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We propose a new test for superior predictive ability. The new test compares favorably to the reality check
(RC) for data snooping, because it is more powerful and less sensitive to poor and irrelevant alternatives.
The improvements are achieved by two modifications of the RC. We use a studentized test statistic that
reduces the influence of erratic forecasts and invoke a sample-dependent null distribution. The advantages
of the new test are confirmed by Monte Carlo experiments and an empirical exercise in which we compare
a large number of regression-based forecasts of annual U.S. inflation to a simple random-walk forecast.
The random-walk forecast is found to be inferior to regression-based forecasts and, interestingly, the best
sample performance is achieved by models that have a Phillips curve structure.
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1. INTRODUCTION

Testing whether a particular forecasting procedure is outper-
formed by alternative forecasts represents a test of superior pre-
dictive ability (SPA). White (2000) developed a framework for
comparing multiple forecasting models and proposed a test for
SPA that is known as the reality check (RC) for data snooping.
Here the term “model” is used in a broad sense that includes
forecasting rules/methods, which need not involve modeling
data. In White’s framework, m alternative forecasts (where
m is a fixed number) are compared with a benchmark forecast,
where the predictive abilities are defined by expected loss. The
complexity of this inference problem arises from the need to
control for the full set of alternatives.

In this article, we propose a new test for SPA. Our framework
is identical to that of White (2000), but we take a different path
in our construction of the test. To be specific, we use a different
test statistic and invoke a sample-dependent distribution under
the null hypothesis. Compared with the RC, the new test is more
powerful and less sensitive to the inclusion of poor and irrele-
vant alternatives.

We make three contributions in this article. First, we pro-
vide a theoretical analysis of the testing problem and expose
some of its important aspects. Our theoretical results reveal that
the RC can be manipulated by the including poor and irrele-
vant forecasts in the set of alternative forecasts. This problem
is alleviated by studentizing the test statistic and by invoking
a sample-dependent null distribution. The latter is based on a
novel procedure that incorporates additional sample informa-
tion to identify the “relevant” alternatives. Second, we provide
a detailed explanation of a bootstrap implementation of our
test for SPA. Third, we apply the tests in an empirical analy-
sis of U.S. inflation. Our benchmark is a simple random-walk
forecast that uses current inflation as the prediction of future
inflation. The benchmark is compared with a large number of
regression-based forecasts, and our empirical results show that
the benchmark is significantly outperformed. Interestingly, the
strongest evidence is provided by regression models that have a
Phillips curve structure.

When testing for SPA, the question of interest is whether
any alternative forecast is better than the benchmark forecast
or, equivalently, whether the best alternative forecasting model
is better than the benchmark. This question can be addressed by
testing the null hypothesis that “the benchmark is not inferior to

any alternative forecast.” This testing problem is relevant for ap-
plied econometrics, because several ideas and specifications are
often used before a model is selected. This mining over alterna-
tive forecasts may be exacerbated if more than one researcher is
searching for a good forecasting model. (For a more complete
discussion of this issue, see Sullivan, Timmermann, and White
2003 and references therein.) Testing for SPA is useful for a
forecaster who wants to explore whether a better forecasting
model than the model currently being used to make predictions
is available. After a search over several alternative forecasts, the
relevant question is whether one of the alternative forecasts is
significantly more accurate than the benchmark. (The test for
SPA can also be used to test an economic theory that places re-
strictions on the predictability of certain variables, such as the
efficient markets hypothesis; see Sullivian et al. 1999.)

Tests for equal predictive ability (EPA) in a general set-
ting were proposed by Diebold and Mariano (1995) and West
(1996), where the framework of West can accommodate the sit-
uation where forecasts involve estimated parameters. Harvey,
Leybourne, and Newbold (1997) suggested a modification of
the Diebold–Mariano test that leads to better small-sample
properties. A test for comparing multiple-nested models was
given by Harvey and Newbold (2000), and McCracken (2000)
derived results for the case with estimated parameters and non-
differentiable loss functions, such as the mean absolute de-
viation loss function. West and McCracken (1998) developed
regression-based tests, and other extensions were made by
Harvey et al. (1998), Chao, Corradi, and Swanson (2001), Clark
and McCracken (2001), West (2001), and Corradi and Swanson
(2002), who considered tests for forecast encompassing, and by
Corradi, Swanson, and Olivetti (2001), who compared forecast-
ing models that include cointegrated variables. (For a discus-
sion of in-sample versus out-of-sample testing, see Inoue and
Kilian 2004.)

Whereas the frameworks of Diebold and Mariano (1995)
and West (1996) involve tests for EPA, the testing problem in
White’s framework is a test for SPA. The distinction is im-
portant because the former leads to a simple null hypothesis,
whereas the latter leads to a composite hypothesis. One of the

© 2005 American Statistical Association
Journal of Business & Economic Statistics

October 2005, Vol. 23, No. 4
DOI 10.1198/073500105000000063

365



366 Journal of Business & Economic Statistics, October 2005

main complications in composite hypotheses testing is that (as-
ymptotic) distributions typically depend on nuisance parame-
ters, such that the null distribution is not unique. The usual way
to handle this ambiguity is to use the least favorable config-
uration (LFC), which is sometimes referred to as “the point
least favorable to the alternative.” Our analysis shows that the
LFC-based approach leads to some rather unfortunate prop-
erties when testing for SPA. The following situation delivers
key insight to the advantages of using a sample-dependent null
distribution. Let pmin denote the smallest p value of the m pair-
wise comparisons (comparing each alternative with the bench-
mark); then the Bonferroni bound test (at level α) rejects the
null hypothesis if pmin < α/m. It is now evident that the power
of this test can be driven to 0 by adding poor and irrelevant al-
ternatives to the comparison, because this increases m but does
not affect pmin. However, sample information will (at least as-
ymptotically) identify the poor and irrelevant alternative, which
allows us to use a smaller denominator when defining the crit-
ical value, for example, α/m0 for some m0 ≤ m. Although our
testing procedure is quite different from the conservative Bon-
ferroni bound test, our sample-dependent null distribution is
similar to this improvement of the Bonferroni bound test, al-
though the (presumed) poor alternatives are not discarded en-
tirely in our framework.

In relation to the existing literature on forecast evaluation and
comparison, it is important to acknowledge a limitation of the
specific test that we propose in this article. A comparison of
models with parameters that are estimated recursively is not ac-
commodated by our framework, because this situation violates
our stationarity assumption. (For recent progress on this prob-
lem in the present context, see Corradi and Swanson 2005a.)
However, our framework does permit parameters that are esti-
mated once (fixed scheme) or with a moving window (rolling
schemes), as we discuss in Section 2. The advantages of the
studentized test statistic and our sample-dependent null distri-
bution do not rely on stationarity, so these modifications are
expected to be useful in a more general context. A related issue
concerns the optimality of our test. Although the new test dom-
inates the RC, we do not claim that it is optimal. The lack of an
optimality result is not surprising, because such results are rare
in composite hypothesis testing. It is also worth observing that
leading statisticians continue to quarrel about what constitutes
a suitable test in this context (see Perlman and Wu 1999 and
the comments on that article by Berger, Cox, McDermott, and
Wang).

This article is organized as follows. Section 2 introduces the
new test for SPA and contains our theoretical results. Section 3
provides the details of the bootstrap implementation. Section 4
contains a simulation-based study of the finite-sample prop-
erties of the new test for SPA and compares it with those of
the RC. Section 5 contains an empirical forecasting exercise
of U.S. inflation, and Section 6 gives a summery and some con-
cluding remarks. All proofs are presented in an Appendix.

2. TESTING FOR SUPERIOR PREDICTIVE ABILITY

We consider a situation where a decision must be made h pe-
riods in advance and let {δk,t−h, k = 0,1, . . . ,m} be a finite set

of possible decision rules. Decisions are evaluated with a real-
valued loss function, L(ξt, δk,t−h), where ξt is a random variable
that represents the aspects of the decision problem that are un-
known at the time that the decision is made. We evaluate fore-
casts in terms of their expected loss, E[L(ξt, δk,t−h)]. Thus we
need not assume that any of the forecasts are constructed from
a correctly specified model. Whenever δk,t−h = δk,t−h(θ̂k,t−h)

is based on estimated parameters, θ̂k,t−h, these are likely to in-
fluence the expected loss—typically by increasing the expected
loss. We make assumptions that do not permit parameters that
are estimated with the recursive scheme. However, the rolling
scheme is accommodated by our framework, and so is the fixed
scheme when the comparison of forecasts is interpreted as be-
ing conditional on the estimated parameters. An overview of
our notation is given in Table 1. This provides a general frame-
work for comparing forecasts and decision rules. Our leading
example is the comparison of forecasts, so we often refer to
δk,t−h as the kth forecasting model. The first model, k = 0, has
a special role and is referred to as the benchmark. The decision
rule, δk,t−h, can represent a point forecast, an interval forecast,
a density forecasts, or a trading rule for an investor, as we illus-
trate next with some examples.

Example 1 (Point forecast). Let δk,t−h, k = 0,1, . . . ,m, be
different point forecasts of a real random variable ξt. The mean
squared error loss function, L(ξt, δk,t−h) = (ξt − δk,t−h)

2, is an
example of a loss function that could be used to compare the
different forecasts.

