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Abstract 

 
Shaoping Zhang: Regulation of Inflammatory Genes Involved in Periodontal Diseases by 

DNA Methylation 
(Under the direction of Steven Offenbacher) 

 Both bacterial infection and inflammatory immune responses by the host contribute to 

the pathogenesis of periodontal diseases, which include gingivitis in an early stage and 

periodontitis in a more advanced stage. DNA methylation, the most stable epigenetic 

modification, modulates gene expression without changing DNA sequences. The persistence 

of biofilm and the inflammation induced by periodontal pathogens may cause epigenetic 

modifications within the promoter region of genes in local tissues at the biofilm-gingival 

interface. We therefore hypothesize that DNA methylation is a regulatory mechanism for 

transcription of genes involved in both innate and adaptive immune responses in periodontal 

diseases.  

  Using clinical gingival biopsies, we identified an overall increased methylation level 

within the prostaglandin-endoperodie synthase-2 (PTGS2) promoter region in tissues with 

chronic periodontitis. The methylation level at one locus, which is -458bp in the PTGS2 

promoter region, is inversely related to the transcription of this gene. We also identified 

methylation changes of the tumor necrosis factor alpha (TNFA) promoter region specific to 

different stages of periodontal diseases in clinical biopsies. Transcription of TNFA is also 

inversely related to the methylation level at one locus, which is -163bp within the TNFA 

promoter. In addition, a hypomethylation profile within the interferon gamma (IFNG) 
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promoter region is only present in samples exhibiting chronic periodontitis but not in induced 

gingivitis samples. 

In order to study whether Campylobacter rectus (C. rectus), a periodontal pathogen, 

is involved in the epigenetic regulation of inflammatory moleculs, we cultured THP.1 cells 

with C. recuts. An overall hypomethylation of CpG sites within the TNFA promoter and a 

progressive loss of methylation at -72bp locus are present in the THP-1 cells challenged by 

live C. rectus. In addition, the identified hypomethylation pattern is related to an increase of 

the transcriptional of TNFA. Using 5-aza-2deoxycytidine, a DNMT inhibitor, and a 

promoter-specific methylation luciferase reporter assay we confirmed that the methylation 

level of TNFA promoter negatively regulates the transcription of TNFA.  

The data from this study provide evidence to support that altered DNA methylation 

profile identified in the promoter regions of several inflammatory genes contributes to the 

transcriptional regulation of those genes in periodontal diseases. 
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DNA methylation overview 

 Genes determine all the proteins and functional RNAs on which the living biological species 

rely. Although all human cells share the same genetic material, cells behave differently depending on 

cell types, which are defined by their gene expression profiles (1). A regulatory mechanism “beyond 

the genome” must be present in the cells that dictates those expression profiles and can be also kept 

through cell division. This heritable mechanism that can control gene expression without altering 

genetic sequences is now described as an epigenetic regulatory approach (2)(3).  

In eukaryotic cells, DNA is packed into chromatin, a highly organized structure that 

orchestrates DNA, histones and non-histone proteins (4). Epigenetic regulation alters the accessibility 

of trapped DNA sequence to trans-acting factors by modifying DNA and histones or repositioning 

nucleosomes, which are basic units of chromatin (5). Each nucleosome includes a stretch of DNA 

(about 146bp) and associated histone octamer core that consists of 2 identical copies of histone H2A, 

H2B, H3 and H4 polypeptides (6).  DNA methylation, an enzymatic modification on certain cytosines 

in mammalian cells, was proposed to be the mechanism that can switch “on” or “off” genes during 

development (7)(8). It has been well recognized recently that such a methyl-transferring modification 

and post-translational modifications of N-terminal tails of histone polypeptides are key epigenetic 

components. The current scope of “epigenetics” is further enriched by infusing the non-coding RNA 

(miRNA) associated regulation, a mechanism that modulates post-transcriptional gene expression and 

itself can be controlled by DNA methylation (9)(10). 

DNA methylation, as the most important enzymatic modification at the DNA level, involves 

covalent transfer of a methyl group to cytosines mainly within 5’-CpG-3’ dinucleotides context. This 

biochemical reaction is catalyzed by DNA methyltransferases (DNMTs) utilizing S-adenosyl 

methionine (SAM) as the methyl donor (10)(1). The functional DNMT family includes several 

members such as DNMT1, DNMT3a and DNMT3b. While DNMT1 acts as a maintenance 

methyltransferase and is most abundant in mammals, DNMT3a and DNMT3b seem to play a more 

important role in de novo methylation at unmethylated cytosines in somatic cells (11)(6). In non-
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embryonic cells, CpG rich regions, which are termed CpG islands and usually embedded within a 

large number of known gene promoters, usually remain  unmethylated, However, about 80% of 

globally dispersed CpG dinucleotides, most of which reside in non-coding regions of genome, are 

heavily methylated. Such a hypermethylation state is associated with transcriptional repression state 

and essential for genomic stability by inactivating repetitive sequences, transposable and integrated 

retroviral elements (12).  

DNA methylation is also critically involved in several biological events, such as mammalian 

development, imprinting and X-chromosome inactivation. A wave of active demethylation first 

occurs to the male genome several hours after fertilization, followed by a passive demethylation of 

the genome in females during subsequence cleavage division (13)(14). After implantation, the extent 

of remethylation in embryo genome is high due to de novo methylation, but the methylation decreases 

in specific tissues upon differentiation (15). DNA methylation also participates in establishing the X-

chromosome inactivation and genetic imprinting. DNMT1, which preferentially methylates hemi-

methylated CpG sites, is the key enzyme participating in genomic imprinting and X-chromosome 

inactivation. However, DNA methylation is responsible for maintaining and ensuring the silencing 

state of genes on the X-chromosome because X-chromosome inactivation is initiated by the 

replication of Xist, a non-coding RNA binding the future inactive X-chromosome, and this process 

precedes de novo methylation in embryonic development (16)(14). 

Epigenetic regulatory mechanism interprets various environmental stimuli, such as toxins, 

stressors, carcinogens, infectious agents, cytokines, etc., by altering chromatin structures. Paralleling 

this decoding process are the cell signaling pathways through which the effects of those stimuli are 

transformed as the activation and/or aggregation of transcriptional factors in the nucleus. These two 

sets of signals work reciprocally around the genetic material: the structure of chromatin assumes a 

conformation due to epigenetic modification that either favors or inhibits the binding of those 
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transcriptional factors mobilized through signaling pathways. Therefore, the chromatin platform 

launched by epigenetic modifications is no less important than cell signaling pathways. 

DNA methylation and bacterial infection 

Epigenetic alterations induced by bacteria are possibly most studied in the gastric pathologies 

associated with the infection of helicobacter pylori (H. pylori), the microorganism that can cause 

chronic gastritis, gastric and duodenal ulcers, and is related to the pathogenesis of gastric cancer. The 

relationship between H. pylori and DNA methylation alteration has been manifested in human gastric 

diseases, animal models and in vitro co-culturing system.  

The association between H. pylori infection and aberrant DNA methylation has been 

demonstrated in various gastric diseases from clinical studies.  In a population-based study, the 

frequency of increased methylation level of P16, a tumor suppressor gene in regulating cell cycles, in 

gastric biopsies is significantly higher in H. pylori positive patients than H. pylori negative ones in 

each category of precancerous gastric lesions. Moreover, the presence of P16 hypermethylation is 

significantly elevated with the severity of H. pylori infection (17). In agreement with the putative role 

played by H. pylori in the induction of abnormal DNA methylation, methylation level of promoters of 

several genes, such as MGMT, CDH1, p16, COX2 and APC, which were related to H. pylori infection 

in the gastritis or dyspeptic patients, were found to be decreased after the eradication of this infectious 

agent (18, 19). In addition to the co-existence of H. pylori and hypermethylated tumor suppressor 

genes in various precancerous lesions, the relationship between hypermethylated gene promoters was 

also widely present in the gastric malignancy (20)(21)(22). Due to this close association of H. pylori 

infection with frequent hypermethylation of tumor suppressor genes, H. pylori infection may 

contribute to the pathogenesis of gastric cancer through an epigenetic mechanism.  

A plausible causal relationship between H. pylori infection and hypermethylation of several 

CpG island containing genes has been demonstrated in a gerbil model by inoculating H. pylori 

through gavage (23). In that study, the increased methylation profiles paralleled the infection process, 
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while the elimination of H. pylori resulted in a marked decrease of methylation of the same CpG 

islands. usf1 and usf2 are pleiotropic transcriptional factors regulating the expression of genes 

involved in immune responses, cell cycles and cell proliferation. In a murine infection model, an 

aberrant hypermethylation in the promoter regions of usf1 and usf2 in the tissues exhibiting H. pylori 

induced chronic gastritis is related to the downregulation of those genes (24). 

By co-culturing gastric epithelial cells with H. pylori, researchers of different groups have 

demonstrated in vitro that H. pylori can cause DNA methylation alterations in the promoter regions of 

several inflammatory and/or antitumor genes. Yao et al. (25) first reported that a low level 

methylation within hMLH1 promoter can be induced by incubating H. pylori with a gastric cancer cell 

line, AGS, and such a mild hypermethylation is at least partially responsible for the inhibited 

expression of this gene, which is critically involved in the mismatch repair process after DNA 

replication. Rapid cyclic DNA methylation/demethylation can be observed at several CpG sites 

present in a CpG island encompassing COX-2 (or PTGS2) promoter region in MKN28, a gastric 

epithelial cell line, shortly after co-cultured with H. pylori (26).  Most recently, a hypermethylation 

profile in the CpG islands within USF1 and USF2 promoters, both of which play important roles in 

tumor suppression, cell cycle and immune response, was also shown to be induced by H. pylori co-

cultured with AGS (24). 

While it seems that H. pylori infection is responsible for the observed aberrant epigenetic 

changes, the mechanistic link between infection and abnormal DNA methylation requirs the 

inflammatory process. Qian et al. (27) demonstrated that the hypermethylation of E-cadherin 

promoter region can be induced in several gastric cancer cell lines, such as TMK-1, MKN74, and 

MKN7, co-cultured with H. pylori. In that study, the H. pylori induced hypermethylation of E-

cadherin seems to be largely caused by IL-1β signaling because pretreatment of cells with IL-1 

receptor antagonist can reverse such a hypermethylated pattern induced by H. pylori. Interestingly, an 

induced hypermethylation by H. pylori within the promoter of another cancer suppressor gene, runx3, 

is mediated by nitric oxide (NO) as indicated by the fact that the addition of NO inhibitor blocked 
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such a hypermethylation alteration in the gastric cancer cell line co-cultured with macrophage and H. 

pylori (22). In the gerbil infection model mentioned above, the application of cyclosporine A, which 

suppressed the inflammation but did not affect H. pylori colonization in the gastric tissue, 

successfully blocked the induction of aberrant DNA methylation (23). Thus, the methylation 

alteration of some genes apprears to be dependent on the inflammation induced by infection.  

In addition to H. pylori, other bacterial infections were also closely related to the altered 

methylation level in gene promoters. Bobetsis and colleagues were the first to identify the alteration 

of DNA methylation pattern within the Igf2 P0 promoter region in murine placental tissues from the 

mothers systemically infected with a periodontopathogenic bacterium, Campylobacter rectus (C. 

rectus) (28). Because C. rectus is phylogenetically similar to H. pylori and both express GroEL that 

can stimulate IL-6 production (29), the infection of this periodontal pathogen might be causally 

related to the modification of various promoters of host genes and involved in pathogenesis of various 

diseases. 

DNA methylation and inflammation 
 

The production of inflammatory mediators including various cytokines, chemokines and 

growth factors, is a host defense mechanism. However, the specific combinations of innate, adaptive 

and regulatory cytokine profiles and cytokine networks define various inflammatory conditions. 

Epigenetic modifications, which carry the effect of environmental stimuli into the chromatin structure, 

may play a role in the pathogenesis of those inflammatory diseases. Although detailed mechanisms of 

host inflammation on the modification of epigenetic patterns largely remain unknown, it has been 

well discovered that the alteration of DNA methylation is profoundly involved in inflammatory 

diseases. Table 1 summarizes the studies of a wide spectrum of human chronic inflammatory diseases 

(gastric inflammatory diseases are not listed and mentioned in the “DNA methylation and bacterial 

infection” section) or chronic diseases that are related to a high inflammatory state, in which aberrant 

DNA methylation changes of genes have been identified.   
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Epigenetic regulatory approach of several important inflammatory mediators has recently 

been appreciated. Production of nitric oxide (NO) is involved in the inflammatory process since NO 

contributes to leukocyte adhesion and proliferation of vascular smooth muscle cells (30). Although 

the necessary transcriptional machinery for the endothelial NO synthase (eNOS) is apparently present 

in other cell types, the expression of this enzyme is strictly localized to the vascular endothelium. The 

molecular mechanism for this exclusive expression pattern is at least due to the regulation of 

promoter methylation. In endothelial cells, the promoter region of eNOS is hypomethylated or 

unmethylated as compared to other cell types that do not readily express eNOS (31)(1).In sharp 

contrast to the hypomethylated eNOS promoter, the methylation level of inducible nitric oxide 

synthase gene (NOS2A) in human vascular endothelial cells is very high. This hypermethylated 

pattern of NOS2A contributes to the unresponsiveness of endothelial cells upon stimulation with 

cytokines (1)(32). 

The signaling pathway mediated by toll-like receptors (TLRs) is critically involved in the 

production of several key inflammatory cytokines, such as interleukin-1 beta, cyclooxygenase-2, etc. 

While expression of TLR4 is required by myeloid lineage to function normally in innate immune 

response, decreased expression of TLR4 on the surface of intestinal epithelial cells (IECs) helps to 

maintain intestinal homeostasis because elevated expression as seen in patients with inflammatory 

bowel disease incurs excessive response to commensal bacteria. This repression of TLR4 in IECs is 

partially attributable to an epigenetic mechanism in which hypermethylation and histone 

deacetylation in the promoter region of TLR4 are involved (33). Additionally, DNA demethylation is 

also involved in elevated expression of TLR2 found in cystic fibrosis epithelial cells (34, 35). 

The close association of DNA methylation with inflammation is also well documented in 

animal models. Adoptive transfer of CD4+ T-cells pre-treated with 5-azacytidine (5-Aza-C), a known 

DNA methylation inhibitor, in mice induces systemic lupus erythematosus (SLE)-like phenotype (36) 

(37). Increased expression of lymphocyte function-associated antigen (LFA-1) by those pre-treated T-

cells may be responsible for this lupus like disease (38). When injected with 5-azacytidine, arthritis 
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that was induced by adjuvant in rats was clearly reduced, indicating that DNA methylation is 

involved in the pathogenesis of adjuvant arthritis (39). Not only do those animal experiments support 

an epigenetic cause of certain autoimmune diseases, but they also suggest a therapeutic potential of 

epigenetic modifiers for those diseases.  

 Both increased and decreased promoter methylation profiles can be identified in the same 

inflammatory disease depending on individual genes in question, duration or stage of diseases 

(40)(41). Since DNA methylation controls gene transcription, this binary methylation pattern present 

in the promoter regions of different genes may help to explain expression profiles characterized by 

different disease conditions. Another interesting finding is that altered DNA methylation may occur 

either to specific genes or on a genomic scale (42, 43), changes also frequently observed in cancers 

(44). The continuity and agreement of those DNA methylation changes recognized in the 

inflammatory, precancerous and malignant lesions support the role of DNA methylation in linking 

inflammation and cancer (45)(46)(47). 

DNA methylation and early childhood stress  

 It has been reported that maternal nursing behavior can alter the stress reactivity of the 

offspring in their adulthood. For example, the adult rats nursed from a more intimate mother-pup 

interaction in the first week of their childhood are less fearful and experience more moderate 

hypothalamic-pituitary-adrenal (HPA) responses to stress than rats raised in a less intimate 

relationship with the dams (48)(49). The underlying mechanism seems to be independent of genetic 

predisposition because in cross-fostering studies, in which rats from a less caring mother are raised by 

a different dam showing more intimate relationship with the fostered rats, the responses to stress of 

those fostered offspring are similar to those who are from and nursed by a caring dam. However, if 

the rats who are from a normally behaved but fostered by a less caring mother, their reaction to stress 

just resembles the offspring who are from and nursed by a less caring dam (49). The explanation may 

exist in epigenetic modifications of several stress response genes. Weaver et al. demonstrated that 

maternal behavior can affect the methylation pattern in the promoter region of glucocorticoid receptor 
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(GR) and such an effect occurred in the first week of life and can be reversed by cross-fostering (50). 

They also proved that the binding of an important transcription factor to the promoter region of GR 

and its expression as well as HPA responses to stress can be causally affected by DNA methylation 

alteration and histone acetylation. Interestingly, a human study investigating the neuron-specific 

glucocorticoid receptor (NR3C1) in the hippocampus obtained from suicidal victims who had a 

childhood abuse history revealed a higher DNA methylation in the promoter region and decreased 

mRNA level as compared to control samples obtained either from suicidal victims who had no 

childhood abuse history or from controls who died of unrelated causes (51). In contrast to the 

reversed DNA methylation pattern of GR promoter as mentioned above, Roth et al. reported that the 

methylation change of brain-derived neurotrophic factor (BDNF) promoter can be at least partially 

inherited to the next generation because cross-fostering pups exhibiting hypermethylation of BDNF 

from a dam experienced neonatal maltreatment to a mother who was normally nursed can not totally 

rescue the observed hypermethylated phenotype (52).  Those studies support that epigenetic state that 

controls gene expression can be established by behavioral programming and such an influence 

induced by epigenetic modifications in the early childhood can be perpetuated through generations 

(52).  

The effect of nutritional deficiency on DNA methylation 

 Chronic deficiency of group B vitamins including B6, B12, and folate acid (B9) as well as 

choline and methionine may disrupt the normal one-carbon metabolism network in which DNA 

methyltransferase reactions are integrated (53). Chronic dissipation of those group B vitamins can 

cause elevated homocysteine in plasma, a known independent risk factor for cardiovascular disease, 

in which abnormal DNA methylation is mechanistically related to its pathogenesis (54).  

 The only precursor of homocysteine in vivo is S-adenosylhomocysteine (AdoHcy, or SAH), 

derived from the common methyl-donor, S-adenosylmethionine (AdoMet, or SAM), after transferring 

the methyl group in various methyltransferase enzymatic reactions including DNA methylation (55). 

Although AdoHcy is physiologically hydrolyzed to homocysteine, which is further metabolized into 
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cysteine, a B6-dependent reaction pathway, or remethylated to methionine through a series of 

reactions necessitating folate acid and B12 as key coenzymes, the thermodynamics actually favors the 

reverse reaction to synthesize AdoHcy (53)(55)(56). Thus, metabolic perturbations, such as depletion 

of B6, B12 and folate acid, will lead to elevated AdoHcy level through interfering the normal removal 

of homocysteine. Figure 1 summarizes the methionine metabolism pathways related to methylation in 

cells.  

 As a potent inhibitor of methyltransferase involved in DNA methylation, elevated AdoHcy 

due to the abnormal accumulation of homocysteine caused by nutritional deficiency such as B12, 

which is commonly seen in elder population and an unbalanced vegetarian diet, and folate acid, 

widely present in alcoholism, is in close association with DNA hypomethylation (54). Yi et al. (53) 

reported that moderate elevation of plasma homocysteine level in healthy females paralleled the 

increases in plasma AdoHcy and global DNA hypomethylation in lymphocytes.  In Castro’s study 

(57), patients with vascular disease, as compared to controls, had significantly higher concentrations 

of plasma homocysteine that was correlated with AdoHcy level and a lower genomic DNA 

methylation. However, several groups presented contradictory data indicating elevated homocysteine 

level is not always related to a hypomethylation profile. By using a hyperhomocysteinemia mouse 

model, Bromberg et al, did not observe an altered global DNA methylation level (58). Bonsch et al. 

even found an increased genomic DNA methylation level in alcoholic patients that was significantly 

correlated with their increased homocysteine concentrations (59).  The discrepancy might be 

explained by the stage of disease in question, conditions related to the secondary disease-induced 

alteration, such as inflammation, duration of hyperhomocysteinemia in an animal model, the ratio of 

AdoMet/AdoHcy (SAM/SAH) rather than the level of AdoHcy alone, and confounding nutritional 

factors other than group B vitamins discussed above (55).  

