will refer to this sequence {Un} as a feedback control

as well. Note that Un ≡ (In, Cn) = (i(Zn), c(Zn)).

If U = {Un, n = 0, 1, 2, . . .} is a feedback control then one can easily check that the

pair (Zn, Un) is a Markov chain from which it follows that for all z ∈ SMDP,

J(z, U) =
∑

z̃∈SMDP

r(z,u(z), z̃)J(z̃, U) + f(c(z))∆h(z,u(z)) (2.80)

where r(z,u(z), z̃) = e−β∆(z,u(z))p(z,u(z), z̃). Observing that J(z, U) = 0 for all z ∈ ∂h,
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the summation above can be taken over z̃ ∈ S∗ .
= SMDP \ ∂h.

We can write the above equality in a matrix form as follows. Let |S∗| = s and fix

an ordering of all the states in S∗, i.e. S∗ = {z1, . . . , zs}. Let F (u) be an s × 1 vector

whose ith entry is f(c(zi))∆(zi,u(zi)), i = 1, . . . , s. Let R(u) be the s × s matrix with

the (i, j)th entry as r(zi,u(zi), zj). Finally let J(u) be the s× 1 vector with the ith entry

being J(zi, U). Then using these matrices, (2.80) can be written as:

J(u) = R(u)J(u) + F (u). (2.81)

Next for u ∈ UMDP let R(u) be the s × s matrix with (i, j)th entry r(zi, u, zj). From

standard arguments (cf. Section 5.8 in [32]) it follows that the value function V satisfies

the following dynamic programming equation:

V = sup
u∈UMDP

R(u)V + F (u), (2.82)

where in the above equation V is interpreted as an s × 1 vector whose the ith entry is

V (zi), and the supremum on the righthand side above is taken row by row.

The following contraction property is central in the characterization of the value

function via the dynamic programming equation in (2.82). The proof of the following

lemma relies on the fact that the cost is of the discounted form with a strictly positive

discount factor at all diffusion control steps and although the discount is zero for singular

control steps, such steps tend to push the process towards the boundary of the domain

and thus cannot occur “too often”.

Lemma 2.5.1 For all feedback controls u, Rn(u) → 0 as n →∞.

Proof. Let u be a feedback control and denote Rn(u) by simply Rn with entries rn
ij,

i, j = 1, . . . , s. It suffices to show
∑s

j=1 rn
ij → 0 as n →∞, for each i = 1, . . . , s.

Let (Zn, Un) be the controlled Markov chain associated with feedback control u and
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transition kernel as defined in Section 3 with the modifications discussed in this section,

and let ∆k ≡ ∆(Zk, Uk) be the associated interpolation intervals. Let η
.
= inf{n : Zn ∈

∂h}. A simple calculation yields for all i = 1, . . . , s:

s∑
j=1

rn
ij = IEi[e

−β
Pn−1

k=0 ∆k

s∑
j=1

1{Zn=zj}],

where IEi denotes the expectation given that Z0 = zi.

Since the states in ∂h are not included in S∗ and p(z,u(z), z) = 1 for z ∈ ∂h, we have

1{Zn=zj} = 0 for j = 1, . . . , s when n ≥ η. Thus we have

s∑
j=1

rn
ij = IEi[ 1{n<η}

s∑
j=1

e−β
Pn−1

k=0 ∆k 1{Zn=zj}]. (2.83)

Fix a ∈ Z+; conditions on a will be specified later. Define:

d̃
.
= #{θ ∈ {1, 2, . . . , [n/a]} : Um = (0, ·) for some m ∈ [(θ − 1)a, θa)}.

Set d̃′ = [n/a] − d̃. The integer a is used to group the steps of the chain from 1 to n

together into intervals. The quantity d̃, (d̃′) counts the number of such intervals with at

least one diffusion step (respectively, no diffusion steps). By (2.14) there is a δ > 0 such

that ∆n ≥ δ for all diffusion steps (i.e. all n such that Un = (0, ·)). Also, recall that

∆n = 0 if step n is not a diffusion step. Combining these observations we have:

IEi[ 1{n<η}e
−β
Pn−1

k=0 ∆k

s∑
j=1

1{Zn=zj}] ≤ e−β δ
4
[n
a
] + IEi[ 1{n<η} 1{d̃′> 3

4
[n
a
]}]. (2.84)

We will utilize the behavior of the singular controls to bound the second term on the

righthand side of the line above. Let E1, E2, . . . , Ed̃′ denote the intervals containing no

diffusion steps, each of size a. Let Kd denote the number of purchase control steps in

Ed; then a−Kd is the number of sales control steps in Ed. Due to the finiteness of the
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state space, the maximum number of successive transitions to the left is bounded; in

particular, it is bounded by B
.
= 2(`/h + 1). Similarly, B is a bound on the maximum

number of downward transitions in a row. From (2.17) we see that each sales control

always pushes the chain downward. Thus, the application of too many sales controls in

a row will cause the chain to hit the boundary. However, by (2.16) a purchase control

potentially pushes the chain upward. Similarly, a purchase control always pushes the

chain to the left, while a sales control has the potential to push the chain to the right.

Thus, in order to avoid hitting the boundary, the number of sales controls must be

properly balanced by the number of purchase controls. More precisely, if n < η we must

have |Kd− (a−Kd)| < B; that is, (a−B)/2 < Kd < (a+ b)/2, d = 1, . . . , d̃′. For m ∈ Ed

define L̃m
.
= 1{Zm+1−Zm=(−h,0)′,Um=(1,0)}. The random variable L̃m indicates if the chain

moves strictly to the left at step m given that a purchase control is applied. Since on Ed

there are no diffusion steps and movement to the left is only possible at purchase control

steps, the number of increments δZk equal to (−h, 0)′ on Ed is given by
∑

m∈Ed
L̃m

.
= Ld.

Let ε be chosen to satisfy 0 < ε < p/2. Recall that at a purchase control step the

chain moves to the left with probability q
.
= λ/(1 + λ). Thus by Cramer’s theorem (see

Theorem 2.1.24 [13]) there exists a κ ≡ κ(ε) such that

IP [Ld < Kd(q − ε)] ≤ IP [|Ld

Kd

− q| > ε] ≤ e−Kdκ ≤ e−κ(a−B)/2, (2.85)

where the last inequality follows from the bound on Kd. We claim that for each d =

1, · · · , d̃′, {η < n} ∩ {Ld > qKd/2} = ∅. To see the claim suppose that Ld > qKd/2.

Then the number of upward steps (δZk = (·, h)′) in Ed, given by Kd − Ld, is at most

(1 − q/2)Kd. The number of downward steps (δZk = (·,−h)′) in Ed equals the number

of sales control steps, a−Kd. Thus using the bounds on Kd we have

#{down steps in Ed}−#{up steps in Ed} ≥ a−Kd−(1−q/2)Kd ≥ aq/4−(1+q/4)B,
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which is greater than B for a > B(4 + q)/q. Henceforth fix such an a. On the other

hand, on the set {η < n} we must have |#{down steps in Ed}−#{up steps in Ed}| < B;

otherwise, the chain would hit the boundary. This leads to a contradiction and thus the

claim holds. Combining this with (2.85) we have that

IEi[ 1{n<η} 1{d̃′> 3
4
[n
a
]}] = IEi[ 1{n<η,d̃′> 3

4
[n
a
]}

d̃′∏

d=1

1{Ld≤qKd/2}]

≤ IEi[

3
4
[n
a
]∏

d=1

1{Ld≤qKd/2}]

≤ e−κ a−B
2

3
4
[n
a
].

Finally, by (2.83), (2.84), and the above, we have
∑s

j=1 rn
ij ≤ e−β δ

4
[n
a
] + e−κ a−B

2
3
4
[n
a
]. The

result now follows on noting that the term on the right approaches 0 as n →∞.

An immediate consequence of the lemma (cf. Section 2.3 of [32]) is the following.

Theorem 2.5.2 For any feedback control u, J(u) is the unique solution to the equation

v = R(u)v + F (u). Furthermore, the value function {V (z), z ∈ S∗} defined below (2.79)

is the unique solution of (2.82). Denoting the arg max for the ith row maximization on the

right side of (2.82) by u(zi) and the control sequence corresponding to the feedback control

u by U = {Un, n = 0, 1, 2, . . .}, we have that U is an optimal control, i.e. J(z, U) = V (z)

for all z ∈ S∗.

From the above theorem it follows that in order to compute the value function and the

optimal control it suffices to solve the equation (2.82).

Numerical Methods. We will use classical iterative methods to find the optimal control

by solving the dynamic programming equation (2.82). A sketch of the algorithm is

provided here. Details can be found in Chapter 6 of [32].

The following theorem provides the basis for the numerical approximation of the

optimal control. We refer the reader to Theorem 6.2.1 in [32] for a proof.
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Theorem 2.5.3 Let u0 be a feedback control. Define a sequence of feedback controls

{un, n ≥ 1} and costs {J(un), n ≥ 1} recursively as follows. Given un, define

J(un) = R(un)J(un) + F (un), (2.86)

un+1
.
= arg maxu∈UMDP

R(u)J(un) + F (u), (2.87)

where the arg max on the righthand side is computed row by row. Then J(un) → V as

n →∞.

Given some control, (2.87) provides a way of “updating” the control in the search for

the optimal control. However, this requires solving (2.86) to obtain the cost associated

with the given control. Finding an exact solution to this equation can be numerically

intensive since it involves the inversion of an s × s matrix. Thus, we use instead an

approximation to the cost function J(un) in (2.87). The following theorem provides a

method for obtaining such an approximation. We refer the reader to Theorem 6.2.2 in

[32] for the proof.

Theorem 2.5.4 Let u be an admissible feedback control. Then for any initial s×1 vector

J̃0 the sequence defined recursively by:

J̃n+1 = R(u)J̃n + F (u), (2.88)

converges to J(u).

The numerical method for finding the optimal control is obtained by combining The-

orems 2.5.3 and 2.5.4 as follows.

Policy iteration: Having determined an approximation to J(un), denoted as J̃(un),

one obtains un+1 by solving the minimization problem in (2.87) by replacing J(un) there

by J̃(un).
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Value iteration: Given un, iterate (2.88) a large number of times (say m) with R(u)

there replaced by R(un) and initial value J̃0 replaced by J̃(un−1). Set J̃(un)
.
= J̃m.

The numerical algorithm alternates between policy iterations and value iterations

until some suitable stopping criterion is met. Several modifications of (2.88) are often

used to improve numerical efficiency; see Section 6.2.4 of [32] for details.

2.6 Numerical Study

We now present the results of a small pilot study using the method described in Section

2.5. We consider one of the examples in [50]. As in that reference, we set r = 0.07,

b = 0.12, σ = 0.40, and β = 0.10. We consider the case λ = µ = 0.01 and the utility

function f(c) = 2
√

c. We take ` = 10 as in [50] and p = 10. The discretization parameter

is taken to be h = 0.25. (Note that [50] uses h = 0.025.)

To implement the numerical algorithm, we choose an initial feedback control matrix

u0 given by, for z ∈ S∗,

u0(z) =





(0, p), x ≥ 0, y ≥ 0,

(1, 0), x ≥ 0, y < 0,

(2, 0), otherwise.

Based on this control, the no-transaction region is the first quadrant of IR2, and we always

exercise the maximum amount of possible consumption. For z ∈ S∗ we take J̃0(z) to be

75% of the value function computed in the absence of transaction costs; see equation

(2.5) in [12].

We ran the algorithm described in the previous section. Figure 2.3 displays the first

quadrant of the state space and illustrates the optimal control for this region. We see that

the no-transaction region looks roughly like a cone. Consumption states are represented

by the dots, purchase states by the plus signs, and sales states by the X’s. The estimated
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Figure 2.3: Numerically computed optimal control.

boundaries of the no-transaction region (the solid lines in the figure) are given by the

lines y = 0.575x − 0.050 (the boundary of the “buy” region) and y = 1.659x + 0.405

(the boundary of the “sell” region.) The estimated sell boundary of the no-transaction

region is similar to that obtained by Tourin and Zariphopoulou (see Figure 2.1 in [50]).

However, the slope of our buy boundary appears to be lower than the slope illustrated in

Figure 2.1 of [50]. A possible reason for this could be the difference in the discretization

parameter. We used h = 0.25 to produce the test results provided here. Within the

no-transaction region, consumption remains at a fairly constant percentage of wealth,

11.5%, which is very close to the constant percentage of consumption in the case of no

transaction costs (see Theorem 2.1 in [12]). We also compare the value function computed

by the algorithm versus the value function in the case of no transaction costs (again, see

Theorem 2.1 in [12]). In general, the optimal value for an initial state computed in the

presence of transaction costs is roughly 97% of the optimal value for the same state in the

absence of transaction costs. However, when the initial wealth is small, this percentage

tends to be lower (roughly 80% to 90%).
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Chapter 3

Existence of Optimal Controls for

Singular Control Problems with

State Constraints

3.1 Introduction

This chapter is concerned with a general class of singular control problems with state

constraints. In our setting, state constraints refers to the requirement that the controlled

diffusion process take values in a closed convex cone at all times (see (3.3)). We consider

an infinite horizon discounted cost of the form (3.4). The main objective of this chapter

is to establish existence of an optimal control.

Classical compactness arguments which are used for establishing existence of optimal

controls for problems with absolutely continuous control terms (cf. [6]) do not natu-

rally extend to singular control problems. For one-dimensional models one can typically

establish existence constructively, by characterizing the optimal controlled process as a

reflected diffusion (cf. [2, 3, 23]). In higher dimensions, one approach is through study-

ing regularity of solutions of the variational inequalities associated with singular control

problems and the smoothness of the corresponding free boundary. Such smoothness re-



sults are the starting points in the characterization of the optimal controlled process as a

constrained diffusion with reflection at the free boundary. Except for specific models (cf.

[46, 47]), this approach encounters substantial difficulties, even for linear dynamics (cf.

[51]). A key difficulty is that little is known about the regularity of the free boundary in

higher dimensions. Alternative approaches for establishing existence of optimal controls

based on compactness arguments are developed in [40, 25, 15]. The first of these papers

considers linear dynamics while the last two consider models with nonlinear coefficients.