Example 2 (Conditional distribution and value-at-risk fore-
casts). Let ξt be a conditional density on R, and let δk,t−h

be a forecast of ξt. Then we might evaluate the precision
of δk by the Kolmogorov–Smirnov statistic, L(ξt, δk,t−h) =
supx∈R | ∫ x

−∞[ξt( y) − δk,t−h( y)]dy|, or a Kullback–Leibler
measure, L(ξt, δk,t−h) = ∫ ∞

−∞ log[δk,t−h(x)/ξt(x)]ξt(x)dx.
Alternatively, δk,t−h could be a value-at-risk measure (at
quantile α) that may be evaluated with L(ξt, δk,t−h) =
| ∫ δk,t−h

−∞ ξt(x)dx − α|.
In Example 2, ξt will often be unobserved, which creates

additional complications for empirical evaluation and compari-
son. When a proxy is substituted for ξt it can cause the empirical
ranking of alternatives to be inconsistent for the intended (true)
ranking (see Hansen and Lunde 2005a). Corradi and Swan-
son (2005b) recently derived an RC-type test for comparing
conditional density forecasts, which is closely related to the
problem of Example 2. Their test is similar to that of White
(2000), because their test statistic is also the maximum of mul-
tiple nonstudentized quantities. So it would be interesting to
analyze whether our two modifications can be implemented in
their framework.

Example 3 (Trading rules). Let δk,t−1 be a binary variable
that instructs a trader to take either a short (δ = −1) or a long
(δ = 1) position in an asset at time t − 1. The kth trading rule
yields the profit πk,t = δk,t−1rt, where rt is the return on the
asset in period t. A trader who is currently using the rule, δ0,
might be interested to know whether an alternative rule has a
larger expected profit than δ0. This can be formulated in our
framework by setting ξt = rt and L(ξt, δk,t−1) = −δk,t−1ξt.



Hansen: A Test for Superior Predictive Ability 367

Table 1. Overview of Notation and Definitions

t = 1, . . . , n Sample period for the model comparison
k = 0, 1, . . . , m Model index (k = 0 is the benchmark)
ξt Object (variable) of interest
δk,t−h The kth decision rule (e.g., h-step-ahead forecast of ξt )
Lk,t ≡ L(ξt , δk,t−h) Observed loss of the kth decision rule/forecast
dk,t ≡ L0,t − Lk,t Performance of model k relative to the benchmark

d̄k ≡ n−1 ∑n
t=1 dk,t Average relative performance of model k

dt ≡ (d1,t , . . . , dm,t )
′ Vector of relative performances at time t

d̄ ≡ n−1 ∑n
t=1 dt Vector of average relative performance

µk ≡ E(dk,t ) Expected excess performance of model k
µ ≡ (µ1, . . . , µm)′ Vector of expected excess performances
� ≡ avar(n1/2d̄) Asymptotic m × m covariance matrix

The benchmark in Example 3 could be δ0,t = 1, which is the
rule that is always “long in the market.” This was the bench-
mark used by Sullivan et al. (1999, 2001) who evaluated the
significance of technical trading rules and calendar effects in
stock returns.

2.1 Hypothesis of Interest

We are interested to know whether any of the models,
k = 1, . . . ,m, are better than the benchmark in terms of ex-
pected loss. So we seek a test of the null hypothesis that the
benchmark is not inferior to any of the alternatives. The vari-
ables that are key for our analysis are the relative performance
variables, which are defined by

dk,t ≡ L(ξt, δ0,t−h) − L(ξt, δk,t−h), k = 1, . . . ,m.

So dk,t denotes the performance of model k relative to the
benchmark at time t, and we stack these variables into the vector
of relative performances, dt = (d1,t, . . . ,dm,t)

′. Provided that
µ ≡ E(dt) is well defined, we can now formulate the null hy-
pothesis of interest as

H0 :µ ≤ 0, (1)

and our maintained hypothesis is µ ∈ R
m.

We work under the assumption that model k is better than the
benchmark if and only if E(dk,t) > 0. So we focus exclusively
on the properties of dt and abstract entirely from all aspects
that relate to the construction of the δ-variables. Thus dt, t =
1, . . . ,n, is de facto viewed as our data, and we therefore state
all assumptions in terms dt. Specifically we make the following
assumption.

Assumption 1. The vector of relative loss variables, {dt},
is (strictly) stationary and α-mixing of size −(2 + δ)(r + δ)/

(r − 2), for some r > 2 and δ > 0, where E|dt|r+δ < ∞ and
var(dk,t) > 0 for all k = 1, . . . ,m.

Assumption 1 is made for two reasons: first, to ensure that
certain population moments such as µ are well defined, and
second, to justify the use of bootstrap techniques that we de-
scribe in detail in Section 3. Note that Assumption 1 does not
require that the individual loss variables, L(ξt, δk,t−h), be sta-
tionary. An immediate consequence of Assumption 1 is that a
central limit theorem applies, such that

n1/2(d̄ − µ)
d→ Nm(0,�), (2)

where d̄ ≡ n−1 ∑n
t=1 dt and � ≡ avar(n1/2(d̄ − µ)) (see, e.g.,

de Jong 1997).
Diebold and Mariano (1995) and West (1996) provided suf-

ficient conditions that also lead to the asymptotic normality
in (2). Giacomini and White (2003) established this property
for a related testing problem. However, the asymptotic normal-
ity does not hold in general. An important exception is the sit-
uation where the benchmark is nested in all alternative models
(under the null hypothesis) and the parameters are estimated
recursively. In this situation the limiting distribution will typ-
ically be given as a function of Brownian motions (see, e.g.,
Clark and McCracken 2001). When comparing nested models,
the null hypothesis simplifies to the simple hypothesis, µ = 0.
So in this case it seems more appropriate to apply a test for EPA,
such as that of Harvey and Newbold (2000), which can be used
to compare multiple-nested models.

At this point, all essential aspects of our framework are iden-
tical to those of White (2000). White proceeded by constructing
the RC from the test statistic,

TRC
n ≡ max

(
n1/2d̄1, . . . ,n1/2d̄m

)
,

and an asymptotic null distribution based on n1/2d̄ ∼ Nm(0, �̂),
where �̂ is a consistent estimator of �. Here it is worth noting
that the RC relies on an asymptotic null distribution that as-
sumes µk = 0 for all k, even though all negative values of µk

also conform with the null hypothesis. This aspect is the un-
derlying topic of Sections 2.3 and 2.4, but first we discuss a
studentization of the test statistic.

Given the asymptotic normality of d̄, it may seem natural to
use a quadratic-form test statistic to test H0, such as the likeli-
hood ratio test used by Wolak (1987). However, the situation
that we have in mind is one in which m is too large to ob-
tain a sensible estimate of all elements of �. Instead we con-
sider simpler statistics, such as TSPA

n (defined later) that requires
only that the diagonal elements of � be estimated. It is not
surprising that nonquadratic statistics will be nonpivotal—even
asymptotically—because their asymptotic distribution will de-
pend on (some elements of ) the covariance matrix, which
makes � a nuisance parameter. To handle this problem, we fol-
low White (2000) and use a bootstrap method that implicitly
takes care of this nuisance parameter problem. So our motiva-
tion for using the bootstrap is not driven by higher-order refine-
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ments, but is merely to handle this nuisance parameter problem.
We analyze this testing problem in the remainder of this sec-

tion, and our findings motivate the following two recommenda-
tions that spell out the differences between the RC and our new
test for SPA:

1. Use the studentized test statistic,

TSPA
n ≡ max

[

max
k=1,...,m

n1/2d̄k

ω̂k
,0

]

,

where ω̂2
k is some consistent estimator of ω2

k ≡ var(n1/2d̄k).

2. Invoke a null distribution that is based on Nm(µ̂c
, �̂),

where µ̂c is a carefully chosen estimator for µ that con-
forms with the null hypothesis. Specifically, we suggest
the estimator

µ̂c
k = d̄k1{n1/2d̄k/ω̂k≤−√

2 log log n}, k = 1, . . . ,m,

where 1{·} denotes the indicator function.

We explain our reasons for this choice of µ-estimator in Sec-
tion 2.4, but it is important to understand that using a consistent
estimator of µ need not produce a valid test.

2.2 Choice of Test Statistic

When the benchmark has the best sample performance
(d̄ ≤ 0), the test statistic is normalized to 0. In this case there
is no evidence against the null hypothesis, and consequently
the null should not be rejected. The normalization is convenient
for theoretical reasons, because we avoid a divergence problem
(to −∞) that would otherwise occur when µ < 0.

As discussed in Section 1, there are few optimality results in
the context of composite hypothesis testing. This is particularly
the case for the present problem of testing multiple inequalities.
However, some arguments that justify our choice of test sta-
tistic TSPA

n (instead of TRC
n ) are called on. Although we argue

that TSPA
n is preferable to TRC

n , it cannot be shown that the for-
mer uniformly dominates the latter in terms of power. In fact,
there are situations where TRC

n leads to a more powerful test

(such as the case where ω2
j = ω2

k ∀ j, k = 1, . . . ,m). However,
such exceptions are unlikely to be of much empirical relevance,
as we discuss later. So we are comfortable recommending the
use of TSPA

n in practice, and it is worth pointing out that stu-
dentization of the individual statistics is the conventional ap-
proach to multiple comparisons (see Miller 1981; Savin 1984).
This studentization is also embedded in the related approach
where the individual statistics are converted into “p values,”
with the smallest p value used as the test statistic (see Tippett
1931; Folks 1984; Marden 1985; Westfall and Young 1993;
Dufour and Khalaf 2002). In the present context, Romano and
Wolf (2005) also adopted the studentized test statistic (see also
Lehmann and Romano 2005, chap. 9).

Our main argument for studentization is that it typically will
improve the power. This can be understood from the following
simple example.

