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Abstract

SAMANTHA L. HAMMOND: Dipole response of 238U to polarized photons
below the neutron-separation energy (Under the direction of Dr. Hugon Karwowski)

An investigation of dipole states in 238U is important for the fundamental understanding

of its structure. In the present work, precise experimental information on the distribution

of M1 and E1 transitions in 238U has been obtained with the nuclear resonance fluores-

cence technique at the High-Intensity γ-ray Source at the Triangle Universities Nuclear

Laboratory. Using 100% linearly-polarized, monoenergetic γ-ray beams with incident en-

ergies of 2.0-6.2 MeV, the spin, parity, integrated cross section, width, branching ratio, and

γ-strength of the observed deexcitations were determined. These measurements form a

unique data set that can be used for comparison with theoretical models of collective exci-

tations in heavy, deformed nuclei. The data can also provide isotope-specific signatures to

search for special nuclear materials.
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ĀHV average azimuthal asymmetry of the continuum

Ai jkl coefficient of the RPA equations

a† particle (hole) creation operator

a Doppler width coefficient

β2 quadrupole deformation parameter

B′λ(γ1) angular correlation coefficient for the incident γ ray

B(ΠL) γ-ray dipole strength

B(E1)α electric dipole strength due to α-clustering

B(E1,GDR) electric dipole strength from the GDR

B(E1)oct electric dipole strength due to octupole deformations

B(1→ 0) reduced transition probability of J = 1 state decaying into the ground state

xviii



B(1→ 2) reduced transition probability of J = 1 state decaying into J = 2 state

Bi jkl coefficient of the RPA equations

b branching ratio

Catt attenuation coefficient

c speed of light

c1 normalizing coefficient for quasiparticle operator

c2 normalizing coefficient for quasiparticle operator

ci fitting coefficients for the simulated efficiency

Dα electric dipole moment due to α-clustering

Doct electric dipole moment due to octupole deformations

d thickness of target

dΩ solid angle

χ isotopic abundance

∆ Doppler width

δ deformation parameter

D mean level spacing

D Delbrück scattering amplitude

D‖ parallel component of the Delbrück scattering amplitude

D⊥ perpendicular component of the Delbrück scattering amplitude

DL detection limit

ε corrections to the form factor for electron binding

ε(E) detector efficiency

xix



εα single-particle energy

η clustering amplitude

E incident photon energy

E rest energy

E0 energy of the ground state

E1 energy of the first excited state

E1→0 energy of a transition from a J = 1 excited state to the ground state

E1→2 energy of a transition from a J = 1 excited state to the first excited state

Eν energy parameter for the GDR

E′ shifted rest energy

Ebeam energy centroid of the beam

Ec final energy of a Compton-scattered γ ray

EGDR energy of the GDR

En excitation energy of the nth state

Eoct energy of the low-lying octupole states

Er resonance energy

Ex excitation energy
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Ŵ1 coherent isovector dipole vibrations of protons and neutrons

W(θ) angular correlation depending on angle θ only

W(θ)0→1→0 angular correlation of the J=1 state decaying back to the ground state

W(θ)0→1→2 angular correlation of the J=1 state decaying to the first excited state

W(θ, φ) angular correlation depending on both angles θ and φ

ξ contribution from the isovector giant quadrupole dipole resonance

Xi j
n amplitude from the RPA equations

Yi j
n amplitude from the RPA equations

ζ̂n destruction operator

ζ̂n
†

creation operator

Z atomic number - number of protons

xxvii



Chapter 1

Introduction

The research detailed in this dissertation describes the dipole response of 238U to linearly-

polarized photons below the neutron separation energy of S n = 6.154 MeV. The primary

goal of the project was to identify and to accurately measure discrete dipole excitations

for the purpose of understanding the low-energy structure of 238U. Dipole excitations can

provide insight into the collective nature of nuclear excitations in general, such that the

induced motion isn’t centered around one particle but the interconnected motion of all the

particles of the system. This complete low-energy characterization can be compared with

theoretical calculations in order to improve the ability to consistently predict the structure

of nuclei under the absence of experimental data. Equally, this spectroscopic information

would provide a unique signature for identification of 238U from other isotopes, which is

important for national security purposes. Achieved measurement uncertainties were around

7-10%.