 In addition to perturbed DNA methylation on a genomic scale, an altered DNA methylation 

pattern also can be observed at the single gene level. As a well recognized risk factor for 

cardiovascular disease, hyperhomocysteinemia can arrest endothelial cell growth. Part of the 
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mechanism related to hyperhomocysteinemia involves the suppression of cyclin A transcription via a 

demethylation in a repressor site within the promoter region of this gene (60). A hypermethylation 

pattern in a CpG dense region within the fibroblast growth factor 2 (FGF2) promoter region is 

involved in an epigenetic mechanism in which inhibition of endothelial cell growth induced by high 

homocysteine concentration was achieved by transcriptional depression of FGF2 (61). Using a 

hyperhomocysteinemia mouse model, Devlin et al (62) demonstrated that while elevated plasma level 

of homocysteine was related to a decreased H19 differently methylated region (DMD), which is 

located to the 5’ end of H19 and 3’ end of Igf2, the methylation level of the same H19 DMD region in 

brain and aorta was significantly increased. Interestingly, such an increased methylation level 

paralleled an elevated transcriptional level of H19. These results reflect that hyperhomocysteinemia 

may cause either hyper- or hypo- methylation pattern in a tissue-specific manner in certain genes.  

 Besides the deficiency of folate acid, B12 and B9, insufficient intake of choline also disrupts 

the normal DNA methylation network (figure 1). Choline is another important intermediate that is 

involved in the conversion of homocysteine to methionine (63). Dietary choline deficiency results in 

decreased AdoMet concentration and hypomethylation of DNA (64). The methylation level of cdkn3 

promoter of fetal rodents whose mothers were fed with a choline deficient diet has shown to be 

decreased in the brain. Such a hypomethylation pattern of cdkn3 was related to an overexpression of 

this gene, which inhibited cell proliferation (65).  

DNA methylation and smoking 

Cigarette smoke is a well known risk factor for a wide range of malignancies including oral, 

esophageal, pharyngeal, laryngeal and other cancers (66). Cigarette smoke contains various 

carcinogenic compounds of which polycyclic aromatic hydrocarbons and N-nitrosamines are the most 

important ones (67). Because epigenetic alteration is among the mechanisms of carcinogenesis, 

frequent DNA methylation changes as seen in cancers may be etiologically related to the exposure to 

those compounds in cigarette smoke. By exposing human bronchial epithelial cells to cigarette smoke 

condensate, Liu et al. (68) demonstrated both a hypomethylation profile in genomic scale and a local 
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promoter hypermethylation of several tumor suppressor genes in cells. In a large case-control study, 

the methylation level of MTHFR1 in lung cancer increased with the exposure to tobacco smoke (69). 

The researchers also discovered a decreased global methylation pattern as represented by the 

methylation level of LINE-1 repetitive sequences in the same lung cancer as compared to 

corresponding blood or non-cancerous lung tissue. This is probably due to the inhibited expression of 

MTHFR1, whose product plays an important role in maintaining the pool of methionine, caused by 

the promoter hypermethylation of MTHFR1 (69, 70). Methylation alteration of other genes, such as 

SSBP2 (single-stranded DNA binding proteins2) involved in transcription regulation) (71), HTRA3 

(HtrA serine peptidase3, involved in cell growth regulation) (72), MAOA (monoamine oxidase A, 

involved in cellular biogenic amine metabolic process) (73), MGMT (O-6-methylguanine-DNA 

methyltransferase, involved in DNA repair) , P16 (involved in cell cycle regulation) (74), FUSSEL18, 

SEPT9 (Septin 9, also known as MLL septin-like fusion, involved in the regulation of cell cycle and 

division) (75), most of which are tumor suppressor genes, was also reported to be significantly 

correlated with the exposure of cigarette smoke. Therefore, data from both in vitro and in vivo studies 

support the hypothesis that cigarette smoke is closely related with an epigenetic alteration 

characteristic of cancers: both a global hypomethylation and a local promoter hypermethylation. 

 Altered methylation patterns in the genomic scale related to cigarette smoke were, however, 

not always unanimously presented by different groups. Exposing SENCAR mice to cigarette smoke 

at different doses at different duration, Philips et al. discovered that non-selected genomic regions of 

altered methylation (RAMs) in the mouse lung tissues increased in both a dose- and time- dependent 

manner (76). Those RAMs include hyper-, hypo- and newly occurred methylation as compared with 

sham treated animals. However, in another study, the global DNA methylation pattern of normal 

human fibroblast exposed to benzo[α]pyrene diol epoxide (B[α]PDE), a prototype of cigarette 

carcinogen, was not significantly different from the cells treated with DMSO (77). It should be 

mentioned that as compared to animal models or other in vivo data, the “simplified” laboratory cell 

culture in this study, in which one type of cell was limitedly exposed to a single carcinogen isolated 
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from cigarette smoke, may not necessarily reflect the potential alteration of methylation regulatory 

network present in the biological individuals affected by the prolonged exposure to all the chemical 

compounds contained in the cigarette smoke. 

DNA methylation, aging and tumorigenesis 

 While aging refers to a physiological process and phenotypic changes over time that are 

common to all species (78), tumorigenesis is characterized by a progression of pathological changes 

that allow cells to undergo uncontrolled growth. Although two different events, aging and 

tumorigenesis are related: cancer is usually a late-onsite disease and people over age 70 have the 

highest rate of cancer (78). Accumulation of adverse effects of carcinogens and weakening of 

immune system, which are etiologically involved in tumorigenesis, parallel the aging process. In 

addition, emerging evidence also supports that similar epigenetic changes are shared by both aging 

and tumorigenesis process: a hypermethylated profiles of many specific gene promoters along with a 

seemingly contradictory hypomethylation on the genomic scale (79). 

 Hypermethylation of tumor suppressor genes leads to silencing of those genes and contributes 

to tumorigenesis (80). Interestingly, several silenced genes caused by DNA methylation in cancers are 

also epigenetically altered in the normal aging tissues. For examples, promoter hypermethylation of 

E-cadherin gene, which is present in several epithelium derived cancers including bladder cancer, was 

also found in normal bladder tissues from individuals older than 70 (81). Promoter hypermethylation 

of estrogen receptor (ER) is present in both histologically normal colorectal mucosa from aged 

individuals and colorectal tumors (82). The observed hypermethylation within promoter regions not 

only epigenetically suppresses gene expression but promotes point mutation, such as transition from 

cytosine to thymine (C→T) by deamination, a genetic change that also results in inactivation of tumor 

suppressor genes (83).Thus, epigenetic modifications of DNA is subsequently linked to genetic 

changes.  

 In aging tissues, the content of 5-methylcytosine of cells noticeably decreased (84). Global 

DNA hypomethylation is a signature epigenetic change among aging population. It has been reported 
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that the methylation level of Alu, the most abundant short interspersed elements (SINEs) and HERV-

K, a known member of human endogenous retroviruses (HERVs), was inversely related to age. Such 

a negative association is close to significance when the methylation level of long interspersed 

elements (LINEs) is considered. SINEs, LINes and HERVs are the major components of bulky 

genomic region, and the methylation level of those elements represents the global DNA methylation 

state (85)(86). Decreased methylation level in those elements seen in cancers promotes mitotic 

recombination, resulting in loss of heterozygosity (LOH) (14) (87).  In transgenic mice with a 10% 

reduction of dnmt1 as compared with wild type counterparts, a genome-wide hypomethylation was 

induced and an aggressive T cell lymphoma characterized by chromosome 15 trisomy was developed 

at the age of 4 to 8 months (88). Other studies also support the hypothesis that genomic 

hypomethylation is causally related to the chromosome instability, a common molecular mechanism 

for tumorogenesis. Because mutations of genetic sequences increase with age, DNA methylation may 

also contribut to those genetic changes in aging process such as through deamination as mentioned 

above. 

 Due to the similarity of aberrant DNA methylation changes in cancer and aging, it is possible 

to speculate that aging is epigenetically predisposed to cancer by altering the DNA methylation 

profile in cells, and cancer development perpetuates those disregulated methylation state. However, 

substantial studies need to be performed in order to confirm such a mechanistic link.  

Mechanisms of transcriptional regulation by DNA methylation 

It has been observed for a long time that DNA methylation, especially methylation in the 

promoter region of genes, is negatively related to transcriptional activation, though exceptions were 

also reported. Two models by which DNA methylation controls gene transcription are proposed and 

generally accepted by researchers in the epigenetic field. While one model suggests the direct 

exclusion of trans-acting factors through steric hindrance from the promoter region by methyl groups 

present in the 5-cytosine position, another model favors a mechanism in which methylated cytosines 
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function as a platform to which methyl-binding proteins (MBPs), histone deacetylases (HDACs), and 

co-repressors are recruited (12).  

The best example that elucidates the “direct inhibitory” mechanism by DNA methylation 

comes from the study of CTCF protein. CTCF (CCCTC-binding factor, which is a zinc finger protein) 

is best known for its role in imprinting at the H19/IGF2 locus. CTCF-binding element within H19 

and IGF2 loci serves as an insulator for IGF2 expression. In the maternally inherited allele, the 

binding of CTCF protein to the unmethylated element disrupts the communication between the IGF2 

promoter and enhancer that exists downstream of H19, resulting in silencing of IGF2. However, in 

the paternal allele, methylation in the CTCF site excludes the binding of CTCF protein and, therefore, 

allows enhancing the expression of IGF2 (89). Similarly, this mechanism is also discovered in the c-

Myc binding site, in which the methylated cytosines prevent c-Myc from binding to its consensus 

element in the DNA sequence (90).  

 In addition to this direct inhibition of gene transcription by methyl-groups, ample evidence 

suggests that methyl-group present in the gene promoters can recruit MBPs to which other 

transcription inhibitory factors, such as (HDACs), are further recruited. Those MBPs that contain 

methyl-CpG-binding domain (MBDs) include Kaiso, MeCP2, and members of the MBD family such 

as MBD1, MBD2, MBD3 and MBD4 (91)(92)(93). Recruited HDACs remove acetyl-group from 

histone tails and, thus, modify otherwise open chromatin structure to a closed conformation due to an 

increased association of histone molecules with DNA. Such a closed chromatin structure does not 

favor transcription by preventing the binding of transcription factors (94) (95).  

DNA methylation may also affect nucleosome architecture within the promoter region of 

genes by MBPs. Nucleosome occupancy has been found to inhibit the binding of transcription  factors 

and RNA polymerase II to the region close to the transcription start site (96). The capability of DNA 

methylation to affect nucleosome occupancy is possibly related to the binding of MeCP2 to the 

methylated cytosine. MeCP2 then can further recruit chromatin remodeling complex SWI/SNF, 
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which results in changes of nucelosome occupancy (12)(97). However, the detailed mechanism by 

which DNA methylation regulates nucleosome architecture still remains to be elucidated.  

Signals and regulatory pathways that regulate DNA methylation 

 Most CpG dinucleotides globally interspersed in the genome of healthy cells are methylated, 

while most CpG islands, especially those within gene promoter regions, remain unmethylated. 

Therefore, there must be mechanisms that contribute to this observed methylation pattern.  

 One pathway by which DNA methyltransferases are regulated is through phosphatidylinositol 

3-kinase (PI3K) singling via glycogen synthase kinase-3 (gsk-3). Popkie et al. (98) found that the 

methylation level at several imprinted loci was decreased in gsk-3 double knockout mouse embryonic 

stem cells, and such a hypomethylation profile at imprinted loci is directly related to the reduced 

expression of dnmt3a2. By utilizing a constitutively active subunit of PI3K, the same group also 

demonstrated that the reduced methylation at those loci was caused by activation of PI3K pathway 

through akt (also called protein kinase B, PKB), whose activation results in phosphorylation and 

inactivation of gsk-3. In their model, insulin signaling leads to activation of PI3K-AKT pathway, 

which inhibits the activity of gsk-3. The inactivation of gsk-3 will in turn decrease dnmt3a2 

expression, which is responsible for the observed hypomethylation at those imprinted loci. They 

further suggested that transcriptional factor N-myc is a key regulator of dnmt3a2 transcription under 

the control by gsk-3. In agreement with this regulatory role of N-myc, DNMT3a can be specifically 

recruited by MYC to the promoter of p21clip1 and contributes to the repression of its expression (99).  

Another study conducted by Lin et al. (100) also supports the role of AKT and GSK-3 in the 

regulation of methyltransferases. In that study, decreased phosphorylation of DNMT1 due to inhibited 

activity of GSK-3, which is resulted by activation of AKT, contributes to the accumulation of DNMT1 

in the nucleus by attenuating its degradation.  

 Not only can DNA methylation suppress gene transcription by changing the local chromatin 

structure within promoter region of genes, but altered chromatin structure initiated by histone 

modifications can also direct DNA methyltransferases to specific loci. It has been shown that 
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heterochromatin-binding protein 1s (HP1s), which are recruited to the methylated histone 3 lysine 9 

(H3K9), can serve as a platform with which DNMT1 associates. The enrichment of DNMT1 is 

responsible for the increased methylation of the analyzed genes (101).Similarly, Gazzar et al. (17) 

(102) proposed a mechanism of TNF-α unresponsiveness during endotoxin tolerance, in which silent 

heterochromatin is assumed due to the enrichment of DNMT1 within TNFA promoter region, which 

is recruited by HP1. This promoter-specific recruitment of HP1 is caused by dimethylated H3K9 that 

was established by G9a, a H3K9 dimethyltransferase. In those examples, DNMTs are recruited to the 

specific genomic loci as a component of chromatin-remodeling complex, and the formation of the 

complex will further alter chromatin structure resulting in inhibition of gene transcription.  

 Although certain chromatin structures favor the recruitment of DNA methyltransferases and 

induce methylation, specific genetic sequences can also influence the state of DNA methylation. 

Because most human CpG islands present in the promoter regions remain unmethylated in contrast to 

globally distributed and heavily methylated CpG sites, there must be mechanism(s) that prevent(s) the 

accumulation of DNA methyltransferases in those CpG islands. Thomson et al. (103) reported in their 

study that the specific binding of CXXC finger protein 1(CFP1) to the non-methylated CpG islands is 

part of this “preventive” mechanism. Using high throughput sequencing approach and chromatin 

immunoprecipitation, they identified unmethylated CpG sites and trimethylated H3K4 as specific 

binding partners of CFP1. It is noticeable that trimethylated H3K4 is frequently present within 

hypomethylated promoter region and considered as an active signal for gene transcription (104). 

Therefore, a high local concentration of CpG sites can avoid methylation by interacting with certain 

chromatin marks that signal active transcription state.  

 Small interfering RNA (siRNA) is also mechanistically involved in DNA methylation and 

contributes to silencing of gene transcription. Data have demonstrated that siRNA targeted EF1A 

promoter, a molecule essential for transcription, induces methylation in vivo and leads to silencing of 

EF1A at transcriptional level (105).  Since in plants de novo methylation can be induced by small 

RNAs (106)(107)(108), siRNA mediated methylation may represent a conserved mechanism across 
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species and play a role in repressing retroviruses and repeated transposable elements within 

mammalian cells.  

Therapeutic potential of DNA methylation modifiers 

 As compared to treatment of genetic defects, therapies targeting aberrant epigenetic 

alterations exhibit promising signs because epigenetic modifications can be reversible (109).  

Synthetic as well as natural compounds extracted from plants have already been developed to 

intervene and correct epigenetic defects. 5-aza-2′deoxycytidine (also known as decitabine), an 

analogue of 5-azacytidine that is an irreversible DNA methylation inhibitor, has already been used in 

clinical trials and shown promises to treat myeloid malignancies (110) (111). Combining epigenetic 

modifiers targeting DNA methylation and chromatin structure, such as decitabine and trichostatin 

(TSA), a potent HDAC inhibitor, have achieved effects in anti-cancer treatment (112).  

 Several natural compounds in botanical extract have been studied as potential epigenetic 

therapies targeting key components of epigenetic pathways, such as DNMTs. PMI-5011, a 

subfraction extracted from A dracunculus L, which was first screened as a promising dietary 

supplement for diabetes, showed an inhibitory effect on downregulating DNMT1 and DNMT3b in cell 

culture (109).  The similar inhibitory effect on DNMT1 and DNMT3b can also been found in the 

extract of A tuberosum L (109). A wide spectrum of bioactive phytochemicals contained in the 

regular diet, such as epigallocatechin found in green tea, genistein in soy, resveratrol in grapes and 

red wine, curcumin in turmeric (Curcuma longa L), etc., are discovered to possess the activity to 

modify methylation profiles of genes by interacting with DNMTs. Most of those substances have an 

inhibitory rather than activating effect on DNMTs. The disease models in which the roles of those 

phytochemicals were explored include cancer and various types of inflammatory diseases (113).  

 Well characterized drugs in the treatment of inflammatory diseases have recently been 

discovered for their epigenetic modulating activity. Non-steroidal anti-inflammatory drug (NSAID) 

exhibits protective effects against gastric cancer. Further study has indicated a link between chronic 

use of NSAID and decreased promoter methylation level of several tumor suppressor genes. By 



 

19 
 

performing methylation-specific PCR on gastric mucosa samples from non-cancerous subjects, 

Tahara et al. (114) reported that the promoter methylation level of P16, P14 and E-cadherin was 

significantly lower in the samples collected from NSAID users as compared to non-NSAID users. 

They suggested that the protective role of NSAID is related to its “hypermethylation inhibiting” 

activity on those tumor suppressor genes because inactivation of those genes due to hypermethylation 

is a critical mechanism involved in the pathogenesis of gastric cancers. Methotrexate (MTX), widely 

used as an anti-rheumatic drug, inhibits DNA methylation by intervening with folic acid metabolism 

that is involved in DNA methyltransferase pathway (115). Although we haven’t known to what extent 

the efficacy of those drugs is due to their epigenetic modulating activity, the novel strategy of tackling 

dysfunctional yet reversible epigenetic marks by synthetic or natural compounds initiates new 

research avenues in epigenetic pharmacology. Another concern of applying epigenetic modulators is 

the specificity to which genes or gene promoters are targeted. However, the discovery of several zinc 

finger proteins in the nucleoplasm of cells, which are transcriptional factors and have a strong affinity 

for methyl-group or certain chromatin structures, may provide new clues for the specificity of 

epigenetic therapeutic approach (116). 

Periodontal diseases and epigenetic mechanisms 

 Periodontal diseases include gingivitis, an early and reversible stage of gingival inflammation, 

and periodontitis, an advanced stage leading to the loss of tooth supporting tissue. Periodontal 

diseases are etiologically initiated by periodontal bacteria accumulated in the “bacterial biofilm”, an 

organized structure in the crevice of tooth. Although the virulent factors possessed by those 

periodontal pathogens can directly cause destruction to periodontal tissues, the inflammatory and 

immune responses stimulated by pathogenic bacteria also results in the loss of connective tissue and 

alveolar bone (117, 118).  