Example 4. Consider the case where m = 2 and suppose that

n1/2(d̄ − µ) ∼ N2

(

0,

(
4 0
0 1

))

,

where the covariance is 0 (a simplification that is not nec-
essary for our argument). Now consider the particular local
alternative where µ2 = 2n−1/2 > 0. Here d̄2 is expected to
yield a fair amount of evidence against H0 :µ ≤ 0, because
the t-statistic, n1/2d̄2/ω̂k, will be centered about 2. It fol-
lows that the null distributions (using µ = 0) are given by
TRC

n ∼ F0(x) ≡ �(x/2)�(x) and TSPA
n

a∼ G0(x) ≡ �(x)�(x),

whereas TRC
n ∼ F1(x) ≡ �(x/2)�(x + 2) and TSPA

n
a∼ G1(x) ≡

�(x)�(x+2) under the local alternative. Here �(·) denotes the
standard Gaussian distribution and

a∼ means “asymptotically
distributed as.” Figure 1 shows the upper tails of the null distrib-
utions, 1 − F0(x) and 1 − G0(x) (thick lines) and the upper tails
of 1 − F1(x) and 1 − G1(x) (thin lines) that represent the distri-
butions of the test statistics under the local alternative. Dotted

Figure 1. (One minus) The cdfs for the Test Statistics T RC and TSPA Under the Null Hypothesis, µ1 = µ2 = 0, and the Local Alternative,
µ2 = 2/

√
n > 0. [ 1−F0(x); 1−F1(x); 1−G0(x); 1−G1(x).] Studentization improves the power from about 15% to about 53%.
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lines represent for the distributions of TRC
n , and solid lines rep-

resent for the distributions of TSPA
n . The power for a given level

of either of the two tests can be read off the figure, and we have
singled out the powers of the 5%-level tests. These reveal that
studentization more than triples the power, from about 15% to
about 53%. So the RC is much less likely to detect the false null,
because the noisy d̄1 conceals the evidence against H0 that d̄2

provides.

The preceding example highlights the advantages of studen-
tizing the individual statistics, because it avoids a comparison
of objects measured in different “units of standard deviation”
(avoiding a comparison of apples and bananas). There is one
exception where studentization may reduce the power, when
the best performing model is associated with the largest vari-
ance [i.e., if var(d̄2) ≥ var(d̄1) in the previous example]. We
consider this case to be of little empirical relevance, because
poorly performing models also tend to have the most erratic
performances in practice. Moreover, the loss in power from es-
timating ω2

k , k = 1, . . . ,m, is quite modest when these are esti-
mated precisely, as is the case when n is large.

In the remainder of this section we formulate our theoretical
results that motivate our data-dependent choice of null distrib-
ution. We derive our results for a broad class of test statistics
to emphasize that our results are not specific to the two statis-
tics, TRC

n and TSPA
n . This is also convenient because other statis-

tics (from this class of statistics) may be used in future applied
work.

2.3 Theoretical Results for a Class of Test Statistics

We consider a class of test statistics, where each of the statis-
tics satisfies the following conditions.

Assumption 2. The test statistic has the form Tn = ϕ(Un,Vn),

where Un ≡ n1/2d̄ and Vn
p→ v0 ∈ R

q (a constant). The map-
ping, ϕ(u,v), is continuous in u on R

m and continuous in v in
a neighborhood of v0. Further, ϕ has the following properties:

(a) ϕ(u,v) ≥ 0 and ϕ(0,v) = 0.
(b) ϕ(u,v) = ϕ(u+,v), where u+

k = max(0,uk), k =
1, . . . ,m.

(c) ϕ(u,v) → ∞, if uk → ∞ for some k = 1, . . . ,m.

Thus, in addition to the sample average, d̄, the test statistic
may depend on the data through Vn ≡ v(d1, . . . ,dn), as long
as Vn converges in probability to a constant (or vector of con-
stants). Assumption 2(a) is a normalization (if d̄ = 0, then there
is no evidence against H0), Assumption 2(b) states that only the
positive elements of u matter for the value of the test statistic,
and Assumption 2(c) requires that the test statistic diverges to
infinity as the evidence against the null hypothesis increases (to
infinity).

The mapping (µ,�) �→ �0, given by

	0
ij ≡ 	ij1{µi=µj=0}, i, j = 1, . . . ,m,

defines an m × m covariance matrix, �0, that plays a role in
our asymptotic results. So �0 is similar to �, except that the

elements of certain rows and columns have been set to 0. An
example of how µ and � translate into �0 is as follows:

µ =



0

−2
0



 , � =



ω2

11 ω12 ω13

ω21 ω2
22 ω23

ω31 ω32 ω2
33



 ,

�0 =



ω2

11 0 ω13

0 0 0
ω31 0 ω2

33



 ,

and �0 has at most rank m0, where m0 is the number of ele-
ments in µ that equal 0.

The following theorem provides the asymptotic null distrib-
ution for all test statistics that satisfy Assumption 2.

Theorem 1. Suppose that Assumptions 1 and 2 hold and let
F0 be the cumulative distribution function (cdf ) of ϕ(Z,v0),
where Z ∼ Nm(0,�0). Under the null hypothesis, µ ≤ 0, we

have that ϕ(n1/2d̄,Vn)
d→ F0, where v0 = plimVn. Under the

alternative, µ � 0, we have that ϕ(n1/2d̄,Vn)
p→ ∞.

The test statistic TSPA
n satisfies Assumption 2, whereas that

of the RC does not. It is nevertheless possible to obtain critical
values for TRC

n from Theorem 1. This is done by applying Theo-
rem 1 to the test statistic TRC+

n = max(TRC
n ,0) that satisfies As-

sumption 2 and noting that the distributions of TRC+
n and TRC

n
coincide on the positive axis, which is the relevant support
for the critical value. Alternatively, the asymptotic distribution
of TRC

n can be obtained directly, as we do in the following corol-
lary.

Corollary 1. Let m0 ≤ m be the number of models with
µk = 0, define � to be the m0 × m0 submatrix of � that con-
tains the (i, j)th element of � if µi = µj = 0, and let ζ� de-
note the distribution of Zmax ≡ maxj=1,...,m0 Z0

j , where Z0 =
(Z0

1, . . . ,Z0
m0

)′ ∼ Nm0(0,�). Then TRC
n

d→ ζ� if maxk µk = 0,

whereas TRC
n

p→ −∞ if µk < 0 for all k = 1, . . . ,m. Under the

alternative where µk > 0 for some k, it holds that TRC
n

p→ ∞.

Theorem 1 and Corollary 1 demonstrate that it is only the
binding constraints (i.e., those with µk = 0) that matter for
the asymptotic distribution. Naturally, the number of binding
constraints can be small relative to the number of inequali-
ties, m, being tested. This result is known from the problem
of testing linear inequalities in linear (regression) models (see
Perlman 1969; Wolak 1987, 1989b; Robertson, Wright, and
Dykstra 1988; Dufour 1989). (See Wolak 1989a, 1991 for tests
of nonlinear inequalities.) The testing problem is also related
to that of Gouriéroux, Holly, and Monfort (1982), King and
Smith (1986), and Andrews (1998), where the alternative is
constrained by inequalities. (See Goldberger 1992 for a nice
discussion of the relation between the two testing problems.)

An immediate consequence of Corollary 1 is that the RC
is easy to manipulate by including irrelevant alternative mod-
els. This follows because the RC’s p value, which is based
on max(Z1, . . . ,Zm), can be increased in an artificial way by
adding poor forecasts to the set of alternative forecasts (i.e., by
increasing m while m0 remains constant). In other words, it is
possible to erode the power of the RC to 0 by including poor
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Figure 2. A Situation Where the RC Fails to Reject a False Null Hy-
pothesis. The true parameter value is µ = (µ1, µ2) ′, the sample es-
timate is d̄ = (d̄1, d̄2 ) ′, and CRC represents the critical value derived
from a null distribution that tacitly assumes that µ = (0, 0) ′.

alternatives in the analysis. Naturally, we would want to avoid
such properties to the extent possible.

Because the test statistics have asymptotic distributions that
depend on µ and �, these are nuisance parameters. The tradi-
tional way to proceed in this case is to substitute a consistent
estimator for � and use the LFC over the values of µ that sat-
isfy the null hypothesis. In the present situation, the point least
favorable to the alternative is µ = 0, which presumes that all al-
ternatives are as good as the benchmark. In the next section we
explore an alternative way to handle the nuisance dependence
on µ, where we use a data-dependent choice for µ rather than
µ = 0 as dictated by the LFC.

Figure 2 illustrates a situation for m = 2, where the two-
dimensional plane represents the sampling space for d̄ =
(d̄1, d̄2)

′. We have plotted a realization of d̄, that is in the neigh-
borhood of its true expected value, µ = (µ1,µ2)

′, and the el-
lipse around µ is meant to illustrate the covariance structure
of d̄. The shaded area represents the values of µ that conform
with the null hypothesis. Because we have placed µ outside
this shaded area, the situation in Figure 2 is one where the null
hypothesis is false. The RC is an LFC-based test, so it derives
critical values as if µ = 0 [the origin, o = (0,0)′, of the figure].
The critical value, CRC, is represented by the dashed line, such
that the area above and to the right of the dashed line defines
the critical region of the RC. The shape of the critical region
follows from the definition of TRC

n . Because d̄ is outside the
critical region in this example, the RC fails to reject the false
null hypothesis in this case.

2.4 The Distribution Under the Null Hypothesis

Hansen (2003) proposed an alternative to the LFC approach
that leads to more powerful tests of composite hypotheses. The
LFC is based on a supremum taken over the null hypothesis,

whereas the idea of Hansen (2003) is to take the supremum
over a smaller (confidence) set chosen such that it contains the
true parameter with a probability that converges to 1. In this
article, we use a closely related procedure based directly on the
asymptotic distributions of Theorem 1 and Corollary 1.

In the preceding section, we saw that the poor alternatives
are irrelevant for the asymptotic distribution. So a proper test
should reduce the influence of these models while preserving
the influence of the models with µk = 0. It may be tempting to
simply exclude the alternatives with d̄k < 0 from the analysis.
But this approach does not lead to valid inference in general, be-
cause the models that are (or appear to be) a little worse than the
benchmark can have a substantial influence on the distribution
of the test statistic in finite samples (and even asymptotically
if µk = 0). So we construct our test in a way that incorporates
all models, while reducing the influence of alternatives that the
data suggest are poor.

Our choice of estimator, µ̂c, is motivated by the law of the
iterated logarithm stating that

P

(

lim inf
n→∞

n1/2(d̄k − µk)

ωk
= −√

2 log log n

)

= 1

and

P

(

lim sup
n→∞

n1/2(d̄k − µk)

ωk
= +√

2 log log n

)

= 1.