In the early 1980s, with the discovery of a new low-energy magnetic dipole (M1) collec-

tive mode, the “scissors mode”, many measurements of rare-earth and actinide nuclei were

conducted to observe it, 238U being among the chosen nuclei studied [1]. These initial mea-



surements were confined to narrow energy ranges based on antiquated model calculations

and theoretical predictions, and as consequence, important nuclear structure information

was likely ignored. In recent years, it has become possible to improve the sensitivity of

photon-scattering experiments significantly due to the availability of quasi-monoenergetic,

high-intensity, and linearly-polarized beams. With these improvements, a broader energy

range was probed in the present work increasing the observed energy range from a spread

of 0.6 MeV [1] to one of 4.2 MeV. In addition, not only M1 deexcitations, but electric

dipole (E1) and quadrupole (E2) deexcitations were investigated in the present work, al-

lowing a more complete characterization of the underlying nuclear structure.

The rest of this chapter will attempt to provide external motivation for this project.

Chapter 2 lays out the basic scientific understanding of interactions of photons with the nu-

cleus and of the collective modes of excitations as a foundation for the rest of the chapters.

This chapter also details the prescriptions used to explain experimental observations. A

brief description of the theoretical calculations is given in Chapter 3. Chapter 4 addresses

the previous measurements of 238U that are relevant to this dissertation as well as providing

some details about the spectroscopy of nuclei with 140 < A < 180 for comparison with the

present work in later chapters. The facility at which the experiments were performed and

the description of the experimental setup are specified in Chapter 5 as well as a brief outline

of the simulation codes important to data analysis. Experimental results are presented in

Chapter 6 and a discussion follows in Chapter 7. Summary and final remarks are given in

Chapter 8.
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1.1 Nuclear Structure

Uranium is a deformed, heavy-mass nucleus with a large neutron excess. Many nuclear

structure models cover the region of masses up to 208Pb, since it is the heaviest spherical

nucleus that can be roughly described by simple models [2, 3]. However, some collective

modes of excitation, such as the M1 “scissors mode” or the E1 pygmy dipole resonance

(see Chapter 2 for more details) originate from nuclear deformations. Spherical nuclei,

therefore, can provide a foundation for the complex calculations that deformed nuclei need

in order to explain the nature of the deformation-dependent transition strength. However,

more experimental data on deformed nuclei, such as 238U, are needed since it allows ac-

cess to challenging nuclear structure problems for which calculations can be performed

for improvement in predictions of observed phenomena. Better calculations can provide

information on the structure of nuclei that can’t be obtained experimentally.

Additionally, previous experiments used to characterize the low-energy structure of

238U primarily used continuous Bremsstrahlung γ-ray beams (see Chapter 4). Since these

types of beams would generate all deexcitations from many different states, unique identifi-

cation of excited states, as well as quantifying the experimental branching ratios, becomes

a challenging undertaking (see Chapter 7). Fortunately, in recent years, it has become

possible to improve the sensitivity of photon-scattering experiments significantly with the

availability of quasi-monoenergetic and linearly-polarized beams which are well-suited for

nuclear resonance fluorescence experiments. These beams have narrow energy spreads

that can eliminate any uncertainty in identification of a transition within an energy survey.
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Figure 1.1: T-REX, a Thomson-radiated extreme x-ray system combined with nuclear res-
onance fluorescence techniques, are used to detect small amounts of nuclear materials and
image their distributions within a container. Reproduced from Ref. [4].

Use of polarized beams allows assignment of parity of the excited states and provides in-

sight into the properties of observed transitions and accompanying collective structure of

actinides.

1.2 Applications

There are potentially many uses for the unique identification of materials that may be

of special interest. National security interests may lie in the identification and characteriza-

tion of special nuclear materials (SNM) within the context of the interrogation of shipment

containers for hidden SNM (see Fig. 1.1), of nuclear waste barrels, of nuclear warheads

for disarmament treaty monitoring, or of spent nuclear fuel from reactors. The nuclear
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resonance fluorescence (NRF) technique (see Chapter 2 for details) allows for the nonde-

structive imaging of the radionuclides within a particular container of interest, which is

why it is the primary mechanism for all of these applications.