 Several Gram negative and anaerobic bacteria have been identified as the pathogens of 

periodontal diseases. For example, Porphyromonas gingivalis (P. gingivalis), frequently detected in 

the subgingival microflora of patients with periodontal disease, is one of the most important 
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periodontal pathogens. The cell structure and virulence factors of P. gingivalis can directly cause 

damage to the periodontal tissue. The fimbriae is necessary for P. gingivalis to attach to and invade 

epithelial cells; a number of proteases synthesized by P. gingivalis can influence tissue integrity; short 

fatty acid from P. gingivalis can cause apoptosis in various cell types including T-cells, B-cells, 

keratinocytes, and fibroblasts (119). In addition, P. gingivalis infection can induce secretion of 

inflammatory cytokines in hosts, such as TNF-α, IL-1B, IL-6, IL-12, etc (119), which contribute to 

the periodontal destruction. Campylobacter rectus (C. rectus), a Gram negative, anaerobic and motile 

bacterium, is another periodontal pathogen that possesses several virulence factors, such as the 

surface-layer (S-layer), heat shock proteins (GroEL-like proteins), and flagella (120)(29) (121)(122). 

These virulence factors help C. rectus evade the phagocytic uptake and bactericidal activity of serum 

complement and mediate adhesion with host cells (123)(124). C. rectus can also upregulate both 

mRNA and protein levels of several cytokines in host cells, such as IL-6 and TNF-α (125).  

 The presence of infectious agents in the biofilm and the inflammatory responses induced by 

those periodontal pathogens may possibly alter gene expression in an epigenetic approach in the 

gingival tissue exhibiting periodontal diseases. Recently, a group reported that higher frequency of 

hypomethylation of IL8 promoter region was identified in oral epithelial cells from chronic 

periodontitis patients (126). Yin et al. found that in gingival epithelial cells the expression of DNMT1 

and histone deacetylase decreased upon challenge by P. gingivalis and Fusobacterium nucleatum, 

which is a non-oral pathogen (127). Therefore, we propose that DNA methylation contributes to the 

regulation of inflammatory genes involved in periodontal diseases. Therefore, in this present study, 

we investigated the potential methylation alterations in the promoter regions of several genes (PTGS2, 

TNFA, and IFNG) involved in inflammatory immune responses in biological samples collected from 

the sites in periodontal patients where periodontal diseases are evident. We also proceeded to study 

the epigenetic regulation of TNFA in a human monocytic cell line (THP-1) by a periodontal pathogen, 

C. rectus. At last, we also studied the mechanism of how DNA methylation in the TNFA promoter 

region regulates the transcription of this gene.  
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Table 1.1 Inflammatory diseases and aberrant DNA methylation 
Diseases involved Alteration ofmethylation Global or specific genes reference 
inflammatory bowel 
disease (CD and UC) 

both hyper- and hypo-
methylated 

TNFRSF1A, STAT5A, 
SERPINA5, BGN, NOTCH4, 

TJP2, FMR1, etc 

(40) 

inflammatory bowel 
disease 

hypomethylated and 
hypermethylated* 

IFNG (128) (129) 
 

ulcerative colitis increased frequency of 
methylation, 
 
Methylation level is 
correlated to the severity 
of UC 

MDR1 
 
 

PAR2 

(130) 
(131) 

inflammatory bowel 
disease 

no significant change IRF5 (132) 

asthma  hypermethylated FOXP3 (133) 
aggressive 
periodontitis  

hypomethylated IFNG (134) 

systemic lupus 
erythematosus (SLE) 

decreased methylated  global (135) (136) 

chronic pancreatitis increased frequency of 
methylation 

BRCA1, CDKN1C, CCND2, 
PGR,HMLH1, SYK,VHL 

(137) 

cardiovascular disease  
(131)(131)(121) 

hypermethylated global (42) 

psoriasis decreased frequency of 
methylation, 
 
hypomethylated 

P15, P21 
 
 

P16 

(138)(139) 

Inflammatory 
(rheumatoid or 
psoriatic) arthritis 

hypomethylated global (43) 

rheumatoid arthritis hypomethylated IL6 (140) 
inflammatory bowel 
disease 

hypermethylated APC2, SERP1,SFRP4, 
SFRP5, DKK1,WIF1 

(141) 

rheumatoid arthritis hypomethylated EPHRINB1 (142) 
atherosclerosis hypomethylated,  

 
 
hypermethylated 

genes involved in 
transcription and signalling 

 
specific genes far less than 

hypomethylated genes 

 (41) 

Barrett’s metaplasia hypomethylated CDX1 (143) 
prostrate proliferative 
inflammatory atrophy 

hypermethylated GSTP1 (45) 

chronic kidney 
disease 

Hypermethylation is 
related to the mortality of 
CKD 

global (47) 
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Figure 1.1: one-carbon metabolism involved in methylation reactions. S-
adenosylmethionine (SAM) is generated through ATP-dependent transfer of adenosine to 
methionine under the enzymatic activity of methionine adenosyltransferase. SAM is the 
methyl-donor for most methyltransferase reactions including DNA methylation. After 
donating a methyl group, SAM is converted to S-adenosylhomocysteine (SAH). The 
removal of SAH is efficiently achieved by SAH hydrolase. SAH is then hydrolyzed to 
adenosine and homocysteine via SAH hydrolase. It should be emphasized that this 
hydrolysis reaction is actually thermodynamically favorable for the reverse reaction to 
synthesize SAH. Any metabolic perturbation that reduces homocysteine removal will 
cause SAH accumulation, which is a potent inhibitor for methyltransferases. Homocyteine 
can be remethylated to generate mthionine by folate /B12 dependent methionine synthase 
reaction. Homocysteine can also be remethylated to methionine through betaine-
homocysteine methyltransferase by using betaine, the derivative of choline, as the methyl 
donor. However, homocysteine can be irreversibly removed from methionine cycle 
through vitamine B6-dependent transsulfuration pathway by cystathionine beta synthase. 
THF: tetrahydrofolate; DMG: dimethylglycine. The figure is adopted from the figure 1 by 
Yi P et al (53). 
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Abstract 

Levels of prostaglandin E2 and the prostaglandin-endoperoxide synthase-2 (PTGS2, or COX-

2) increase in actively progressing periodontal lesions, but decrease in chronic disease. We 

hypothesized that chronic inflammation is associated with altered DNA methylation levels within the 

PTGS2 promoter, with effects on COX-2 mRNA expression.  PTGS2 promoter methylation levels 

from periodontally inflamed gingival biopsies showed a 5.06-fold increase  as compared with non-

inflamed samples (p=0.03), and the odds of methylation in a CpG site in the inflamed gingival group 

is 4.46 times higher than in the same site in the non-inflamed group (p=0.016). The level of 

methylation at -458bp was inversely associated with transcriptional levels of PTGS2 (RT-PCR) 

(p=0.01). Analysis of the data suggests that, in chronically inflamed tissues, there is a 

hypermethylation pattern of the PTGS2 promoter in association with a lower level of PTGS2 

transcription, consistent with a dampening of COX-2 expression in chronic periodontitis. These 

findings suggest that the chronic persistence of the biofilm and inflammation may be associated with 

epigenetic changes in local tissues at the biofilm-gingival interface.   
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Introduction 

The production of prostaglandin E2 (PGE2) has been associated with periodontal 

inflammation (144, 145). In periodontitis, increased levels of gingival crevicular fluid (GCF) PGE2 

have been predictive of longitudinal periodontal attachment loss (146), and associated with the 

clinical signs of bleeding on probing (147), both of which would suggest that increased PGE2 

expression is associated with progressive lesions (148).  The biosynthesis of PGE2 and other 

prostanoids is tightly coupled to the inducible expression of COX-2, and the transcriptional control of 

COX-2 levels appears to be the key regulatory gate for modulating tissue PGE2 levels (149).  

Although levels of PGE2 increase during certain stages of disease progression, little is known 

regarding the regulation of local PGE2 synthesis, in which some down-regulation must be needed to 

prevent a continued and ever-expansive loss of connective tissue. This homeostasis in chronic 

inflammation in the omnipresence of a microbial burden is probably due to the establishment of what 

has been referred as a “metastable” equilibrium (150). This metastable equilibrium arises as the 

presence of a chronic inflammatory stimulus creates a new “set-point”, in which higher levels of 

inflammatory mediators are tolerated or down-regulated by some compensatory molecular 

mechanism(s) that prevent the unrestricted tissue destruction and serve to dampen the uncontrolled 

inflammatory response.   

Analysis of data in the literature provides some evidence of this down-regulatory mechanism. 

In a community study (147), it was reported that the level of GCF PGE2 is negatively associated with 

attachment loss (as a marker of total history of disease activity), indicating that the greater the 

cumulative historical tissue damage, the lower the GCF-PGE2 level. Presumably, this is a result of a 

site-specific history of an episode of progression with increased attachment loss and elevations of 

local GCF PGE2 levels that eventually become dormant with lowered levels of PGE2. 
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Recently, we have found that certain periodontal bacteria can induce epigenetic alterations in 

host tissues, such as gene-specific methylation of CpG sequences (151). In eukaryotes, DNA 

methylation occurs almost exclusively at the 5’ end of cytosine within the CpG dinucleotide context 

(152). It has been generally accepted that an increase of methylation in the gene promoter region is 

related to the decrease of gene expression, though exceptions have been identified (153).  

In this study, we sought to investigate the potential alteration in the DNA methylation pattern 

of the PTGS2 (COX2) gene promoter and its effect on the transcriptional control of COX-2. We also 

sought to identify potential feedback mechanisms that might lead to suppression of PGE2 synthesis 

following periods of disease activity. 
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Materials & Methods 

Participants and tissue specimens 

A total of 16 participants, aged between 18-65 years, provided written informed consent and 

were enrolled into this study, which was approved by the Institutional Review Board of the 

University of North Carolina at Chapel Hill. Exclusion criteria included: 1) the use of either 

antibiotics or non-steroidal anti-inflammatory drugs within one month prior to scheduled surgery; and 

2) medical treatment for other diseases 3 months prior to recruitment. Measurements included 

probing depths, clinical attachment level, and bleeding on probing at six sites per tooth. One 

interproximal gingival site was biopsied from each participant. Ten gingival biopsies were removed 

during routine periodontal flap surgeries from participants clinically diagnosed with chronic adult 

periodontitis. Those biopsied tissues were from sites with probing depths of 5mm or more, bleeding 

on probing and radiographic evidence of localized bone loss. These tissues are referred to as 

“inflamed” in the data presentation. Non-inflamed tissues were collected from participants who were 

periodontally healthy or had localized mild gingivitis at non-study sites. Six non-inflamed gingival 

biopsies were removed from participants who were undergoing crown extension surgery at sites with 

probing depth measurements of 4mm or less at all four interproximal probing sites and no bleeding on 

probing. Upon removal, gingival tissues were incubated with RNAlater® (Applied 

Biosystems/Ambion, Austin, TX) overnight at 4°С, and then transferred to -80°С freezer for storage. 

DNA Preparation and Sodium Bisulfite Modification 

Genomic DNA was isolated from gingival biopsies by the use of a DNeasy Tissue Kit 

(Qiagen Inc, Valencia, CA). A 2ug quantity of genomic DNA from each sample was treated with 

sodium bisulfite according to the method recommended (154).  

Bisulfite Specific PCR, Cloning, and Sequencing 
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The promoter sequence of PTGS2 (155) was analyzed by using MethPrimer software (156). 

Two CpG islands encompassing -541bp and -216bp were identified. Sodium bisulfite treated genomic 

DNA was amplified using primers that are specific to the CpG islands within the PTGS2 promoter. 

Primer sequences and PCR condition are provided in Table 2.1 and Table 2.2, respectively. A 334bp 

PCR product including those two CpG islands was purified through electrophoresis, and the gel-

purified PCR product was then cloned into a pGEM-T Easy vector (Promega, Madison, WI, USA). 

Colonies showing positive PCR fragment insertion were selected, and the insert was amplified with 

standard Sp6 and T7 primers (Promega) listed in Table 2.1 and 2.2. 4 to 7 clones for each individual 

clinic gingival sample were sequenced by Sp6 primer by UNC-CH genomic analysis facility.  

RNA Isolation and Real-time PCR  

Total RNA was isolated from RNAlater® treated gingival tissues with the use of a RNeasy 

Mini Kit (Qiagen). cDNA was then synthesized from 1 µg of total RNA using the Omniscript Kit 

(Qiagen) by random decamer primers (Applied Biosystems/Ambion). Real-time PCR was performed 

with 1 µL synthesized cDNA, TaqMan Universal PCR mix, and 20X on-demand primers (Applied 

Biosystems, Foster City, CA) specific for PTGS2 gene, in a 7000 Sequence Detection System 

apparatus (Applied Biosystems). Amplification of 18s rRNA from each gingival sample was included 

as internal control. The relative quantity of PTGS2 mRNA was calculated against 18S rRNA values 

(Livak and Schmittgen, 2001). Two samples, one from inflamed and one from non-inflamed gingival 

groups, did not provide enough RNA for analyses, and therefore, were excluded from the quantitative 

RT-PCR study. 

 Statistical Analysis 

Two-sample independent t tests were applied for the statistical analysis of clinical data and 

mRNA expression levels. We used the Mann-Whitney/Wilcoxon two sample test (SAS v9.2) to 
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compare overall percent methylation of each gingival sample between the two gingival groups. We 

used a generalized linear mixed model (GLMM) to estimate the odds ratio describing the relationship 

between methylation and inflamed versus non-inflamed groups, conditional on CpG site and gingival 

tissue sample. Specifically, a three-level logistic regression model (157), with fixed effect for group 

and random effects for samples and sites within samples was used.  A 95% confidence interval for the 

odds ratio was constructed such that the observed difference between groups was assessed with 

respect to the variation between gingival tissue samples. We applied linear regression analysis to test 

for the significance of slope to evaluate the association between the percentage of methylation at a 

specific CpG dinucleotide (-458bp) within the PTGS2 promoter region and the PTGS2 transcriptional 

level. We applied Chi-square approximation to test gender difference between participants in two 

groups. Alpha levels less than 0.05 were considered statistically significant.  
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Results 

Participants 

There are no significant differences in age and gender comparing the participants in the two 

groups (Table 2.3). As expected, there were differences in mean probing depth, clinical attachment 

loss and the presence of bone loss at inflamed sites as compared to non-inflamed controls.  

Methylation Status of CpG-rich PTGS2 Promoter Region 

The overall methylation of the studied PTGS2 promoter region (-541bp~-216bp) in 

chronically inflamed gingival tissues was 5.06 fold higher than the methylation level exhibited in 

non-inflamed gingival tissues when the methylation level of individual gingival tissue in both groups 

were compared [4.3% (1.8%, 8.5%) vs. 0.85% (0.7%, 1.3%), respectively, shown as median and 

interquartile range (IQR), p=0.03] (Figure 2.1).  There are 23 CpG dinucleotides (Figure 2.2A) 

present in two CpG islands (shaded area, Figure 2.2B) within the upstream sequences of PTGS2 (-

831bp to +69bp, Fig. 2B). Several transcription factor binding sequences (cis-elements), such as NF-

κB, AP-2 and Sp-1 (Figure 2.2A), were also identified within these CpG rich regions. Therefore, we 

analyzed the methylation state of all 23 CpG sites within those regions to compare methylation levels 

between the two gingival sample groups. The individual clonal bisulfite sequencing map for the 16 

participants appears in figure 2.4. It can be seen that the increased methylation shown in inflamed 

tissues extends over almost all the 23 potential methylation sites analyzed (Figure 2.2C). However, 

this diffuse methylation pattern was absent from the non-inflamed samples, in which methylation 

could be detected at only 3 CpG sites. In addition, the odds of methylation at a CpG site from a 

sample in the inflamed gingival group was 4.46 times higher (95% CI: 1.38,14.35) than the odds of 

methylation at the same CpG site from a sample in the non-inflamed gingival group (p=0.016), as 

estimated by the GLMM.  
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Interestingly, the most heavily methylated site in both gingival tissue groups occurred at what 

we are designating as “site 8” (-458bp, Figure 2.2C), a CpG dinucleotide that is physically close to a 

NF-κB binding site (Figure 2.2A). The methylation level of that particular CpG site was 23.5% in 

inflamed and 20.6% in non-inflamed gingival tissues, and higher than the methylation levels of other 

CpG dinucleotides in both groups (Figure 2.2C). 

CpG Methylation Status as Related to PTGS2 mRNA Expression Level  

The mRNA level of PTGS2 in inflamed gingival samples, as determined by real-time PCR, 

was lower than the level of non-inflamed group, although the difference was not significant (p=0.36, 

Figure 3.3A). We then plotted the percentage methylation level of “site 8” against mRNA expression 

level of each individual sample. Samples from both gingival tissues groups are shown on this plot to 

demonstrate the association between methylation status and mRNA expression. The overall 

regression analysis pooling all clinical samples shows a statistically significant negative association 

between percentage of methylation of CpG site at -458bp and PTGS2 mRNA expression (p=0.01, 

Figure 3.3B). 
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Discussion 

Although aging and environmental exposures can affect global genome methylation, new 

evidence indicates that some promoter methylation sites can be targeted by specific toxins, nutrient 

deficiencies and infectious stimuli to modify methylation levels (158)(159). In this investigation we 

report that chronically inflamed periodontal tissues exhibit an increased (5.06 fold) generalized 

methylation of the CpG rich region of the PTGS2 promoter, as compared to non-inflamed periodontal 

tissues. In a previous study using a mouse model of Campylobacter rectus infection, we identified a 

hypermethylated Igf2 P0 promoter region suggesting, for the first time, that infection with an oral 

pathogen can lead to epigenetic modifications (151). The association between infection and alteration 

of DNA methylation is also supported by another study in an in vitro infection model (160), which 

reported that the promoter region of hMLH1 from a gastric cell line was hypermethylated by 

persistent H. pylori infection. Therefore, our findings are consistent with the concept that infections at 

mucosal surfaces can modify the epigenetic status of the tissues in a gene-specific manner. The role 

of inflammation in modulating methylation status either by altering the density of cells at local sites 

of inflammatory infiltration, or by modifying the methylation status of existing cells, cannot be 

determined from these experiments.  Furthermore, the intra-differences of methylation status within 

the same gingival tissue sample (e.g. Figure 4, participant 8 had 10 methylated sites in one clone but 

none in 4 other clones) may reflect the epigenetic impact imposed by infection/inflammation on 

different cell types present in the biopsy samples.  

The increase in methylation in chronic disease was associated with a metastable steady state 

level of PTGS2 mRNA expression that was lower than that seen in non-inflamed participants with 

shallow sites. This finding is consistent with the report (147) that shows lower PGE2 levels in deeper 

sites. It has been suggested (161) that most of the periodontal disease progression that occurs within 

participants likely involves shallow sites rather than deep sites. In this context, the chronic state of 
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deep pockets reflects a historical episode of disease activity and a re-instatement of a new steady state 

equilibrium, resulting in a metastable shift in COX-2 expression. 

  The site-specific methylation of CpG dinucleotide at site -458bp (“site 8”), which is located 

12bp upstream of a NF-κB binding site, was higher in both gingival groups. Since NF-κB activation 

enhances PTGS2 expression (162), the observed increase in methylation at this specific site may 

impair NF-κB activation. It has been reported (153) that transcription can be critically affected by the 

methylation status of specific or “key” CpG sites within a regulatory region. In the present study, the 

methylated cytosine of this CpG dinucleotide just upstream the NF-κB binding site may possibly 

either directly exclude the binding by this transcriptional activator or condense local chromatin 

structure by recruiting methyl CpG binding proteins (152)(158).  

One limitation of this report is the relatively small number of participants studied. 

Relationships between methylation status and clinical status are tenuous and should be confirmed in 

larger studies. However, this study provides the first evidence and proof-of-principle that epigenetic 

modifications of local tissues may occur in periodontal disease. Additional studies will be needed to 

understand whether epigenetic changes also occur in gingivitis or in other mucosal pathologies. 