The first equality shows that µ̂c
k effectively captures all of the

elements of µ that are 0, such that µk = 0 ⇒ µ̂c
k = 0 almost

surely. Similarly, if µk < 0, then the second equality states that
d̄k is very close to µk; in fact, n1/2d̄k is smaller than −n1/2−ε

for any ε > 0 and n sufficiently large. Thus n1/2d̄k/ωk is, in
particular, smaller than the threshold rate, −√

2 log log n, for
n sufficiently large, demonstrating that d̄k eventually will stay
below the implicit threshold in our definition of µ̂c

k, such that
µk < 0 ⇒ µ̂c

k 
 0 almost surely. So µ̂c meets the necessary
asymptotic requirements that we identified in Theorem 1 and
Corollary 1.

Although the poor alternatives should be discarded asymp-
totically, this is not the case in finite samples, as we discussed
earlier. Our estimator, µ̂c, explicitly accounts for this by keep-
ing all alternatives in the analysis. A poor alternative, µk < 0,
has an impact on the critical value whenever µk/(ωkn1/2) is
only moderately negative, say between −1 and 0. This is the
reason that the poorly performing alternatives cannot simply
be omitted from the analysis. We emphasize this point because
an earlier version of this article has been incorrectly quoted for
“discarding the poor models.”

Although µ̂c leads to a correct separation of good and poor
alternatives, other threshold rates also produce valid tests. The
rate

√
2 log log n is the slowest rate that captures all alternatives

with µk = 0, whereas the faster rate, n1/2−ε for any ε > 0, guar-
antees that all of the poor models are discarded asymptotically.
So a range of rates can be used to asymptotically discriminate
between good and poor alternatives. One example is 1

4 n1/4,
which was used in a previous version of this article. Because
different threshold rates will lead to different p values in finite
samples, it is convenient to determine an upper and lower bound
for the p values in which different threshold rates can result.
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These are easily obtained using the “estimators,” µ̂l and µ̂u,
given by µ̂l

k ≡ min(d̄k,0) and µ̂u
k = 0, k = 1, . . . ,m, where

the latter yields the LFC-based test. It is simple to verify that
µ̂l ≤ µ̂c ≤ µ̂u, which in part motivates the superscripts, and we
have the following result, where F0 is the cdf of ϕ(Z,v0) that
we defined in Theorem 1.

Theorem 2. Let Fi
n be the cdf of ϕ(n1/2Zi

n,Vn), for i = l, c,

or u, where n1/2(Zi
n − µ̂i

)
d→ Nm(0,�). Suppose that Assump-

tions 1 and 2 hold; then Fc
n → F0 as n → ∞, for all continuity

points of F0 and Fl
n(x) ≤ Fc

n(x) ≤ Fu
n(x) for all n and all x ∈ R.

Theorem 2 demonstrates that µ̂c leads to a consistent esti-
mate of the asymptotic distribution of our test statistic. The the-
orem also demonstrates that µ̂l and µ̂u provide upper and lower
bound for the distribution Fc

n that can be useful in practice; for
example, a substantial difference between these bounds is in-
dicative of the presence of poor alternatives, in which case the
sample-dependent null distribution is useful.

Given a value for the test statistic t = Tn(d1, . . . ,dn), it is nat-
ural to define the true asymptotic p value as p0(t) ≡ 1 − F0(t).
The empirical p value is deduced from an estimate of Fi

n,
i = l, c,u, and the following corollary demonstrates that µ̂c

yields a consistent p value.

Corollary 2. Consider the studentized test statistic, t =
TSPA

n (d1, . . . ,dn). Let the empirical p value, p̂c
n(t), be in-

ferred from F̂c
n, where F̂c

n(t) − Fc
n(t) = o(1) for all t. Then

p̂c
n(t)

p→ p0(t) for any t > 0.

The two other choices, µ̂l and µ̂u, do not produce consis-
tent p values in general. It follows directly from Theorem 1
that µ̂u will not produce a consistent p value unless µ = 0.
That the p value from using µ̂l is inconsistent is easily under-
stood by noting that a critical value based on Nm(0,�) will
be greater than one based on the mixed Gaussian distribution,
Nm(n1/2µ̂l

,�). So a p value based on µ̂l is (asymptotically)
smaller than the correct p value, which makes this a liberal test

despite the fact that µ̂l p→ µ under the null hypothesis. This
problem is closely related to the inconsistency of the bootstrap,
when a parameter is on the boundary of the parameter space,
as analyzed by Andrews (2000). In our situation the inconsis-
tency arises because µ is on the boundary of the null hypothesis,
which leads to a violation of a similarity on the boundary con-
dition (see Hansen 2003). (See Cox and Hinkley 1974, p. 150,
and Gouriéroux and Monfort 1995, chap. 16, for discussions of
the finite-sample version of this similarity condition.)

Figure 3 shows how the consistent estimate of the null dis-
tribution can improve the power. Recall the situation from Fig-
ure 2, where the null hypothesis is false. The data-dependent
null distribution is defined from a projection of d̄ = (d̄1, d̄2)

′
onto the set of parameter values that conform with the null hy-
pothesis. This yields the point a, which represents µ̂l = µ̂c (as-
suming that d̄2 is below the relevant 2 log log n-threshold). The
critical region of the SPA test (induced by d̄) is the area above
and to the right of the dotted line marked by CSPA. Because d̄ is
in the critical region, the SPA test (correctly) rejects the null
hypothesis in this case.

Figure 3. How the Power Is Improved by Using the Sam-
ple-Dependent Null Distribution. This distribution is centered about
µ̂c = a, which leads to the critical value CSPA. In contrast, the RC fails to
reject the null hypothesis, because the LFC-based null distribution leads
to the larger critical value CRC.

3. BOOTSTRAP IMPLEMENTATION OF THE TEST
FOR SUPERIOR PREDICTIVE ABILITY

In this section we describe a bootstrap implementation of the
SPA tests in detail. The implementation is based on the station-
ary bootstrap of Politis and Romano (1994), but it is straight-
forward to modify the implementation to the block bootstrap
of Künsch (1989). Although there are arguments that favor the
block bootstrap over the stationary bootstrap (see Lahiri 1999),
these advantages require the use of an optimal block length that
is difficult to determine when m is large relative to n, as will
often be the case when testing for SPA.

The stationary bootstrap of Politis and Romano (1994) is
based on pseudo-time series of the original data. The pseudo-
time series {d∗

b,t} ≡ {dτb,t}, b = 1, . . . ,B, are resamples of dt,
where {τb,1, . . . , τb,n} is constructed by combining blocks of
{1, . . . ,n} with random lengths. The leading case is that where
the block length is chosen to be geometrically distributed with
parameter q ∈ (0,1], but the block length may be randomized
differently, as discussed by Politis and Romano (1994). The
number of bootstrap resamples, B, should be chosen to be suffi-
ciently large such that the results are not affected by the actual
draws of τb,t. This can be achieved by increasing B until the re-
sults are robust to increments, or more formal methods, such as
the three-step method of Andrews and Buchinsky (2000), can
be applied. Here we follow the conventional setup of the sta-
tionary bootstrap and generate B resamples from two random
B × n matrices, U and V, where the elements, ub,t and vb,t,
are independent and uniformly distributed on (0,1]. The first
element of each resample is defined by τb,1 = �nub,1�, where
�x� is the smallest integer that is larger than or equal to x. For
t = 2, . . . ,n, the elements are given recursively by

τb,t =
{ �nub,1� if vb,t < q

1{τb,t−1<n}τb,t−1 + 1 if vb,t ≥ q.
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So with probability q, the tth element is chosen uniformly on
{1, . . . ,n} and with probability 1 − q, the tth element is chosen
to be the integer that follows τb,t−1, unless τb,t−1 = n in which
case τb,t ≡ 1. The block bootstrap is very similar to the station-
ary bootstrap, but instead of using blocks with random length,
the block bootstrap combines blocks of equal length.

From the pseudo-time series, we calculate their sample aver-
ages, d̄∗

b ≡ n−1 ∑n
t=1 d∗

b,t, b = 1, . . . ,B, that can be viewed as

(asymptotically) independent draws from the distribution of d̄,
under the bootstrap distribution. So this provides an intermedi-
ate step to estimate the distribution of our test statistic.

Lemma 1. Let Assumption 1 hold and suppose that the boot-
strap parameter, q = qn, satisfies qn → 0 and nq2

n → ∞ as
n → ∞. Then

sup
z∈Rm

∣
∣P∗(n1/2(d̄∗

b − d̄) ≤ z
) − P

(
n1/2(d̄ − µ) ≤ z

)∣∣ p→ 0,

where P∗ denotes the bootstrap probability measure.