Regardless of what is being assayed, the techniques and procedures outlined in this

dissertation could become an integral part of proliferation resistance and monitoring. A

comprehensive investigation of a shipment container, a nuclear waste barrel, or something

of a similar disposition, demands good state-of-the-art detector development as well as

a well-established database. Also, high-intensity photon beams, ranging from 2-8 MeV,

are needed since SNM can not be easily shielded by heavy-mass materials. Finally, using

the well-understood physical interaction of electromagnetism provides the capacity for the

models to quantitatively describe observed phenomena.

1.2.1 National Security

This project was brought into existence as a response to the increase of global terrorism

and the United States (US) government’s need for protecting its citizens. On April 15, 2005,

the Department of Homeland Security (DHS) created a subdivision called the Domestic

Nuclear Detection Office (DNDO) to prevent and to assess threats from reaching and within

the US borders under the following seven-point mission [5]:

• to develop the global nuclear detection and reporting architecture;

• to develop, acquire, and support the domestic nuclear detection and reporting system;

• to characterize detector system performance before deployment;

• to establish situational awareness through information sharing and analysis;

• to establish operational protocols to ensure detection leads to effective response;
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• to conduct a transformational research and development program;

• to provide centralized planning, integration, and advancement of US nuclear foren-

sics programs.

One of the bigger efforts of the DNDO was the Academic Research Initiative which

provides funds to universities and contractors for the procurement of technologies and as-

sessment tools to accomplish the above mission. One such project was the scanning of

shipment containers at ports. Many containers pass through US ports daily, too many to

involve the physical examination of each container to search for only a few grams of SNM.

Thorium and the uranium isotopes form the majority of the nuclear materials that are ille-

gally trafficked throughout the world (see Fig. 1.2). An effective solution will involve both

the identification of signatures from materials such as those mentioned previously as well

as the methodology for assessing high risk containers without disrupting the flow of com-

merce. Therefore, scanning containers and subsequently determining their contents must

be done in an efficient and expeditious manner.

The ‘nuclear car wash’ was invented (see Fig. 1.1) as one possible solution. This tech-

nique involves high-intensity γ rays directed on all sides of the container with detectors

located around the outside to collect signature γ rays emitted from interaction with the

contents inside. Basic science research of the low-energy nuclear structure of SNM would

identify and distinguish highly-enriched uranium from other commodities present in the

shipment container. These laboratory techniques are being commissioned for public use

through commercially available cargo and people scanners from companies such as Pass-

port Systems [6] and Rapiscan Systems [7]. Additional to the nuclear car wash concept,

another system, FINDER (Fluorescence Imaging in the Nuclear Domain with Extreme Ra-
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Incidents involving nuclear materials 
confirmed to ITDB, 1993-2004

Figure 1.2: Incidences involving illegal trafficking of special nuclear materials between the
years of 1993 and 2004. Reproduced from Ref. [10].

diation), developed at Lawrence Livermore National Laboratory, uses a combination of

radiology and NRF scanning technologies for SNM detection [8]. Experiments [9] were

performed using strong, well-characterized states in SNM to validate the abilities of these

detection systems for isotope detection.

1.2.2 Nuclear Waste and Spent Fuel

The employment of NRF techniques within the management of nuclear waste barrels

or spent fuel rods from reactors is another important application. Identifying the individual

concentrations of about 20 nuclides to be below their required activity levels is a part of

the clearance process which determines whether or not the radioactive waste material as a

whole is below the required levels. Once these concentrations are identified, the waste is

separated and categorized by concentration levels for distribution to an appropriate storage

facility. Hajima et al. [11] proposed a method using the NRF process which establishes

better assessments of the concentrations within nuclear waste for appropriate storage clas-
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Figure 1.3: A schematic view of nuclear resonance fluorescence measurement. Reproduced
from Ref. [11].

sifications. Fig. 1.3 describes this process pictorially.

Properly determining the quantity of fissionable nuclides within spent fuel rods before

and after reprocessing is extremely important for nonproliferation efforts in safeguarding

SNM. Current methods use simulation codes to calculate the concentrations of fissionable

nuclides, which may not produce the accuracy that a physical measurement could provide

[12].