In all three papers the state space is all of IRd, i.e. there are no state constraints. It

is important to note that, in our model, although the drift and diffusion coefficients are

constant, the state constraint requirement introduces a (non-standard) nonlinearity in

the dynamics. To the best of our knowledge, the current work is the first to address

existence of an optimal control for a general multi-dimensional singular control problem

with state constraints. While our method does not provide any characterization of the

optimal control, it is quite general and should be applicable for other families of singular

control problems (with or without state constraints).

State constraints are a natural feature in many practical applications of singular

control. A primary motivation for the problems considered in this chapter arises from

applications in controlled queueing systems such as the problem studied in Chapter 4.

Under “heavy traffic conditions”, formal diffusion approximations of a broad family of

queuing networks with scheduling control, lead to the so-called Brownian control prob-

lems (BCPs) (cf. [20]). The BCP in turn can be transformed using techniques introduced

in Harrison and Van-Mieghem [21] to a singular control problem with state constraints.

We refer the reader to [1] for a concise description of connections between Brownian

control problems and the class of singular control problems studied in [1] and the cur-

rent chapter. In Section 4.3 we indicate how the results of the current chapter lead to

existence of optimal controls for BCPs. State constraints arise in numerous other appli-

cations. For example, see Chapter 2 of the current work and Duffie, Fleming, Soner, and
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Zariphopoulou [14] (and references therein) for control problems with state constraints

in mathematical finance.

In Section 3.2 we introduce the singular control problem of interest. The main re-

sult of this chapter (Theorem 3.2.3) establishes existence of an optimal control. An

important application of such a result lies in establishing connections between singular

control problems and so-called obstacle/optimal stopping problems (see [45]). Indeed,

in Chapter 4, using the existence result of the current chapter we will establish equiva-

lence between a two-dimensional singular control problem that arises from the so-called

criss-cross network, and an optimal stopping problem. Connections between singular

control and optimal stopping, in addition to being of intrinsic mathematical interest,

have important practical implications. Singular control problems rarely admit closed

form solutions and therefore numerical approximation methods are necessary. Although

numerical schemes for singular control problems are notoriously hard, optimal stopping

problems have many well studied numerical schemes (cf. [32]). Exploiting connections

between singular control and optimal stopping is expected to lead to simpler and more

efficient numerical solution methods. In Chapter 4, using the above equivalence as a

starting point we develop a numerical scheme for a scheduling control problem for a two

dimensional queuing network model.

The basic idea in the proof of Theorem 3.2.3 is quite simple. For a given initial

condition w, we choose a sequence of controls {Un} such that the corresponding cost

sequence {J(w, Un)}, converges to the value function V (w). We then show that there is

an admissible control U such that lim inf J(w,Un) ≥ J(w, U), which completes the proof

of the Theorem. Indeed, for problems with absolutely continuous controls this is the

standard compactness argument (cf. [6]); one argues that that the sequence {Un} is tight

in a suitable topology, picks a weak limit point U , and establishes the above inequality for

this U using straightforward weak convergence arguments. The key difficulty in singular

control problems is arguing compactness of the control sequence in a suitable topology;
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the usual Skorohod topology on D([0,∞)) is unsuitable as is suggested by the main result

(Proposition 3.3.3) of Section 3.3. This result shows that for a typical discontinuous

control U one can construct a sequence of continuous controls {Un} such that the costs

for Un converge to that for U ; however, clearly Un cannot converge to U in the usual

Skorohod topology on D([0,∞)). A powerful technique for bypassing this tightness issue,

based on suitable stretching of time scale was introduced in [33]. Although such time

transformation ideas go back to the work of of Meyer and Zheng [42] (see also Kurtz

[31]), the papers [33, 37] were the first to use such ideas in stochastic control problems.

A similar technique was also recently used in [7]. This “time stretching” technique is

at the heart of our proof. Time transformation for the n-th control Un is defined in

such a way that, viewed in the new time scale, the process Un is Lipschitz continuous

with Lipschitz constant 1. Tightness in D([0,∞)) (with the usual Skorohod topology)

of the time transformed control sequence is then immediate. Finally, in order to obtain

the candidate U for the above inequality, one must revert, in the limit, to the original

time scale. This crucial step is achieved through Lemmas 3.4.2 and 3.4.3. The proof of

the main result then follows via standard martingale characterization arguments and the

optional sampling theorem.

Proof of Theorem 3.2.3 is facilitated by the result (Proposition 3.3.3) that the infimum

of the cost over all admissible controls is the same as that over all admissible controls with

continuous sample paths a.s. Although it may be possible to prove Theorem 3.2.3 without

appealing to such a result, we believe that the result is of independent interest and it

simplifies the proof of the main result considerably. The main difficulty in the proof of

Proposition 3.3.3 is that if one approximates an arbitrary RCLL admissible control by a

standard continuous approximation (cf. [39]), state constraints may be violated. Making

sure that the continuous approximation is chosen in a manner that state constraints are

satisfied is the key idea in the proof.

The chapter is organized as follows. We define the control problem and state the
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main result in Section 3.2. In Section 3.3 we characterize the value function as the

infimum of the cost over all continuous controls. Section 3.4 is devoted to the proof of

the main result. Finally, we briefly describe connections with Brownian control problems

and stochastic networks in Section 4.3 .

Notation. We will use the following notation. If X ⊂ IRd and A is an n × d matrix,

then AX .
= {Ax : x ∈ X}. A set C ⊂ IRd is a cone of Rd if c ∈ C implies ac ∈ C for

all a ≥ 0. A function f : [0,∞) → IRd is said to have increments in X if f(0) ∈ X and

f(t) − f(s) ∈ X for all 0 ≤ s ≤ t. A stochastic process is said to have increments in X
if, with probability one, its sample paths have increments in X .

3.2 Setting and Main Result

The basic setup is the same as in [1]. Let W (respectively U) be a closed convex cone of

IRk (IRp) with non-empty interior. We consider a control problem in which a p-dimension

control process U , whose increments take values in U , keeps a k-dimensional state process

W (t)
.
= w +B(t)+GU(t) in W , where G is a fixed k× p matrix of rank k (k ≤ p) and B

is a k-dimensional Brownian motion with drift b and covariance matrix Σ given on some

filtered probability space (Ω,F , {Ft}, IP ). We will refer to Φ
.
= (Ω,F , {Ft}, IP, B) as a

system. We assume that GU ∩Wo 6= ∅. Fix a unit vector v0 ∈ (GU)o ∩Wo. Pick u0 ∈ U
for which Gu0 = v0. We also require that there exist v̂1 ∈ IRk, û1 ∈ IRp and a0 ∈ (0,∞)

such that

v · v̂1 ≥ a0|v|, v ∈ GU , w · v̂1 ≥ a0|w|, w ∈ W , u · û1 ≥ a0|u|, u ∈ U . (3.1)

The vectors u0, v0, û1, v̂1 will be fixed for the rest of the chapter.

Definition 3.2.1 (Admissible control) An {Ft}-adapted p-dimensional RCLL process U

is an admissible control for the system Φ and initial data w ∈ W if the following two
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conditions hold IP -a.s.:

U has increments in U , (3.2)

W (t)
.
= w + B(t) + GU(t) ∈ W , t ≥ 0. (3.3)

By convention, U(0−) = 0 and W (0−) = w. The process W is referred to as the

controlled process associated with U and the pair (W,U) is referred to as an admissible

pair for Φ and w. Let A(w, Φ) denote the class of all such admissible controls.

The cost associated with given system Φ, initial data w ∈ W and admissible pair

(W,U) is given by

J(w,U)
.
= IE

∫ ∞

0

e−γt`(W (t))dt + IE

∫

[0,∞)

e−γth · dU(t), (3.4)

where γ ∈ (0,∞), h ∈ IRp, and ` : W → [0,∞) is a continuous function for which there

exist constants c`,1, c`,2, c`,3 ∈ (0,∞) and α` ∈ [0,∞), depending only on `, such that

c`,1|w|α` − c`,2 ≤ `(w) ≤ c`,3(|w|α` + 1), w ∈ W . (3.5)

We remark that the assumption on ` made above is weaker than that made in [1]. We

also assume that h · U .
= {h · u : u ∈ U} ⊂ IR+ .

The value function of the control problem for initial data w ∈ W is

V (w) = inf
Φ

inf
U∈A(w,Φ)

J(w, U), (3.6)

where the outside infimum is taken over all probability systems Φ. Lemma 4.4 of [1]

shows that V is finite everywhere. The following assumption will be needed for the main

result of the chapter.

Condition 3.2.2 (i) Either α` > 0 or there exists a1 ∈ (0,∞) such that h · u ≥ a1|u|
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for all u ∈ U .

(ii) There exists cG ∈ (0,∞) such that |Gu| ≥ cG|u| for all u ∈ U .

The following theorem, which guarantees the existence of an optimal control for the

above control problem, is the main result of this chapter. The proof is postponed until

Section 3.4.

Theorem 3.2.3 Suppose that Assumption 3.2.2 holds. For all w ∈ W there exists a

system Φ∗ and a control U∗ ∈ A(w, Φ∗) such that V (w) = J(w, U∗).

3.3 Restriction to Continuous Controls

The main result of this section is Proposition 3.3.3, in which we show that in (3.6) it

is enough to consider the infimum over the class of admissible controls with continuous

paths. The use of continuous controls will play an important role in the time rescaling

ideas used in the convergence proofs of Section 3.4.

The proof of Proposition 3.3.3 involves choosing an arbitrary control and construct-

ing continuous approximations to it. We show that the cost functions associated with

the approximating controls approach the cost function of the chosen control as the ap-

proximation parameter approaches its limit. The main difficulty of the proof lies in

constructing admissible approximating controls, in particular, constructing the controls

so that state constraints are satisfied. Such a construction is achieved via use of the

Skorohod map, which is made precise in the following lemma. We refer the reader to

Lemma 4.1 in [1] for a proof. We recall that for T ≥ 0 and φ ∈ D([0,∞) : IRk), |φ|∗T
denotes sup0≤t≤T |φ(t)|.

Lemma 3.3.1 There exist maps Γ : D([0,∞) : IRk) → D([0,∞) : IRk) and Γ̂ : D([0,∞) :

IRk) → D([0,∞) : IR+) with the following properties. For any φ ∈ D([0,∞) : IRk) with

φ(0) ∈ W define η
.
= Γ̂(φ) and ψ

.
= Γ(φ). Then for all t ≥ 0:
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1. η(t) ∈ IR+, and η is nondecreasing and RCLL.

2. ψ(t) ∈ W, and ψ(t) = φ(t) + v0η(t).

3. If φ(t) ∈ W for all t ≥ 0 then Γ(φ) = φ and Γ̂(φ) = 0.

Furthermore, the maps Γ and Γ̂ are Lipschitz continuous in the following sense. There

exists κ ∈ (0,∞) such that for all φ1, φ2 ∈ D([0,∞) : IRk) with φ1(0), φ2(0) ∈ W and all

T ≥ 0:

|Γ(φ1)− Γ(φ2)|∗T + |Γ̂(φ1)− Γ̂(φ2)|∗T ≤ κ|φ1 − φ2|∗T . (3.7)

Before stating the main result of this section, we present the following lemma which

states that we can further restrict attention to controls satisfying certain properties. The

proof is contained in that of Lemma 4.7 of [1] and therefore is omitted.

Lemma 3.3.2 For w ∈ W and a system Φ, let

A′(w, Φ) = {U ∈ A(w, Φ) : lim
t→∞

e−γtIE|W (t)|r = 0 and IE

∫ ∞

0

e−γt|W (t)|rdt < ∞

for all r > 0, where W is the controlled process associated with U}.

Then V (w) = infΦ infU∈A′(w,Φ) J(w, U).

Proposition 3.3.3 Let Φ be a system and w ∈ W. Denote by Ac(w, Φ) the class of all

controls U ∈ A(w, Φ) such that, for a.e. ω, t 7→ Ut(ω) is a continuous map. Then

V (w) = inf
Φ

inf
U∈Ac(w,Φ)

J(w, U). (3.8)

Proof. Fix w ∈ W and a system Φ. Let U ∈ A′(w, Φ) be s.t. J(w,U) < ∞. Define

Ud(t)
.
=

∑
0≤s≤t ∆U(s), where ∆U(s) = U(s)− U(s−), and U c(t)

.
= U(t)− Ud(t). That

is, U c is the continuous part and Ud(t) is the pure jump part of the control U . Note that

both processes are RCLL with increments in U . We construct a sequence of continuous
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processes to approximate Ud as follows. For each integer k ≥ 1 and t ≥ 0 set

U c
k(t)

.
= k

∫ t

(t−1/k)+
Ud(s)ds + k(1/k − t)+Ud(0).

Note that for each k, U c
k is continuous with increments in U , and as k →∞,

U c
k(t) → Ud(t) a.e. t ∈ [0,∞), a.s. (3.9)

Also, from (3.1) it follows that for any function f with increments in U , t 7→ f(t) · û1 and

t 7→ Gf(t) · v̂1 are nondecreasing functions. This observation implies that, for all T ≥ 0

and 0 ≤ t ≤ T

a0|U c
k(t)| ≤ U c

k(t) · û1 ≤ Ud(t) · û1 ≤ Ud(T ) · û1 ≤ |Ud(T )|. (3.10)

a0|GU c
k(t)| ≤ |GUd(T )|, a0|GUd(t)| ≤ |GUd(T )|. (3.11)

Thus by (3.9) and the dominated convergence theorem, for all p > 0,

∫ T

0

|U c
k(t)− Ud(t)|pdt → 0 a.s. as k →∞.

This suggests that a natural choice for the approximating control sequence is {U c + U c
k}.

However this control may not be admissible since the corresponding state process W̃k

defined as W̃k(t)
.
= w + B(t) + GU c(t) + GU c

k(t), t ≥ 0 may violate state constraints.

We now use the Skorohod map introduced in Lemma 3.3.1 to construct an admissible

continuous control. Define, for t ≥ 0, ηk(t)
.
= Γ̂(W̃k)(t) and

Wk(t)
.
= Γ(W̃k)(t) = w + B(t) + GU c(t) + GU c

k(t) + Gu0ηk(t). (3.12)

Consider Uk
.
= U c + U c

k + u0ηk. It is easily checked that Uk(0) ≥ 0, Uk is continuous,
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{Ft}-adapted, and has increments in U . Also, by Lemma 3.3.1, Wk(t) ∈ W for all t ≥ 0.