This lemma demonstrates that the empirical distribution of
the pseudo-time series can be used to approximate the distribu-
tion of n1/2(d̄−µ). This result follows directly from Goncalves
and de Jong (2003, thm. 2) who derived the result under slightly
weaker assumptions than we have stated. (Their assumptions
are formulated for near–epoch-dependent processes.) The test
statistic TSPA

n requires estimates of ω2
k , k = 1, . . . ,m. An earlier

version of this article was based on the estimator

ω̂∗2
k,B ≡ B−1

B∑

b=1

(
n1/2d̄∗

k,b − n1/2d̄k
)2

,

where d̄∗
k,b = n−1 ∑n

t=1 dk,τb,t . By the law of large numbers, this
estimator is consistent for the bootstrap population value of the
variance, which in turn is consistent for the true variance, ω2

k
(see Goncalves and de Jong 2003, thm. 1). However, it is our
experience that B needs to be quite large to sufficiently reduce
the additional layer of randomness introduced by the resam-
pling scheme. So our recommendation is to use the bootstrap
population value directly, which is given by

ω̂2
k ≡ γ̂0,k + 2

n−1∑

i=1

κ(n, i)γ̂i,k,

where

γ̂i,k ≡ n−1
n−i∑

j=1

(dk,j − d̄k)(dk,j+i − d̄k), i = 0,1, . . . ,n − 1,

are the usual empirical covariances and the kernel weights (un-
der the stationary bootstrap) are given by

κ(n, i) ≡ n − i

n
(1 − q)i + i

n
(1 − q)n−i

(see Politis and Romano 1994).
We seek the distribution of the test statistics under the null

hypothesis, so we impose the null by recentering the bootstrap
variables about µ̂l, µ̂c, or µ̂u. This is done by defining

Z∗
k,b,t ≡ d∗

k,b,t − gi(d̄k),

i = l, c,u,b = 1, . . . ,B, t = 1, . . . ,n,

where gl(x) = max(0, x), gc(x) = x ·1{x≥−
√

(ω̂2
k/n)2 log log n}, and

gu(x) = x. It is simple to verify that the expected values of
Z∗

k,b,t, i = l, c,u (conditional on d1, . . . ,dn), are given by µ̂l,
µ̂c, and µ̂u.

Corollary 3. Let Assumption 1 hold and let Z∗
b,t be centered

about µ̂, for µ̂ = µ̂l, µ̂c, or µ̂u. Then

sup
z∈Rm

∣
∣P∗(n1/2(Z

∗
b − µ̂) ≤ z

) − P
(
n1/2(d̄ − µ) ≤ z

)∣
∣ p→ 0,

where Z̄∗
k,b = n−1 ∑n

t=1 Z∗
k,b,t , k = 1, . . . ,m.

Given our assumptions about the test statistic, Corollary 3
demonstrates that we can approximate the distribution of our
test statistics under the null hypothesis by the empirical distrib-
ution we obtain from the bootstrap resamples Z∗

b,t , t = 1, . . . ,n.
The p values of the three tests for SPA are now simple to ob-
tain. We calculate TSPA∗

b,n = max{0,maxk=1,...,m[n1/2Z̄∗
k,b/ω̂k]}

for b = 1, . . . ,B, and the bootstrap p value is given by

p̂SPA ≡
B∑

b=1

1{TSPA∗
b,n >TSPA

n }
B

,

where the null hypothesis should be rejected for small p values.
Thus we obtain three p values, one for each of the estimators
µ̂l, µ̂c, and µ̂u. The p values based on the test statistic TRC

n can
be derived similarly.

Note that we are using the same estimate of ω2
k to calculate

TSPA
n and TSPA∗

b,n , b = 1, . . . ,B. A nice robustness property of the

SPA test is that it is valid even if ω̂2
k is inconsistent for ω2

k . This
is easy to understand by recalling that ω̂2

k = 1 for all k leads
to the RC (and 1 is generally inconsistent for ω2

k). Although
this robustness is convenient, it is desirable that (ω̂2

1, . . . , ω̂
2
m)

be close to (ω2
1, . . . ,ω

2
m), such that the individual statistics,

n1/2d̄k/ω̂k, have approximately the same scale, due to the power
issues that we discussed in Section 2.

4. SIZE AND POWER COMPARISON BY
MONTE CARLO SIMULATIONS

The two test statistics TRC
n and TSPA

n and the three null dis-
tributions centered about µ̂l, µ̂c, and µ̂u result in six different
tests. In this section we study the size and power properties of
these tests in a Monte Carlo experiment.

We generate Lk,t ∼ iid N(λk/
√

n, σ 2
k ) for k = 0,1, . . . ,m and

t = 1, . . . ,n, where the benchmark model has λ0 = 0. So pos-
itive values (λk > 0) correspond to alternatives that are worse
than the benchmark, whereas negative values (λk < 0) corre-
spond to alternatives that are better than the benchmark.

In our experiment we have λ1 ≤ 0 and λk ≥ 0 for k =
2, . . . ,m, such that the first alternative (k = 1) defines whether
the rejection probability corresponds to a type I error (λ1 = 0)

or a power (λ1 < 0). The performances of the “poor” models
are such that their mean values are spread evenly between 0
and λm = �0 (the worst model). So the vectors of the λk’s are
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given by

λ ≡














λ0
λ1
λ2
λ3
...

λm−1
λm














=















0
�1
1

m−1�0
2

m−1�0
...

m−2
m−1�0

�0















.

In our experiments we use �0 = 0,1,2,5,10 to control the
extent to which the inequalities are binding with (�0 = 0 cor-
responding to the case where all inequalities are binding). The
first alternative model has �1 = 0, −1, −2, −3, −4, −5. So
λ1 = �1 defines the local alternative that is being analyzed
(unless �1 = 0, which conforms with the null hypothesis). To
make the experiment more realistic, we tie the variance, σ 2

k , to
the “quality” of the model. Specifically, we set

σ 2
k = 1

2 exp(arctan(λk)),

such that a good model has a smaller variance than poor model.
Note that this implies that

√
nd̄k ∼ N(µk,ω

2
k ),

where

µk = λk√
n

and ω2
k � 1 + 1

2
λk + 1

4
λ2

k − 1

12
λ3

k,

where the expression for ω2
k now follows from var(dk,t) =

var(L0,t − Lk,t) = 1
2 + var(Lk,t) and the Taylor expansion

(about 0)

1

2
exp(arctan(x)) = 1

2

[

1 + x + 1

2
x2 − 1

6
x3 − 7

24
x4 + O(x5)

]

.

4.1 Simulation Results

First, we consider the case with m = 100 and the two sam-
ple sizes n = 200 and n = 1,000. Then we consider the case
with m = 1,000 using the sample size n = 200. The rejection
frequencies that we report are based on 10,000 independent
samples, where we used q = 1 in accordance with the lack of
time dependence in dt, t = 1, . . . ,n. All of our simulations were
made using Ox 3.30 (see Doornik 1999). The rejection frequen-
cies of the tests at the 5% and 10% levels are reported in Ta-
bles 2–4. The numbers in italic type are used when the null
hypothesis is true (�1 = 0), so these frequencies correspond to
type I errors. The numbers in regular type represent powers for
the various local alternatives (�1 < 0).

Table 2. Rejection Frequencies Under the Null and Alternative (m = 100 and n = 200)

Level: α = .05 Level: α = .10

Λ1 RCl RCc RCu SPAl SPAc SPAu RCl RCc RCu SPAl SPAc SPAu

Panel A: �0 = 0
0 .055 .053 .053 .062 .060 .060 .108 .101 .101 .116 .110 .109

−1 .057 .054 .054 .077 .074 .074 .112 .105 .105 .136 .129 .129
−2 .121 .111 .111 .310 .280 .280 .219 .197 .197 .436 .389 .388
−3 .550 .471 .470 .848 .764 .761 .727 .620 .618 .921 .845 .841
−4 .968 .888 .882 .997 .979 .976 .993 .947 .941 1.000 .990 .987
−5 1.000 .996 .992 1.000 1.000 1.000 1.000 .999 .998 1.000 1.000 1.000

Panel B: �0 = 1
0 .013 .010 .010 .026 .022 .022 .035 .025 .025 .055 .044 .044

−1 .013 .010 .010 .047 .041 .040 .036 .027 .027 .087 .072 .071
−2 .036 .028 .028 .312 .252 .250 .084 .060 .060 .436 .345 .342
−3 .301 .201 .197 .862 .744 .733 .516 .334 .327 .928 .829 .814
−4 .896 .677 .658 .998 .977 .971 .971 .816 .793 1.000 .989 .984
−5 1.000 .968 .952 1.000 1.000 .999 1.000 .991 .980 1.000 1.000 1.000

Panel C: �0 = 2
0 .004 .002 .002 .018 .012 .012 .013 .007 .006 .039 .026 .026

−1 .004 .002 .002 .044 .032 .032 .014 .007 .006 .080 .058 .056
−2 .013 .007 .006 .336 .244 .238 .041 .020 .019 .464 .336 .324
−3 .195 .077 .073 .881 .745 .721 .401 .167 .152 .941 .827 .799
−4 .842 .460 .414 .999 .978 .968 .957 .659 .598 1.000 .989 .982
−5 .999 .911 .855 1.000 1.000 .999 1.000 .971 .934 1.000 1.000 1.000

Panel D: �0 = 5
0 .002 .000 .000 .014 .007 .005 .008 .001 .000 .032 .013 .011

−1 .002 .000 .000 .056 .031 .025 .009 .001 .000 .101 .054 .044
−2 .012 .001 .001 .433 .273 .227 .047 .005 .003 .573 .370 .306
−3 .262 .032 .017 .929 .787 .710 .533 .088 .045 .968 .860 .784
−4 .913 .336 .167 1.000 .986 .966 .983 .581 .312 1.000 .995 .979
−5 1.000 .894 .620 1.000 1.000 .999 1.000 .974 .786 1.000 1.000 1.000

Panel E: �0 = 10
0 .003 .000 .000 .016 .007 .002 .011 .001 .000 .036 .015 .006

−1 .004 .000 .000 .080 .043 .022 .014 .001 .000 .149 .073 .039
−2 .037 .002 .000 .532 .340 .221 .128 .011 .001 .675 .455 .298
−3 .487 .064 .006 .953 .843 .703 .768 .181 .021 .980 .907 .779
−4 .973 .526 .091 1.000 .992 .964 .997 .772 .196 1.000 .998 .979
−5 1.000 .963 .462 1.000 1.000 .999 1.000 .993 .662 1.000 1.000 1.000

NOTE: Estimated rejection frequencies for the six tests for SPA under the null hypothesis (�1 = 0) and local alternatives (�1 < 0). The rejection frequencies in italic type correspond to type I
errors, and those in regular type correspond to local powers. The reality check of White (2000) is denoted by RCu, and the test advocated in this article is denoted by SPAc.
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Table 3. Rejection Frequencies Under the Null and Alternative (m = 100 and n = 1,000)