Whether safeguarding the American borders through active interrogation of shipment

containers or monitoring the concentration levels of particular radioactive nuclides, these

applications depend on a thorough knowledge of the application of NRF techniques for

real measurements as well as an all-encompassing NRF database for nuclei. The current

experiments of this dissertation attempt to produce robust NRF data-acquisition algorithms

that could be used for other purposes besides surveying low-energy structure of nuclei, as

well as the characterization of one SNM (238U) as a basis of the success of this algorithm

and as a foundation for other future measurements on SNM.
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Chapter 2

Photon Interactions with the Nucleus

Below the neutron separation energy S n, photons can interact with a nucleus in two

ways: (1) the photon can be absorbed by the target nucleus or (2) it can be scattered from

the nucleus. All other photon interactions fall into one of these categories. Absorption

includes the processes of the photoelectric effect and pair production. Photon scattering

can be further subdivided into elastic and inelastic scattering. Inelastic scattering involves

nuclear Raman scattering as well as Compton scattering, the latter being the process by

which γ rays are inelastically scattered from electrons. Compton scattering is an important

process since it allows for the measurement of the absolute beam flux during data collection

(see Chapter 5 and 6 for more details).

One of the subjects of this dissertation is the investigation of the total elastic-scattering

cross section, σel, for 238U. As such, both the incoherent and coherent part of elastic scatter-

ing are observed. The incoherent process of elastic scattering is known as nuclear resonance

fluorescence, which is the primary method applied in the current measurements. Coherent

elastically-scattered γ rays result from Thomson (T), Rayleigh (R), Delbrück (D), and nu-

clear resonance (N) scattering which are the components of σel.



 

Figure 2.1: A basic description of NRF with levels drawn for 238U.

2.1 Nuclear Resonance Fluorescence

Nuclear resonance fluorescence (NRF) is the incoherent absorption and emission of γ

rays from a nucleus. In the NRF process, an incident γ ray of energy Ex excites the nucleus

into a higher energy state, typically populating a ∆J=1 level (a ∆J=2 level is much less

probable). Afterward, the nucleus deexcites and if Ex < S n, signature γ rays are emitted,

populating the ground state or lower-lying excited states (see Fig. 2.1). Since the momen-

tum transfer associated with NRF is small, dipole (L=1) excitations are highly favored over

quadrupole (L=2) ones, making it a good probe for studying M1 and E1 excitations in

nuclei.

There are three NRF detection methods: scattering, transmission, and absorption. Fig. 2.2

shows the differences between these detection methods. The basic physical process of NRF

is the same regardless of the detection method. An example of an NRF spectra of 232Th

produced by the scattering detection method is shown in Fig. 2.3. The cross section for

resonance fluorescence of a γ ray as the nucleus transitions from an excited state to the
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Figure 2.2: A schematic of the different NRF detection methods.

ground state [13] is

σNRF(E) =
πo2g

2
Γ2

(E − Er)2 +
1
4

Γ2
, (2.1)

where Er is the resonance energy and o is the Compton wavelength. The statistical factor

g depends on the spins of the excited state Jx and the spin of the ground state J0,

g =
2Jx + 1
2J0 + 1

, (2.2)

and the total width Γ is defined as,

Γ = ΣiΓi = Γ0 + Γ1 + . . . + Γn , (2.3)

where Γn is the nth partial width for the decay from the nth level. Generalizing Eq.(2.1) to

deexcitations other than those proceeding exclusively to the ground state, the cross section

of a deexcitation to the ith state is

σi(E) =
πo2g

2
Γ0Γi

(E − Er)2 +
1
4

Γ2
. (2.4)
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Summing over all possible values of i for a given nucleus, the resonance absorption cross

section of γ rays with energy E is

σabs(E) =
πo2g

2
Γ0Γ

(E − Er)2 +
1
4

Γ2
. (2.5)

Additional spectroscopic information is obtained with the use of polarized beams as

well as a properly oriented detector setup (see Chapter 5 for details). The difference be-

tween counting rates, for the horizontal and the vertical detector orientations, for both in-

dividual excitations and for the continuum, is defined as the azimuthal asymmetry AHV .