Thus Uk is an admissible control under Definition 3.2.1. We will now turn our attention

to the corresponding cost functions. We begin by proving that Wk(t) → W (t) a.s as

k → ∞. The main idea is to appeal to the Lipschitz property (3.7); however, (3.9)

establishes only pointwise convergence of W̃k to W and so a direct application of (3.7)

is not useful. Define for each k ≥ 1,

W̄k(t)
.
= k

∫ t

(t−1/k)+
W (s)ds + k(1/k − t)+W (0).

Since W (t) ∈ W for all t ≥ 0, it follows that W̄k(t) ∈ W for all t ≥ 0, and thus

η̄k
.
= Γ̂(W̄k) = 0. Recalling the definition of U c

k and using the Lipschitz property (3.7)

we have for T ≥ 0 and 0 ≤ t ≤ T ,

|Wk(t)− W̄k(t)| ≤ κ sup
0≤t≤T

{|B(t)− k

∫ t

(t−1/k)+
B(s)ds|+ |G||U c(t)− k

∫ t

(t−1/k)+
U c(s)ds|}.

From the sample path continuity of B and U c, the right side of the inequality approaches

0, almost surely, as k → ∞. Next, since W has RCLL paths, W̄k(t) → W (t−), a.s. for

every t > 0. Combining the above observations we have that:

Wk(t) → W (t) for almost every t ∈ [0,∞), a.s. (3.13)

We now show that the costs associated with controls Uk converge to the cost correspond-

ing to control U . We first consider the component of the cost arising from `. Using (3.1),

we have along the lines of equations (4.10)-(4.12) of [1], that there is c1 ∈ (0,∞) such

that for 0 ≤ t ≤ T < ∞,

|GU c(t)|+ |GUd(t)|+ |W (t)| ≤ c1(|w|+ |W (T )|+ |B|∗T ). (3.14)
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Writing Wk = Wk −W + W and using Lemma 3.3.1, we have for all k ≥ 1 and 0 ≤ t ≤
T < ∞:

|Wk(t)| ≤ κ(|GU c
k |∗T + |GUd|∗T ) + |W (t)| ≤ c2(|w|+ |W (T )|+ |B|∗T ), (3.15)

where the second inequality follows on combining (3.14) and (3.11). Recalling (3.5), we

get for some c3 ∈ (0,∞),

`(Wk(t)) ≤ c3(|w|α` + |W (t)|α` + (|B|∗t )α` + 1).

Finally, since U ∈ A′(w, Φ), we have from the above estimate, (3.13) and dominated

convergence theorem that, as k →∞,

IE

∫ ∞

0

e−γt`(Wk(t))dt → IE

∫ ∞

0

e−γt`(W (t))dt. (3.16)

We now consider the component of the cost function associated with h. Note that

since IE
∫

[0,∞)
e−γth · dU(t) ≤ J(w, U) < ∞, we have that

IE

∫

[0,∞)

e−γth · dU(t) = γ

∫

[0,∞)

e−γtIE(h · U(t))dt < ∞. (3.17)

Next, for t ≥ 0:

|Gu0ηk(t)| ≤ c4(|w|+ |Wk(t)|+ |B(t)|+ |GU c(t)|+ |GUd(t)|)

≤ c5(|w|+ |Wk(t)|+ |W (t)|+ |B|∗t ))

≤ c6(|w|+ |W (t)|+ |B|∗t ),

where the first inequality follows from (3.12) and (3.11), the second from (3.14), and

the third from (3.15). Since ηk is nondecreasing, the above display implies |ηk|∗t ≤
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c7(|w|+ |W (t)|+ |B|∗t ). Thus since U ∈ A′(w, Φ) we have that

γIE

∫

[0,∞)

e−γt(h · u0)ηk(t)dt = IE

∫

[0,∞)

e−γth · u0dηk(t) < ∞. (3.18)

Next,

IE

∫

[0,∞)

e−γth · dUk(t)

= IE
(∫

[0,∞)

e−γth · dU c(t) +

∫

[0,∞)

e−γth · dU c
k(t) +

∫

[0,∞)

e−γth · u0dηk(t)
)

= γIE
(∫

[0,∞)

e−γth · U c(t)dt +

∫

[0,∞)

e−γth · U c
k(t)dt +

∫

[0,∞)

e−γth · u0ηk(t)dt
)
,

(3.19)

where the last line follows on using (3.18); noting that IE(h·(U c
k(t)+U c(t))) ≤ IE(h·U(t))

and recalling that J(w,U) < ∞. From (3.17), (3.18) and (3.19), it now follows that

IE
∫
[0,∞)

e−γth · dUk(t) is finite and equals γIE
∫
[0,∞)

e−γth · Uk(t)dt.

From (3.9) and (3.13) we get that as k →∞,

(h · u0)ηk(t) → 0 and h · U c
k(t) → h · Ud(t), a.e. t, a.s. (3.20)

Recalling that |ηk|∗t ≤ c7(|w| + |W (t)| + |B|∗t ) and that U ∈ A′(w, Φ), equations (3.20)

and (3.18) imply that, as k →∞,

IE

∫

[0,∞)

e−γth · u0dηk(t) → 0. (3.21)

Since h · U c
k(t) ≤ h · Ud(t) and IE

∫
[0,∞)

e−γth · Ud(t)dt ≤ J(w,U) < ∞, we get that as

k →∞,

IE

∫

[0,∞)

e−γth · dU c
k(t) → IE

∫

[0,∞)

e−γth · Ud(t)dt. (3.22)
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Finally, taking limits as k →∞ in (3.19) yields,

IE

∫

[0,∞)

e−γth · dUk(t) → IE

∫

[0,∞)

e−γth · dU(t). (3.23)

Combining (3.16) and (3.23) we have J(w, Uk) → J(w, U) as k → ∞. This proves the

result.

3.4 Existence of an Optimal Control

In this section we prove our main result (Theorem 3.2.3) which guarantees existence of

an optimal control for the control problem of Section 3.2. Fix w ∈ W . From Proposition

3.3.3 we can find a sequence of systems {Φn}, with Φn = (Ωn,Fn, {Fn(t)}, IPn, Bn), and

a sequence of controls {Un} with Un ∈ Ac(w, Φn), n ≥ 1 such that J(w,Un) < ∞ for each

n and

V (w) = lim
n→∞

J(w, Un), (3.24)

where

J(w, Un)
.
= IEn

∫ ∞

0

e−γt`(Wn(t))dt + IEn

∫

[0,∞)

e−γth · dUn(t), (3.25)

and IEn denotes expectation with respect to IPn. Let Wn be the state process correspond-

ing to Un, i.e.

Wn(t)
.
= w + Bn(t) + GUn(t), (3.26)

with Wn(t) ∈ W for all t ≥ 0.

Time rescaling. For each n ≥ 1 and t ≥ 0 define

τn(t)
.
= t + Un(t) · û1 (3.27)

Since û1 · Un is continuous and nondecreasing, τn is continuous and strictly increasing.
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Also for 0 ≤ s ≤ t,

τn(t)− τn(s) ≥ t− s, τn(t)− τn(s) ≥ a0|Un(t)− Un(s)|. (3.28)

The rescaled time process, τ̂n, is given by τ̂n(t)
.
= inf{s ≥ 0 : τn(s) > t}. Note that τ̂n is

continuous and strictly increasing. Also, t = τ̂n(τn(t)) = τn(τ̂n(t)), τ̂n(t) ≤ t ≤ τn(t), and

τ̂n(s) < t if and only if τn(t) > s.

We define the time rescaled processes via B̂n(t)
.
= Bn(τ̂n(t)), Ûn(t)

.
= Un(τ̂n(t)), and

Ŵn(t)
.
= Wn(τ̂n(t)). From (3.26), for t ≥ 0

Ŵn(t) = Wn(τ̂n(t)) = w + Bn(τ̂n(t)) + GUn(τ̂n(t)) = w + B̂n(t) + GÛn(t). (3.29)

Also, from (3.28), for 0 ≤ s ≤ t,

τ̂n(t)− τ̂n(s) ≤ t− s, a0|Ûn(t)− Ûn(s)| ≤ t− s. (3.30)

Let E denote the space of continuous functions from [0,∞) to IRk×[0,∞)×IRk×U×W ,

endowed by the usual topology of uniform convergence on compacts. Note that for each

n ≥ 1 (Bn, τ̂n, B̂n, Ûn, Ŵn). is a random variable with values in the Polish space E . We

next consider tightness of the family {(Bn, τ̂n, B̂n, Ûn, Ŵn), n ≥ 1}.

Lemma 3.4.1 The family {(Bn, τ̂n, B̂n, Ûn, Ŵn), n ≥ 1} is tight.

Proof. Clearly, {Bn} is tight. Tightness of {(τ̂n, Ûn)} follows from (3.30). Since B̂n(t) is

the composition of Bn(·) and τ̂n(·), tightness of {B̂n} follows from tightness of {(Bn, τ̂n)}.
Finally, tightness of {Ŵn} follows from (3.29) and tightness of {(τ̂n, Ûn, B̂n)}.

Choose a convergent subsequence of {(Bn, τ̂n, B̂n, Ûn, Ŵn), n ≥ 1} (also indexed by

n) with limit (B′, τ̂ , B̂, Û , Ŵ ) defined on some probability space. Clearly, B′ is a (b, Σ)-

Brownian motion with respect to its own filtration. By the Skorohod representation
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theorem there exists a probability space (Ω∗,F∗, IP ∗) on which are defined a sequence of

processes {(B′
n, τ̂

′
n, B̂

′
n, Û ′

n, Ŵ
′
n), n ≥ 1} and a process (B′′, τ̂ ′, B̂′, Û ′, Ŵ ′), such that

(B′
n, τ̂

′
n, B̂

′
n, Û

′
n, Ŵ ′

n)
d
= (Bn, τ̂n, B̂n, Ûn, Ŵn), (B′′, τ̂ ′, B̂′, Û ′, Ŵ ′) d

= (B′, τ̂ , B̂, Û , Ŵ ), and

(B′
n, τ̂

′
n, B̂

′
n, Û

′
n, Ŵ ′

n) → (B′′, τ̂ ′, B̂′, Û ′, Ŵ ′) almost surely as n →∞. To simplify notation,

we will assume (without loss of generality) that

(Bn, τ̂n, B̂n, Ûn, Ŵn) → (B′, τ̂ , B̂, Û , Ŵ ), almost surely (IP ∗) as n →∞. (3.31)

The following lemma is central in the time rescaling ideas used later in the section.

Lemma 3.4.2 Suppose that Assumption 3.2.2 holds. Then there exists α∗ ∈ (0,∞) such

that for all t ≥ 0,

lim sup
n→∞

IEn|Un(t)|α∗ < ∞. (3.32)

Proof. From Assumption 3.2.2 we have that either α` > 0 or there exists a1 ∈ (0,∞)

such that h · u ≥ a1|u| for all u ∈ U . Suppose first that the latter condition holds. Then

for all t ≥ 0,

J(w,Un) ≥ γIEn

∫ ∞

0

e−γth · Un(t)dt ≥ γe−γ(t+1)IEn(h · Un(t)) ≥ γa1e
−γ(t+1)IEn|Un(t)|.

Thus in this case (3.32) holds with α∗ = 1. Next suppose that α` > 0. From Assumption

3.2.2 and (3.26), we have:

cG|Un(t)| ≤ |GUn(t)| ≤ |Wn(t)|+ |Bn(t)|+ |w|,

which implies that for some c1 ∈ (0,∞)

|Un(t)|α` ≤ c1(|Wn(t)|α` + |Bn(t)|α` + |w|α`).
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Therefore, using moment properties of Bn we have for some c2 ∈ (0,∞)

IEn|Un(t)|α` ≤ c2(IEn|Wn(t)|α` + tα` + 1). (3.33)

Combining the above estimate with (3.5) we get

lim sup
n→∞

∫ ∞

0

e−γsIEn|Un(s)|α`ds < ∞. (3.34)

Finally,

∫ ∞

0

e−γtIEn|Un(t)|α`dt ≥
∫ ∞

0

e−γtIEn(û1 · Un(t))α`dt ≥ e−γ(t+1)aα`
0 IEn|Un(t)|α` .

The inequality (3.32) now follows with α∗ = α` on combining the above inequality with

(3.34).

The following lemma, a consequence of Lemma 3.4.2, gives a critical property of τ̂ .

Lemma 3.4.3 Suppose that Assumption 3.2.2 holds.

τ̂(t) →∞ as t →∞, IP ∗-a.s. (3.35)

Proof. Fix M > 0 and consider t ∈ (M,∞). Since τ̂n(t) < M if and only if τn(M) > t

we have by (3.27),

{τ̂n(t) < M} = {M + Un(M) · û1 > t} ⊂ {|Un(M)| > (t−M)}.

Recall the constant α∗ in Lemma 3.4.2. The above relation and an application of Markov’s

inequality yield for all t > M

IP ∗[τ̂n(t) < M ] ≤ IP ∗[|Un(M)|α∗ > (t−M)α∗ ] ≤ 1

(t−M)α∗ IE
∗|Un(M)|α∗ .
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Thus by the weak convergence τ̂n ⇒ τ̂ ,

IP ∗[ lim
t→∞

τ̂(t) < M ] ≤ lim
t→∞

lim sup
n→∞

IP ∗[τ̂n(t) < M ]

≤ lim
t→∞

1

(t−M)α∗ lim sup
n→∞

IE∗|Un(M)|α∗ .

The right side of the last inequality is 0 by Lemma 3.4.2. Since M > 0 is arbitrary, the

result follows.

We now introduce an inverse time transformation which allows us to revert back to

the original time scale. For t ≥ 0 define τ(t)
.
= inf{s ≥ 0 : τ̂(s) > t}. The following

properties are easily checked.

• τ(t) < ∞ a.s. for all t ≥ 0. (This follows from Lemma 3.4.3.)

• τ is strictly increasing and right-continuous.

• τ(t) ≥ t ≥ τ̂(t). In particular, τ(t) →∞ a.s. as t →∞.

• 0 ≤ τ̂(s) ≤ t ⇔ 0 ≤ s ≤ τ(t), and τ̂(τ(t)) = t, τ(τ̂(t)) ≥ t.

The time transformed processes are defined as B∗(t) .
= B̂(τ(t)), U∗(t) .