Level: α = .05 Level: α = .10

Λ1 RCl RCc RCu SPAl SPAc SPAu RCl RCc RCu SPAl SPAc SPAu

Panel A: �0 = 0
0 .051 .048 .048 .051 .048 .048 .104 .098 .098 .107 .100 .100

−1 .054 .051 .051 .068 .064 .064 .110 .103 .103 .131 .122 .122
−2 .125 .116 .116 .309 .282 .282 .223 .202 .202 .435 .391 .390
−3 .556 .480 .479 .843 .762 .760 .729 .624 .622 .918 .842 .840
−4 .970 .889 .886 .998 .980 .977 .995 .945 .941 1.000 .992 .990
−5 1.000 .996 .994 1.000 1.000 1.000 1.000 .999 .997 1.000 1.000 1.000

Panel B: �0 = 1
0 .011 .009 .009 .020 .017 .017 .031 .024 .023 .050 .040 .039

−1 .011 .009 .009 .043 .036 .035 .033 .025 .025 .086 .069 .069
−2 .034 .026 .026 .312 .252 .250 .084 .059 .059 .436 .346 .342
−3 .316 .205 .203 .859 .740 .732 .520 .338 .331 .927 .822 .814
−4 .900 .682 .666 .999 .978 .972 .973 .816 .797 1.000 .990 .985
−5 1.000 .968 .955 1.000 1.000 .999 1.000 .991 .982 1.000 1.000 1.000

Panel B: �0 = 2
0 .003 .001 .001 .014 .009 .009 .012 .004 .004 .034 .022 .021

−1 .003 .002 .002 .042 .029 .028 .013 .004 .004 .079 .055 .054
−2 .014 .006 .006 .338 .242 .236 .042 .018 .017 .465 .330 .322
−3 .202 .082 .077 .881 .737 .720 .411 .169 .159 .941 .820 .798
−4 .844 .461 .428 .999 .979 .969 .959 .652 .602 1.000 .991 .983
−5 1.000 .906 .861 1.000 1.000 .999 1.000 .969 .936 1.000 1.000 1.000

Panel B: �0 = 5
0 .002 .000 .000 .012 .005 .004 .006 .000 .000 .029 .011 .008

−1 .002 .000 .000 .057 .028 .024 .007 .001 .000 .103 .051 .042
−2 .014 .001 .000 .435 .267 .225 .047 .004 .002 .572 .364 .306
−3 .270 .029 .017 .930 .777 .708 .540 .084 .044 .968 .851 .784
−4 .917 .328 .175 .999 .987 .966 .987 .554 .320 1.000 .995 .981
−5 1.000 .877 .632 1.000 1.000 .999 1.000 .966 .791 1.000 1.000 1.000

Panel B: �0 = 10
0 .003 .000 .000 .013 .005 .003 .010 .001 .000 .033 .012 .005

−1 .003 .000 .000 .083 .042 .022 .013 .001 .000 .145 .070 .039
−2 .039 .002 .000 .534 .335 .220 .128 .010 .000 .672 .444 .299
−3 .498 .060 .006 .954 .835 .703 .762 .165 .020 .980 .900 .778
−4 .974 .496 .095 .999 .994 .965 .997 .737 .203 1.000 .998 .980
−5 1.000 .953 .480 1.000 1.000 .999 1.000 .993 .669 1.000 1.000 1.000

NOTE: Estimated rejection frequencies for the six tests for SPA under the null hypothesis (�1 = 0) and local alternatives (�1 < 0). The rejection frequencies in italic type correspond to type I
errors, and those in regular type correspond to local powers. The reality check of White (2000) is denoted by RCu, and the test advocated in this article is denoted by SPAc.

Table 2 presents the results for the case where m = 100 and
n = 200. In the situation where all 100 inequalities are bind-
ing (�0 = �1 = 0), we see that the rejection probabilities are
close to the nominal levels for all the tests. The SPAc test has an
overrejection by 1%. This overrejection appears to be a small-
sample problem, because it disappears when the sample size is
increased to n = 1,000 (see Table 3). The fact that the liberal
null distribution does not lead to a larger overrejection is in-
teresting. This finding may be due to the positive correlation
across alternatives, cov(di,t,dj,t) = var(L0,t) > 0, which creates
a positive correlation between the test statistic and µ̂l. Thus the
critical value will tend to be (too) small, when the test statistic
is small and this correlation will reduce the overrejection of the
tests based on µ̂l. This suggests that our test may be improved
if there is a reliable way to incorporate information about the
off-diagonal elements of �. We do not pursue this aspect in this
article.

Panel A corresponds to the case where µ = 0, that is, the best
possible situation for LFC-based tests. This is the only situation
where the LFC-based tests apply the correct asymptotic distri-
bution, so it is not surprising that the tests based on µ̂u = 0 do
well. Fortunately, our new test, SPAc, also performs well in this
case. Turning to the configurations where �0 > 0, we imme-
diately see the advantages of using the sample-dependent null

distribution. A somewhat extreme situation is observed in Ta-
ble 2, panel E for (�0,�1) = (10,−3), whereas the RC almost
never rejects the null hypothesis, while the new SPAc-test has a
power close to 84%.

Table 4 is quite interesting, because this is a situation where
m = 1,000 exceeds the sample size n = 200. So in this case it is
impossible to estimate � in a sensible manner without impos-
ing a restrictive structure on its coefficients. Thus using stan-
dard first-order asymptotics is not a viable alternative to the
bootstrap implementation in this situation. Because the boot-
strap invokes an implicit estimate of �, one might worry about
its properties in this situation, where an explicit estimate is un-
available. Nevertheless, the bootstrap does surprisingly well,
and we notice only a slight overrejection when all inequali-
ties are binding (�0 = �1 = 0). The power properties are quite
good despite the fact that 1,000 alternatives are being compared
with the benchmark.

The power curves for the tests that use µ̂c and µ̂u are shown
in Figure 4 for the case where m = 100, n = 200, and �0 = 20.
These power curves are based on tests that aim at a 5% sig-
nificance level, and we have plotted their rejection frequencies
against a range of local alternatives. These rejection frequen-
cies have not been adjusted for their underrejection at �1 = 0.
This is a fair comparison, because it would not be possible to
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Table 4. Rejection Frequencies Under the Null and Alternative (m = 1,000 and n = 200)

Level: α = .05 Level: α = .10

Λ1 RCl RCc RCu SPAl SPAc SPAu RCl RCc RCu SPAl SPAc SPAu

Panel A: �0 = 0
0 .049 .047 .047 .064 .062 .062 .106 .100 .100 .125 .119 .119

−1 .049 .047 .047 .066 .064 .064 .106 .101 .100 .128 .122 .122
−2 .061 .058 .058 .173 .164 .164 .128 .121 .121 .269 .252 .252
−3 .288 .262 .262 .658 .598 .596 .434 .388 .388 .770 .699 .697
−4 .815 .720 .719 .980 .937 .933 .917 .828 .824 .994 .967 .963
−5 .998 .971 .967 1.000 .999 .998 1.000 .991 .988 1.000 1.000 1.000

Panel B: �0 = 1
0 .009 .007 .007 .025 .022 .022 .022 .017 .017 .054 .045 .045

−1 .009 .007 .007 .029 .025 .025 .022 .017 .017 .059 .050 .050
−2 .010 .008 .008 .150 .127 .127 .026 .020 .020 .229 .192 .191
−3 .066 .049 .049 .652 .555 .548 .150 .103 .102 .759 .652 .643
−4 .502 .345 .339 .980 .924 .916 .701 .500 .488 .993 .956 .947
−5 .965 .813 .794 1.000 .998 .997 .994 .907 .886 1.000 1.000 .999

Panel C: �0 = 2
0 .001 .000 .000 .015 .011 .011 .005 .002 .002 .035 .026 .025

−1 .001 .000 .000 .020 .015 .015 .005 .002 .002 .043 .032 .032
−2 .002 .000 .000 .155 .115 .113 .006 .003 .003 .233 .172 .167
−3 .016 .007 .007 .669 .544 .525 .054 .022 .022 .779 .636 .616
−4 .291 .125 .117 .985 .923 .906 .516 .243 .224 .994 .954 .940
−5 .901 .576 .529 1.000 .999 .996 .980 .744 .683 1.000 1.000 .998

Panel D: �0 = 5
0 .000 .000 .000 .011 .005 .004 .002 .000 .000 .029 .012 .009

−1 .000 .000 .000 .019 .010 .008 .002 .000 .000 .044 .020 .016
−2 .000 .000 .000 .199 .122 .101 .002 .000 .000 .291 .180 .148
−3 .011 .000 .000 .748 .570 .505 .045 .004 .002 .843 .664 .589
−4 .303 .036 .017 .993 .939 .897 .575 .098 .050 .998 .967 .930
−5 .936 .387 .207 1.000 .999 .996 .992 .605 .356 1.000 1.000 .998

Panel E: �0 = 10
0 .001 .000 .000 .012 .004 .003 .002 .000 .000 .029 .011 .004

−1 .001 .000 .000 .025 .012 .007 .002 .000 .000 .054 .024 .011
−2 .001 .000 .000 .259 .156 .097 .004 .000 .000 .366 .226 .141
−3 .031 .001 .000 .815 .633 .495 .109 .006 .000 .891 .726 .579
−4 .508 .064 .005 .996 .958 .892 .765 .175 .018 .999 .981 .926
−5 .983 .531 .099 1.000 1.000 .995 .998 .753 .210 1.000 1.000 .998

NOTE: Estimated rejection frequencies for the six tests for SPA under the null hypothesis (�1 = 0) and local alternatives (�1 < 0). The rejection frequencies in italic type correspond to type I
errors, and those in regular type correspond to local powers. The reality check of White (2000) is denoted by RCu, and the test advocated in this article is denoted by SPAc.