This asymmetry can be used to distinguish the spin and the parity for an observed state. To

quantify AHV , it is the degree of polarization P(Eγ) of the incoming photon beam multiplied

by the analyzing power Σ such that [15],

AHV = P(Eγ) · Σ =
I⊥ − I‖
I⊥ + I‖

= 1 ·
W(90◦, 90◦) −W(90◦, 0◦)
W(90◦, 90◦) + W(90◦, 0◦)

=


+1 for M1

-1 for E1

 , (2.6)

where I‖ (I⊥) are the integrated cross sections Is in the horizontal (vertical) detectors. For

a point-sized detector and target as well as linearly-polarized γ rays, a pure M1 transition

would have an AHV = 1 and a pure E1 transition would have an AHV = −1. For real

detectors with finite geometry, the observed range is -1 < AHV <1. The angular distribution

for polarized γ rays, W(θ, φ), is defined as follows [15]:

W(θ, φ) = W(θ) + (±)L′1

∑
λ=2,4

B′λ(γ1)Aλ(γ2)P(2)
ν (cos θ) cos 2φ , (2.7)
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Jπ              Eγ (keV) 

1-                    Ex 

4+         162.1 

2+                   49.4 

0+                   0 

Figure 2.3: NRF spectra in the horizontal (a) and vertical (b) detectors from a 232Th target
using Eγ = 3.6 MeV. The line in (a) shows the energy distribution of the photon flux in
arbitrary units. The brackets in (b) connect the ground-state transitions from the Jπ = 1−

levels with their corresponding transitions to the 2+ state, separated by 49 keV. The peak
at 3475 keV is a background line due to the activity in the target. Level diagram including
the lowest levels of 232Th is also provided in the inset of (a). Reproduced from Ref. [14].
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where θ is the azimuthal angle measured from the scattering plane, φ is the polar angle of

the outgoing radiation with respect to the linearly-polarized beam (downstream is +ẑ axis),

and W(θ) is angular distribution for an unpolarized photon beam [15],

W(θ) =
∑
λeven

Bλ(γ1)Aλ(γ2)P(2)
λ (cos θ) , (2.8)

and the (±)L′1
corresponds to E1 (+1) and M1 (-1) transitions. The quantity P(2)

λ (cos θ) refers

to a second-order Legendre polynomial, reparameterized in terms of angles. Fig. 2.4 shows

a schematic of the angular distributions of γ rays for magnetic dipole, electric dipole and

quadrupole radiation with designations for the beam direction and the polarization plane.

The angular distribution of γ rays from a nucleus is a function of the angle between the

nuclear spin axis and the direction of emission from the nucleus. This correlation between

two γ rays, where one is absorbed and then one is subsequently emitted from a nucleus,

is dependent on the spin of the excited state of the nucleus, the type of emitted radiation,

and the angular momentum carried away by it. The coefficients in W(θ, φ) quantitatively

describe this physical information.

The expansion of these coefficients are defined in terms of the polarization coefficients

kλ and the Ferentz-Rosenzweig coefficients [15]:

B′λ(γ1) =

(
1

1 + δ2
1

) {
−kλ(L1L1)Fλ(L1L1J0J) + 2δ1kλ(L1L′1)Fλ(L1L′1J0J) + δ2

1kλ(L′1L′1)Fλ(L′1L′1J0J)
}

(2.9)

Aλ(γ2) =

(
1

1 + δ2
2

) {
−kλ(L2L2)Fλ(L2L2J f J) + 2δ2kλ(L2L′2)Fλ(L2L′2J f J) + δ2

1kλ(L′2L′2)Fλ(L′2L′2J f J)
}

.

(2.10)
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Figure 2.4: Schematic of the angular distributions of γ rays for magnetic dipole (M1),
electric dipole (E1), and electric quadrupole (E1) radiation. Red arrows designate the
beam direction while the green arrows indicate the plane of polarization.

These coefficients describe a continuous function of the mixing ratio δ with respect to the

emission of L′ radiation to that of the incoming L radiation. The Ferentz-Rosenzweig

coefficients are defined as (with L′ = L + 1) [16]

Fλ(LL′J1J2) = (−1)J1+J2+1
√

(2L + 1)(2L′ + 1)(2λ + 1)(2J2 + 1) ·


L L′ λ

1 −1 0

 ·


J2 J2 λ

L L′ J1

 .

(2.11)

Finally, using the described method above, the angular correlation factor can quantified

to correct the integrated cross section for a particular γ-ray distribution observed. These

values are tabulated in Table 2.1 for the horizontal, vertical, and backward detector orien-

tations (See Chapter 5 for details on the detector orientations).