= Û(τ(t)), W ∗(t) .
=

Ŵ (τ(t)), t ≥ 0. By (3.31) and (3.29) we have Ŵ (t) = w + B̂(t) + GÛ(t) for all t ≥ 0,

a.s., which implies

W ∗(t) = Ŵ (τ(t)) = w + B̂(τ(t)) + GÛ(τ(t)) = w + B∗(t) + GU∗(t).

Note that U∗ is RCLL with increments in U and W ∗(t) ∈ W for all t ≥ 0.

We next introduce a suitable filtration on (Ω∗,F∗, IP ∗). For t ≥ 0 define the σ-fields

F̂ ′(t) .
= σ{(B̂(s), Û(s), Ŵ (s), τ̂(s)), 0 ≤ s ≤ t} and F̂t ≡ F̂(t)

.
= F̂ ′(t+) ∨ N , where N

denotes the family IP ∗-null sets. Then {F̂t} is a right-continuous, complete filtration.

For any s, t ≥ 0, {τ(s) < t} = {τ̂(t) > s} ∈ F̂(t). Therefore, since {F̂t} is right-

continuous, τ(s) is an {F̂t}-stopping time for any s ≥ 0. For each t ≥ 0, define the
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σ-field F∗(t) .
= F̂(τ(t)). Since τ is nondecreasing, {F∗

t } is a filtration. Clearly, B̂ and

Û are {F̂t}-adapted; therefore B∗ and U∗ are {F∗
t }-adapted (cf. Proposition 1.2.18 of

[29]). We show in Lemma 3.4.6 below that B∗ is an {F∗
t }-Brownian motion with drift b

and covariance matrix Σ. Before stating this result, we present the following change of

variables formula which we will use in the convergence analysis. We refer the reader to

Theorem IV.4.5 of [43] for a proof.

Lemma 3.4.4 Let a be a IR+-valued, right-continuous function on [0,∞) such that

a(0) = 0. Let c be its right-inverse, i.e. c(t)
.
= inf{s ≥ 0 : a(s) > t}, t ≥ 0. As-

sume that c(t) < ∞ for all t ≥ 0. Let f be a nonnegative Borel measurable function on

[0,∞), and let F be a IR+-valued, right-continuous, nondecreasing function on [0,∞).

Then ∫

[0,∞)

f(s)dF (a(s)) =

∫

[0,∞)

f(c(s−))dF (s), (3.36)

with the convention that the contribution to the integrals above at 0 is f(0)F (0). In

particular, taking F (s) = s, s ≥ 0,

∫

[0,∞)

f(s)da(s) =

∫

[0,∞)

f(c(s))ds. (3.37)

Remark 3.4.5 Recall that B̂n(t) = Bn(τ̂n(t)). It follows from continuity and almost

sure convergence of (Bn, τ̂n, B̂n) → (B′, τ̂ , B̂) that B̂(t) = B′(τ̂(t)) a.s. Thus, B∗(t) .
=

B̂(τ(t)) = B′(τ̂(τ(t))) = B′(t) a.s. In particular, B∗ is a (b, Σ)-Brownian motion with

respect to its own filtration. The following lemma shows that, in fact, B∗ is a Brownian

motion with respect to the larger filtration {F∗
t }.

Lemma 3.4.6 B∗ is an {F∗
t }-Brownian motion with drift b and covariance matrix Σ.

Proof. For any infinitely differentiable function f : IRk → IR with compact support,

define

Af(x)
.
=

k∑
i=1

bi
∂

∂xi

f(x) +
1

2

k∑
i=1

k∑
j=1

σij
∂2

∂xi∂xj

f(x), (3.38)
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where the entries of b are denoted bi and those of Σ are denoted σij. First suppose

IE∗[g(B̂(sm), Û(sm), Ŵ (sm), τ̂(sm), sm ≤ t,m = 1, . . . , q)

×{f(B̂(t + s))− f(B̂(t))−
∫ t+s

t

Af(B̂(u))dτ̂(u)}] = 0, (3.39)

for al s, t ≥ 0, continuous bounded functions g (on a suitable domain), positive integers

q ≥ 1, and sequences {sm}. Define for t ≥ 0,

Ŷf (t)
.
= f(B̂(t))−

∫ t

0

Af(B̂(u))dτ̂(u).

Then by equation (3.39), Ŷf is an {F̂ ′
t}-martingale, and therefore Ŷf is an {F̂t}-martingale

as well. Recall that τ(s) is an {F̂t}-stopping time such that τ(s) < ∞ a.s. for all s ≥ 0.

Since f and Af are bounded (by some c > 0),

IE∗|Ŷf (τ(t))| ≤ IE∗|f(B̂(τ(t)))|+IE∗
∫ τ(t)

0

|Af(B̂(u))|dτ̂(u) ≤ c+cIE∗|τ̂(τ(t))| = c(1+t).

In addition, we have for any T ∈ (0,∞),

IE∗[|Ŷf (T )| 1{τ(t)>T}] ≤ IE∗[|Ŷf (T )| 1{τ̂(T )≤t}]

≤ IE∗[{|f(B̂(T ))|+
∫ T

0

|Af(B̂(u))|dτ̂(u)} 1{τ̂(T )≤t}]

≤ cIE∗[(1 + τ̂(T )) 1{τ̂(T )≤t}]

≤ c(1 + t)IP ∗[τ̂(T ) ≤ t]

The last term above approaches 0 as T →∞ by Lemma 3.4.3. Therefore by the optional

sampling theorem (cf. Theorem 2.2.13 in [17]), we have for s ≤ t,

IE∗[Ŷf (τ(t))|F∗(s)] = IE∗[Ŷf (τ(t))|F̂(τ(s))] = Ŷf (τ(s)),
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that is, Ŷf (τ(t)) is an {F∗
t }-martingale. Now

Ŷf (τ(t)) = f(B̂(τ(t)))−
∫ ∞

0

Af(B̂(u)) 1{0≤u<τ(t)}dτ̂(u)

= f(B∗(t))−
∫ ∞

0

Af(B̂(τ(u))) 1{0≤τ(u)<τ(t)}du

= f(B∗(t))−
∫ t

0

Af(B∗(u))du,

where we have used Lemma 3.4.4 and the fact that τ is strictly increasing. Thus,

IE∗[f(B∗(t + s))− f(B∗(t))−
∫ t+s

t

Af(B∗(u))du|F∗(t)]

= IE∗[Ŷf (τ(t + s))− Ŷf (τ(t))|F∗(t)],

which is 0 for any s, t ≥ 0 since Ŷf (τ(t)) is an {F∗
t }-martingale. Therefore, B∗ is an {F∗

t }-
Brownian motion with drift b and covariance Σ. Hence in order to prove the lemma it

suffices to prove (3.39).

Recall that Bn is an {Fn(t)}-Brownian motion with drift b and covariance Σ. Let f

be as above and define Yf,n(t)
.
= f(Bn(t)) − ∫ t

0
Af(Bn(u))du. Then Yf,n is an {Fn(t)}-

martingale for each n ≥ 1.

Fix t ≥ 0 and note that {τ̂n(s) < t} = {τn(t) > s} = {t + Un(t) · û1 > s} ∈ Fn(t)

for all s ≥ 0, n ≥ 1. Thus for each s ≥ 0, τ̂n(s) is an {Fn(t)}-stopping time. Define

Ŷf,n(t)
.
= Yf,n(τ̂n(t)) for t ≥ 0. Since τ̂n(t) is an {Fn(t)}-stopping time bounded by t, we

have by the optional sampling theorem (see Problem 1.3.24 in [29]) that for any s ≥ 0

IEn[Ŷf,n(t + s)|Fn(τ̂n(t))] = IEn[Yf,n(τ̂n(t + s))|Fn(τ̂n(t))] = Yf,n(τ̂n(t)) = Ŷf,n(t).

This implies that for any bounded Fn(τ̂n(t))-measurable function ξn,

IEn[ξn{Ŷf,n(t + s)− Ŷf,n(t)}] = 0. (3.40)
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Now for any s ≤ t, the random variables Bn(τ̂n(s)), Un(τ̂n(s)),Wn(τ̂n(s)) are Fn(τ̂n(s))-

measurable (cf. Proposition 1.2.18 in [29]). Also, τ̂n(s) is Fn(τ̂n(s))-measurable (cf.

Problem 1.2.13 in [29]). Since τ̂n(s) ≤ τ̂n(t) for s ≤ t, we have Fn(τ̂n(s)) ⊂ Fn(τ̂n(t)).

Thus,

g(Bn(τ̂n(sm)), Un(τ̂n(sm)),Wn(τ̂n(sm)), τ̂n(sm), 0 ≤ sm ≤ t,m = 1, . . . , q),

is Fn(τ̂n(s))-measurable, for all bounded continuous functions g with appropriate domain,

positive integers q ≥ 1, and sequences {sm}. Therefore, from (3.40)

IEn[g(B̂n(sm), Ûn(sm), Ŵn(sm), τ̂n(sm), 0 ≤ sm ≤ t,m = 1, . . . , q)

×{Ŷf,n(t + s)− Ŷf,n(t)}] = 0,

Recalling our use of the Skorohod representation theorem above (3.31), we have

IE∗[g(B̂n(sm), Ûn(sm), Ŵn(sm), τ̂n(sm), 0 ≤ sm ≤ t,m = 1, . . . , q)

×{Ŷf,n(t + s)− Ŷf,n(t)}] = 0. (3.41)

Another application of Lemma 3.4.4 shows that:

∫ t

0

Af(B̂n(u))dτ̂n(u) =

∫ τ̂n(t)

0

Af(Bn(u))du.

This implies

Ŷf,n(t) = Yf,n(τ̂n(t)) = f(Bn(τ̂n(t)))−
∫ τ̂n(t)

0

Af(Bn(u))du

= f(B̂n(t))−
∫ t

0

Af(B̂n(u))dτ̂n(u). (3.42)
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Combining (3.41) and (3.42) we have

IE∗[g(B̂n(sm), Ûn(sm), Ŵn(sm), τ̂n(sm), 0 ≤ sm ≤ t,m = 1, . . . , q)

×{f(B̂n(t + s))− f(B̂n(t))−
∫ t+s

t

Af(B̂n(u))dτ̂n(u)}] = 0. (3.43)

Finally, recall that (Bn, τ̂n, B̂n, Ûn, Ŵn) → (B′, τ̂ , B̂, Û , Ŵ ) IP ∗-a.s. as n → ∞. An

application of the bounded convergence theorem yields (3.39) on taking n →∞ in (3.43)

(cf. Lemma 2.4 of [11]). This completes the proof.

As an immediate consequence we have:

Corollary 3.4.7 Let Φ∗ .
= (Ω∗,F∗, IP ∗, {F∗

t }, B∗). Then U∗ ∈ A(w, Φ∗).

We now show that U∗ is an optimal control by studying convergence of the cost

functions J(w, Un), thus completing the proof of the main result.

Proof of Theorem 3.2.3. Let {Un} and U∗ be as above. By Lemma 3.4.4 we have

that the cost corresponding to the admissible pair (Wn, Un) is given by

J(w,Un)
.
= IEn

∫ ∞

0

e−γt`(Wn(t))dt + γIEn

∫ ∞

0

e−γth · Un(t)dt

= IEn

∫ ∞

0

e−γτ̂n(t)`(Wn(τ̂n(t)))dτ̂n(t) + γIEn

∫ ∞

0

e−γτ̂n(t)h · Un(τ̂n(t))dτ̂n(t)

= IE∗
∫ ∞

0

e−γτ̂n(t)`(Ŵn(t))dτ̂n(t) + γIE∗
∫ ∞

0

e−γτ̂n(t)h · Ûn(t)dτ̂n(t). (3.44)

Since (τ̂n, Ûn, Ŵn) → (τ̂ , Û , Ŵ ) IP ∗-a.s., we have (cf. Lemma 2.4 of [11]) for all u ≥ 0

and N ≥ 1,

∫

[0,u)

[N ∧ e−γτ̂n(t)`(Ŵn(t))]dτ̂n(t) →
∫

[0,u)

[N ∧ e−γτ̂(t)`(Ŵ (t))]dτ̂(t), IP ∗-a.s.,
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as n →∞. Thus, we have, almost surely (IP ∗),

lim inf
n→∞

∫ ∞

0

e−γτ̂n(t)`(Ŵn(t))dτ̂n(t) ≥
∫ u

0

[N ∧ e−γτ̂(t)`(Ŵ (t))]dτ̂(t).

Taking limits as N →∞ and u →∞ on both sides yields

lim inf
n→∞

∫ ∞

0

e−γτ̂n(t)`(Ŵn(t))dτ̂n(t) ≥
∫ ∞

0

e−γτ̂(t)`(Ŵ (t))dτ̂(t), IP ∗-a.s. (3.45)

Similarly,

lim inf
n→∞

γ

∫

[0,∞)

e−γτ̂n(t)h · Ûn(t)dτ̂n(t) ≥ γ

∫

[0,∞)

e−γτ̂(t)h · Û(t)dτ̂(t), IP ∗-a.s. (3.46)

Therefore by (3.24), (3.44), Fatou’s lemma, (3.45) and (3.46),

V (w) = lim inf
n→∞

J(w,Un)

= lim inf
n→∞

{IE∗
∫ ∞

0

e−γτ̂n(t)`(Ŵn(t))dτ̂n(t) + γIE∗
∫ ∞

0

e−γτ̂n(t)h · Ûn(t)dτ̂n(t)}

≥ IE∗ lim inf
n→∞

∫ ∞

0

e−γτ̂n(t)`(Ŵn(t))dτ̂n(t) + γIE∗ lim inf
n→∞

∫ ∞

0

e−γτ̂n(t)h · Ûn(t)dτ̂n(t)

≥ IE∗
∫ ∞

0

e−γτ̂(t)`(Ŵ (t))dτ̂(t) + γIE∗
∫ ∞

0

e−γτ̂(t)h · Û(t)dτ̂(t).

Applying Lemma 3.4.4 to the last line above and recalling W ∗(t) = Ŵ (τ(t)) and U∗(t) =

Û(τ(t)) yields

V (w) ≥ IE∗
∫ ∞

0

e−γt`(W ∗(t))dt + γIE∗
∫ ∞

0

e−γth · U∗(t)dt.

The quantity on the right side above defines the cost function J(w,U∗) for the admissible

(by Corollary 3.4.7) pair (W ∗, U∗). Thus we have V (w) = J(w,U∗) and hence U∗ is an

optimal control.
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3.5 Brownian Control Problems

In this section, as an application of Theorem 3.2.3, we prove existence of an optimal

control for Brownian Control problems. Such control problems (cf. [20]) arise from

formal diffusion approximations of multiclass queuing networks with scheduling control.