Although we demonstrate that promoter methylation is linked to decreased mRNA expression, we do 

not have direct evidence that this is associated with altered levels of COX-2 protein expression or 

levels of PGE2 within the tissue. However, once the PTGS2 mRNA is translated into protein, the 

enzyme is unstable, having a short biological half-life (163). COX-2 does not exist in a zymogen 

form nor as a pre-existing mRNA pool. Thus, the transcription of PTGS2 mRNA directly results in 

the synthesis of inducible COX-2 and appears to be the key regulatory gate for modulating tissue 

COX-2 activity.   

Our working model of how epigenetic modification may impact periodontal status is based 

upon: 1) changes in DNA methylation patterns alter gene expression profiles; 2) epigenetic changes 
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are not readily reversible and are retained following cell division creating a sustained change in gene 

expression and tissue phenotype that would persist, even following the reduction in the inflammatory 

infiltrate; 3) epigenetic alterations may induce tissue tolerance to the chronic stress imposed by the 

biofilm 4) epigenetic alterations may influence wound healing and the dynamics of biofilm 

emergence. This suggests that epigenetic modifications may result in long-lived alterations in the 

metastable state of the local periodontal tissues. 
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Table 2.1. Primer Sequences 
 

Technique                                       Primers                                                Primer Sequences 

Bisulfite specific PCR                  Forward                       5′-AAATATGTTAGTTTTTTTTAATTTTATT-3 ′ 
for PTGS2 promoter   
region                                           Reverse                        5′- ATAATCCCCACTCTCCTATCTAATC-3′ 
 
Colony-PCR                                    T7                              5′-TAATACGACTCACTATA-3′               
 (Clone amplification)           

                                         Sp6                             5′-TATTTTAGGTGACACTATAG-3′ 
 

 
 
 
 
Table 2.2.  PCR Conditions 
 

 
 
 
 

 

                                                                                 35 Cycles 
                                        Denaturation        Denaturation     Annealing          Elongation            Elongation 
Technique                         °C, Time               °C, Time          °C , Time           °C , Time              °C , Time 

Bisulfite specifc 
PCR PTGS2                       94, 2min 94, 1min         52, 1min              72, 2min              72, 10min 
Promoter region        
 
Colony-PCR                      94, 4min               94, 30sec        55, 30sec              72, 30sec             72, 10min 
(Clone amplification) 

a. statistically significant difference by t-test (P=0.00001). Value reflects mean 
interproximal Probing Depth aggregated over four interproximal sites at the biopsy 
region. 
 
b. indicates statistically significant difference by t-test (p=0.01). Value reflects mean 
interproximal clinical attachment loss aggregated over four interproximal sites at the 

Table 2.3. Clinical Parameters of Study Participants 
Clinical Measurements           Inflamed (n=10)              Non-inflamed (n=6) 

Mean age (years)                                45.8+ 7.4                              44.2+15.6  

Gender (Male/Female)                             5/5                                          1/5 

Mean Probing depth (mm)a                   6.2+0.6                                  2.5+0.8 

Mean Clinical Attachment loss (mm)b  3.8+1.1                                  1.6+1.1 

Alveolar bone loss                                   Yes                                          No 
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Figure2.1. PTGS2 promoter region (-541bp~-216bp) DNA methylation levels for both 
groups of gingival samples. The methylation level in chronic inflamed periodontitis 
samples (4.3% (1.8%, 8.5%) ) was significantly higher than non-inflamed samples 
(0.85% (0.7%, 1.3%), *p=0.03) as determined by Mann-Whitney/Wilcoxon two-
sample test. Box plot shows the median (center line in box), 25% quartile (bottom line in 
box), 75% quartile (top line in box), maximum (plus error bar) and minimum (minus 
error bar). 
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shown. The shaded areas indicate CpG islands in this promoter region. The vertical bars 
underneath represent CpG potential methylation sites, with 23 sites within the CpG island 
parenthesized. (C) The methylation level of each individual CpG site within the identified CpG 
islands from inflamed periodontitis biopsies is compared to the non-inflamed samples. “Site 8” is 
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Figure 2.3. Transcriptional level of PTGS2, determined by quantitative RT-PCR, from the 
inflamed and non-inflamed gingival samples. (A) mRNA expression of PTGS2 in the 
inflamed gingival group showed lower yet non-statistically different (P=0.36) level as 
compared with non-inflamed gingival tissues . (B) PTGS2 mRNA expression level of 
individual sample from both groups is inversely related to its methylation level of “site 8” 
CpG dinucleotides. Regression analysis indicates statistical significance (p=0.01).  
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Figure2.4. Methylation sequencing analysis of PTGS2 promoter region. In total, 23 CpG 
potential methylation sites from the PTGS2 promoter region located from -523through -254 
bp were examined. “Site 8”, the CpG site (-458bp), is indicated in bold. Each circle represents 
a CpG site, with solid circles showing methylation. Each block of circles represents a single 
subject biopsy, and each row of circles represents a somg;e c;pme/  
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Abstract 

The goal of this investigation was to determine whether epigenetic modifications in the IFNG 

promoter are associated with elevation of IFNG transcription in different stages of periodontal 

diseases. DNA was extracted from gingival biopsy samples collected from total 47 sites from 

different subjects: 23 periodontally healthy sites, 12 experimentally induced gingivitis sites and 12 

chronic periodontitis sites. Levels of DNA methylation within the IFNG promoter containing 6 CpG 

dinucleotides were determined using Pyrosequencing technology. IFN-γ mRNA expression was 

analyzed by quantitative polymerase chain reactions using isolated RNA from part of the biological 

samples mentioned above. The methylation level of all 6 analyzed CpG sites within the IFNG 

promoter region in the periodontitis biopsies {52% [interquartile range, IQR (43.8%, 63%)]} was 

significantly lower than periodontally healthy samples { 62%[IQR(51.3%,74%)], p=0.007} and 

gingivitis biopsies {63%[IQR (55%, 74%)], p=0.02}.The transcriptional level of IFNG in 

periodontitis biopsies was 1.96 fold and significantly higher than tissues with periodontal health 

(p=0.04). Although the mRNA level from experimental gingivitis samples exhibited an 8.5 fold 

increase as compared to periodontally healthy samples, no significant methylation difference can be 

identified. A hypomethylation profile within IFNG promoter region is related to an increase of IFNG 

transcription present in the chronic periodontitis biopsies, while such an elevation of IFNG exhibited 

in experimentally induced gingivitis seems independent of promoter methylation alteration.  
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Introduction 

The fundamental mechanisms that lead to the development of periodontal diseases are closely 

related to the dynamics of the host immune and inflammatory responses to periodontal pathogens 

present in the dental biofilm (164). Although much is known regarding the innate immune response in 

periodontal disease, the specific role of T cells in modulating local Th1 and Th2 responses is not fully 

characterized. Cell-mediated immunity modulated by a Th1 response, which involves interferon 

gamma (IFN-γ) production and IL-2, and the humoral immune response, which is favored by a Th2 

response and driven by the secretion of IL-4, IL-6 and IL-10, are well established and these responses 

have been described in periodontal diseases (165) (166) (167)(164)(168). 

The expression of IFN-γ is noteworthy, not only because of its elevated transcriptional and 

translational expression in inflamed gingival tissues and gingival crevicular fluid (GCF), but its 

association with advanced periodontal disease and disease progression (164)(169)(170). In a recent 

molecular epidemiologic study with 6,768 community-based subjects, Offenbacher et al. (171) 

reported a significant increase in the GCF concentration of IFN-γ in those subjects with deep 

periodontal pockets and severe gingival bleeding as compared to subjects with probing depth of 

<3mm. It was previously demonstrated that a high level of Th1 cytokines was found in the gingival 

crevicular fluid (GCF) of patients with extremely severe periodontits (terminal dentition stage), 

including a 10-fold increase in the concentration of IFN-γ when compared to the Th2 mediators IL-4 

and IL6 (169). The presence of high IFN-γ level is shown to enhance phagocytic activity of 

monocytes and neutrophils, which helps containment of infection (164) as well as upregulates 

monocytic response to LPS, which results in elevated monocytic secretion of proinflammatory 

molecules, such as PGE2, IL-1β, and TNF-α, all of which play important roles in bone loss and the 

disintegration of soft tissue in the periodontium (169)(172). Literatures demonstrate that IFN-γ can be 

secreted by type-1 CD4+, CD8+ T lymphocytes, NK cells, mononuclear cells and dendritic cells 

found in periodontal tissues (170) (173). However, the molecular signaling pathways that result in a 
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chronically elevated level of IFN- γ expression in periodontal diseases are still the subject of 

investigation. 

The control of inflammatory responsiveness by the host to the recurrent and omnipresent 

challenges imposed by the oral biofilm is complex, involving genetically determined traits, regulation 

by cytokine networks and changes in epigenetic patterns. For example, genetic studies suggest that 

specific single nucleotide polymorphism (SNP) haplotypes of IL1B in the population are associated 

with the level of IL-1 within the GCF (174). IL-12 has been shown to potently enhance IFNG 

expression (175). Recently, alterations in epigenetic patterns have been discovered as another 

important mechanism for the regulation of gene expression at mucosal surfaces (176). In eukaryotes, 

DNA methylation occurs almost exclusively at the 5’ end of cytosine nucleotide within the CpG 

dinucleotide context (177). The change of methylation status in CpG islands, which are regions of 

genome that contain high percentage of CpG dinucleotides, are profoundly associated with diseases 

such as developmental abnormalities, cancer, and chronic inflammatory states (178)(179). It has been 

generally accepted that increased methylation (hypermethylation) in the gene promoter region is 

associated with a decrease of gene expression, while a hypomethylation pattern is closely associated 

with transcriptional upregulation (180)(181). Recently, we have described an increased methylation 

of CpG islands within the PTGS2 promoter region in human gingival biopsies associated with a 

suppression of PGE2 mRNA expression (182). 

  The aim of this study is to understand whether IFN- γ expression in the gingival tissues from 

subjects with different stages of periodontal diseases, including experimentally induced gingivitis and 

chronic periodontitis, is associated with an altered methylation status of the promoter region of IFNG, 

as evaluated in the context of IFNG SNPs known to regulate expression levels. 
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Materials & Methods 

Participants, experimental gingivitis, and tissue specimens 

A total of forty seven participants, aged between 19-63 years, provided informed consent and 

were enrolled into this study that was approved by the Institutional Review Board (IRB) of the 

University of North Carolina at Chapel Hill. Exclusion criteria for recruiting participants exhibiting 

chronic periodontitis and periodontal health included: 1) the use of either antibiotics or non-steroidal 

anti-inflammatory drugs within one month prior to scheduled surgery; and 2) medical treatment for 

other diseases 3 months prior to recruitment. Measurements included probing depths (PD), clinical 

attachment levels (CAL), and bleeding on probing (BOP) at six sites per tooth. One interproximal 

gingival site was biopsied from each participant. Twelve gingival biopsies were removed during 

routine periodontal flap surgeries from participants clinically diagnosed with chronic periodontitis. 

Scaling and root planning as initial therapy were performed on those patients 4-6 weeks prior to 

periodontal surgeries. Those biopsied tissues were from sites exhibiting probing depths of 5mm or 

more, bleeding on probing and radiographic evidence of localized bone loss. Twenty three gingival 

tissues were collected from different participants who were periodontally healthy or had localized 

mild gingivitis at non-study sites. Those gingival biopsies were removed from either periodontally 

healthy volunteers or participants who were undergoing crown lengthening procedures at sites with 

probing depth measurements of 4mm or less at all six interproximal probing sites, no bleeding on 

probing and no evidence of radiographic bone loss. 

  Another twelve biopsied samples were collected from different participants exhibiting 

experimental gingivitis. The gingivitis was induced following a 3 week (21 days) stent-induced 

biofilm overgrowth protocol as described previously (183). The protocol for this experimental 

gingivitis was approved by the IRB of UNC-CH. In addition to the exclusion criteria mentioned 

above, all participants had at least 8 teeth in functional dentition and with at least 4 teeth in each 
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posterior sextant. In this protocol gingivitis participants with BOP scores of >10% (184) and pocket 

depth probing <5mm were brought to periodontal health by initial dental prophylaxis and 

supragingival scaling. After one week following this treatment, baseline GI scores were collected and 

the subjects were instructed to wear 2 stents during routine toothbrushing and not to floss the stent-

covered teeth. This stent covered the tooth surfaces and promoted biofilm overgrowth during a 3-

week induction period. At day 21, biopsies were collected from one interproximal site of gingiva in 

one of the stent sextants.  

Upon removal, all biopsied gingival tissues were divided into two comparable samples. One 

half used for DNA methylation analysis, was placed and kept in -80°С freezer immediately, while the 

other piece for real-time polymerase chain reaction (RT-PCR) was incubated with RNAlater (Applied 

Biosystems/Ambion, Austin, TX) overnight at 4°С, and then transferred to -80°С. 

 DNA isolation and sodium bisulfite conversion 

Genomic DNA was isolated from collected gingival tissue samples using a DNeasy Mini Kit 

(Qiagen, Valencia,CA) according to the manufacturer’s instructions. Genomic DNA was bisulfite 

treated using published procedures (154). Briefly, 1~2 µg of genomic DNA in 45 µl of nuclease-free 

water was denatured at 42°C for 20 minutes with 5 µl of freshly prepared 3 M sodium hydroxide. 

Denatured DNA was incubated with freshly prepared sodium bisulfite (saturated) and hydroquinone 

solution in the water bath at 55°C for 16 hours. The bisulfite-converted DNA was purified using a 

Wizard DNA Clean-up Column (Promega, Madison, WI) and then desulfonated by incubation with 

5.5 µl of a 3 M NaOH solution at 37°C for 20 minutes. The bisulfate treated DNA was finally 

precipitated with ethanol and then, resolved in 25 µl of 1mM Tris-Cl pH 8. 

Bisulfite specific PCR and pyrosequencing 
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The detailed information of primers used in the bisulfite-specific polymerase chain reactions 

(PCR) can be found in Table 3.1. For methylation analysis, five amplicons, which were amplified by 

using a HotStar Taq kit (QIAgen, Valencia, CA), include a total of 6 CpG sites within the proximal 

promoter region of IFNG. PCR condition for each individual amplicon, in which specific CpG sites 

were included, can be found in Table 3.2. Direct quantification of the ratio of methylated to 

unmethylated cytosine nucleotide for each analyzed CpG site present in the amplicons was 

determined by pyrosequencing with the PSQ HS 96 Pyrosequencing System (Biotage, Charlottesville, 

VA) and Pyro Gold CDT Reagents (AIQgen, Valencia, CA) as previously described (185). We have 

also checked a polymorphism at site -179bp in the same amplicon containing the CpG site of -186bp 

by pyrosequencer.   In each pyrosequencing assay, one amplicon was used for sequencing and the 

corresponding sequencer can be found in table 1. Internal controls for bisulfite conversion efficiency 

were included in each pyrosequencing assay. A genomic sequence that is artificially methylated on all 

its CpG dinucleotides (Millipore, Billerica, MA) was also used in the bisulfite conversion, PCR and 

pyrosequencing with the primers and sequencers mentioned above as a technical control. 

Quantitative real time PCR 

Total RNA was isolated from gingival tissues with the use of an RNeasy Mini Kit (Qiagen, 

Valencia, CA). cDNA from 500ng of total RNA was synthesized using an Omniscript Kit (Qiagen, 

Valencia, CA) and random decamer primers. Real-time PCR was performed with 1 µl of synthesized 

cDNA, 12.5 µl TaqMan Universal PCR mix, and 1.25 µl 20X Assay on demand gene expression 

assay mix  (Mm00445273_m1, Applied Biosystems, Foster City, CA), in a 7000 Sequence Detection 

System (ABI Prism, Applied Biosystems, Foster City, CA). Each sample was performed in duplicates. 

The ribosomal 18s, which was also from Applied Biosystems, was used as an endogenous control for 

data normalization. The relative quantity of IFNG mRNA was calculated against 18S rRNA values 

according to the method recommended by Livak and Schmittgen (186).  
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Immunofluorescence 

After sectioned, the frozen gingival tissues from healthy gingival and chronic periodontitis 

tissues were fixed with 70% ethanol for 15 seconds and followed by acetone for another 5 minutes. 

Then, the frozen tissue slides were blocked for one hour at room temperature, and then incubated 

overnight at -4°C with monoclonal antibodies specific for CD4 (Cat#14-0049, eBioscience, San 

Diego, CA) , CD56 (Cat# 14-0567, eBioscience). All the antibodies expect for anti-CD4 were 1:50 

diluted in a blocking buffer containing 8% bovine serum albumin, 1% goat serum and 1% Trion-X. 

Anti-CD4 antibody was 1:20 diluted with the same blocking buffer. After vigorous washing with 1X 

PBS contains 0.1% Triton-X, the slides were incubated for 1 hour at room temperature with a 

secondary antibody, Alexa Fluor 488 goat anti-mouse IgG (Molecular Probes, Invitrogen, Carlsbad, 

CA). Sections were then washed in 0.1% Triton/PBS, mounted with ProLong Gold antifade reagent 

with DAPI (Invitrogen, Carlsbad, CA) and coverslipped. Sections were analyzed using confocal 

microscopy (Carl Zeiss LSM 710 Confocal Microscope, Thornwood, NY). 

Statistical analysis 

Analysis of Variance (ANOVA) was applied for the statistical analysis of clinical 

measurement. Fisher’s exact test was used to test gender difference among participants in different 

groups. Mann-Whitney/Wilcoxon two sample test was used to compare methylation level of each 

CpG site and overall percent methylation of gingival samples among different biopsy groups. Linear 

regression analysis was applied for testing for significance of the slope to analyze the IFNG 

messenger level of different sample groups. The threshold for all statistical significance was set at a 

p-value less than 0.05.  
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Results 

Selected characteristics between the three subsets of individuals are summarized in Table 3.3 

There were no age differences between periodontally diseased subjects (either periodontitis or 

experimental gingivitis) and participants with periodontal health. As expected, in the periodontitis 

tissue group, both probing depth and clinical attachment level were greater than the periodontal health 

group (p<0.001 for both). Although there are more male participants in chronic periodontitis group as 

compared to periodontal health group (p=0.01) , there is no evidence so far, that gender has 

differential effect on methylation status of IFNG promoter in periodontal diseases. 

The positions of all six analyzed CpG sites within the promoter region of the IFNG gene are 

depicted in figure 3.1. Since the methylation pattern of the CpG sites shown in this region has been 

demonstrated to be mechanistically related to the control of IFN-γ expression in various studies (187-

189), we performed DNA methylation analysis on those CpG sites in our biopsied gingival tissues. 

  Figure 3.2 demonstrates two representative sequencing pyrograms of the methylation level of 

the IFNG promoter region taken from a periodontally healthy and a chronic periodontitis sample. The 

pyrogram in figure 3.2A shows that, at the CpG dinucleotide at position -295bp, 71% of the 

amplification products from one healthy gingival tissue sample contained a methylated cytosine 

nucleotide. The pyrogram in figure 3.2B demonstrates that at position -295bp, 49% of the 

amplification products from one periodontitis tissue sample contained a methylated cytosine residue. 

A lower level of methylation as determined by pyrosequencing was found at each individual 

CpG site within the IFNG promoter region in the DNA samples from the chronic periodontitis tissues 

as compared to tissues with periodontal health (figure 3.3A). Of all the analyzed CpG dinucleotides, 

the methylation levels at site -295bp, -54 bp and +171bp from the chronic periodontitis DNA samples 

were significantly lower than the healthy gingival samples (44.5% [IQR( 37%, 50.5%)] vs. 60% 

[IQR(51.5%, 64.5%)], p=0.002 for site -295bp, 58.5% [IQR(55.3%, 62%)] vs. 