2.1.1 Integrated Cross Section and Reduced Width

The Doppler effect is an important consideration for NRF measurements since the spec-

tral lines appear wider than they actually are. This is due to the thermal motion of the nuclei.
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Each nucleus moves with a velocity v, thereby shifting the rest energy E to E′

E′ =
E (1 + v/c)√

1 − (v/c)2
≈ E (1 + v/c) . (2.12)

If the velocities are well-described by a Maxwellian distribution function, then the likeli-

hood of a nuclei having a component of v parallel to the source direction is

w(v)dv =

√
Mn

2πkT
e−

Mnv2
2kT dv , (2.13)

where Mn is the nuclear mass, k is Boltzmann’s constant, and T is the absolute temperature

of the material. If Eq. (2.12) is used to change the integration variable of Eq. (2.13), the

distribution of energies is of the following form:

w(E′)dE′ =
(
1/∆π1/2

)
e−

(
E′−E

∆

)2

, (2.14)

where the Doppler width ∆ = (E/c) (2kT/Mn)1/2 = aE. It is known that the effective

temperature Te f f of the solid target is higher than the actual temperature T [17]. Thus, a

Table 2.1: Angular correlations for each of the different detector orientations.

Horizontal Vertical Backward
M1 0+ → 1+ → 0+ 1.45 0.08 1.50

0+ → 1+ → 2+ 1.10 0.90 1.05
E1 0+ → 1− → 0+ 0.09 1.45 0.88

0+ → 1− → 2+ 0.90 1.10 0.96
E2 0+ → 2+ → 0+ 2.50 0.00 1.47

0+ → 2− → 0+ 0.00 2.50 0.08
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correction to T must be made to find Te f f ,

Te f f /T = 3 (T/ΘD)3
∫ ΘD/T

0
t3

(
1

et − 1
+

1
2

)
dt , (2.15)

where ΘD is the Debye temperature. Averaging Eq. (2.1) over all possible values of E′

σNRF(E, t) =

∫
σNRF(E′)w(E′)dE′ = σmax

abs Ψ(x, t) . (2.16)

The maximum value of σabs(E) is found by setting E equal to Er in Eq. (2.5),

σmax
abs = σabs(E = Er) = 2πo2g

Γ0

Γ
. (2.17)

If a large t (t� x) is present, Ψ(x, t) takes on the the form,

Ψ(x, t) =
1

2 (πt)1/2

∫ ∞

−∞

e−(x−y)2/4t

1 + y2 dy =
1
2

√
π

t
e−x2/4t , (2.18)

where t = (∆/Γ)2 and x = 2 (E − Er)/Γ and y = 2 (E′ − Er) /Γ. The final Doppler form of

the cross section is

σD(E) = σmax
0 Ψ(x, t) = π3/2o2g

Γ0

∆
e−(

E−Er
∆ )2

, (2.19)

where ∫
σD(E)dE = (πo)2 gΓ0 . (2.20)
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Furthermore, if the elastic photon-scattering cross section includes thermal motion of the

nuclei, it will also have a Doppler form. Thus, the differential scattering cross section, in

terms of σabs(E) and the angular correlation function W(θ), is as follows [18],

dσγγi
dΩ

=
W(θ)

4π
Γi

Γ
σabs(E) . (2.21)

From Eq. (2.20), the cross section σγγ(E) can be written with a Doppler broadening as

well,

σγγ(E) = σmax
0 bΨ(x, t) = π3/2o2g

Γ2
0

Γ

1
∆2 e−(

E−Er
∆ )2

, (2.22)

where b is the branching ratio, Γ0/Γ. The integrated cross section is

∫
σγγ(E)dE = Is = (πo)2 g

Γ2
0

Γ
. (2.23)

The quantity Is can be written in terms of experimental observables giving the following

form,

Is =

∫
σγγ(E)dE =

N/t
ntarε(E)W(θ, φ)Φ(E)

, (2.24)

where N is the dead-time-corrected number of counts in the full energy peak in time t, ε(E)

is the detector efficiency, and Φ(E) is the flux of γ rays interacting with the front of the

target. The number of target nuclei per unit area ntar is defined as

ntar =

(
dρ
Mn

NA

)
χi

100
, (2.25)
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where d is the target thickness, ρ is the target density, Mn is the molecular mass of the

target, NA is Avogadro’s number, and χ is the fractional percentile abundance for isotope i

within the target.

Using Eqs. (2.17), (2.21), and (2.23), as well as only considering the ground state, after

some rearrangement, the reduced ground-state width reduces to

Γ2
0

Γ
=

Is

g

(
Eγ

π~c

)2

, (2.26)

where Γ is the total level width, Γ0 is the ground-state width, and Eγ is the energy of the

deexciting γ ray.