Figure 4. Local Power Curves of the Four Tests, SPAc, SPAu, RCc, and RCu, for the Simulation Experiment Where m = 100, Λ0 = 20, and
µ1/

√
n ( = −Λ1) Ranges From 0 to 8 (the x-axis). The power curves quantify the power improvements that are achieved by the two modifications

of the reality check. Both the studentization and the data-dependent null distribution lead to substantial power gains in this design.
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make such an adjustment in practice without exceeding the in-
tended level of the test for other configurations—particularly
the case where �0 = �1 = 0. (See Horowitz and Savin 2000
for a criticism of reporting “size”-adjusted powers.) From the
power curves in Figure 4, it is clear that the RC is domi-
nated by the three other tests. There is a substantial increase
in power from using the consistent distribution, and a similar
improvement is achieved by using the standardized test statis-
tic, TSPA

n . For example, the local alternative �1 = −4 is rejected
by the RC in about 5.5%. Using the data-dependent null distri-
bution (RCc) or the studentization (SPAu) improves the power
to about 73.6% and 96.4%. Invoking both modifications (as we
advocate) improves the power to 99.7% in this simulation ex-
periment. So both modifications are very useful, and the com-
bination of the two yields a substantial improvement in power.

Comparing the sample sizes that would result in the same
power is an effective way to convey the relative efficiency of the
tests. For the configuration used in Figure 4, we see that the four
tests have 50% power at the local alternatives, µ1/

√
n � 2.13,

2.60, 3.63, and 5.28. These numbers demonstrate that we would
need a sample size that is (2.60/2.13)2 = 1.49 times larger to
regain the power that is lost by using the LFC instead of the
sample-dependent null distribution. In other words, using the
LFC is equivalent to tossing away about 33% of the data. Sim-
ilarly, dropping the studentization is equivalent to tossing away
about 65% of the data, and dropping both modifications (i.e.,
using the RC instead of SPAc) is equivalent to tossing away
about 84% of the data in this simulation design.

5. FORECASTING U.S. INFLATION USING LINEAR
REGRESSION MODELS

In an attempt to forecast annual U.S. inflation, we estimate
a large number of linear regression models used to construct
competing forecasts. The annual U.S. inflation rate is defined
by Yt ≡ log[Pt/Pt−4], where Pt is the GDP price deflator for
the tth quarter. Inflation and most of the variables are not ob-
served instantaneously. For this reason, we let the set of poten-
tial regressors consist of variables that are lagged five quarters
or more relative to the end of the 12-month period for which
we attempt to predict inflation. This leaves time (one quarter)
for observing most of our regressors at the beginning of the
12-month period.

The linear regression models include 1, 2, or 3 regressors out
of the pool of 27 regressors, X1,t, . . . ,X27,t , which leads to a
total of 3,303 regression models. Descriptions and definitions
of the regressors are given in Table 5.

The sequence of forecasts produced by the kth regression
model is given by

Ŷk,τ+5 ≡ β̂ ′
(k),τ X(k),τ , τ = 0, . . . ,n − 1,

where X(k),τ contains the regressors included in model k
and β̂ ′

(k),τ is the least squares estimator based on the 32
most recent observations (a rolling window). Thus β̂(k),τ ≡
(X′

k,τ Xk,τ )
−1X′

k,τ Yτ , where the rows of Xk,τ are given by
X′

(k),t−5, t = τ −32+1, . . . , τ , and similarly the elements of Yτ

are given by Yτ , t = τ − 32 + 1, . . . , τ . Using a rolling-window

estimation scheme ensures that stationarity of (Xt,Yt) is car-
ried over to L(Yt+h, β̂

′
(k),tX(k),t), whereby a violation of As-

sumption 1 is avoided. For example, it is difficult to reconcile
Assumption 1 with the case where β(k) is estimated recursively
(i.e., using an expanding window of observation as n → ∞).

The first forecast of annual inflation is made at time 1959:Q4
(predicting inflation for the year 1960:Q1–1961:Q1). So the
evaluation period includes n = 160 quarters:

t = 1952:Q1, . . . ,1959:Q4
︸ ︷︷ ︸

initial estimation period

,1961:Q1, . . . ,2000:Q4
︸ ︷︷ ︸

evaluation period

.

The models are evaluated using a mean absolute error crite-
rion (MAE) given by L(Yt, Ŷk,t) = |Yt − Ŷk,t|, and the best-
performing models turn out to have a Phillips curve structure. In
fact, the best forecasts are produced by regressors that measure
(changes in) inflation, interest rates, employment, and GDP, and
the very best sample performance is achieved by the three re-
gressors X1,t , X8,t , and X13,t , which represent annual inflation,
employment relative to the previous year’s employment, and
the change in GDP (see Table 5). We also include the aver-
age forecast (i.e., average across all regression-based forecasts),
because this simple combination of forecasts is often found to
dominate the individual forecasts (see, e.g., Stock and Watson
1999). In addition to the average forecast, the 27 regressors lead
to 3,303 regression-based forecasts when we consider all pos-
sible subset regressions with 1, 2, or 3 regressors. So we are to
compare m = 3,304 forecasts to the random-walk benchmark,
and we refer to this set of competing forecasts as the large uni-
verse.

Panel A of Table 6 contains the output produced by the tests
for SPA for the large universe. Because the SPAc p value is .741,
there is no statistical evidence that any of the regression-based
forecasts (including the average of them) are better than the
random-walk forecast. Note the discrepancy between the p val-
ues based on µ̂l and µ̂u. This difference suggests that some
of the alternatives are poor forecasts, and a closer inspection of
the large universe verifies that several models have substantially
worse performance than the benchmark.

The ability to construct better forecasts using models with
additional regressors is made difficult by the need to estimate
additional parameters. In a forecasting exercise there is a trade-
off between estimating a parameter and imposing it to have a
particular value (typically 0, which is implicitly imposed on the
coefficient of an omitted regressor). Imposing a particular value
will (most likely) introduce a “bias,” but if this bias is small, it
may be less severe for out-of-sample predictions than the pre-
diction error introduced by estimation error (see, e.g., Clements
and Hendry 1998). Exploiting this bias–variance trade-off is
particularly useful whenever the estimator is based on a mod-
erate number of observations, as is the case in our application.
For this reason, we also consider a small universe of regression-
based forecasts, where all models include lagged inflation, X1,t ,
as a predictor (regressor) with a coefficient set to unity. The
remaining parameters are estimated by ridge regressions that
shrink these parameters toward 0.

Thus the regression models have the form

Yτ+5 − Yτ ≡ β ′
(k)X(k),τ + ε(k),t, τ = 0, . . . ,n − 1,

where X(k),τ is a vector that includes either one or two regres-
sors. As before, we use a rolling-window scheme (32 quar-
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Table 5. Definitions of Variables

Panel A: Description of variables
Yt Annual inflation
X1, t , X2, t Annual inflation (lags of Yt )
X3, t , X4, t Quarterly inflation
X5, t Quarterly inflation relative to previous year’s inflation
X6, t , X7, t Changes in employment in manufacturing sector
X8, t Quarterly employment relative to average of previous year
X9, t Quarterly employment relative to average of previous 2 years
X10, t , X11, t Quarterly changes in real inventory
X12, t , X13, t Quarterly changes in quarterly GDP
X14, t Interest paid on 3-month T-bill
X15, t , X16, t Changes in 3-month T-bill
X17, t , X18, t Changes in 3-month T-bill relative to level of T-bill
X19, t , X20, t Changes in prices of fuel and energy
X21, t , X22, t Changes in prices of food
X23, t –X26, t Quarterly dummies: first, second, third, and fourth quarters
X27, t Constant

Panel B: Definitions of variables
Y t = log(GDPCTPIt ) − log(GDPCTPIt − 4), X1, t = Y t − 5, X2, t = Y t − 8
X3, t = 4[log(GDPCTPIt ) − log(GDPCTPIt − 1], X4, t = X3, t − 1
X5, t = log(1 + X3, t ) − log(1 + X1, t − 1)
X6, t = log(MANEMPt ) − log(MANEMPt − 1), X7, t = X6, t − 1

X8, t = log(MANEMPt ) − log( 1
4

∑4
i=1 MANEMPt − i)

X9, t = log(MANEMPt ) − log( 1
8

∑8
i=1 MANEMPt − i)

X10, t = log(CBIt ) − log(GDPt ), X11, t = X10, t − 1
X12, t = log(GDPt ) − log(GDPt − 1), X13, t = X12, t − 1
X14, t = TB3MSt , X15, t = �X14, t , X16, t = X15, t − 1, X17, t = �X14, t/X14, t , X18, t = X17, t − 1
X19, t = log(PPIENGt ) − log(PPIENGt − 1), X20, t = X19, t − 1
X21, t = log(PPIFCFt ) − log(PPIFCFt − 1), X22, t = X21, t − 1
X23, t = 1, X24, t = X23, t − 1, X25, t = X23, t − 2, X26, t = X23, t − 3, X27, t = 1

Raw data: GDPCTPI = gross domestic product: chain-type price index; CBI = change in private inventories; GDP = gross domes-
tic product; TB3MS = 3-month Treasury bill rate, secondary market∗ ; PPIENG = producer price index: fuels and related products
and power∗∗ ; PPIFCF = producer price index: finished consumer foods∗∗ ; MANEMP = employees on nonfarm payrolls: manufac-
turing.
∗ Quarterly data are defined as the average of the monthly observations over the quarter.
∗∗ Quarterly data are defined as be the last monthly observation of the quarter.