65%[IQR(58.5%,71%)], p=0.04 for -54bp, and 49% [IQR(47.5%, 50.3%)] vs. 55% [IQR(52.5%, 
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59%)] ,p=0.0007 for site +171bp). In contrast, there is no significant difference of DNA methylation 

percentage in each analyzed CpG sites in experimentally induced gingivitis group as compared to 

periodontal health samples. One of the designed amplicons encompassing one methylation site at -

186bp also contained a reported SNP at position -179bp. The G/T SNP (rs2069709) reported at site -

179bp is reported to be associated with an elevated level of IFNG gene expression (190)(191). We 

examined this polymorphism for all the samples along with DNA methylation analysis. No minor 

allele (-179T) was detected in any of the analyzed samples (data not shown).  

The overall methylation percentage of all the 6CpG sites within IFNG promoter was 52% 

[(IQR) 43.8%-63%)] in the chronic periodontitis biopsies and significantly lower than the methylation 

percentage in samples with periodontal health and experimental gingivitis biopsies, which were 62% 

(IQR, 51.3%-74%), (p=0.007) and 63%(IQR, 55%-74%), (p=0.02), respectively (Figure 3.3B). No 

significant difference can be found in the IFNG promoter methylation levels comparing samples with 

periodontal health to samples with experimental gingivitis. 

Since DNA methylation level is a critical regulatory mechanism for gene transcription, we 

also measured the messenger (mRNA) level of IFNG in biopsied tissues. The transcriptional level of 

IFNG was 1.96 fold increase and significantly higher in the periodontitis biopsy samples as compared 

with the healthy gingival samples as determined by quantitative real-time PCR (p=0.04, figure 3.4).  

In contrast, there was a 8.5 fold induction of IFNG transcription in experimentally induced gingivitis 

samples as compared to samples with periodontal health, and such an increase of messenger level is 

statistically significant (p=0.01).  

We also performed immunofluorescence experiment to identify the IFN-γ secreting cell 

populations and compare them between chronic periodontitis samples and tissues with periodontal 

health. In chronic periodontitis tissues more CD4+ T cells were present in the epithelial and lamina 

propia as compared to the tissues with periodontal health (figure 3.5A and 3.5B). In addition, we also 

found more CD56+ (figure 3.5C and 3.5D) positive cells, which are markers for NK and dendritic 
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cells, respectively, infiltrated in the chronically diseased biopsies than samples in health gingival 

tissues.  
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Discussion 

Although B-cell mediated adaptive immune responses dominate in chronic periodontitis, 

differential distribution of Th1 or Th2 cytokine secretion profiles have been reported to be related to 

the severity and/or progression of periodontal diseases (164)(192). Among the Th1 cytokines, IFN-γ 

plays a central role in the containment of infection and represents one of the most efficient cytokines 

for triggering antimicrobial activity in both macrophages and neutrophils (193)(194)(195). In addition 

to priming the antimicrobial activities of phagocytes, over expression of IFN-γ levels may also lead to 

direct and indirect host tissue destruction through the activation of these phagocytes (196). 

 In our study, we noted a significant 1.96 fold increase in IFN-γ messenger level in 

chronically inflamed periodontal biopsies as compared to periodontally healthy samples, consistent 

with several earlier reports (171)(167). Studies have shown an increased IFN-γ level within the GCF 

and higher IFN-γ expression in gingival tissues from progressive periodontal lesions (167). By 

contrast, other studies have suggested that elevated IFN-γ is a characteristic of the stable periodontal 

lesion and that active lesions favor a Th2 cell response(197)(198)(199). We also found that the 

transcriptional level of IFNG was 8.5 fold higher in the experimentally induced gingivitis samples as 

compared to tissues with periodontal health. Such a more pronounced transcriptional expression 

seems independent of IFNG methylation in the analyzed promoter region. Although the inflammatory 

lesion from experimental gingivitis is histologically similar to the chronic periodontitis in that 

inflammatory infiltrates dominated by lymphocytes and antigen presenting cells such as macrophage 

and dendritic cells are noticeably present (200)(201), the mechanisms for IFN-γ production may 

possibly different in the different stages of periodontal diseases. For example, cytokine-dominating 

mechanism such as high IL-12 secretion from antigen presenting cells and IL-18 may be possibly 

responsible for the observed high level production of IFN-γ in Th1 committed cells in experimental 

gingivitis lesions (202, 203). In addition, p38 and JNK signaling pathways have also been shown to 

be critically involved in IFN-γ production (204). However, this study supports that a decreased 
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methylation profile within IFNG promoter region may contribute to a higher gene transcriptional 

level, as found in chronically diseased gingival tissues.  We hypothesized here that the promoter 

region of IFNG in infiltrating Th1 cells may be already epigenetically modified prior to migration 

into the lesion after prolonged and systemic exposure to periodontal pathogens present in the oral 

biofilm in chronic periodontitis patients.  

It has been extensively reported that genetic polymorphisms can regulate cytokine expression 

levels.  Bream et al (191) reported a guanidine to thymidine transition at site -179 (G/T) within the 

IFNG proximal promoter, those authors reported that, as compared to -179G allele, the -179T allele 

exhibited a six to thirteen fold increase in expression of IFNG in a promoter assay. The absence of 

SNP at position -179bp within IFNG promoter in all the gingival biopsies analyzed by 

pyrosequencing supports the argument that the differences in IFNG expression in the chronic 

periodontitis biopsies were less likely attributable to IFNG polymorphisms, but more likely due to 

epigenetic influences conferred by prolonged environmental exposures.  

 In this study, the general demethylation pattern across all 6 CpG sites within the IFNG 

promoter region in the periodontal lesions could be due to chronic inflammation or the direct action 

and/or invasion of periodontal pathogens. Hypomethylation in chronically diseased gingival tissues 

could reflect a dilution of the tissue DNA pool by an influx of non-methylated DNA-bearing cells or 

the loss of methylation from the resident cells. We have found that more CD4+ T cells and CD56+ 

NK infiltrated in the periodontitis gingival samples than tissues in healthy gingival samples. 

Therefore, the observed lower methylation pattern in IFNG promoter region in periodontitis may be 

associated with altered methylation patterns on those cells capable of IFN-γ production. Nares et al 

(205) showed a marked infiltration by various inflammatory cell types in periodontally inflamed 

tissues in comparison to healthy gingival tissues, and also demonstrated that IFN-γ immunostaining 

was related to the presence of monocytes, macrophages and lymphocytes in periodontally diseased 

tissues. This evidence is consistent with our hypothesis that in periodontally diseased gingival tissues, 

hypomethylation status of IFNG promoter in those inflammatory cell types contributes to the 
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observed higher IFN-γ expression in comparison with healthy gingival tissues. This association has 

also been reported and discussed by others; Gonsky and collaborators (129)examining patients with 

Inflammatory Bowel Disease collected intestinal specimens from patients undergoing surgical 

resection of the colon, and showed that the infiltrated T cells isolated from the lamina propria in the 

mucosal tissues exhibited lower level of IFNG methylation in comparison to T cells isolated from 

peripheral blood from the same patients, suggesting that the epigenetic methylation status of IFNG 

plays a mechanistic role in the modulation of IFNG secretion in the mucosa. In another recent study 

on the methylation levels of IFNG promoter in human dental pulp tissues, the authors found an 

elevated level of hypomethylation in symptomatic pulpitis as compared to control pulp samples from 

impacted teeth, and also associated the IFNG hypomethylation levels with an increased number of 

infiltrating mononuclear cells in the inflamed tissues (206).  

A hypomethylation pattern of the IFNG promoter region has also be reported by several 

groups as the hallmark of T cell commitment to a Th1 phenotype (187)(188)(207). In this study, 

although the methylation level of IFNG from periodontal lesions is significantly lower than control 

sites (52% (IQR, 43.8%-63%) vs. 62% (IQR, 51.3%-74%) p=0.007), the magnitude of the difference 

(~ 10%) is not large, probably due to the fact that the modulation of methylation patterns of IFN-γ 

competent cell populations, which are infiltrated inflammatory cells, constitute a relatively small 

percentage of the total cell numbers within the periodontal lesion. Therefore, the magnitude of 

methylation difference between chronic periodontitis biopsies and gingival tissue with periodontal 

health would be expected to be relatively small, diluted by the overwhelming presence of non-IFN-γ 

competent cell populations in the tissue. However, this small decrease in methylation can account for 

a greater induction of messenger level of IFNG since it may be targeted to the IFN-γ producing cells. 

Gonsky et al (128)reported that a 5% lower methylation level observed in the IFNG promoter region 

of lamina propria T cells from patients with inflammatory bowel disease as compared to controls was 

associated with an almost 3-fold induction of IFNG transcription. Thus, the difference of the IFNG 

methylation level that we observed in the oral mucosa is in close agreement with the levels observed 
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in inflammatory bowel disease. However, the causal relationship between a small change of 

methylation in the promoter region of IFNG and increase of its transcription level requires further 

mechanistic evidence supported by experiments such as chromatin immunoprecipitation, 

electrophoretic mobility shift assay, etc.  

 The findings from this study indicate the potential role of local epigenetic effect that result in 

regional modifications of the tissue DNA methylation status in the pathogenesis of chronic 

inflammatory periodontal disease. The observed hypomethylation of the IFNG promoter is a 

characteristic of a chronic inflammatory state. The study of methylation in inflamed tissues under 

chronic infection is still at an early stage and altered methylation patterns likely effect many genes in 

disease. Additional research is needed to elucidate the potential diagnostic utility of epigenetic 

markers as a determinant of disease progression, as well as response to treatment. Since the DNA 

methylation status can be modified by certain drugs, the possibility of reversing epigenetic 

modifications may have profound effects on periodontal treatment responses.  
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Table 3.1 Oligonucleotides used for bisulfite specific PCR and pyrosequencing  
CpG site (*)    
                      

 Details                    Sequences 

      -295 
 
 
 
     -186 
 
 
 
     -54 
 
 
 
     +122 ~ 
     +128 
 
 
     +171 

Forward   
Reverse 
Sequencer 
 
Forward   
Reverse 
Sequencer 
 
Forward   
Reverse 
Sequencer 
 
Forward   
Reverse 
Sequencer 
 
Forward   
Reverse 
Sequencer 

5’-[Biotin] TTTGTAAAGGTTTGAGAGGTTTTAGAAT-3’ 
5’-CAAACCCATTATACCCACCTATACCA-3’ 
5’-TTTTATACCTCCCCACTT-3’ 
 
5’-TTAGAATGGTATAGGTGGGTATAATGG-3’ 
5’-[Biotin] TATTATAATTAAAATTTCCTTTAAACTCCT-3’ 
5’-GGGTATAATGGGTTTGTT-3’ 
 
5’-GGGTTTGTTTTATAGTTAAAGGATTTAAGG-3’ 
5’-[Biotin] AATCAAAACAATATACTACACCTCCTCTAA-3’ 
5’-TATTTTATTTTAAAAAATTTGTG-3’ 
 
5’-[Biotin] TTTTGGATTTGATTAGTTTGATATAAGAA-3’ 
5’-AAAACCCAAAACCATACAAAACTAAAA-3’ 
5’-CTAAAAAACCAAAATATAACTTAT-3’ 
 
5’- [Biotin] TTTTGGATTTGATTAGTTTGATATAAGAA-3’ 
5’- CATTTTCAACCACAAACAAATACTATTAA-3’ 
5’- ACAACCAAAAAAACCC-3’ 

*CpG sites indicate nucleotides position in relation to transcription start. “-” or “+”indicates 
upstream or downstream of transcription start, respectively. 
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Table 3.3 Demographic information of the participants and clinical parameters in the biopsied 
gingival sites 

Demographic/ 

Clinical parameters 

Periodontal 
Health 

(n=23) 

Experimental 
Gingivitis 

(n=12) 

Periodontitis 

(n=12) 

Mean age (years)  
 

40.8+ 11.6 
 

35.8+11.2 
 

47.2+ 7.4 

 Gender      
    Males/Females 

 
6/17 

 
5/7 

 
9/3* 

Probing Depth 
(Mean+SD, mm)  

 
2.2+0.6 

 
2.24+0.63 

 
6.3+0.8** 

Clinic Attachment Level 
(Mean+ SD, mm) 

 
1.2+0.6 

 
1.3+0.45 

 
4.7+1.5** 

“* ” indicates p<0.05 as compared with periodontal health’ “**” indicates p<0.001 as compared 
with periodontal health 

 
 
 
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Diagrammatic representation of 
J00219). “ ” indicates CpG dinucleotide sequence that can be potentially methylated. The 
position of each CpG dinucleotide site is illustrated in relation to the transcription start, which 
was indicated as “+1”bp.  
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Diagrammatic representation of IFNG promoter region (GeneBank accession no. 
” indicates CpG dinucleotide sequence that can be potentially methylated. The 

CpG dinucleotide site is illustrated in relation to the transcription start, which 
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Figure 3.1 Diagrammatic representation of 
J00219). “ ” indicates CpG dinucleotide sequence that can be potentially methylated. The 
position of each CpG dinucleotide site is illustrated in relation to the transcription start, which was 
indicated as “+1”bp.  
 

A 

Figure 3.2. Representative dia
methylation percentage of  m
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Diagrammatic representation of IFNG promoter region (GeneBank
” indicates CpG dinucleotide sequence that can be potentially methylated. The 

position of each CpG dinucleotide site is illustrated in relation to the transcription start, which was 

Representative diagrams of pyrosequencing. The percentage on each CpG site is the 
mC/(mC+C) on that site. mC: methylated cytosine, C: unmethylated 

The sequence shown above the peak is the sequence to be assayed. The x 
dispensation nucleotides to the sequencing reaction based on the assayed sequences. The y axes 
show light emission obtained as relative light units. The methylation percentage of one specific 

295bp) from a healthy gingival biopsy sample (figure 3.2A), which shows value of 
methylation percentage of 71, and a chronic periodontitis sample (figure 3.2B), which shows 
value of methylation percentage of 49 are illustrated. This percentage is calculated from the 
reference peak heights, marked as dark diamonds, which are non-CpG nucleotide sequences. 
The yellow diamond marks indicate “built-in” bisulfite controls in pyrosequencing. 

promoter region (GeneBank accession no. 
” indicates CpG dinucleotide sequence that can be potentially methylated. The 

position of each CpG dinucleotide site is illustrated in relation to the transcription start, which was 

 

grams of pyrosequencing. The percentage on each CpG site is the 
C: methylated cytosine, C: unmethylated 

The sequence shown above the peak is the sequence to be assayed. The x axes are the 
dispensation nucleotides to the sequencing reaction based on the assayed sequences. The y axes 
show light emission obtained as relative light units. The methylation percentage of one specific 

mple (figure 3.2A), which shows value of 
methylation percentage of 71, and a chronic periodontitis sample (figure 3.2B), which shows 
value of methylation percentage of 49 are illustrated. This percentage is calculated from the 

CpG nucleotide sequences. 
in” bisulfite controls in pyrosequencing.  
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Figure 3.3 The percentage of methylation from healthy gingival tissues, 
experimentallygingivitis and chronic periodontitis biopsies. 3.3A: The percentage of 
methylation in each individual CpG site from healthy gingival tissues, experimentally 
gingivitis and chronic periodontitis biopsies. “*”, “**”, and “***” indicate significantly 
lower methylation level in chronic periodontitis biopsies than in healthy samples at CpG site 
-54 (p=0.04), CpG site -295 (p=0.002), and CpG site +171 (p= 0.0007), respectively. Plus 
error bars and minor error bars demonstrate the maximal and minimal methylation 
percentages, respectively, while the top line, middle line and the bottom lines of boxes 
illustrate 75% percentile, median, and 25% percentile of the methylation levels in each group 
analyzed, respectively. 3.3B: Percentage of overall methylation level combinging all 6 
analyzed CpG sites within IFNG promoter region in biopsied tissues exhibiting periodontal 
health, experimental gingivitis and chronic periodontitis. “**” and “*” indicate that the 
overall methylation level of IFNG promoter region in chronic periodontitis gingival tissuesis 
was statistically lower than the percentage of methylation in healthy tissues  (p=0.007) and 
experimental gingivitits biopsies (p=0.02), respectively. The top, middle and bottom lines of 
the box plot indicate the 75% percentile, median and 25% percentile methylation levels, 
respectively.  Plus error bars and minor error bars demonstrate the maximal and minimal 
methylation percentages, respectively.  
 

A 
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Figure 3.4. mRNA expression level of IFNG in the healthy gingival biopsies, 
experimental gingivitis and chronic periodontitis samples. Fold induction is shown using 
18s as a internal housekeeping gene. As compared to gingival biopsies with periodontal 
health, a 1.96 fold increase in the transcriptional level of IFNG is significantly higher 
(p=0.04) in the chronic periodontitis biopsies, which was indicated by “*”. In contrast, 
the transcriptional level of IFNG in experimental gingivitis showed an 8.5 fold increase 
and was significantly higher (p=0.01) than tissues with peridontal health, which was 
indicated by “**”. 
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Figure 3.5. Immunofuorescence staining of CD4+ and CD56+ cells in 1 representative 
chronic periodontitis biopsy and 1 biopsy with periodontal helath. 3.5A and 3.55B: biopsy 
section from either a site with chronic periodontits (3.5A) or a site with periodontal health 
(3.5B) showing CD4+ (green) T cells  within the gingival epithelium and lamina propria. 
3.5C and 3.5D: A chronic periodontitis (3.5C) and a healthy gingival tissue (3.5D) were 
stained for CD56+ (green) NK cells. Nuclei were stained with DAPI (blue).  
 



 

 
 

 
 
 
 
 

 
Chapter 4  

 
 

Regulation of TNFA Expression in Periodontal Diseases by DNA Methylation 
 
 
 
 
 
 



 

64 
 

Abstract 

 The knowledge of epigenetic control of tumor necrosis factor-alpha (TNF-α) in the 

pathogenesis of periodontal diseases is scarce. In this study, we investigated the DNA methylation 

alteration within TNFA promoter in gingival biopsies from different stages of periodontal diseases 

and a monocytic cell line exposed to a periodontal pathogen, Cambylobacter rectus 314. The 

regulatory mechanism by promoter methylation on TNFA transcription is also explored. A decreased 

methylation level at -244bp in the promoter region of TNFA in the experimentally induced gingivitis 

biopsies as compared to the resolution phase of gingivitis (46.1+10.3% vs. 53.6+8.0%, p=0.01). Such 

a hypomethylation status at -244bp also persisted to the chronic periodontitis, a more advanced stage 

of periodontal diseases. The methylation level at that specific site was 46.7+6.7% in gingival tissues 

with chronic periodontitis, and was significantly lower than biopsies with periodontal health 

(52.4+6.1%, p=0.01).  Paradosically, an increased methylation at CpG site -163bp within the TNFA 

promoter observed in chronic periodontitis tissues was significantly higher than in periodontal health 

(16.1+5.1% vs.11.0+4.6%, p=0.0016).  In addition, the methylation level at -163bp was also invserly 

associated with its transcriptional level among periodontitis and periodontal health tissues (r=0.16, 

p=0.018). Exposure of THP-1 cells to live C. rectus 314 significantly decreased the overall 

methylation across the studied CpG sites within the TNFA promoter as compared to mock challenged 

cells 14% (10.1%, 25.5%)  vs. 21.8% (17.8%, 27.4%), shown as median and interquartile range, 

p=0.013]. Interestingly, a progressive loss of methylation at site -72bp was also found in the co-

cultured THP-1 cells. By treating THP-1 cells with a DNA methylation inhibitor as well as employing 

a promoter-specific methylation luciferase reporter, we further confirmed that the methylation status 

of TNFA negatively controls its transcription. 
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   Introduction 

 Periodontal diseases, though etiologically initiated by periodontal pathogens present within 

microbial flora of dental biofilm, are pathogenically shaped by host inflammatory and immune 

responses to those organisms (164). Various cytokines produced by the periodontal tissues and 

inflammatory infiltrates are actively involved in the pathogenesis of periodontal diseases (208, 

209).Of those cytokines, unconstrained secretion of tumor necrosis factor-α (TNF-α) has been 

demonstrated to contribute at different levels to periodontum destruction, such as cellular apoptosis, 

activation of bone resorption, upregulation of intercellular adhesion molecules (ICAMs), etc 

(210).Abnormal level of TNF-α has been also associated with periodontal diseases of different stages. 