2.1.2 Branching Ratios and Transition Probabilities

For even-even actinides, no transitions from the excited state to any states other than the

first excited 2+ state and the ground state are observed. The involvement of low-momentum

transfers in the NRF process provides the assumption that Γ is equal to Γ0 + Γ1, where Γ1

denotes the width of the transition to the first excited state. In particular, the energy of

a transition to the first excited state in 238U is equal to the beam energy Eγ-45 keV with

45 keV being the energy of the first excited state. The widths of Γ0 and Γ1 can be easily

observed through experiments. Thus, the experimental branching ratio Rexp can be defined

as

Rexp =
Γ1

Γ0

(
E0

E1

)3

, (2.27)
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where E1 (E0) is the excitation energy of a transition to the 2+ (ground) state. It is also

defined through experimental parameters such that

Rexp =
N1

N0

E3
1→0W(θ)0→1→0ε(E0)

E3
1→2W(θ)0→1→2ε(E1)

. (2.28)

The Alaga rules [15, 19] show for a Jπ = 1± state that R is the ratio of the reduced transition

probabilities B of transitions to the first excited state and to the ground state:

R =
B(1π → 2+)
B(1π → 0+)

=

∣∣∣∣∣∣
√

2J1 + 1 < J1,K1, L,K − K1|J,K >
√

2J0 + 1 < J0,K0, L,K − K0|J,K >

∣∣∣∣∣∣
2

=


0.5 for K=1

2.0 for K=0

 , (2.29)

where π is the parity of the state. Note that angular momentum J is no longer a good

quantum number; only its projection on the symmetry axis, K (the rotational quantum

number), is viable. For Jπ = 1± states, only transitions from states with K = 0 and K = 1

are allowed. Values in between 0.5 and 2.0 can indicate either K-mixing or a violation

of the Alaga rules. From Rexp, the branching ratio b can be deduced following the prior

assumption that Γ is equal to Γ0 + Γ1,

b =
Γ0

Γ
=

1

1 + Rexp

(
E1

E0

)3 . (2.30)

Once b is known, Γ0 can be calculated such that,

Γ0 =
1
b

Is

g

(
Eγ

π~c

)2

. (2.31)
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Once Γ0 is known, the reduced transition probabilities B(ΠL, E) ↑ where Π is either E for

electric radiation or M for magnetic radiation, can be defined as [20]

B(ΠL, E) ↑= gΓ0

∞∑
ΠL=1

(o)2L+1

8π(L + 1)
L [(2L + 1)!!]2 . (2.32)

The most probable states observed in NRF experiments on a target of an even-even

nucleus are those with Jπ=1±. As such, deexciting transitions to states with either Jπ=0+

or 2+ are observed exclusively. As described above, in many NRF experiments involving

deformed, even-even nuclei, only transitions to the ground state and to the first excited state

are observed. Since no states with Jπ=2+ were observed in the current work (see Chapter 6),

the reduced transition probabilities for dipole strengths are the only ones of consequence.

For even-even nuclei (J0 = 0) and L = 1, these γ-ray strengths can be found through

B(Π1, E) ↑= (3!!)2 3
16π

o3Γ0 . (2.33)

Numerically, Eq. (2.33) is evaluated to be (with Γ0 in meV and E in MeV)

B(E1, E) ↑= 2.866 × 10−3 Γ0

E3 [e2 f m2] (2.34)

for electric dipole transitions and

B(M1, E) ↑= 0.2598
Γ0

E3 [µ2
N] (2.35)

for magnetic dipole transitions. The ratio of B(ΠL, E) ↑ to B(ΠL, E) ↓ is g, where the
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Figure 2.5: Schematic of the polarization of the γ rays. Modified from Ref. [21].

arrow denotes the interaction of the γ ray with the nucleus, whether through absorption (↑)

or through emission (↓). The mean excitation energy ωM1 can be deduced experimentally

through

ωΠ1 =

∑
i

B(Π1, E)iEi∑
i=1

B(Π1, E)i

, (2.36)

where B(Π1, E)i is the ith transition probability and Ei is the ith excitation energy.