Table 6. Tests for Superior Predictive Ability

Loss t-statistic p value

Panel A: Results for the large universe of forecasts
Evaluated by MAE Benchmark: .0098
m = 3,304 (number of models) Best performing: .0084 1.2363 .120
n = 160 (sample size) Most significant: .0085 1.2628 .112
B = 10,000 (resamples) Median: .0141 −2.7694
q = .25 (dependence) Worst: .0416 −7.8939

RCl RCc RCu SPAl SPAc SPAu
SPA p values .503 .781 .978 .571 .741 .903

Panel B: Results for the small universe of forecasts
Evaluated by MAE Benchmark: .0098
m = 352 (number of models) Best performing: .0082 2.7547 .006
n = 160 (sample size) Most significant: .0096 2.9399 .004
B = 10,000 (resamples) Median: .0097 .0657
q = .25 (dependence) Worst: .0107 −1.3272

RCl RCc RCu SPAl SPAc SPAu
SPA p values .071 .106 .106 .045 .048 .048

Panel C: Results for the full universe of forecasts
Evaluated by MAE Benchmark: .0098
m = 3,656 (number of models) Best performing: .0082 2.7547 .006
n = 160 (sample size) Most significant: .0096 2.9399 .004
B = 10,000 (resamples) Median: .0135 −1.9398
q = .25 (dependence) Worst: .0416 −7.8939

RCl RCc RCu SPAl SPAc SPAu
SPA p value .395 .691 .963 .078 .100 .135

NOTE: The table reports SPA p values for three sets of regression-based forecasts that are compared to a random-walk forecast. The p value of the new test, SPAc , is in bold type. Panel A
contains the results for the large universe, panel B contains the results for the small universe, and panel C contains the results for the full universe. For each “universe of forecasts” we also
report the sample loss for the benchmark and the four alternative forecasts that had the smallest sample loss, the largest t -statistic for relative sample loss (d̄k ), the median sample loss (across
alternatives), and the worst sample loss. The corresponding t-statistic (of their sample loss relative to the benchmark) is given in the second last column. We also report the “p values” from the
pairwise comparisons of “best” and “largest t -statistic” forecasts to the benchmark. These p values (unlike the SPA p values) do not account for the entire universe of forecasts.
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ters), but with the estimator for β(k) now given by β̂(k),τ ≡
(X′

k,τ Xk,τ + λI)−1X′
k,τ Ỹτ , where λ = .1 is the shrinkage pa-

rameter and the elements of Ỹτ are given by Yt − Yt−5 for
t = τ −32+1, . . . , τ . This results in 351 regression-based fore-
casts plus the average forecast, such that the total number of al-
ternative forecasts in the small universe is m = 352. The most
accurate forecast in the small universe is produced by the re-
gression model with the regressors X8,t and X9,t , which are
two measures of (relative) employment. The largest t-statistic
is produced by the regressions X6,t and X10,t , which represent
changes in employment and inventories. So our findings sup-
port a conclusion reached by Stock and Watson (1999) that
forecasts based on Phillips curve specifications are useful for
forecasting inflation.

The empirical results for this universe are presented in
panel B of Table 6. The SPAc p value for this universe is
.048, which suggests that the benchmark is outperformed by
the regression-based forecasts. For each of the test statistics,
we note that the p values are quite similar. This agreement is
not surprising, because the worst forecast is only slightly worse
than the benchmark, such that µ̂l and µ̂u are similar. The differ-
ence in p values across the two test statistics is fairly modest but
do suggest some variation in the variances, ω2

k , k = 1, . . . ,352.
Reporting the results in panel B is not fully consistent with

the spirit of this article, because the results in panel B do not
control for the 3,304 forecasting models that were compared to
the benchmark in the initial analysis of the large universe. So
the significant p values in panel B are subject to the criticisms
of data mining. To address this concern, we perform the tests
for SPA over the union of the large universe and the small uni-
verse. We refer to this set of forecasts as the full universe, and
present the results for this set of alternatives in panel C. Adding
the large number of insignificant alternatives to the comparison
reduces the significance, although the excess performance con-
tinues to be borderline significant with an SPAc p value of 10%.
Note that the RC’s p value increases from 10.6% to 96.3% by
“adding” the large universe to the small universe. This jump in
the p value is most likely due to the RC’s sensitivity to poor and
irrelevant alternatives. The SPAc test’s p value increases from
4.8% to 10%. Although this increment is more moderate, it re-
veals that the new test is not entirely immune to the inclusion
of (a large number of ) poor forecasts. This reminds us that ex-
cessive data mining can be costly in terms of the conclusions
that can be drawn from an empirical analysis, because it may
prevent the researcher from concluding that a particular finding
is significant. Given the scarcity of macroeconomic data, it will
often be useful to confine the set of alternatives to those mo-
tivated by theoretical considerations, instead of undertaking a
blind search over a large number of alternatives.

6. SUMMARY AND CONCLUDING REMARKS

We have analyzed the problem of comparing multiple fore-
casts to a given benchmark through tests for superior predic-
tive ability. We have shown that the power can be improved
(often substantially) by using a studentized test statistic and in-
corporating additional sample information by means of a data-
dependent null distribution. The latter serves to identify the

irrelevant alternatives and reduce their influence on the test
for SPA.

The power improvements were quantified in simulation ex-
periments and an empirical forecasting exercise of U.S. infla-
tion. These also highlighted that the RC is sensitive to poor
and irrelevant alternatives. Two researchers are therefore more
likely to arrive at the same conclusion when they use the
SPAc test than they would when using the RC—even if they
do not fully agree on the set of forecasts that is relevant for the
analysis.

Interestingly, we found that the best (and most significant)
predictions of U.S. inflation were produced by regression-based
forecasts that had a Phillips curve structure. In our full uni-
verse of alternatives, we found that the (random-walk) bench-
mark forecast is outperformed by the regression-based forecasts
if a moderate (10%) significance level is used. Whereas the
SPAc test yields a p value of 10%, the RC yields a p value of
about 96%, such that the two tests arrive at opposite conclusions
(weak evidence against H0 vs. no evidence). This is caused by
the poor alternatives that conceal the evidence against the null
hypothesis when the RC is used. This phenomenon was also
discussed Hansen and Lunde (2005b), who compared a large
number of volatility models using the methods of this article.

Although there are several advantages of our new test, some
important issues need to be addressed in future research. In this
article we have proposed two modifications and adopted these
in a stationary framework. This framework does not permit the
comparison of parameterized models when a recursive scheme
is used to estimate the parameters. So it would be interesting to
construct a suitable test that can accommodate this situation and
analyze the need for our two modifications in this framework.

Despite its many pitfalls, data mining is a constructive device
for the discovery of true phenomena and has become a popu-
lar tool in many applied areas, such as genetics, e-commerce,
and financial services. However, it is necessary to account for
the full data exploration before making a legitimate statement
about significance. Increasing the number of comparisons raises
the bar at which alternatives are classified as being significantly
better than the benchmark. This aspect is particularly problem-
atic for economic applications where data are scarce. In this
context it is particularly useful to confine the exploration to al-
ternatives motivated by theoretical considerations. Our empiri-
cal application provides a good illustration of this issue. Within
the small universe we found fairly compelling evidence against
the null hypothesis, and ex post it is easy to produce arguments
that motivate the use of shrinkage methods, which led to the
small universe of regression-based forecasts. However, because
the large universe was explored in the initial analysis, we can-
not exclude the possibility that the largest t-statistic would have
been found in this universe. The weaker evidence against the
null hypothesis found in the full universe is the price that we
have to pay for the data exploration that preceded our analysis
of the small universe.
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APPENDIX: PROOFS

Proof of Theorem 1

We define the vectors, Wn,Zn ∈ R
m, whose elements are

given by Wn,k = n1/2d̄k1{µk<0} and Zn,k = n1/2d̄k1{µk=0}, k =
1, . . . ,m. Thus Un = Wn + Zn under the null hypothesis.
The mappings (coordinate selectors) that transform Un into

Wn and Zn are continuous, so that (Wn −n1/2µ)
d→ Nm(0,�−

�0) and Zn
d→ Nm(0,�0) by the continuous mapping theorem.

This implies that

ϕ(Un,Vn) = ϕ(Wn + Zn,Vn)

= ϕ(Zn,Vn) + op(1)
d→ ϕ(Z,v0),

where the second equality uses Assumption 2(b) and the fact
that the elements of Wn are either 0 (µk = 0) or diverges to
minus infinity in probability (µk < 0). Under the alternative
hypothesis, there will be an element of n1/2d̄ that diverges to
infinity. So the last result of the theorem follows by Assump-
tion 2(c).

Proof of Corollary 1

The results follow from n1/2(d̄ − µ)
d→ Nm(0,�) and

the continuous mapping theorem, applied to the mapping
d̄ �→ d̄max.

Proof of Theorem 2

Without loss of generality, suppose that µk = 0 for k =
1, . . . ,m0 and that µk < 0 for k = m0 + 1, . . . ,m. Given our
definition of µ̂c, it holds that P(µ̂c

1 = · · · = µ̂c
m0

= 0, µ̂c
m0+1 <

ε, . . . , µ̂c
m < ε) almost surely as n → 0, for some ε < 0. So

for n sufficiently large, the last m − m0 elements of Zi
n are

bounded below 0 in probability, which demonstrates that µ̂c

leads to the correct limiting distribution and Fc
n → F0. That

Fl
n(x) ≤ Fc

n(x) ≤ Fu
n(x) follows from µ̂l ≤ µ̂c ≤ µ̂u.

Proof of Corollary 2

The test statistic TSPA
n leads to a continuous asymptotic dis-

tribution, F0(t), for all t > 0. Because F̂c
n(t) − F0(t) = [F̂c

n(t) −
Fc

n(t)] + [Fc
n(t) − F0(t)], the result now follows, because the

first term is o(1) by assumption and the second term is o(1) by
Theorem 2.

Proof of Lemma 1

This follows from work of Goncalves and de Jong (2003,
thm. 2).

Proof of Corollary 3

Because Z∗
k,b,t − µ̂k = (d∗

k,b,t − gi(d̄k)) − (d̄k − gi(d̄k)) =
d∗

k,b,t − d̄k for all k = 1, . . . ,m, the corollary follows trivially
from Lemma 1.

[Received February 2005. Revised April 2005.]
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