Here we do not describe the underlying queuing problem but merely refer the reader

to [7] where details on connections between a broad family of queuing network control

problems and Brownian control problems can be found. Our presentation of BCPs is

adapted from [21].

Let Φ̃
.
= (Ω,F , {Ft}, IP, B̃) be a system, where B̃ is an m-dimensional Brownian

motion with drift b̃ and non-degenerate covariance matrix Σ̃. The problem data of the

BCP consists of an m × n matrix R, a p × n matrix K (referred to, respectively as

the input-output matrix and the capacity consumption matrix) and an initial condition

q ∈ IRm
+ . The matrix K is assumed to have rank p (p ≤ n).

Definition 3.5.1 (Admissible control for the BCP) An {Ft}-adapted, n-dimensional

RCLL process Y is an admissible control for the BCP associated with the system Φ̃

and initial data q ∈ IRm
+ if the following two conditions hold IP -a.s.:

U(t)
.
= KY (t) is nondecreasing with U(0) ≥ 0,

Q(t)
.
= q + B̃(t) + RY (t) ≥ 0, t ≥ 0. (3.47)

Denote by Ã(q, Φ̃) the class of all admissible controls for the BCP associated with Φ̃ and

q. The goal of the BCP is to minimize the cost function

J̃(q, Y )
.
= IE

∫ ∞

0

e−γt ˜̀(Q(t))dt + IE

∫

[0,∞)

e−γth · dU(t),

where γ ∈ (0,∞), h ∈ IRp
+ and ˜̀ : IRm

+ → [0,∞) is continuous. The value function for

the BCP is Ṽ (q) = infΦ̃ infY ∈Ã(q,Φ̃) J̃(q, Y ).
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Under a continuous selection condition (see [21] or equation (3.3) of [1]), the BCP

introduced above can be reduced to an equivalent control problem of the singular type

(with state constraints). This reduction, referred to as the “Equivalent Workload Formu-

lation” (EWF), is the main result of [21]. Under further conditions, this singular control

problem with state constraints is of the form studied in the current chapter. Such suf-

ficient conditions were presented in Section 3 of [1]; however we list them here for the

reader’s convenience. Let ˜̀ be linear, non-negative on IRm
+ , and assume that it vanishes

only at zero. Define B .
= {x ∈ IRn : Kx = 0}. Let R .

= RB ⊂ Rm and denote the

dimension of R by r. The dimension of M .
= R⊥ is then k

.
= m − r. Let M be any

k×m matrix whose rows span M. By Proposition 2 of [21] there exists a k×p matrix G

which satisfies MR = GK. The choice of G, in general, is not unique. We assume that

the matrices M and G are of full rank and have nonnegative entries. We further assume

that each column of G has at least one strictly positive entry. These assumptions are

satisfied for a broad family of controlled queuing networks (see Section 3 of [1] and [7]

for examples). Under these assumptions, Theorem 3.2.3 leads to the following result.

Theorem 3.5.2 For every q ∈ IRm
+ , there exists a system Φ̃ and Y ∈ Ã(q, Φ̃) such that

J̃(q, Y ) = Ṽ (q).

Remarks on the Proof. The proof is an immediate consequence of Theorem 3.2.3 and

Proposition 3 of [21]. The latter proposition shows that for any admissible control for

the EWF there exists a control for the BCP (and vice-versa) such that the costs coincide.

Since an EWF under the above assumptions is a control problem of the form formulated

in Section 3.2, existence of an optimal control for the EWF follows from Theorem 3.2.3.

Using the equivalence result in Proposition 3 of [21], one then obtains an optimal control

for the BCP.
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Chapter 4

Numerical Scheme for a Brownian

Control Problem through Optimal

Stopping

4.1 Introduction

Stochastic networks have been an area of active research in recent years with applications

in a variety of disciplines, including manufacturing, communications, and computing. In

general, a stochastic network consists of a system in which customers (or jobs) arrive at

random times and are placed in a series of buffers, where they await service by one or

more servers. Servers may accept customers from multiple buffers and service completion

times may depend on customer characteristics. Upon completion of service, a customer

may exit the system or be redirected to another buffer, where he will await service by a

different server.

A fundamental yet challenging problem with critical practical implications concerns

control of multiclass stochastic networks. The main objective is to design a control policy

for the network in order to optimize some criteria. Control can take a variety of forms,

including control of rates of arrival and/or service, and routing or scheduling of jobs.



Optimization criteria can incorporate inventory holding costs, server idleness times, and

other appropriate performance measures.

Excepting simple examples such control problems are quite intractable by classical

queueing techniques, and thus suitable approximation methods are needed. One common

approach for systems that are critically loaded (see [20]) uses heavy traffic approximation

to replace, formally, a control problem for a stochastic network by one for a diffusion

process. This leads to a challenging class of singular diffusion control problems with

state constraints. The basic approach is to solve the diffusion control problem (say

approximately by a suitable numerical procedure), and then use insights derived from

the solution to obtain a near optimal network control policy.

In this chapter we study a two-dimensional controlled queueing network model, often

referred to as the “criss-cross” network. The network is described in Section 4.2 and

has been studied by several authors (see [24], [9], [34], [38], and [8]). The basic problem

concerns the optimal scheduling of jobs in a two server, two customer queueing system.

Even though the network is simple to describe, analysis of the control problem is quite

subtle and depends heavily on the values of the model parameters. In the current work,

we focus on the parameter regime IIb of [38], (Condition 4.6.1 of the current work), a

regime which to date has not yielded an analytical solution.

Our goal in the present study is to develop a numerical scheme for the singular

diffusion control problem corresponding to this network. One can adapt the numerical

solution of this diffusion control problem in a straightforward way to develop a scheduling

policy for the underlying network; however, this is not pursued in the current work.

We begin by presenting the Brownian control problem (BCP) that is obtained by tak-

ing a formal heavy traffic limit of the controlled queueing network. We next present an

equivalent lower dimensional control problem that is of the singular type with state con-

straints. This reduced control problem, commonly referred to as the equivalent workload

formulation (EWF), is the main subject of the study in this chapter.
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Since no closed form analytical solutions are available, a standard approach, as carried

out in Chapter 2, is through approximations by finite state controlled Markov chains.

However, such schemes are numerically quite intensive and thus it is of interest to develop

simpler alternative schemes that take into account specific problem features. In this

chapter we exploit the linearity of the dynamics and convexity of the cost to reduce the

singular control problem to an optimal stopping problem. This is the main result of this

chapter, which is presented in Theorem 4.7.1. Although numerical schemes for singular

control problems are notoriously hard, there are relatively simple schemes available for

optimal stopping problems. In the last section of this chapter, we use such schemes to

obtain near optimal control policies for the EWF corresponding to the criss-cross network.

We show by examples that a numerical scheme based on a Markov chain approximation

of the singular control problem can suffer from serious divergence problems, whereas the

scheme based on optimal stopping is quite robust to the choice of initialization. We also

illustrate how incorporating results and insights from a computational algorithm for the

optimal stopping problem can substantially improve the numerical performance of the

computational scheme based on the singular control problem.

4.2 The Criss-Cross Network

The network of interest is illustrated in Figure 4.1. We refer the reader to [8] for a precise

mathematical formulation. Two types of customers (or jobs, packets, etc.), class 1 and

class 2, arrive according to independent renewal processes to be served by server 1. Class

1 customers exit the system upon completion of service by server 1. Class 2 customers,

after being served by server 1, are redesignated as class 3 and proceed to be served by

server 2. They exit the system upon completion of service by server 2. Service times for

each activity are i.i.d. with finite mean and variance. A controller needs to decide, at any

given moment, should server 1 process class 1, class 2, or idle. Similarly, a corresponding
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Figure 4.1: The criss-cross network

decision regarding the second server needs to be made. The goal of the controller is to

implement a service scheduling policy that will minimize a discounted linear holding cost

over an infinite time horizon.

4.3 The Brownian Control Problem

We now describe the diffusion control problem that arises on taking a formal heavy traffic

limit of the above controlled network. Suppose that we have a sequence of such criss-cross

networks, indexed by r = 0, 1, 2, . . .. For the rth network, assume that class i (i = 1, 2)

customers arrive at rate λr
i , and are served by server 1 at rate µr

i . Assume also that class

3 customers are served by server 2 at rate µr
3. Suppose there exist λj ∈ (0,∞), j = 1, 2,

and µk, k = 1, 2, 3, such that

lim
r→∞

λr
j = λj, lim

r→∞
µr

k = µk.

The following heavy traffic assumptions stipulate that the sequence of networks approach

a critically loaded system as r →∞.
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Condition 4.3.1 Suppose there exist bk, k = 1, 2, 3 such that b1 + b2 = 1 and

lim
r→∞

r
λr

1

µr
1

= b1, lim
r→∞

r
λr

2

µr
2

= b2, lim
r→∞

r(1− λr
2

µr
3

) = b3. (4.1)

Note that the above assumption implies in particular,

λ1

µ1

+
λ2

µ2

= 1,
λ2

µ3

= 1. (4.2)

Given the control problem for the rth network, one arrives at the Brownian control

problem described below by taking formal limits as r →∞; see [8] for details.

Let (Ω,F , {Ft}, IP ) be a filtered probability space equipped with a a three-dimensional

{Ft}-Brownian motion B̃ that starts from the origin with drift θ
.
= (µ1b1, µ2b2, µ3b3)

′ and

covariance matrix

Λ
.
=




2λ1 0 0

0 2λ2 −λ2

0 −λ2 2λ2




.

We will refer to Φ
.
= (Ω,F , {Ft}, IP, B̃) as a system.

Definition 4.3.2 An admissible control for the Brownian control problem (BCP) for

initial condition q ∈ IR3
+ and the system Φ is a three-dimensional {Ft}-adapted, RCLL

process Y ≡ (Y1, Y2, Y3) for which:

Qk(t)
.
= qk + B̃k(t) + µkYk(t)− µ2Y2(t) 1{k=3} ≥ 0 for all t ≥ 0, k = 1, 2, 3,

Y1 + Y2 is nondecreasing with Y1(0) + Y2(0) ≥ 0,

Y3 is nondecreasing with Y3(0) ≥ 0.

(4.3)
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We denote by Ã(q, Φ) the set of all admissible controls for q and Φ. We refer to Q as the

controlled process corresponding to Y .

Let γ ∈ (0,∞) and hk ∈ (0,∞), k = 1, 2, 3. The cost for exercising the control

Y ∈ Ã(q, Φ) is given by

J̃(q, Y )
.
= IE

∫ ∞

0

e−γth ·Q(t)dt. (4.4)

The value function for the BCP with initial condition q is

Ṽ (q)
.
= inf

Φ
inf

Y ∈Ã(q,Φ)
J̃(q, Y ), (4.5)

where the outside supremum is taken over all probability systems Φ.

Although we have not provided a precise description of the network control problem,

we note that all the processes in Definition 4.3.2 have natural interpretations in terms of

the underlying queueing system. In particular, the process Qk is a surrogate for a suitably

scaled process of queue length at buffer k. The requirement that Q be nonnegative stems

from physical queueing considerations. Similarly, Y1(t) + Y2(t) can be interpreted as the

amount of idleness server 1 incurs over the period [0, t], in an appropriate limiting sense.

The process Y3 corresponds to the idleness process for server 2. The weights hk represent

the holding costs per customer per unit time for buffer k. Finally, the discount factor γ

weights costs incurred now relative to those incurred in the future.

4.4 Equivalent Workload Formulation of the BCP

We will consider the following regime, which corresponds to Case II of [38].

Condition 4.4.1 Case II: h1µ1 − h2µ2 + h3µ2 > 0.

The control problem in the previous section does not fall under the classical framework

of singular control since an admissible control is allowed to have paths with infinite total

variation. However, using techniques from Harrison and van-Mieghem [21] it is possible
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to reformulate the above to a standard singular control problem with state constraints

which, furthermore, lies in a lower dimensional space. This formulation is referred to in

the literature as the Equivalent Workload Formulation (EWF). We present this workload

problem below and discuss its connections with the BCP in the next section.

Let

M
.
=




1
µ1

1
µ2

0

0 1
µ3

1
µ3


 .

Define B
.
= MB̃, where B̃ is as in Section 4.3.

Definition 4.4.2 An admissible control for the workload control problem for initial con-

dition w = (w1, w2) ∈ IR2
+ and the system Φ is a two-dimensional {Ft}-adapted, RCLL

process I = (I1, I2) for which:

W (t)
.
= w + B(t) + I(t) ≥ 0, t ≥ 0; (4.6)

I is nondecreasing with I(0) ≥ 0. (4.7)

We refer to W as the controlled process corresponding to I. Let A(w, Φ) denote the set

of all admissible controls for w and Φ. The cost function corresponding to I ∈ A(w, Φ)

is given by

J(w, I)
.
= IE

∫ ∞

0

e−γtĥ(W (t))dt, (4.8)

where the continuous function ĥ : IR2
+ → [0,∞) is defined as

ĥ(z1, z2) =





(h2µ2 − h3µ2)z1 + h3µ3z2, µ3z2 ≥ µ2z1,

h1µ1z1 + µ3

µ2
(h2µ2 − h1µ1)z2, µ3z2 < µ2z1.

(4.9)

The value function of the workload control problem for initial condition w is

V (w)
.
= inf

Φ
inf

I∈A(w,Φ)
J(w, I), (4.10)

99



where the outside supremum is taken over all probability systems Φ. The goal in this

reduced control problem is to find an optimal control, i.e. I∗ = (I∗1 , I
∗
2 ) ∈ A(w, Φ) such

that V (w) = J(w, I∗). In the sections that follow, we develop a convergent numerical

scheme which yields an approximation to the value function and a control whose cost

attains this approximate value.

Before analyzing the workload control problem defined above, we discuss below con-

nections between the workload control problem and the BCP.

4.5 Connections between EWF and BCP

For q ∈ IR3
+ and a system Φ, let Y ∈ Ã(q, Φ) be an admissible control for the BCP

with corresponding controlled process Q. Define I = (I1, I2) by I1
.
= Y1 + Y2 and

I2
.
= Y3, and let w

.
= Mq, W (t)

.
= MQ(t), t ≥ 0. It is easy to check that I ∈ A(w, Φ);

that is, I is an admissible control for the workload control problem, with corresponding

controlled process W . Furthermore, J(w, I) ≤ J̃(q, Y ), and if J̃(q, Y ) = Ṽ (q) then we

have J(w, I) = V (w).