Gorska et al. reported that the concentration of TNF-α was significantly elevated in both serum 

samples and gingival tissues biopsied from one active site in patients with severe chronic 

periodontitis as compared to periodontally healthy control subjects (211). At the terminal dentition 

stage of both adult periodontitis and early on site periodontitis patients, the TNF-α level in gingival 

crevicular fluid (GCF) is among the second-high tier of inflammatory mediators (169). As a primary 

mediator produced largely by macrophages/monocytes in response to the challenge of periodontal 

pathogens, TNF-α can sustain or amplify inflammation by inducing secondary inflammatory 

mediators such as cyclooxygenase-2, which is the rate-limiting enzyme in the production of 

prostaglandins, and matrix metalloproteinases (MMPs), which is responsible for extracellular matrix 

degradation (212). Although it is typically associated with innate immune response, TNF-α is also 

involved in the regulation of adaptive immunity. For example, in an acute graft-vs-host disease mouse 

model, Via et al. found that TNF-α plays a crucial role in the induction of cytotoxic lymphocytes and 

blockage of TNF-α clearly favors a humoral-mediated response (213).  

 Due to its global effects and potent biological activities, fine-tuned control of TNF-α is 

necessary in maintaining periodontal health. The regulation of TNF-α by signaling network is 

complex and depends on cell types and stimuli in question: transcriptional activation of TNF-α by 
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lipopolysaccharide (LPS) in macrophages or monocytes can be mediated by NF-kB (214), or 

mitogen- activated protein kinase (MAPK) family such as P38 or extracellular regulated kinase 

(215)(216); activated T cells by TCR engagement or virus induced TNF-α production require the 

coactivator proteins of cAMP response element binding protein (CREB)-binding protein (CBP)/p300 

family(217); P38 MAPK, NF-kB and phosphatidylinositol 3-kinase (PI3K) pathways are involved in 

TNF-α by mature adipose cells in response to LPS stimulation(218). Regulatory approaches also exist 

at post-transcriptional, translation, or post-translational levels (219)(220)(221).In addition, genetic 

variants also contribute to the control of TNF-α and are associated with diseases. For example, in the 

promoter region of TNF-α, -308 A carrier is associated with increased risk of chronic obstructive 

pneumonia disease (COPD) in Asian population, while the same single nucleotide polymorphism 

(SNP) is found to be associated with Grave’s disease (222)(223)(182).  Certain allelic variations are 

also functionally relevant. -1031 C carrier is associated with increased expression of TNF-α in COPD 

patients, and a SNP within the first intron (+123A) increased the activity of TNF-α reporter compared 

to G allele (224)(225).  

 Although much is known about the control of TNF-α at genetic level by signaling pathways, 

the knowledge of the epigenetic regulation related to periodontal diseases and periodontal pathogens 

is scarce. This regulatory mechanism, which is independent of DNA sequence, includes DNA 

methylation, histone post-translational modifications, and small non-coding RNA modulation. 

Exposure to various environmental stimuli such as diet, live style, toxins, inflammation, etc., have 

profound effects on gene expression, and such influence can be modulated by those epigenetic 

mechanisms (10)(226). In eukaryotes, DNA methylation, as the heritable and least reversible 

epigenetic modifications, occurs almost exclusively at the 5’ end of cytosine nucleotide within the 

CpG dinucleotide context (227). It has been generally accepted that the degree of DNA methylation 

within gene promoter regions is usually inversely related to the transcriptional level of those genes, 

though exceptions are also reported (228)(181)(229). Recently, we have described an increased 

methylation (hypermethylation) of CpG rich region within the PTGS2 promoter region in human 
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gingival biopsies, which is associated with a subdued PGE2 mRNA expression (182). Bobetsis et al. 

using a mouse model demonstrated that maternal infection by Campylobacter rectus (C. rectus), a 

periodontal pathogen, can induce a hypermethylation profile within promoter region of IGF2 P0 in 

fetal placenta (28). These data suggest that inflammation and/or pathogenic oral bacteria can induce 

epigenetic changes in gene promoters. 

 Studies have shown that TNF-α can be transcriptionally regulated by epigenetic mechanisms. 

The high-glucose condition induced TNFA transcription is associated with the increased histone 

acetylation at the TNFA promoter region (230). Both histone and DNA methylation as well as 

chromatin remodeling factors are involved in the silence of TNFA expression during E. coli LPS 

induced tolerance (231). However, whether or how cytokines are epigenetic modulated by periodontal 

pathogens is not understood. The chronic exposure to the omnipresent oral microorganism flora 

present in the bioflim and the inflammatory state of periodontal diseases may alter the gene 

expression file of the local gingival tissue of hosts by inducing epigenetic changes. Therefore, 

we hypothesize that methylation profile of TNFA promoter region was altered in periodontal diseases 

and the expression of this gene is modulated by promoter methylation. We are also seeking to study 

how the methylation pattern of TNFA in cells, modulated by the presence of periodontal pathogens 

exampled by C. rectus. 
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Materials & Methods 

Participants and tissue specimens 

 A total of thirty five participants, aged between 19 and 63 years, provided informed consent 

and were recruited into this study wherein all components were approved by the Institutional Review 

Board (IRB) of the University of North Carolina at Chapel Hill (UNC-CH). All the participants 

reported no use of either antibiotics or non-steroidal anti-inflammatory drugs (NSADs) within 1 

month before enrollment. Nor had the participants have medical treatment for other diseases 3 months 

before the biopsy or periodontal surgery. Clinical measurements, such as probing depth (PD), clinical 

attachment loss (CAL), and bleeding on probing (BOP) at six sites per tooth were obtained.  Tissue 

from one interproximal gingival site was harvested from each participant. Seventeen gingival tissues 

were collected during routine periodontal flap surgeries from participants clinically diagnosed with 

chronic periodontitis (CP), on whom initial therapies including scaling and root planning were 

performed four to six weeks before the scheduled periodontal surgery. Tissues from CP biopsies 

exhibited PDs at least 5mm and radiographic evidence of localized bone loss. Another 18 gingival 

biopsies were collected from different control participants (C) who were periodontally healthy or had 

mild gingivitis at non-study sites. Those biopsy samples, which were harvest from either volunteers 

or participants undergone crown lengthening procedures, exhibited PD measurement of 4mm or less, 

no BOP and no evidence of radiographic bone loss.   

 Another 11 pairs of biopsied gingival samples (total 22) were collected from 11 diffeent 

participants when gingivitis was experimentally induced (GI) and at the stage of gingivitis resolved 

(GR). The gingivitis induction was followed a 21-day stent-induced biofilm overgrowth protocol as 

described previously (183). No contradiction with the medical and medicine history mentioned above, 

all the recruited participants had at least four teeth in each posterior sextant. In this protocol, 

gingivitis participants with BOP scores of 10% (184) and pocket depth probing <5 mm were brought 
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to periodontal health by initial dental prophylaxis and supragingival scaling. After 1 week following 

this treatment, baseline gingival index scores were collected and the subjects were instructed to wear 

two stents during routine toothbrushing and not to floss the stent-covered teeth. This stent covered the 

tooth surfaces and promoted biofilm overgrowth during a 3-week induction period. At day 21, 

biopsies were collected from one interproximal site of gingiva exhibiting GI in one of the stent 

sextants. The participants were instructed to resume dental hygiene measures on the stent covered 

teeth. After a 4-week resorption phase, at day 49, another piece of biopsy with GR from the same 

participants was collected at a different interproximal site from the last biopsied one but covered by 

the same stent.    

Upon removal, all biopsied gingival tissues were divided into two comparable samples. One 

piece, used for DNA methylation analysis, was kept in the −80°C freezer immediately, while the 

other half, used for real-time polymerase chain reaction (RT-PCR), was incubated with RNA later 

(Applied Biosystems/Ambion, Austin, TX, USA) overnight at 4°C, and then transferred to −80°C for 

storage. 

Cell cultures and co-culture with C. rectus: 

 THP-1 cells, a human monocytic cell line, originally purchased from American Type Culture 

Collection (ATCC# TIB-202, Manassas, VA, USA) were obtained from Tissue Culture Facility at 

UNC-CH. The cells were maintained in RPMI 1640 medium (Invitrogen, Carlsbad, California, USA) 

supplemented with 10% fetal bovine serum (FBS) (Mediatech, Manassas, VA), 5X10-5M 2-

mercaptoethanol (Sigma, St. Louis, MO, USA), and 1% penicillin/streptomycin (Invitrogen). 

RAW264.7 cells, a murine monocytic cell line, were a generous gift from Dr. Patrick Flood at the 

School of Dentistry, UNC-CH. Cells were maintained in DMEM medium (Lonza, Basel, Switzerland) 

supplemented with 10% FBS, and 1% penicillin/streptomycin, 2mM L-glutamine (Cat.# 17-605E, 

Lonza). All cells were grown in a humidified incubator with 5% CO2 at 37°C.  
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 C. rectus strain 314 was grown under an anaerobic condition at 37 °C on Enriched Tryptic 

soy agar (Cat.# AS-546, Anaerobe systems, Morgan Hill, CA, USA) in an anaerobic chamber. 

 After washed with PBS, 1X106 THP-1 cells resuspended with the antibiotic-free culture 

medium as mentioned above were plated into each well of a 6-well plate prior to bacterial stimulation. 

C. rectus were collected at the late logarithmic phase and resuspended in the same antibiotic-free 

culture medium to an optical density of 1.00 (at 600 nm). Bacteria were added into THP-1 cells to 

obtain a multiplicity of infection (MOIs) of 100 at different time points as indicated.  Fresh antibiotic-

free cell culture medium was added 48 hours after C. rectus challenge to maintain the cell density no 

more than 1X106/ml. 

DNA isolation and sodium bisulfite conversion: 

Genomic DNA was extracted from collected gingival biopsies and THP-1 cells using a 

DNeasy Mini kit (QIAgen, Valencia, CA, USA) according to manufacturer’s manual. Genomic DNA 

was treated with sodium bisulfite by published procedures (232). Briefly, 1-2ug genomic DNA 

dissolved in 45µl of water was denatured at 42°C for 20 minutes with 5µl of freshly prepared 3M 

sodium hydroxide solution. After denatured, DNA was incubated with saturated sodium bisulfite 

(Cat.# 243937, Sigma) solution containing 10mM of hydroquinone (Cat.# H9003, Sigma), with a 

final pH at 5.0, at 55°C overnight. Converted DNA was then purified using a Wizard DNA Clean-up 

Column (Promega, Madison, WI, USA) and desulfonated by incubation with the 3M sodium 

hydroxide solution at 37°C for 20 minutes. DNA was finally precipitated with ethanol, and then 

resolved in 25ul of 1mM Tris-Cl (pH 8).  

Bisulfite-specific PCR and pyrosequencing 

 The information of primers used in the bisulfite-specific polymerase chain reactions (PCR) 

can be found in Table 1. Four PCR amplicons, which were amplified by a HotStar Taq kit (QIAgen, 
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Valencia, CA), include a total of 10 CpG sites within the proximal promoter region of TNFA. The 

annealing temperature for each PCR can be found in Table 1. Direct quantification of the percentage 

of methylated cytosine nucleotide for each CpG site present in the amplicons was determined by 

pyrosequencing.  In brief, 6-8µl of PCR product was mixed with 2µl of streptavidin-coated sepharose 

beads and 40µl of PyroMark binding buffer  (QIAgen, Valencia, CA).  After captured by the 

PyroMark vacuum prep filter tips (QIAgen), the beads to which biotin-labeled single strand PCR 

product attached were washed sequentially with 70% ethanol, denaturing buffer and washing buffer 

and released into a PyroMark Q96 HS plate (QIAgen) onto which 12µl of PyroMark annealing buffer 

mixed with 3.6pmol of sequencing primer specific for each amplicon was already preloaded.  After 

heated for 2 minutes at 86°C, the plate was loaded onto a PSQ HS 96 pyrosequencing system 

(QIAgen). The sequencing was determined by Pyro Gold CDT reagents (QIAgen) as previously 

described (185). For each pyrosequencing assay, one amplicon was used for sequencing and the 

corresponding sequencer can be also found in Table 4.1. A genomic sequence that is artificially 

methylated on all its CpG dinucleotides (Cat.#S7821, Millipore, Billerica, MA, USA) was used in the 

bisulfite conversion, PCR and pyrosequencing with the primers and sequencers mentioned above as a 

technical control. 

Quantitative realtime PCR: 

Total RNA was isolated from gingival tissues and cells with an RNeasy Mini Kit (Qiagen). 

cDNA from 500ng of isolated RNA was synthesized by an Omniscript Kit (Qiagen) and random 

decamer primers (Cat. # 5722E, Ambion, Austin, TX, USA). In a volume of 25µl, real-time PCR for 

transcriptional expression of TNFA was performed with 1µl of such synthesized cDNA, 12.5µl 

TaqMan Universal PCR mix (Applied Biosystems, Foster City, CA, USA) , 1.25 µl 20X assay on 

demand gene expression assay mix (Cat. # hs_99999043_m1, Applied Biosystems), and nuclease-free 

water in a 7000 Sequence Detection System (ABI Prism, Applied Biosystems). The ribosomal 18S 

(18S rRNA) Control Reagents (part# 4308329, Applied Biosystems), which was also purchased from 
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Applied Biosystems, was included in the real-time PCA assay as an endogenous control. The relative 

quantity of TNFA mRNA was calculated against 18S rRNA values according to the ∆∆Ct method 

according to Livak & Schmittgen (233). 

5-azacytidin treatment of cells: 

 Dissolved 5-Aza-2′-deoxycytidine (5-Aza-2dC, Cat.# A3656, Sigma), an inhibitor of DNA 

methylation, was added to THP-1 cells to achieve a final concentration of 5µM. After two days of 

treatment, cells were washed with PBS and treated again with freshly prepared 5-Aza-2dC of the 

same concentration for another two days. THP-1 cells that were treated with diluents in which 5-Aza-

2dC was dissolved (mock treatment) served as control. DNA and RNA samples were extracted from 

those treated cells or treated cells post challenged with C. rectus. 

Cloning of TNFA promoter, transfection and luciferase reporter assay: 

 A promoter fragment ranging from -291bp and +44bp relative to the transcription start site of 

the TNFA, which includes 11 CpG dinucleotides, was generated by PCR using the following primers: 

5’-TCCGGTACCCCTCCAGGGTCCTACACACA-3 for forward; 5’- TCCAAGCTT  

TAGCTGGTCCTCTGCTGTCC-3’ for reverse. Two restrictive endonuclease recognition sites KpnI 

and HindIII were underlined, respectively. Digested PCR product was directly ligated using a T4 

DNA ligase (Cat.#M1801, Promega) to a pGL-3 luciferase reporter vector (Cat.#E1751, Promega) 

that was digested with the same endonucleases mentioned above. After transformation, the construct 

pGL3-PTNFA291 was extracted from E. Coli DH5α using a QIAprep Spin Miniprep kit (QIAgen) 

and sequenced to confirm the correct insert.  

 For transfection, 1.8X105 RAW 294.7 cells per well were seeded on a 48-well plate one day 

before transfection and grown without antibiotics at 37°C. Cells were transfected with either 120ng 

pGL3-PTNFA291 or 220ng modified pGL3-PTNFA291 (methylated or mock-methylated) with a 
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LipofectaminTM 2000 reagent (Invitrogen). The reporter constructs were always co-transfected with a 

Renilla luciferase vector (pRL-TK vector, Cat.# E2241, Promega). 18 hours after transfection, the 

cells were challenged with E. coli LPS (500ng/µl) for another 21 hours.  

Cells were harvested and the luciferase activities were measured by the Dual Luciferase 

Reporter Assay System (Cat.# 1910, Promega) following the manufacturer’s instruction using a 

Lumat LB9507 luminometer (Berthold, Oak Ridge, TN, USA). The luciferase activities of the 

constructs were normalized with Renilla luciferase reporter activity to account for transfection 

efficiency.  

In vitro methylation: 

 In vitro methylation of cloned TNFA promoter fragment was performed according to the 

protocol recommended by Dell et al (234). In brief, 80µg of pGL3-PTNFA291 isolated by a QIAgen 

plasmid Maxi kit (Cat.#12163, QIAgen) were digested by HindIII and KpnI, and the insert and vector 

backbone were then purified by a QIAquick gel extraction kit (Cat.#28704, QIAgen). For in vitro 

methylation, the insert was incubated with 24 units of M. SssI, a CpG methyltransferase from New 

England Biolabs (Cat.# M0226S, Ipswich, MA, USA), in the presence of S-adenosylmethionine 

(SAM) with a final concentration of 160µM, at 37°C overnight. In parallel, a mock methylation 

reaction as described above but without the supplement of SAM was also performed. The methylation 

efficiency was estimated by BstUI (Cat.#R0518S, New England Biolabs) digestion, as the presence of 

methylated CpG dinucleotides will block its endonuclease activity.  After purification, the methylated 

or mock methylated insert was directly religated with the digested pGL3 vector by the T4 DNA ligase 

mentioned above to achieve either pGL3-PTNFA291(methylated) or pGL3-PTNFA291(mock). After 

purification with a QIAquick PCR purification kit (Cat.#28104,QIAgen), the religated luciferase 

reporter was transfected to RAW294.7 cells.  

Statistics:  
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 Analysis of variance (ANOVA) was applied for the statistical analysis of clinical 

measurement. Fisher’s exact test was used to test gender difference among participants in different 

groups. Mann-Whitney/Wilcoxon two-sample test was applied to comparing the percentage 

methylation of the overall percentage methylation of gingival samples among different biopsy groups. 

Student t-test was used to determine the significant difference of percentage methylation of each CpG 

site, real-time PCR and luciferase report assay data. Linear regression analysis was applied to test for 

the significance of slope to evaluate the association between the percentage of methylation of specific 

CpG site and TNFA mRNA expression from the gingival biopsies.  
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Results 

Participants 

 The demographic information of those study participants is listed in Table 4.2. No significant 

difference in gender and age was found among participants with chronic periodontitis and with 

periodontal health.  As expected, sites with chronic periodontitis exhibited deeper pocket depth and 

more attachment loss than sites with periodontal health.  

Promoter methylation level and transcription of TNFA in clinical samples:  

 The human TNFA promoter region does not contain classic CpG islands. Because DNA 

methylation affects the architecture of chromatin structure and initiation of transcription machinery 

around the transcription start site (TSS), we analyzed the methylation status of 10 CpG dinucleotides 

that are present just upstream of TNFA TSS (figure 4.1). Several transcription factor binding 

sequences, such as NF-κB, AP1, Sp1 and CRE, are also identified within this region.  

 Although the overall methylation levels from samples with chronic periodontitis did not 

exhibit a significant overall difference from samples with periodontal health, both lower methylation 

(hypomethylation) and higher methylation (hypermethylation) were identified at individual sites in 

the chronical periodontits samples as compared to periodontal health (figure 4.2A). At site -244bp, 

the methylation level of periodontitis samples was significantly lower than found in periodontal 

health samples (46.1+10.3% vs. 53.6+8.0%, shown as mean+ standard deviation, p=0.01), while the 

methylation level from the periodontitis samples was significantly higher at CpG site -163 and -161bp 

than the same sites from the periodontal health gingival biopsies (16.1+5.1% vs. 11.0+4.6%, 

p=0.0016, 19.75+4.1% vs. 15.4+3.6%p<0.001, respectively).  The transcriptional levels of TNFA 

between those two biopsy groups did not show significant difference (p=0.08, figure 4.2B). Because 

the methylation levels at 3 CpG sites are different between periodontal health and chronic 
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periodontitis samples, we plotted the TNFA messenger level of each individual gingival biopsy 

against its percentage methylation at those 3 CpG sites. Samples from both gingival tissue groups are 

shown on this plot (figure 4.2C) to demonstrate a significant but inverse association between 

promoter methylation level at -163bp and mRNA expression of TNFA, and such a significant 

association is only present for this site (r=0.16,p=0.018, figure 4.2C).   