Conversely, given a control I ∈ A(w, Φ) for some system Φ and w ∈ IR2
+ one can obtain

a control Y ∈ Ã(q, Φ) for any q ∈ IR3
+ satisfying Mq = w, such that J̃(q, Y ) = J(w, I), in

the following manner (see [8] for details). Let W be the controlled processes corresponding

to I. Define Y via:

Y1(t)
.
=




− B̃1(t)

µ1
, µ3W2(t) ≥ µ2W1(t),

− B̃3(t)
µ2

+ I1(t)− µ3

µ2
I2(t), µ3W2(t) < µ2W1(t);

Y2(t)
.
=





B̃1(t)
µ1

+ I1(t), µ3W2(t) ≥ µ2W1(t),

B̃3(t)
µ2

+ µ3

µ2
I2(t), µ3W2(t) < µ2W1(t);

Y3(t)
.
= I1(t).
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It can be easily checked that Y ∈ Ã(q, Φ) and the costs agree, i.e. J̃(q, Y ) = J(w, I). This

one-to-one correspondence shows that once an optimal (or near optimal) control policy

for the WCP is determined, one can obtain an optimal (respectively, near optimal) control

for the BCP.

4.6 A Further Reduction in Parameter Regime IIb

We now focus attention on the EWF control problem of Section 4.4. To simplify notation,

for the remainder of this chapter we denote a system by Φ = (Ω,F , {Ft}, IP,B), where B

is a two-dimensional {Ft}-Brownian motion with drift Mθ and covariance matrix MΛM ′.

In particular, for I ∈ A(w, Φ) we have W (t) = w + B(t) + I(t).

For the remainder of the chapter we assume that the network parameters satisfy the

following condition.

Condition 4.6.1 (Parameter regime IIb of [38]).

h1µ1 − h2µ2 + h3µ2 > 0, h2µ2 − h3µ2 < 0, h2µ2 − h1µ1 ≥ 0. (4.11)

The above parameter regime is one of the key issues left unresolved in [38]. In this

regime an explicit solution of the BCP is not available and the determination of an

asymptotically optimal control policy for the underlying network is an open problem.

In the rest of this chapter we will develop numerical approaches for approximating the

solution of the BCP by first establishing an equivalence between this control problem

and a problem of optimal stopping.

It is easy to check that under Condition 4.6.1, ĥ(z1, z2) is nondecreasing in z2 for

each fixed z1; i.e. if z2 ≤ z̃2 then ĥ(z1, z2) ≤ ĥ(z1, z̃2) for all z1. We now use this

monotonicity property to reduce the workload problem of Section 4.4 to a problem with

a one-dimensional control.
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Fix w ∈ IR2
+ and a system Φ and define for t ≥ 0,

I∗2 (t)
.
= −min{0, inf

0≤s≤t
[w2 + B2(s)]}. (4.12)

Note that I∗2 is {Ft}-adapted, RCLL (in fact, continuous), and nondecreasing with

I∗2 (0) = 0. Furthermore W ∗
2 (t)

.
= w2 + B2(t) + I∗2 (t) ≥ 0 for all t ≥ 0. Let I = (I1, I2) ∈

A(w, Φ) with corresponding controlled process W = (W1, W2). Then defining Ĩ
.
= (I1, I

∗
2 )

we have Ĩ ∈ A(w, Φ) and I2(t) ≥ I∗2 (t) for all t ≥ 0, which implies W2(t) ≥ W ∗
2 (t), t ≥ 0.

Define J1(w, I1)
.
= J(w, Ĩ); that is,

J1(w, I1) = IE

∫ ∞

0

e−γtĥ(W1(t),W
∗
2 (t))dt. (4.13)

Since ĥ(z1, z2) is nondecreasing in z2 we have J(w, I) ≥ J1(w, I1) and therefore

V (w) = inf
Φ

inf
I1∈A1(w1,Φ)

J1(w, I1), (4.14)

where A1(w1, Φ) is the set of all {Ft}-adapted RCLL processes I1 that are nondecreasing

with I1(0) ≥ 0 and W1(t) ≥ 0 for all t ≥ 0.

Thus under Condition 4.6.1 the main difficulty with the workload control problem

lies in characterizing (or approximating) the first component of an optimal control. In

preparation for a numerical scheme for obtaining a near optimal control policy, we present

next an optimal stopping problem and our main equivalence result (Theorem 4.7.1) that

connects this problem with the EWF.
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4.7 Equivalence between Singular Control and Op-

timal Stopping Problems

Since ĥ is convex its left-derivative in the x-direction exists at every point z = (z1, z2) ∈
IR2

+ with z1 > 0 and is given by

ĥ−x (z)
.
= lim

δ↓0
ĥ(z1, z2)− ĥ(z1 − δ, z2)

δ
.

It is easily checked that for (z1, z2) ∈ (0,∞)× [0,∞),

ĥ−x (z1, z2) =





h2µ2 − h3µ2, µ3z2 ≥ µ2z1,

h1µ1, µ3z2 < µ2z1.
(4.15)

Let w = (w1, w2) ∈ IR2
+, Φ̃ = (Ω̃, F̃ , {F̃t}, ĨP , B̃) be a system, and let Ĩ ∈ A(w, Φ̃).

Denote the filtration σ{B̃(s), Ĩ(s), 0 ≤ s ≤ t} by F̂t. We refer to Φ̂
.
= (Ω̃, F̃ , {F̂t}, ĨP , B̃,

Ĩ) as a controlled system. Let S(Φ̂) be the set of all {F̂t}-stopping times. Finally, let

S̃
.
= inf{t ≥ 0 : W̃ 0

1 (t) ≤ 0}, where W̃ 0
1 (t)

.
= w1 + B̃1(t). The reward associated with

stopping at time σ̃ ∈ S(Φ̂) is given by

Ĵ(w, σ̃)
.
= ĨE

∫ σ̃∧S̃

0

e−γtĥ−x (W̃ 0
1 (t), W̃ ∗

2 (t))dt, (4.16)

where W̃ ∗
2 (t)

.
= w2 + B̃2(t)−min{0, inf0≤s≤t[w2 + B̃2(s)]}. Consider the optimal stopping

problem of choosing a stopping time σ̃ to maximize the reward in (4.16). Then the value

function for the optimal stopping problem for initial condition w is defined as

u(w)
.
= sup

Φ̂

sup
σ̃∈S(Φ̂)

Ĵ(w, σ̃), (4.17)

where the outside supremum is taken over all controlled systems Φ̂.
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The following theorem is our main result which establishes an equivalence between

the workload (singular) control problem and the above optimal stopping problem. The

proof is presented in Section 4.8. For a function f defined on a domain in IR2, let fx

denote the directional derivative of f in the x-direction.

Theorem 4.7.1 Let w = (w1, w2) ∈ IR2
+ with w1 > 0. Then Vx(w) exists and equals

u(w).

We now give a heuristic explanation of the above equivalence result. The optimal control

in a singular control problem often takes the form of a “no action” region. No control is

applied within this region, and when the state process hits the boundary of the no action

region, enough control is applied to instantaneously push the process back inside the no

action region. If the initial state falls outside the no action region, control is applied

immediately to push the state to the boundary of the no action region.

For w = (w1, w2) ∈ IR2
+ suppose I1 ∈ A1(w1, Φ) takes this no-action region form. Let

I∗2 be as in (4.12) and let W = (W1,W
∗
2 ) be the state process corresponding to w and

I = (I1, I
∗
2 ). Suppose there is a function g that defines the boundary between the action

and no-action regions for the control I1. That is, for z = (z1, z2) no action is taken if

z1 > g(z2), otherwise control is applied. Then the (cumulative) amount of control applied

by time t, I1(t), can be written as I1(t) = sup0≤s≤t ξ(W (s)) where

ξ(z1, z2) =





0, z1 > g(z2),

g(z2)− z1, z1 ≤ g(z2).

Taking the left derivative of ξ in the x-direction we obtain

ξ−x (z1, z2) =





0, z1 > g(z2),

−1, z1 ≤ g(z2).

Intuitively ξ−x specifies whether a control is applied (ξ−x = −1) or not (ξ−x = 0) and
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one can interpret {z : ξ−x (z) = 0} as the no-action region. We can associate with I a

stopping time σ = inf{t ≥ 0 : ξ−x (W (t)) = −1}; then σ is the first time at which control

is applied. For the stopping rule σ, {z : ξ−x (z) = 0} represents the continuation region

while {z : ξ−x (z) = −1} is the stopping region. Within the continuation region, the state

process is uncontrolled; in particular, the evolution of the first coordinate W1(t) is given

by w1 + B1(t). This linearity of the dynamics suggests that the rate of change of the

value function (in the x-direction) should be given in terms of the x-direction derivative

of the cost function, and thus one expects the relation u(w) = Vx(w).

Finally, observe that we infimize over admissible controls in defining V (w), but we

take the supremum over {F̂t}-stopping times in defining u(w). This can be explained by

the reversal of sign in the action region from positive (for ξ(z)) to negative (for ξ−x (z)).

4.8 Proof of Theorem 4.7.1

This section is devoted to the proof of Theorem 4.7.1. The proof proceeds in three main

steps, established in Lemmas 4.8.1, 4.8.3, and 4.8.5.

We begin with the following lemma which establishes convexity of the value function

V .

Lemma 4.8.1 V : IR2
+ → [0,∞) is convex.

Proof. Fix w1, w2 ∈ IR2
+ and let α ∈ (0, 1). Set ŵ = αw1 +(1−α)w2. It suffices to show

that V (ŵ) ≤ αV (w1) + (1− α)V (w2). Let ε > 0 be arbitrary, and let Φ1, Φ2 be systems

and I i ∈ A(wi, Φi), i = 1, 2, be such that

J(wi, I i) ≤ V (wi) + ε/2, i = 1, 2. (4.18)

Denote by Bi the Brownian motion and by W i the controlled process (corresponding to

I i) on Φi. Then W i = wi + Bi + I i, i = 1, 2. Since I1, I2 are in general on different
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probability systems, one can not combine them directly to construct a control for the

initial condition ŵ. The following argument allows us to assume without loss of generality

that I1 and I2 are given on the same system.

Let E0 = D([0,∞) : IR2)× C([0,∞) : IR2) and {F0
t }t≥0 be the canonical filtration on

this system. Also let F0 = σ{F0
t : t ≥ 0}. Denote the measure induced by I i, Bi on

(E0,F0) by IP i
0. Writing a canonical element in E0 as (u, b), we can decompose IP i

0 as

IP i
0(du db) = Qi(b, du)Q(db),

where Q is the measure induced by a Brownian motion with drift Mθ and covariance

matrix MΛM ′.

Next let E = D([0,∞) : IR2) × D([0,∞) : IR2) × C([0,∞) : IR2) , {Ft} be the

canonical filtration on this space, and F = σ{Ft : t ≥ 0}. Denote a typical element in E
as (u1, u2, b) and introduce the probability measure IP on (E ,F) by

IP (du1 du2 db) = Q1(b, du1)Q
2(b, du2)Q(db).

Denoting the canonical coordinate processes on E by Î1, Î2, B̂, we see that Φ̂
.
= (E ,F , {Ft},

IP, B̂) is a system (cf. Lemma IV.1.2 of [27]), and Î i ∈ A(wi, Φ̂) with corresponding con-

trolled process Ŵ i = wi + B̂ + Î i. Furthermore, J(wi, Î i) = J(wi, I i), i = 1, 2.

Now set Î
.
= αÎ1+(1−α)Î2. It is easy to check that Î ∈ A(ŵ, Φ̂). From the convexity

of ĥ and recalling (4.18) we have,

V (ŵ) ≤ J(ŵ, Î)

= IE

∫ ∞

0

e−γtĥ(αŴ 1(t) + (1− α)Ŵ 2(t))dt

≤ αIE

∫ ∞

0

e−γtĥ(Ŵ 1(t))dt + (1− α)IE

∫ ∞

0

e−γtĥ(Ŵ 2(t))dt

≤ αV (w1) + (1− α)V (w2) + ε.
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In the above display IE denotes expectation with respect to IP . Since ε > 0 is arbitrary,

the result follows.

Let w1 > 0, w2 ≥ 0, and δ > 0 be such that w1 − δ > 0. Define

∆−V (w)
.
= lim

δ↓0
V (w1 − δ, w2)− V (w1, w2)

−δ
. (4.19)

Also, for w1 > 0, w2 ≥ 0, and δ > 0, define

∆+V (w)
.
= lim

δ↓0
V (w1 + δ, w2)− V (w1, w2)

δ
. (4.20)

Existence of the above limits is a consequence of convexity of V (Theorem 24.1 [44]).

The following lemma is also an immediate consequence of convexity of V . For a proof,

see Theorem 24.1 of [44].

Lemma 4.8.2 Let w = (w1, w2) ∈ IR2
+ with w1 > 0. Then ∆−V (w) ≤ ∆+V (w).

In the following lemma we establish the inequality ∆−V (w) ≥ u(w). To prove this

result we first select a near-optimal control I1 for the singular control problem which

is admissible for initial condition w1. From this we construct a control Iδ
1 which is

admissible for initial condition w1 − δ, by “bumping” I1 by an amount δ at the first

time the uncontrolled process w1 + B1(t) falls below δ. The desired inequality follows by

comparing the cost functions associated with I1 and Iδ
1 , using the near-optimality of I1,

and taking appropriate limits.

Lemma 4.8.3 Let w = (w1, w2) ∈ IR2
+ with w1 > 0. Then ∆−V (w) ≥ u(w).

Proof. Let ε > 0 be arbitrary and let Φ = (Ω,F , {Ft}, IP, B) and I1 ∈ A1(w1, Φ), with

corresponding state process W1, be such that

V (w) ≤ J1(w, I1) ≤ V (w) + ε. (4.21)
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Next let σ̃ be a {F̂t}-stopping time for some controlled system Φ̂ = (Ω̃, F̃ , {F̃t}, ĨP , B̃, Ĩ).

Although σ̃ and I1 are possibly defined on different probability spaces we can implement a

construction analogous to that in Lemma 4.8.1 to define all processes on a common prob-

ability space. More precisely, let Ω† = D([0,∞) : IR2)×D([0,∞) : IR2)×C([0,∞) : IR2),

{F †
t } the canonical filtration on this space, and F † = σ{F †

t : t ≥ 0}. Let Ĩ†, I†, B†,

denote the canonical coordinate processes on this space and let IP † be the probability

measure on (Ω†,F †) under which: (Ĩ†, B†) has the same distribution as (Ĩ , B̃); (I†, B†)

has the same distribution as (I, B); and B† is an {F †
t }-Brownian motion. Then, let-

ting Φ† = (Ω†,F †, {F †
t }, IP †, B†), I† ∈ A(w, Φ†) with corresponding controlled process

W † = w + B† + I†. Let W ∗,†
2 (t) = −min{0, inf0≤s≤t[w2 + B†

2(t)]} and J1(w, I†1) =

IE† ∫∞
0

e−γtĥx(W
†
1 (t),W ∗,†

2 (t))dt. Then clearly J1(w, I1) = J1(w, I†1). Furthermore, there

is an {F †
t }-stopping time σ† such that

(σ†, S†, B†) d
= (σ̃, S̃, B̃), (4.22)

where S† .
= inf{t ≥ 0 : W 0,†

1 (t) ≤ 0} and W 0,†
1 (t)

.
= w1 + B†

1(t). In particular, Ĵ(w, σ̃) =

Ĵ(w, σ†), where Ĵ(w, σ†) = IE† ∫ σ†∧S†

0
e−γtĥ−x (W̃ 0,†

1 (t), W̃ ∗,†
2 (t))dt.

Let w1 > 0, w2 ≥ 0, and δ > 0 be such that w1 − δ > 0, and let wδ = (w1 − δ, w2).

Define S†δ
.
= inf{t ≥ 0 : w1 + B†

1(t) ≤ δ}. Since B†
1 has continuous paths a.s., S†δ ↑ S† a.s.

(IP †) as δ ↓ 0. Define for t ≥ 0, Iδ
1(t)

.
= I†1(t) + δ 1{t≥σ†∧S†δ}

and

W δ
1 (t)

.
= w1 − δ + B†

1(t) + Iδ
1(t)

= w1 + B†
1(t) + I†1(t)− δ 1{0≤t<σ†∧S†δ}

.

From definitions of I†1 and S†δ it follows that Iδ
1 ∈ A1(w1 − δ, Φ†) with corresponding
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controlled process W δ
1 . Thus we have

V (wδ) ≤ J1(wδ, I
δ
1)

= IE†
∫ ∞

0

e−γtĥ(W δ
1 (t),W ∗,†

2 (t))dt

= IE†
∫ σ†∧S†δ

0

e−γtĥ(W †
1 (t)− δ,W ∗,†

2 (t))dt

+ IE†
∫ ∞

σ†∧S†δ

e−γtĥ(W †
1 (t),W ∗,†

2 (t))dt

= IE†
∫ σ†∧S†δ

0

e−γt[ĥ(W †
1 (t)− δ,W ∗,†

2 (t))− ĥ(W †
1 (t),W ∗,†

2 (t))]dt

+ IE†
∫ ∞

0

e−γtĥ(W †
1 (t),W ∗,†

2 (t))dt. (4.23)

Since ĥ is convex we have (see Theorem 24.1 of [44]) that for z1 > 0, z2 ≥ 0 and δ small

enough

ĥ(z1 − δ, z2)− ĥ(z1, z2) = −δ

∫ 1

0

ĥ−x (z1 − θδ, z2)dθ. (4.24)

Then, recalling (4.21) it follows from the above equation and (4.23) that

V (wδ) ≤ V (w) + ε− δIE†
∫ σ†∧S†δ

0

e−γt

∫ 1

0

ĥ−x (W †
1 (t)− θδ,W ∗,†

2 (t))dθdt. (4.25)

Let S̃δ
.
= inf{w1 + B̃1(t) ≤ δ} and W̃ ∗

2 (t) = −min{0, inf0≤s≤t[w2 + B̃2(t)]}. By the above

display and (4.22) we have

V (wδ)− V (w)

−δ
≥ −ε

δ
+ IE†

∫ σ†∧S†δ

0

e−γt

∫ 1

0

ĥ−x (w1 − θδ + B†
1(t) + I†1(t), W

∗,†
2 (t))dθdt

=
−ε

δ
+ ĨE

∫ σ̃∧S̃δ

0

e−γt

∫ 1

0

ĥ−x (w1 − θδ + B̃1(t) + Ĩ1(t), W̃
∗
2 (t))dθdt

≥ −ε

δ
+ ĨE

∫ σ̃∧S̃δ

0

e−γt

∫ 1

0

ĥ−x (w1 − θδ + B̃1(t), W̃
∗
2 (t))dθdt,

where the last line follows since ĥ−x (z1, z2) is nondecreasing in z1 (see Theorem 24.1 of
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[44]) and Ĩ1 ≥ 0. Note that the second term on the right side of the last inequality above

does not depend on ε. Thus letting ε → 0 yields

V (wδ)− V (w)

−δ
≥ ĨE

∫ σ̃∧S̃δ

0

e−γt

∫ 1

0

ĥ−x (w1 − θδ + B̃1(t), W̃
∗
2 (t))dθdt. (4.26)

Next note that since ĥ−x is nondecreasing in z1 we have almost surely (ĨP ) as δ ↓ 0,

∫ 1

0

ĥ−x (w1−θδ + B̃1(t), W̃
∗
2 (t))dθ ↑

∫ 1

0

ĥ−x (w1 + B̃1(t), W̃
∗
2 (t))dθ = ĥ−x (w1 + B̃1(t), W̃

∗
2 (t)).

Since clearly S̃δ ↑ S̃ a.s. (ĨP ) as δ ↓ 0, it follows on taking limits in (4.26) that

∆−V (w) = lim
δ↓0

V (wδ)− V (w)

−δ
≥ ĨE

∫ σ̃∧S̃

0

e−γtĥ−x (w1 + B̃1(t), W̃
∗
2 (t))dt.

Since the system Φ̂ and σ̃ ∈ S(Φ̂) are arbitrary we have

∆−V (w) ≥ sup
Φ̂

sup
σ̃∈S(Φ̂)

ĨE

∫ σ̃∧S

0

e−γtĥ−x (w1 + B̃1(t), W̃
∗
2 (t))dt = u(w).

In Lemma 4.8.5 we establish the inequality ∆+V (w) ≤ u(w). As in the proof of

Lemma 4.8.3 we first select an admissible control for initial condition w1. However, we

now require that the chosen control be optimal (rather than just ε-optimal). Such a

selection is made possible by the following lemma, which establishes the existence of an

optimal control for the workload control problem of Section 4.4.

Lemma 4.8.4 Let w ∈ IR2
+. Then there exists a system Φ and I∗ ∈ A(w, Φ) such that

V (w) = J(w, I∗).

Proof. In the notation of Chapter 3, let W = U = IR2
+, G be the two-dimensional

identity matrix, ` = ĥ, and h = 0. Then ` satisfies equation (3.5) with α` = 1 and

Condition 3.2.2 is satisfied with cG = 1. Thus the result is an immediate consequence of

Theorem 3.2.3.
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Note that if w = (w1, w2) and I∗ = (I∗1 , I
∗
2 ) ∈ A(w, Φ) is an optimal control given on

some system Φ, then in view of the discussion below (4.11), we can assume without loss of

generality that I∗2 is given by the right side of (4.12). Thus, in particular, I∗1 ∈ A1(w1, Φ)

and V (w) = J1(w, I∗1 ).

Starting from I∗1 we now construct a control Iδ
1 which is admissible for initial con-

dition w1 + δ. The constructed Iδ
1 has the property that no control is applied until the

first time at which I∗1 (t) ≥ δ, and from then on Iδ
1 = I∗1 − δ. The desired inequality fol-

lows by comparing the associated cost functions, using the optimality of I∗1 , and taking

appropriate limits. To obtain the desired limits, we rely heavily on the explicit form of

ĥ−x given by (4.15). Note the abuse of notation in our use of wδ and Iδ
1 in Lemma 4.8.5;

these quantities differ from those used in Lemma 4.8.3.

Lemma 4.8.5 Let w = (w1, w2) ∈ IR2
+. Then ∆+V (w) ≤ u(w).

Proof. Let I∗1 ∈ A1(w1, Φ), with corresponding state process W ∗
1 = w1 + B1 + I∗1 , be an

optimal control given on some system Φ = (Ω,F , {Ft}, IP, B):

V (w) = J1(w, I∗1 ) = IE

∫ ∞

0

e−γtĥ(W ∗
1 (t),W ∗

2 (t))dt, (4.27)

where W ∗
2 is the state process corresponding to I∗2 given by (4.12). Define σ∗ .

= inf{t ≥ 0 :

I∗1 (t) > 0}. Defining F̂t
.
= σ{B(s), I∗(s), 0 ≤ s ≤ t} we see that Φ̂ = (Ω,F , {F̂t}, IP, B, I∗)

is a controlled system and σ∗ ∈ S(Φ̂). Let δ > 0 and wδ = (w1 + δ, w2). Define

W̃1(t) = w1 + δ + B1(t) and σδ .
= inf{t : W ∗

1 (t) ≥ W̃1(t)}. Note that

σδ = inf{t : I∗1 (t) ≥ δ} ≥ inf{t : I∗1 (t) > 0} = σ∗.

Also, since I∗1 is right-continuous, σδ ↓ σ∗ a.s. as δ → 0.
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Note W̃1(σ
δ) = W̃1(σ

δ−) ≥ W ∗
1 (σδ−), which implies W̃1(σ

δ) ≥ 0. Define

Iδ
1(t)

.
= (I∗1 (t)− δ) 1{t≥σδ}, t ≥ 0. (4.28)

It follows from the definition of I∗1 and σδ that Iδ
1 is {Ft}-adapted, RCLL, and nonde-

creasing with Iδ
1(0) ≥ 0. Next define for t ≥ 0,

W δ
1 (t)

.
= w1 + δ + B1(t) + Iδ

1(t)

= w1 + B1(t) + I∗1 (t) + (δ − I∗1 (t)) 1{0≤t<σδ}.

Note that W δ
1 (t) ≥ 0 for all t ≥ 0 and thus Iδ

1 ∈ A1(w1 + δ, Φ). Also note that

W δ
1 (t) =





W̃1(t), 0 ≤ t < σδ,

W ∗
1 (t), t ≥ σδ.

Since Iδ
1 ∈ A1(w1 + δ) we have

V (wδ) ≤ J1(wδ, I
δ
1)

= IE

∫ ∞

0

e−γtĥ(W δ
1 (t),W ∗

2 (t))dt

= IE

∫ σδ

0

e−γtĥ(W̃1(t), W
∗
2 (t))dt + IE

∫ ∞

σδ

e−γtĥ(W ∗
1 (t),W ∗

2 (t))dt. (4.29)

Subtracting V (w) from both sides and using (4.27) yields,

V (wδ)− V (w)

≤ IE

∫ σδ

0

e−γt[ĥ(W̃1(t),W
∗
2 (t))− ĥ(W ∗

1 (t),W ∗
2 (t))]dt

= IE

∫ σδ

0

e−γt(W̃1(t)−W ∗
1 (t))

∫ 1

0

ĥ−x (W ∗
1 (t) + θ(W̃1(t)−W ∗

1 (t)),W ∗
2 (t))dθdt,
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where the last line follows from the convexity of ĥ (cf. Theorem 24.2 [44]). Since ĥ−x is

nondecreasing we have, on noting that W̃1(t)−W ∗
1 (t) ≥ 0 for t < σδ,

V (wδ)− V (w) ≤ IE

∫ σδ

0

e−γt(W̃1(t)−W ∗
1 (t))ĥ−x (W̃1(t),W

∗
2 (t))dt

= IE

∫ σ∗

0

e−γt(W̃1(t)−W ∗
1 (t))ĥ−x (W̃1(t),W

∗
2 (t))dt

+ IE

∫ σδ

σ∗
e−γt(W̃1(t)−W ∗

1 (t))ĥ−x (W̃1(t),W
∗
2 (t))dt. (4.30)

For t < σ∗, I∗1 (t) = 0 which implies W̃1(t) −W ∗
1 (t) = δ. Thus the first term on the

right side of (4.30) is equal to δIE
∫ σ∗

0
e−γtĥ−x (W̃1(t),W

∗
2 (t))dt. On the other hand, for

σ∗ < t < σδ, 0 < I∗1 (t) < δ and so 0 ≤ W̃1(t)−W ∗
1 (t) < δ. Thus since ĥ−x is bounded (by

some C > 0) it follows that the second term on the right side of (4.30) is bounded from

above by δCIE[σδ − σ∗]. Next note that since I∗1 ∈ A1(w1, Φ), W ∗
1 (t) ≥ 0 for all t ≥ 0

and thus σ∗ = inf{t ≥ 0 : I∗1 (t) > 0} ≤ inf{t ≥ 0 : w1 + B1(t) ≤ 0} = S. Using these

observations in (4.30) we have

V (wδ)− V (w)

δ
≤ IE

∫ σ∗

0

e−γtĥ−x (W̃1(t),W
∗
2 (t))dt + CIE[σδ − σ∗]

= IE

∫ σ∗∧S

0

e−γtĥ−x (W̃1(t),W
∗
2 (t))dt + CIE[σδ − σ∗]

= IE

∫ σ∗∧S

0

e−γtĥ−x (W 0
1 (t),W ∗

2 (t))dt + F (δ) + CIE[σδ − σ∗],(4.31)

where W 0
1 (t) = w1 + B1(t) and

F (δ)
.
= IE

∫ σ∗∧S

0

e−γt[ĥ−x (W̃1(t), W
∗
2 (t))− ĥ−x (W 0

1 (t),W ∗
2 (t))]dt. (4.32)

Since σ∗ ∈ S(Φ̂), the first term on the right side of (4.31) is bounded from above by

u(w). Also, since σδ ↓ σ∗ ≥ 0 a.s., σδ ≤ Ŝ
.
= inf{t ≥ 0 : w1 +B1(t) ≤ −1}, and IEŜ < ∞,

we have IE[σδ − σ∗] → 0 as δ ↓ 0. Thus to complete the proof of the lemma it suffices to
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show lim supδ↓0 F (δ) ≤ 0.