 For those self-controlled induced gingivitis participants, though no significant difference of 

overall methylation combing all studied CpG dinucleotides can be detected within the TNFA 

promoter region between samples collected from different phases (data not shown), methylation level 

at -244bp is significantly lower in the induced phase than in the resolved phase (46.7+6.7% vs. 

52.4+6.1%, p=0.01, figure 4.3A). This reduced methylation level reminds us a similar 

hypomethylation pattern at the same CpG site identified in the chronically inflamed gingival samples 

as shown in figure 4.2A. A trend of increased TNFA messenger level, though not significantly 

different, is observed in induced phase of experimental gingivitis compared to the resolved phase 

(p=0.06, figure 4.3B).   

Promoter methylation and TNFA transcription change of THP-1 challenged by C. rectus 314: 

 After the alteration of TNFA promoter methylation was detected in the clinical gingival 

samples, we further want to identify whether the methylation change is related to the presence of 

periodontal pathogens using a co-culture cell model. In this model, THP-1 cells, which is a monocytic 

cell line that can readily produce TNF-α upon challenge LPS, were stimulated by C. rectus 314, a 

periodontal pathogen that was shown to be involved in the epigenetic regulation of IGF2 in the 

placenta tissue from a systemic infection mouse model (28).   With a MOI 100, we could not find any 

significant overall methylation change at early time points (data not shown). However, after 96 hours 

a significant hypomethylation profile in the TNFA promoter was identified in the live C. rectus 314 

challenged THP-1 cells [14% (10.1%, 25.5%), shown as median and interquartile range (IQR)] 

compared to mock challenged cells [21.8% (17.8%, 27.4%), p=0.013, figure 4.4A]. Although the 
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TNFA promoter methylation level in THP-1 cells challenged with heat-killed C. rectus 314 decreased 

[16.0% (13%, 27.5)] at the same time point, it was not significantly different from either mock or live 

C. rectus challenged cells (figure 4.4A).  

Upon challenge by C. rectus, the methylation level at one specific CpG site, -72bp, within 

TNFA promoter region exhibited a progressive demethylation at different time points after one hour 

post challenge (figure 4.4B). Therefore, besides overall decreased methylation change, continuous 

methylation loss at specific CpG site within TNFA promoter region is also present in THP-1 cells 

upon oral pathogen challenge. 

We next examined the messenger level of TNFA as DNA methylation is a regulatory 

mechanism for gene transcription. Although TNF-α is among the early responsive inflammatory 

mediators challenged by LPS, its mRNA level of THP-1 cells exhibited a 4.1-fold induction 96 hours 

post C. rectus challenge in comparison to mock challenged cells (figure 4.4C).  

DNA methylation alteration within TNFA promoter region upon 5-azacytidine treatment: 

 Although we found a hypomethylation either at specific site or in overall promoter region 

and a higher transcriptional level of TNFA, it does not necessarily indicate that promoter 

hypomethylation of TNFA is contributable to the induction of TNFA transcription. In order to identify 

the effect of hypomethylation on TNFA gene expression, we used a DNA methylation inhibitor, 5-

azacytidine, to treat THP-1 cells and studied its transcriptional change. 5-azacytidine treatment 

increased baseline TNFA expression in a time dependent manner. After 24 hours treatment, 

messenger level of TNFA was induced 1.6-fold as compared to mock treated cells, while the induction 

level is increased to 3-fold after 96 hours treatment (figure 4.5A). The treatment of this non-specific 

DNA inhibitor resulted in a general reduction of DNA methylation level at almost all the 10 CpG 

dinucleotides, with 5 of them showing significant decrease (figure 4.5B). To test whether 

demethylated promoter region can increase the responsiveness to periodontal pathogens by elevating 
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the transcriptional expression of TNFA, we challenged pre-treated THP-1 cells with C. rectus 314 for 

half an hour, a duration not long enough to cause DNA methylation changes by this periodontal 

pathogen. A 1.6-fold induction is identified in the pre-treated cells as compared to cells treated with 

diluents. Therefore, a hypomethylation pattern of TNFA promoter region increased the responsiveness 

of THP-1 cells to C. rectus.  

The effects of methylation status of TNFA promoter on gene transcription: 

 To investigate the direct effect of the TNFA promoter methylation on its transcription, we 

measured the luciferase activities in THP-1 cells transfected with reporter construct containing either 

mock methylated or in vitro methylated TNFA promoter region. We first cloned the TNFA promoter 

region ranging from -291bp to +44bp that includes all the CpG sites that were analyzed with only one 

extra CpG site being downstream the TSS.  After transfection into a mouse monocytic cell line, the 

luciferase activity of the reporter construct was induced by LPS. The pGL3-PTNFA291 showed 

sufficient promoter activity upon induction (figure 4.6A), which proved the promoter activity of this 

cloned fragment.  We then either in vitro methylated or mock methylated this cloned TNFA promoter 

and confirmed the methylation modification by digesting the fragment with methylation sensitive 

restrictive endonuclease.  After transfection of the reporter construct containing either mock or in 

vitro methylated TNFA promoter fragment and induction by LPS, we observed that the promoter 

activity of in vitro methylated construct was only 35% of the mock modified construct (p=0.03, figure 

4.6C). 
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Discussion 

 Cell signaling networks are involved in the transcriptional control of TNFA in inflammatory 

and infectious diseases. Although transcription of TNFA can be transiently induced upon challenge by 

bacterial structures such as LPS, the persistence of microbe flora present in the dental biofilm may 

regulate its expression by altering the local chromatin structure of inflammatory genes including 

TNFA. As the most stable epigenetic modification, the regulation by DNA methylation is highly 

dynamic and connects with histone modifications to modulate the binding between transcriptional 

factors mobilized through signaling pathways and their cognate recognition sites in the genomic 

DNA(235). From chronic periodontitis gingival biopsies, both hypo- and hyper- methylation pattern 

exist in the TNFA promoter region (figure 4.2A). However, only the methylation level at site -163bp 

is correlated with the transcription of TNFA in both periodontally healthy and periodontitis samples. 

Interestingly, CpG site at -244bp, whose methylation level is significantly decreased in the chronic 

periodontitis samples, was also hypomethylated and the only site exhibiting differential methylation 

level across the promoter region in the GI samples as compared to samples from GR. It seems that the 

methylation pattern of TNFA promoter is affected by disease stages. If the pathogenic effects are 

eliminated soon enough before the dieases progresses into an advanced lesion, the methylation 

change is slight and reversible; otherwise, not only are the epigenetic marks resulted from gingivitis 

maintained but new modifications unique to the chronic state of periodontal disease presented as 

chronic periodontitis will occur. This evolution of methylation pattern at key CpG sites within TNFA 

promoter region may reflect the transition from a mild and reversible periodontal inflammation to a 

more advanced and relatively irreversible stage. The methylation pattern at key promoter CpG sites 

that are involved in other physiopahologies has been also reported by different groups. For example, 

Camion et al., found that the methylation levels at -169bp and -119bp within TNFA promoter region 

were associated with successful weight loss in the obese males (236). The methylation status of one 

key CpG site within the second CpG island in the promoter region of 15-LO-1 is counterintuitively 
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related to its transcriptional activation in several prostate cell lines (229) . Murayama et al. proved 

that the demethylation at CpG site 1 within the promoter region of human IL4 is required for IL-4 

expression in CD 4+ cells (270).  The difference of identified key CpG sites of methylation between 

their studies and the current one may be due to the different diseases in question.  

 The identification of key CpG sites within promoter region whose methylation levels are 

significantly different among clinical samples representing different stage of periodontal diseases 

renders us to ask whether methylation alteration is related to the presence of periodontal pathogens. 

To achieve this end, we utilized an in vitro co-culture system to test whether TNFA promoter region 

in a monocytic cell line can be modulated by a pathogenic oral bacterial strain, C. rectus 314. 

Although TNF-α is among the early response gene in monocytes upon challenge by bacterial product, 

such as LPS, the increase of TNFA transcription in THP-1 cells is maintained as long as 96 hours after 

co-cultured with live C. rectus 314. Interestingly, an overall hypomethylation pattern in the promoter 

region was evident at 96 hours only after the cells were challenged with live bacteria, indicating the 

delayed involvement of DNA methylation in the regulation of TNFA transcription upon C. rectus 314 

stimulation. It is also noted that a non-significant decrease of the overall methylation was found in 

cells challenged by heat-killed C. rectus 314. It is possibly because the preserved bacterial structures 

in heat-killed C. rectus, such as LPS or fimbrae, account for this change, while a more significant 

change may necessitate the presence of live bacteria. The epigenetic regulation of mammalian gene 

promoter regions by bacteria has been studied by several groups. Yao et al. reported that a 

hypermethylation of hMLH1 promoter region in a gastric cell line was induced by a persistent 

Helicobacter pylori (H. pylori) stimulation as early as 4 days(237). Another study also identified a 

hypermethylated E-cadherin promoter region in several gastric cancer cell lines upon long term (2-4 

days) challenge by H. pylori(238). Similarly, the methylation status of promoter regions of USF1 and 

USF2, which are pleiotropic transcriptional regulators of immune responses, was also modulated by 

the presence of H. pylori in a gastric epithelial cell line(239). Because H. pylori infection has been 
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shown to be closely associated with aberrant DNA methylation in the gastric mucosa and it is 

phylogenetically similar to C. rectus, it is not surprising that this periodontal pathogen possess the 

capacity of modulating expression of inflammatory cytokines through epigenetic mechanisms 

(240)(241). 

 In our in vitro study, the overall methylation decrease within analyzed TNFA promoter region 

and a site-specific progressive demethylation paralleling cell cycle, was supported by a recent paper 

reporting that the expression of human β-defensin 2 (BD2) and CC chemokine ligand 20 (CCL20) in 

oral epithelial cells can be epigenetically regulated by another periodontal pathogen, Porphyromonas 

gingivalis (P. gingivilis ), and a nonpathogen Fusobacterium nucleatum (F. nucleatum) in a co-

culture system(127).  In that study, the authors found that the transcriptional of DNMT1 and histone 

deacetylases (HDAC), was inhibited in gingival epithelial cells with the presence of those bacteria. 

Because DNMT1 is the major form of DNA methyltransferase, which is mainly responsible for 

maintaining newly synthesized DNA strand, and works coordinately with HDACs to enforce a close 

chromatin structure around gene promoter, the decreased expression of those enzymes may relieve 

the gene promoters from an inhibitory chromatin structure and, thus, activate transcription process.  

We also noticed that the site at -72bp exhibiting continuous methylation loss is different from the key 

CpG sites found in clinical samples (-244bp or -163bp). The mixed cell types and the presence of a 

dynamic biofilm-gingival interface interaction may explain the difference of this site-specific DNA 

methylation pattern within TNFA promoter region. 

 Several transcriptional factors binding sites, such as NF-κB, Sp1, Ap1, Ap2, etc., are located 

within the analyzed promoter region just above TSS (figure 4.1). The presence of those binding sites 

indicates the importance of this promoter region in transcription initiation. The luciferase activity 

reporter construct containing the unmodified upstream of TNFA proved the promoter activity of the 

cloned sequence. The methylation of CpG sites within or around those sites may affect the binding by 

those transcriptional factors and, thus, decrease the transcriptional activity. For example, the 

methylated cytosine at of -72bp, -49bp and -38bp that are either located within or close to the cognate 
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binding sites of Ap1, Ap2, and Sp1 significantly inhibited the binding to those transcriptional 

factors(242). In order to further understand how methylation status of TNFA promoter region affects 

its transcription, we first treated cells with DNA methylation inhibitor. A general decrease of 

methylation within TNFA promoter in THP-1 cells treated by 5-azacytidine results in a higher 

transcription level in a time-dependent manner. This suggests that, in addition to other mechanisms 

that activates TNFA transcription in the presence of live periodontal pathogens, hypomethylation 

alone within TNFA promoter region can result in an elevated transcriptional level. Someone may 

argue that a global demethylation due to the continuous treatment by a DNA methylation inhibitor 

may not be specifically linked to TNFA transcriptional activation since higher transcription can be a 

secondary effect of 5-azacytidine treatment. In addressing this issue, we compared luciferase 

activities from reporter constructs containing either methylated or mock methylated promoter region 

of TNFA. This promoter-specific methylation luciferase assay further proved that the transcription of 

TNFA can be negatively regulated by promoter DNA methylation level.  

 In this study, we analyzed the regulation by DNA methylation in TNFA promoter region 

either in gingival biopsies with periodontal diseases and cell-perioodntal pathogens interactions. In 

conclusion, although a decreased methylation level at site -244bp cytosine within TNFA promoter 

region is related to a trend of increased transcription of this inflammatory gene in experimentally 

induced gingivitis biopsies, a hypermethylated CpG dinucleotides at site -163bp identified in the 

chronic periodontitis biopsied tissues, which also retained the decreased methylation change at -

244bp possibly resulted from early stage of periodontal disease, is inversely associated with its 

transcription in both periodontitis and periodontal health samples. Exposure of Monocytic cells to a 

periodontal pathogen caused an overall decreased methylation pattern in TNFA promoter region and a 

unique progressive demethylation at site -72bp that are mechanistically related to higher TNFA 

transcription. 
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Table 4.1. Oligonucleotides used for bisulfite specific PCR and pyrosequencing  

CpG site (*)    
                      

 Details                    Sequences Annealing T (°C) 

       

-244, -238 

 

 

-169, -163,  

-161 

 

 

 

-146, -119 

 

 

 

-72, -49, -38 

 

Forward   

Reverse 

Sequencer 

 

Forward   

Reverse 

Sequencer 

 

Forward   

Reverse 

Sequencer 

 

Forward   

Reverse 

Sequencer 
 

5’-TAGGTTTTGAGGGGTATGGG -3’ 

5’-[Biotin]TCAAAAATACCCCTCACACTCC -3’ 

5’-GTTAGTGGTTTAGAAGATTT-3’ 

 

5’-[Biotin]GAGTGTGAGGGGTATTTTTGATG -3’ 

5’-GCAACCATAATAAACCCTACACCTTC-3’ 

5’-AAACCCTACACCTTCTATCT -3’ 

 

5’-GAGGGGTATTTTTGATGTTTGTGT -3’ 

5’-[Biotin] CAACCAACCAAAAACTTCCTTAAT- 3’

5’-TTTAGAGATGGAGAAGAAA-3’ 

 

5’-GAGGGGTATTTTTGATGTTTGTGT-3’ 

5’-[Biotin]CCAACAACTACCTTTATATATCCC -3’

5’-TTATGGGTTTTTTTATTAAG-3’ 

 

62 

 

 

 

63 

 

 

61 

 

 

 

63 

 

*CpG sites indicate nucleotide position in relation to transcription start. 
“−” or “+”, indicates upstream or downstream of transcription start, respectively. 
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Table 4.2 Demographic information of the participants and clinical parameters in the biopsied 
gingival sites 

Demographic/ 

Clinical parameters 

Periodontal 
Health  
(n=17) 

Periodontitis 

             (n=18) 

Gingivitis Induced 

                    (n=11) 

Gingivitis 
Resolved 

Mean age (years)  
 

40.9+ 13.5 
 

         48.7+8.7 
 

36.8+9.7 
 

 5/6 
 Gender      
    Males/Females 

 
5/12 

 
            11/7  

Probing Depth 
(Mean+SD, mm)  

 
1.9+0.9 

 
5.7+1.1** 

 
2.4+0.3 

 
2.1+0.2 

Clinic Attachment 
Level 
(Mean+ SD, mm) 
 
Alveolar bone loss 

 
0.9+0.6 

 
 

No 

 
4.1+1.0** 

 
 

Yes 

 
1.1+0.7 

 
 

                          No 

 
1.3+0.6 

 
 
 

 “**” indicates p<0.001 as compared with periodontal health 
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Figure 4.1. Genomic sequence of TNFA promoter fragment. Sequence ranging from -258bp to 
+17bp relative to transcription start site (TSS) before bisulfite modification is presented. This 
promoter fragment just upstream of TSS contains ten CpG dinucleotides that are marked with “*” 
and in bold. Their position in relation to TSS is also indicated above. Sites for potential 
transcriptional factor binding and TATA box are underlined.  
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Figure 4.2. Methylation level of TNFA promoter region as well as transcriptional level of 
TNFA in clinical gingival biopsies collected from sites either with chronic periodontitis or 
periodontal health.  (Figure 4.2A) The percentage methylation of each individual CpG 
dinucleotide from chronic periodontitis tissues is compared with gingival tissues with 
periodontal health. “*” indicates significantly lower methylation level at site -244bp in 
chronic periodontitis samples compared to samples with periodontal health (p=0.01); “**” 
indicates significantly higher methylation level at sites -163bp and -161bp in chronic 
periodontitis samples compared to periodontal health (p<0.01 for both sites).  (Figure 4.2B) 
Individual TNFA transcriptional expression from periodontitis biopsies (shown as solid circle) 
is compared with gingival biopsies with periodontal health. The transcription of TNFA is 
lower in periodontitis sample but not significantly different from the samples with periodontal 
health (p=0.08).  (Figure 4.3C) The messenger level of TNFA of individual sample from both 
periodontitis group and periodontal health group is plotted against its methylation level at site 
-163bp. Regression analysis indicates that the transcriptional level of TNFA is significantly 
and inversely related to the methylation level at -163bp (r=0.16, p=0.018). 
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Figure 4.3. Methylation level of TNFA promoter region and transcriptional level of TNFA in 
biopsies collected from sites exhibiting experimentally induced gingivitis and gingivitis resolved. 
(Figure 4.3A) The percentage methylation of each individual CpG dinucleotide from 
experimentally induced gingivitis is compared with gingival tissues with gingivitis resorption. 
“*” indicates significantly lower methylation level at site -244bp in gingivitis samples compared 
to samples collected from resolved phase (p=0.01). (Figure 4.3B) Individual TNFA 
transcriptional expression from the induced phase of gingivitis biopsies (solid circles) is higher 
but not significantly different from the self-controlled resolved phase of gingivitis (solid squares) 
(p=0.06).  
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Figure 4.4. Methylation alteration of TNFA promoter and transcriptional expression of TNFA 
in THP-1 cells co-cultured with C. rectus 314. (Figure 4.4A) After 96 hours post challenge, 
the overall methylation level of the ten CpG sites within TNFA promote in THP-1 cells 
challenged by live C. rectus 314 showed a significant decrease as compared to mock 
challenged cells (p=0.014, indicated by “*”). Although TNFA promoter methylation level 
also decreased in heat-killed C. rectus treated cells in comparison to mock challenged cells, 
there is no statistical difference between those treatment (p=0.12). (Figure 4.4B) Methylation 
level at -72bp in live C. rectus 314 challenged cells, which was normalized to the level of 
mock-challenged cells, is significantly lower than the mock-challenged cells at all the time 
points except 1 hour. “*” indicates statistical difference (p<0.05). (Figure 4.4C) The 
transcriptional level of TNFA in live C. rectus challenged THP-1 cells is higher than the 
mock challenged cells at 96 hours (p=0.008, as indicated by “*”). 
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Figure 4.5. Methylation of TNFA promoter and its transcription in THP-1 cells treated with 5-
aza-2dC. (Figure 4.5A) Cells treated with 5-aza-2dC exhibited an increase of TNFA 
transcription in a time-dependent manner in comparison to mock treated cells (“*” indicates 
p=0.03 and “**” indicates p=0.003).  (Figure 4.5B) A general reduction of methylation level at 
CpG sites of TNFA promoter region is present in cells treated with 5-aza-2dC, with 5 CpG 
sites at -244bp, -238bp, -72bp, -49 and -38bp showing significant decrease, as compared to 
mock treated cells (“**” indicates p<0.01).  (Figure 4.5C) THP-1 cells pretreated with 5-aza-
2dC are more responsive to C. rectus challenge by increasing TNFA transcription (p=0.03, as 
indicated by “*”). 
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Figure 4.6. Activity of luciferase reporter construct containing either unmodified or modified 
TNFA promoter fragment ranging from -291bp to +44bp relative to TSS. (Figure 4.6A) Cells 
transfected with pGL-3PTNFA291 construct showed increased luciferase activity upon 
induction by LPS as compared to uninduced construct. Lucfirase activity is relative to the empty 
vector. (Figure 4.6B) Cells transfected with in vitro methylated pGL-3PTNFA291showed a 
significantly decreased luciferase activity as compared to cells transfected with a mock 
methylated pGL-3PTNFA291 upon LPS induction (*p=0.03).  

A 

B 



 

 
 

 
 
 
 
 
 

Chapter 5 

Discussion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

95 
 

Discussion 

 Periodontal diseases include gingivitis, an early and less severe form of gingival 

inflammation characterized by red and/or swollen gingiva and bleeding upon probing, and 

periodontitis, a more advanced and destructive inflammation causing loss of tooth-supporting 

structures such as alveolar bone (243). Although periodontal diseases are infectious diseases initiated 

by periodontal pathogens present in the dental biofilm and plaques, the destruction of soft and 

mineralized periodontal tissue is actually more contributable to the inflammatory immune responses 

by the host mobilized to fight against those pathogens (244) (243) (245). In the pathogenesis of 

periodontal diseases, both innate and adaptive immune responses are critically involved, and the roles 

played by those immune responses depend on the stage of disease progression. For examples, 

infiltrates of innate-immunity competent cells such as polymorphonuclear neutrophils and 

monocytes/macrophages are typically seen in the initial or early stage of periodontal diseases, while T 

or B lymphocytes are the dominating cell populations present in an established or advanced lesion 

(246). However, recent studies have clearly indicated that immune responses that are involved in 

tissue destruction are also critical to controlling periodontal infection (247)(248).  Therefore, 

balanced production of cytokines, chemokines, growth factors, enzymes, vasoactive small molecules, 

etc., controlled by a fine-tuned regulation network is necessary to keep homeostasis of periodontum 

irrespective of disease status.  

 Once secretion of proinlfammatory cytokines surpasses “a critical level”, a protective 

response will transform into a pathological one (249). Although the level of TNF-α either in GCF or 

in gingival tissues from the periodontitis lesion has been reported to be increased, the transcription of 

this proinflammatory molecule in the current study from the periodontitis sites did not show such an 

elevation in comparison to gingival biopsies with periodontal health. Actually, a trend of lower 

transcriptional expression is evident in those periodontitis tissues (figure 4.2B). Interestingly, such a 

non-significant reduction of PTGS2 transcription is also seen in those periodontitis biopsy samples as 

compared to control periodontal health (figure 2.3A).  Such a concordant trend for both TNFA and 
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PTGS2 transcription is supported by studies demonstrating that TNF-α is a potent inducer for COX-2 

expression in macrophages and fibroblasts from gingivae and temporomandibular joint 

(250)(251)(252). It is generally believed that primary inflammatory cytokines, such as TNF-α or IL-

1B, stimulate the production of secondary response cytokines such as PGE2 by upregulating COX-2, 

which is the rate-limiting enzyme for prostaglandins (119)(249). This failed induction of TNFA and 

PTGS2 in those chronic periodontitis gingival tissues may be due to the shift of a metastable stead-

state of cytokine production. All those periodontitis tissues were collected from the chronically 

inflamed gingival sites with deep pocket, which reflects a historical episode of disease activity. After 

initial periodontal therapy such as root planning and scaling, the inflammation in those biopsied 

tissues is most likely in a quiescent, rather than an advanced progressive state. During the prolong 

battle between periodontal pathogens and host defense, the body may develop a “protective” 

mechanism that resets the equilibrium of those molecule production to avoid an uninhibited insults by 

cytokines or enzymes.  

 DNA methylation may be part of this mechanism that is involved in the control of TNFA and 

PTGS2 transcription in periodontally diseased gingival tissues. Epigenetic regulatory mechanisms 

translate various environmental stimuli into different forms of modification in either DNA or key 

residues of histone molecules.  Those modifications build the suitable platform by altering chromatin 

structure for the bindings of transcriptional factors to their cognate sites in DNA. In both TNFA and 

PTGS2 promoter region, we identified the altered methylation patterns in periodontally diseased 

samples compared to non-diseased tissues. However, the observed methylation alterations are 

different for both promoter regions possibly due to their different promoter structures. The promoter 

region of PTGS2 contains a CpG island, in which a general but low level of methylation is present in 

periodontitis samples but not in control samples (figure 2.2C), while the TNFA promoter region does 

not possess such a CpG island and showed  both hypo- and hyper- methylation patterns at different 

CpG sites (figure 4.2A). A general lack of methylated cytosines within PTGS2 CpG island identified 

in non-diseased periodontal tissues (figure 2.2B) suggests a low nucleosome occupancy that favors 
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chromatin remodeling to an activated state (253)(254). In this sense, a general increase of methylation 

in this CpG island may lead to an inhibitory chromatin remodeling that does not favor transcription 

activity. In spite of the absence of a CpG island in TNFA promoter, the methylation level of CpG sites 

ranging from -169bp to -38bp is much lower in both periodontitis samples or samples with 

periodontal health (< 20%) than the methylation level at -244bp and -238bp (around 60%). This 

observed methylation pattern from this study is also seen in peripheral blood mononuclear cells (255). 

It is also reported by another group that such a low methylation level extends into the first exon at 

least around CpG site +310bp in TNF-α competent cells (256). Therefore, it is reasonable to assume 

that nucleosome occupancy is also relatively low around this region and an increase of methylation at 

CpG sites within this region may negatively affect the TNFA transcription efficiency. Methylation 

changes at key sites within those low-nucleosome occupancy promoter regions, such as CpG site at -

458bp within PTGS2 promoter or site -163bp within TNFA promoter in clinical samples, may have a 

greater effect on the binding by transcriptional factors, and thus, are negatively related to its 

transcription (figure 2.3B, figure 4.2C).  

 Another explanation for this failed induction of those inflammatory molecules, especially 

TNFA, in chronic periodontitis gingival tissues may be attributable to a tolerance mechanism. Using 

RT-PCR and immunostaining, Muthukuru et al. found that the transcriptional level of TLR2 and 

TLR4 decreased 30-fold and nine-fold, respectively, in chronic periodontitis gingival samples 

compared to periodontal health, though more TLR2 and TLR4 positive cells were present in the 

inflamed gingival samples (257). Rechallenging LPS pre-treated peripheral blood monocytes with 

LPS again, the same group observed a 10-fold reduction of TNFA transcription as well as decreased 

production of TLR2, TLR4, IL-1B, and other proinflammatory cytokines.  The abundance of highly 

tolerable macrophages present in the infiltrate of a stable and chronically inflamed gingival lesion 

may thus contribute to the absence of TNFA induction in our periodontitis tissues.  

This tolerant mechanism, however, has also been closely related to epigenetic modifications. 

Gazzar et al. proposed a tolerance model for TNFA transcription in which in LPS tolerated cells 
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DNMT3a/3b was recruited into the promoter region through HP1, an adaptor protein that binds to the 

di-methylated lysine 9 H3 catalyzed by G9a, a mono- or di- lysine methyltransferase (258). The 

recruited DNMT3a/3b further reinforces this inhibitory chromatin structure by adding methyl- group 

into cytosines within the TNFA promoter region. This group also found that the enrichment of 

inhibitory epigenetic marks in the tolerated TNFA promoter region excluded the binding by NF-κB 

P65 to TNFA promoter region but increased the binding of RelB, which is a NF-κB repressor (259). 

Therefore, this mechanism links epigenetic remodeling in the local chromatin structure of TNFA 

promoter region with an important signaling pathways mediated by NF-κB.  

 Similar studies aiming at untangling the relationship between periodontal diseases and 

methylation alteration of inflammatory cytokine genes came out just after our data were published. 

For example, in a most recent paper, an increased DNA methylation pattern in PTGS2 promoter in 

periodontitis patients compared to non-periodontitis control subjects from a larger subject pool also 

confirmed our findings (260). They even found the hypermethylation occurs more frequent in 

periodontitis samples than in breast cancer biopsies. A higher frequency of hypomethylation of IL8 

promoter region was found in oral epithelial cells from chronic periodontitis patients independent of 

smoking habit (126). The same group later found that patients with generalized aggressive 

periodontitis have a higher frequency of hypomethylation of IL8 promoter than in periodontally 

healthy controls (261).  

In the in vitro co-culture model, we observed an overall hypomethylation in cells challenged 

by live C. rectus after 96 hours (Figure 4.4A). A progressive methylation loss at -72bp was also 

identified in THP-1 cells co-cultured with C. rectus (figure 4.4 B). This overall hypomethylation and 

site-specific loss of methylation is related to an elevation of TNFA transcription. Although TNF-α 

production is among the primary response of inflammation, this observed hypomethylation pattern 

may contribute to the sustaining of increased transcription in a late time course. The identified pattern 

of methylation change in co-culture model is different from the change observed in clinical samples. 

This is possibly because the epigenetic alteration in the TNFA promoter region induced by one 
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periodontal pathogen in a single cell type does not necessarily reflect the overall effect of bacteria 

flora present in the biofilm on mixed cell populations seen in the gingival tissue. However, we 

confirmed that C. rectus 314 is capable of altering epigenome in host genes. Previously, using a 

mouse model, we found that the ifg2 P0 promoter region was hypermethylated at several sites in 

placenta from the maternally infected mice by C. rectus 314 compared to the mock infected mothers 

(262). In this co-culture model, we found that such an epigenetic modulating activity requires live C. 

rectus upon challenge. We also found that the overall methylation pattern also decreased in the heat-

killed C. rectus, though not significantly different. Because bacterial structural components, such as 

LPS and fregellae, are still preserved in the heat-killed bacteria, the observed decrease of methylation 

may be possibly related to those preserved components. Therefore, the capacity of C. rectus 314 to 

modulate promoter methylation is related to its metabolism or virulence factors. It is important to 

point out that C. rectus is phylogenetically similar to another anaerobic gram negative bacterium, H. 

pylori, a known gastric pathogen that can modify DNA methylation pattern of mammalian gene 

promoters(263)(264). For example, they both share a 64-kDa antigen, GroEL protein (263). In 

addition to H. pylori, other bacteria are also found to regulate host gene expression through an 

epigenetic approach. For example, infection of Anaplasma phagocytophilum, an intracellular 

bacterium, can lead to silencing of dense genes by increasing HDAC1 expression, which results in H3 

deacetylation and a more compact chromatin structure (265). The research on the mechanisms of how 

microorganisms affect host’s epigenome is still in its infancy stage, and the results will greatly benefit 

our understanding towards the pathogenesis of infectious diseases. 

Not only are innate immune responses involved in periodontal diseases, but adaptive 

immunity is another critical component that contributes to the pathogenesis of periodontal diseases. 

Lymphocytes and plasma cells are prevalently present in the infiltrate of periodontal lesions as early 

as the on-site of gingivitis, the reversible and early stage of periodontal diseases (246). Those 

identified cell types and the abundance of immunoglobulin in the periodontal lesion indicate the 

active participation of both T-cell and B-cell mediated adaptive immune responses (246)(266).  By 
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immunofluorescence, we also identified more CD4+, CD56+ and CD11c+ cells in the infiltrate of 

periodontal lesions compared to gingival biopsies with periodontal health (figure 3.5).  In agreement 

with this pathological finding, the transcriptional level of IFNG in the periodontally diseased samples 

was also elevated (figure 3.4). Both Th1 and Th2 responses are involved in the pathogenesis of 

periodontal diseases and related to the disease progression (266). The increase of IFNG in the 

periodontitis biopsies is not unexpected because those samples were collected from the gingivae 

undergone initial therapies and representing stable lesions. However, the methylation change within 

INFG promoter region in chronic periodontitis samples is different from experimentally induced 

gingivitis compared to gingival tissues with periodontal health (figure 3.3A and 3.3B). This 

difference of methylation pattern may indicate a late involvement of epigenetic mechanism in the 

regulation of IFNG transcriptional expression, while the elevation of IFNG messenger level in 

gingivitis samples is independent of DNA methylation.  However, a recently published report with 

the similar aim of investigating the methylation alteration in chronically inflamed periodontitis 

samples couldn’t find a significantly different level of methylation at two sites: -54bp and -186bp, 

though unmethylated samples are only present in the periodontitis group (267).  In the current study, 

we did identify a significantly lower methylation level at site -54bp and a non-significant decrease of 

methylation at site -186bp in chronic periodontitis samples (figure 3.3A). The difference between 

their study and ours is probably because methylation-specific PCR, the method they used for 

methylation analysis, is semi-quantitative and less sensitive to discovering difference of relatively 

small magnitude compared to pyrosequencing.   However, both studies agree that a demethylation 

pattern within IFNG promoter region may exist in samples with chronic periodontitis. 

It is also noteworthy that a Th1 response as exhibited by a higher transcriptional level of 

IFNG in the chronic periodontitis samples echoes a reduction of messenger level of PTGS2 identified 

among the chronic periodontitis samples in the current study. Studies have strongly supported an 

inhibitory effect of IFN-γ on PTGS2 transcription in several cell types including human umbilical 

vascular endothelial cells (HUVEC), human foreskin fibrolasts, and U937, a monocytic cell line (268). 
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Reciprocally, the inhibition of Cox-2 or suppression of PGE2 production also leads to the 

upregulation of INF-γ in NK cells (269). This mutual exclusive relationship between Cox-2, an 

enzyme playing import roles in alveolar bone destruction, and IFN-γ, a classic Th1 cytokine in 

adaptive immunity, may reflect a protective mechanism developed by the host aiming at resetting the 

homeostasis by favoring a cell-mediated immune responses in chronic inflamed but relatively stable 

periodontal lesions.  

Although we identified alterations of DNA methylation within several gene promoters 

critically involved in either innate or adaptive immune responses in gingival biopsies with different 

stages of periodontal diseases, a direct mechanism linking promoter DNA methylation and 

transcriptional expression needs to be proved. We studied the epigenetic regulation of TNFA 

transcription in THP-1 cells to address this important mechanism. The general demethylation across 

the promoter region of TNFA and an increase of the messenger level of TNFA after 5-aza-2dC 

treatment provide the evidence to indicate that the methylation level of TNFA is inversely associated 

with its transcription (figure 4.5A and 4.5B). In addition, the decreased methylation level of TNFA 

promoter also increased the responsiveness of THP-1 cells to the challenge by periodontal pathogen. 

Such an increased messenger level of TNFA in treated cells compared to mock treated cells indicates 

that a permissive chromatin structure in the promoter region further facilitates the transcription of 

inflammatory genes.  However, a globally decreased methylation level resulted from a non-specific 

inhibition of DNMT1 by 5-aza-2dC can also justify other explanations to the increased transcription 

of inflammatory genes. For example, this observed transcriptional increase can be due to a higher 

expression of molecules in the regulatory network of TNFA, which was actually caused by a 

hypomethylation upon 5-aza-2dC treatment in their promoters. In order to investigate the primary 

effect of methyl groups in the TNFA promoter on its transcription, we methylated the promoter 

fragment of TNFA in vitro and compared its luciferase activity with the mock methylated insert. A 

significant reduction of luciferase activity, which measures the constructed promoter activity, in 
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methylated TNFA promoter fragment showed direct evidence that promoter methylation of TNFA 

exerts a negative regulatory influence on its transcription. 

In conclusion, in the current study we investigated the alteration of promoter methylation of 

inflammatory and immune response genes involved in the pathogenesis of periodontal diseases and 

their transcriptional expression using clinical samples. We have found that an increased methylation 

level of PTGS2 promoter was present in chronically inflamed periodontitis samples as compared to 

non-inflamed gingival tissues with periodontal health. The methylation level at a specific CpG site (-

458bp) within PTGS2 promoter, which was higher than other CpG site within the same CpG island in 

both sample groups, was inversely associated with the transcriptional level of PTGS2. Those 

inflammation associated epigenetic changes in the local tissue were also evident within TNFA 

promoter in clinical samples with different stages of periodontal diseases. A decreased methylation 

level at site -244bp was found in gingival biopsies exhibiting experimentally induced gingivitis, 

which represents an early and a reversible stage of periodontal disease, compared to the tissues with 

gingivitis resolution.  The maintenance of this hypomethylation pattern at the same site and the newly 

occurred increased methylation level at site -161bp and -163bp were characteristic epigenetic changes 

present in the samples with chronic periodontitis, an established and advanced stage of periodontal 

disease, in comparison to periodontal health. In addition, the hypermethylated CpG site at -163bp was 

also inversely related to the transcription of TNFA in both groups. Not only do epigenetic changes 

exist in promoter regions of genes mediating innate immune responses in the pathogenesis of 

periodontal diseases, the altered methylation pattern modulated by inflammation and/or microbial 

flora in the biofilm is also present in the genes involved in adaptive immunity. Although no 

significant difference of DNA methylation level was found within the promoter region of IFNG in the 

experimentally induced gingivitis biopsy samples from tissues with gingival health, an overall and a 

site-specific hypomethylation pattern were identified in the chronically inflamed periodontitis 

gingival samples. Such a hypomethylation pattern that was related to an increased transcriptional 

expression of IFNG in the periodontitis tissues may possibly reflect a dilution of the tissue DNA pool 
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by an influx of IFN-γ competent cells, such as CD4+ T cells, CD56+ NK cells and CD11C+ dendritic 

cells as indicated by immunofluorescence, with minimally methylated IFNG promoter region.  The 

more pronounced DNA methylation changes as identified in the promoter regions of TNFA and IFNG 

at a more advanced rather than an early stage of periodontal diseases may possibly suggest a role of 

epigenetic regulation of inflammatory genes triggered by the accumulative effect of chronic exposure 

to the periodontal pathogenic stimuli. One limitation of the in vivo studies using gingival biopsies is 

the absence of profiling methylation changes in different cell types. The methylation levels of those 

inflammatory genes from those biopsy samples reflect the overall alterations of a mixed cell 

population contained in the biopsies. The larger alterations of methylation in certain cell types may be 

overwhelmed by the presence of other cell types that experience little epigenetic modifications within 

the promoter region of genes in question. Laser capture microdissection experiment should be 

employed to address this important question in the future study. In order to further investigate 

whether periodontal pathogens are related to the modulation of promoter methylation, we proceeded 

to analyze the promoter methylation changes in a monocytic cell line co-cultured with C. rectus. In 

contrast to the heat-killed pathogen, live C. rectus 314 challenged THP-1 cells exhibited a general 

hypomethylation within the promoter region of TNFA at a late time course and a progressive loss of 

methylation at the CpG site -72bp. The hypomethylation pattern is related to an increased 

transcription of TNFA. This finding suggests that live periodontal pathogen is capable of modulating 

host inflammatory genes in an epigenetic approach. At last, we studied the effect of DNA methylation 

on the transcriptional control of inflammatory genes. Both DNMT inhibitor treatment and promoter-

specific methylation luciferase reporter assay confirmed that the methylation level of TNFA promoter 

negatively regulates its transcription.  
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