Note W̃1(t) ≥ W 0
1 (t) and thus ĥ−x (W̃1(t),W

∗
2 (t)) ≥ ĥ−x (W 0

1 (t), W ∗
2 (t)). From the

expression for ĥ−x in (4.15) we see that

{ĥ−x (W̃1(t),W
∗
2 (t))− ĥ−x (W 0

1 (t),W ∗
2 (t)) > 0}

= {W̃1(t) > (µ3/µ2)W
∗
2 (t) ≥ W 0

1 (t)}

= {w1 + δ + B1(t) > (µ3/µ2)(w2 + B2(t) + I∗2 (t)) ≥ w1 + B1(t)}

= {0 ≤ (µ3/µ2)(w2 + B2(t) + I∗2 (t))− (w1 + B1(t)) < δ}.

For t ≥ 0, define the events

Aδ(t)
.
= {0 ≤ (µ3/µ2)(w2 + B2(t) + I∗2 (t))− (w1 + B1(t)) < δ}

A(t)
.
= {0 = (µ3/µ2)(w2 + B2(t) + I∗2 (t))− (w1 + B1(t))}.

Note that for each t ≥ 0, limδ↓0 Aδ(t) = A(t) and since Λ is non-degenerate, P [A(t)] = 0

for all t ≥ 0. Therefore

F (δ) = IE

∫ ∞

0

e−γt[ĥ−x (W̃1(t),W
∗
2 (t))− ĥ−x (W 0

1 (t),W ∗
2 (t))] 1{0≤t≤σ∗∧S}dt

≤ IE

∫ ∞

0

e−γt[h1µ1 − h2µ2 + h3µ2] 1Aδ(t)dt

=

∫ ∞

0

e−γt[h1µ1 − h2µ2 + h3µ2]IP [Aδ(t)]dt,

where the last line follows from Fubini’s theorem. Letting δ → 0 and noting that

IP [Aδ(t)] → IP [A(t)] = 0 for all t ≥ 0, we see that lim supδ→0 F (δ) ≤ 0. This com-

pletes the proof of the lemma.

Proof of Theorem 4.7.1. Combining the results of Lemmas 4.8.3, 4.8.2, and 4.8.5 we

have

u(w) ≤ ∆−V (w) ≤ ∆+V (w) ≤ u(w).
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Thus for all w = (w1, w2) ∈ IR2
+ with w1 > 0, Vx(w) exists and is equal to u(w).

The following gives a characterization of an optimal stopping time in terms of an

optimal control.

Corollary 4.8.6 Let w ∈ IR2
+ and suppose Φ and I∗ = (I∗1 , I∗2 ) ∈ A(w, Φ) are such that

V (w) = J(w, I∗). Let σ∗ .
= inf{t ≥ 0 : I∗1 (t) > 0}. Then u(w) = Ĵ(w, σ∗).

Proof. Inequality (4.31) and the discussion that follows imply ∆+V (w) ≤ Ĵ(w, σ∗). The

result is then a consequence of Theorem 4.7.1.

4.9 Numerical Study

In this section we present the results of a numerical study of the singular control problem

of Section 4.4 and the optimal stopping problem of Section 4.7. We only present a sketch

of the approximation schemes and computational algorithms. The development for the

singular control problem is similar to that in Chapter 2. For an example of a Markov

chain approximation for an optimal stopping problem we refer the reader to Section 5.8.1

in [32]. In the examples that follow, we fix the following values for the model parameters:

h1 = h2 = 1, h3 = 3, µ1 = 0.5, µ2 = 2, µ3 = 1, and γ = 1. We also set the drift of

the Brownian motion B to be (1, 1)′ and its covariance matrix to be the two-dimensional

identity matrix.

The development of the approximating Markov decision problem is similar for the

singular control and the optimal stopping problem. As in Section 2.2 we first trun-

cate the state space and replace the dynamical system by one which is reflected at

the upper truncating boundary. We then discretize the truncated continuous state

space with a grid. Thus, the state space for the approximating problems is given by

S .
= {0, h, 2h, . . . , `} × {0, h, 2h, . . . , `}, where h > 0 is the discretization parameter, and

` is a truncation parameter. (For the purposes of this section, we take h and ` as fixed val-

ues and omit them from all notation.) We then define a discrete time controlled Markov
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chain {(Wn, In), n = 0, 1, 2, . . .} on S with transition kernel p(w, i, w̃) that is locally con-

sistent with the law of the continuous time process of interest. Although we denote the

controlled Markov chains corresponding to both (singular control and optimal stopping)

problems by the same symbols, we note that the controlled transition kernels for the two

chains are quite different. We also define a sequence of interpolation intervals ∆n; we

take these to be 0 for control and reflection steps. Finally, we define an approximating

Markov decision problem by defining an appropriate discrete version of the cost function.

Note that we take h = 0.02 and ` = 1 in the numerical schemes that follow.

We use classical iterative schemes to approximate numerically the optimal controls

and value functions for the two MDPs. The computational algorithms are similar to the

one in Section 2.5. Let i : S → {0, 1} be a feedback control and let In = i(Wn) be the

associated control sequence. In the first control problem In = 1 indicates exercise of the

singular control, and it corresponds to a stopping decision in the second control problem.

Similarly, In = 0 represents a diffusion step in the first control problem and a continuation

step in the second control problem. In particular, p(w, 1, w̃) equals 1{w̃=w+he1} for the

first problem, and it equals 1{w̃=w} for the second problem. This difference is key to the

convergence properties of the two schemes. From the Markov property of {Wn} under

the feedback control i, one has

J(w, I) =
∑
w̃∈S

r(w, i(w), w̃)J(w̃, I) + H(w)∆(w, i(w)), w ∈ S, (4.33)

where r(w, i(w), w̃) = e−β∆(w,i(w))p(w, i(w), w̃), and H is ĥ in the singular control problem

and ĥ−x in the optimal stopping problem. As in Section 2.5, the above equation provides

the basis for the computational algorithm. Starting from some initial control and cost,

the algorithm alternates between sequences of value iterations and policy iterations until

some convergence criteria is met.

Figure 4.2 displays the approximately optimal feedback controls which result from
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Figure 4.2: Comparison of approximately optimal controls. Left: optimal stopping MDP.
Right: singular control MDP.

a numerical run for each of the MDPs. (In each of the feedback control plots in this

section, dots represent the states w for which i(w) = 1, i.e. the control states. The solid

line is the line µ3w2 = µ2w1.) In the optimal stopping MDP, we see that the resulting

control divides the state space into stopping and continuation regions. Furthermore, the

boundary between the regions lies to the left of the line µ3w2 = µ2w1. Intuitively, since

ĥ−x (w) > 0 for any state to the right of this line, it is always optimal to continue from

that state. Once the state process is to the left of the line, the reward is negative. The

optimal control allows negative reward to accumulate, but stops the process once the state

is too far from the positive reward region. Similar considerations apply to the singular

control MDP. In view of Corollary 4.8.6 we might expect the boundary between the

stop/continuation regions in the optimal stopping MDP to be the same as the boundary

between the action/no-action region in the singular control MDP. In Figure 4.2, we see

that, while the boundaries do have similar shapes, they are not exactly equal. This

difference can be attributed to discretization errors since the MDPs corresponding to the

singular control problem and optimal stopping are equivalent only in an asymptotic sense

as the discretization parameter h approaches 0.

We now discuss some numerical features of the algorithms used to produce the controls
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in Figure 4.2, particularly some advantages of incorporating computational results from

the optimal stopping problem MDP in the numerical algorithm for the singular control

MDP. The algorithm for the singular control problem is in general unstable and can

encounter substantial convergence problems. The following example illustrates some of

these difficulties. We take as an initial policy the feedback control i(w) = 1{µ3w2≥µ2w1}.

There is no obvious choice for an initial guess (in the value iterations) for the cost function

associated with this control and initial state w ∈ S. Note that the cost function (4.13)

is uniformly bounded (in control and state) from below by 0 and from above by the

constant 3`. We take the constant 0.75` as our initial estimate for the cost for any initial

state w ∈ S. The feedback controls are updated through a sequence of policy iterations.

Between two policy iterations, starting from a feedback control and an initial guess for

the cost, we run 100 value iterations to get a better estimate of the associated cost.

Figure 4.3 displays the initial control, updated controls after the first and second

policy iterations, and the control after 500 policy iterations. We see that even with a

large number of value and policy iterations, and reasonable initial guesses for the control

and cost function, the computational algorithm for the singular control approximation

can produce results that drastically diverge from the optimal control illustrated in Figure

4.2. This divergence can be attributed to the truncation effects; we see in Figure 4.3 that

applying singular control at the reflecting boundary ∂R

.
= {w ∈ S : w = (`, w2)} in the

early stages of the computation contaminates the numerical results. To better understand

the source of this divergence, consider an initial state on the reflecting boundary ∂R.

Suppose that i is a feedback control for which i(w) = 1 for some w ∈ ∂R and that J̃0(w)

is an estimate of the associated cost. Since exercising singular control at the reflecting

boundary does not affect the coordinates of the state due to instantaneous reflection, we

have p(w, 1, w) = 1 for w ∈ ∂R. Also, since ∆(w, 1) = 0 we see that after the k-th value

iteration of an algorithm based on equation (4.33) we will have J̃k(w) = J̃0(w), k ≥ 1.

Therefore, as long as J̃0(w) is not the true cost, the value iterations will not converge
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Figure 4.3: Divergence of numerical algorithm for singular control MDP. Top left: initial
control. Top right: control after one policy iteration. Bottom left: control after two
policy iterations. Bottom right: control after 500 policy iterations.

to the correct value. This is especially a problem when the initial guess for the cost

associated with the initial control is not chosen well. In this case, it is possible that the

first policy iteration determines it is cheaper to apply control at some of the states on

the reflecting boundary ∂R; we can see this happening in Figure 4.3. For these states,

we can expect the estimated cost for the updated control to be poor even after a large

number of value iterations. These errors then carry over to the next policy iteration and

are compounded as the algorithm progresses.

The previous example shows that the computational algorithm for the singular control

MDP may not converge if the initial guesses for the control and its associated cost are not

chosen well. In contrast, a similar problem is not encountered by the numerical scheme

for the optimal stopping MDP. In this algorithm, we can take advantage of the fact that

if the control is to stop immediately in some initial state, then the reward associated

with that state and control is 0. Since p(w, 1, w) = 1 and ∆(w, 1) = 0, with an initial

guess of J̃0(w) = 0, the value iterations converge trivially to 0 which is the true cost for
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Figure 4.4: Convergence of algorithm for optimal stopping MDP. Left: initial control.
Middle: control after one policy iteration. Right: control after two policy iterations.

that state and control. In addition, a positive reward is earned for states w ∈ ∂R when

the action is to continue. Thus, policy iterations will always choose to continue in such

states, avoiding the boundary effects which arise in the algorithm for the singular control

problem MDP. The example illustrates that the truncation boundary has a much more

serious impact on the singular control problem than on the optimal stopping problem.

The robustness of the optimal stopping MDP algorithm to initial conditions is illus-

trated by the following numerical run which uses a randomly generated initial control

and a cost of 0 for every state. After each policy iteration we perform a single value

iteration to estimate the cost corresponding to the updated control. Figure 4.4 displays

the initial control and updated controls after the first and second policy iterations. We

see that even with dubious initial values and a single value iteration, the computational

algorithm quickly returns to an appropriate guess for the control. After only the second

policy iteration, the control is 1{µ3w2≥µ2w1}, a very reasonable initial guess for the optimal

stopping problem. Furthermore, applying control (i(w) = 1) in states on the reflecting

boundary ∂R does not contaminate the results as it did in the algorithm for the singular

control MDP.

It is possible to ameliorate the numerical difficulties encountered by the scheme for

the singular control MDP by imposing a penalty to make control costly when applied at

states near the boundary ∂R. However, this is an ad hoc solution and we instead take

advantage of the equivalence with the optimal stopping problem to obtain good guesses
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for the initial control and associated cost for use in the singular control algorithm. In

the study described in Figure 4.5 we take for the singular control algorithm the initial

control as the near optimal control obtained from the optimal stopping algorithm. In

addition, we use the near optimal cost from the optimal stopping algorithm to obtain

an initial guess for the cost in the singular control scheme. Namely, guided by Theorem

4.7.1, we use the estimates of u(w), w ∈ S and numerical integration (e.g. trapezoid rule)

to obtain an approximation for V (w), w ∈ S. We take V (`, w2) = 1.5`, 0 ≤ w2 ≤ `, as

the initial condition for the numerical integration. Note that, in general, one expects

that an approximation for V , obtained by first numerically approximating u and then

integrating, will be poorer than one obtained by approximating the singular control

problem by an MDP. However, the estimate obtained from the analysis of the optimal

stopping problem can provide valuable initialization data for the MDP corresponding

to the singular control problem. In this study, after each policy iteration we perform a

single value iteration to estimate the cost corresponding to the updated control. Figure

4.5 displays the initial control, updated controls after the first two policy iterations, and

the approximately optimal control. We see that by incorporating insights obtained from

the optimal stopping problem we obtain good initial guesses and avoid the numerical

difficulties described above. Figure 4.6 displays the initial guess for the value function

obtained through numerical integration and the approximate optimal value function for

the singular control MDP.

The numerical run which produced Figure 4.5 employed a single value iteration be-

tween policy iterations. Figure 4.7 displays the results of two numerical algorithms which

perform 100 value iterations between policy iterations. The figure on the left displays

the control after 500 policy iterations of the singular control algorithm used to produce

Figure 4.3. In contrast, the figure on the right in Figure 4.7 displays the control after

only 20 policy iterations of the singular control algorithm which incorporates insights

from optimal stopping. We see that after 20 iterations, the control produced by the
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Figure 4.5: Algorithm for singular control MDP based on optimal stopping. Top left:
initial control. Top right: control after one policy iteration. Bottom left: control after
two policy iterations. Bottom right: approximately optimal control.
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Figure 4.6: Approximate value function for singular control MDP. Left: initial guess
based on optimal stopping and numerical integration. Right: approximate value function.
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Figure 4.7: Comparison of singular control MDP algorithms. Left: control after 500
policy iterations of singular control algorithm. Right: control after 20 policy iterations
of singular control algorithm which incorporates optimal stopping.

second algorithm is already close to the near optimal control, while after 500 iterations

the singular control algorithm exhibits the divergence discussed earlier in this section.
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