2.2 Coherent Scattering

The polarization of the incident photon must be mentioned before discussing the coherent-

scattering processes in any kind of detail. Let k̂ be the momentum vector of the incident

photon in the direction of the ẑ-axis (see Fig. 2.5). This photon can have linear-polarization

vectors ~e‖ and ~e⊥, each perpendicular to k̂. Since an incident photon ((~e)) may also be unpo-

larized or circularly-polarized, combinations of ~e‖ and ~e⊥ can be made to form unpolarized
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or helical polarization states. For the rest of this dissertation, the incident photon will have

linear polarization of ~e‖ only.

The scattered photon of momentum vector k̂ ′ is ejected into a new frame (the ”scatter-

ing” plane) which is rotated by θ and φ from the original frame of the incident photon. This

scattered photon (~e ′) can have either parallel polarization (~e‖ ′) within this scattering plane

or perpendicular polarization ( ~e⊥ ′) normal to the scattering plane. In general, any of these

coherent cross sections σcoh can be written in terms of an amplitude, A, such that,

dσcoh

dΩ
= |A|2 =

1
2

(
|A‖|2 + |A⊥|2

)
, (2.37)

where A is further reduced to its parallel and perpendicular parts. These components indi-

cate the possible final paths of the scattered γ rays in reference to the scattering plane of

the incident γ rays.

Note: The following coherent scattering processes are mostly insignificant in the en-

ergy ranges studied by this dissertation, yet a thorough examination of all possible scatter-

ing incidents within the detector need to be accounted. The primary source of coherently

scattered γ rays in the energy range of 2 MeV¡Eγ¡S n is Delbrück scattering as seen in

Table 2.2.

2.2.1 Nuclear Thomson Scattering

Thomson scattering is the coherent process by which γ rays are elastically scattered

from charged particles. The electric field of the incident γ ray accelerates the particle,

causing it to emit γ rays of the same energy as the incident γ rays, and so, it is scattered. In
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nuclear Thomson scattering, the nucleus is used as the charged-particle target from which

the γ rays scatter. The Thomson amplitude T is equal to [21]

T = r0
Z2m
Mn

~e · ~e ′, (2.38)

where r0 is the electron radius, Z is the proton number, m is the electron rest mass, and

Mn is the nuclear mass. The dot product ~e · ~e ′ demands that ~e and ~e ′ must be in the same

plane otherwise it is zero. For ~e = e‖, only the choice of e′
‖

will produce a non-zero result

of sin θ cos φ. Therefore, T can be written in its component form where

T‖ = r0
Z2m
M

sin θ cos φ (2.39)

and

T⊥ = r0
Z2m
M

. (2.40)

The nuclear Thomson cross section for the present experiment’s solid-angle geometry

is as follows: 5.5µb for the horizontal detectors, 0.2µb for the vertical detectors, and zero

for the backward detectors. See Chapter 5 for details on detector placement and orientation.

2.2.2 Rayleigh Scattering

Rayleigh scattering is the coherent process by which γ rays are elastically scattered

from atoms or molecules. In nuclear Rayleigh scattering, this is redefined as the process

by which γ rays are scattered by bound electrons which leave the target unchanged after
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scattering has occurred. The Rayleigh amplitude R is [22]

R = r0
1
2

Fn(q) ~e · ~e ′ , (2.41)

where Fn(q) is the form factor depending on the momentum transfer q = 2|k̂ ′|sinθ/2 and

k̂ ′ is the momentum vector of the outgoing γ ray. Writing R in component form gives

R‖ = r0
1
2

Fn(q) sin θ cos φ (2.42)

and

R⊥ = r0
1
2

Fn(q) . (2.43)

The form for Fn(q) can be found for nuclei of 1< Z <92 in the RTAB database [23].

The spherically-symmetric charge density ρ
(
~r
)

version of Fn(q) can be found from first

principles [24] to be

Fn(q) =

∫
ρ
(
~r
)

ei~q·~rd~r . (2.44)

A modification was made to this in order to include corrections for electron binding ε and

the electrostatic potential V(r). This modified form factor Gn(q), including the definition

above of q, is [23]

Gn(q) =
∑

electrons

4π
∫ ∞

0
ρ (r)

sin(qr)
qr

1

1 −
ε

mc2 − V(r)

 r2dr , (2.45)
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Figure 2.6: Nuclear Rayleigh cross section between 0-7 MeV for γ rays scattering within
the parallel polarization plane (dotted curve), the perpendicular polarization plane (solid
curve), or the parallel polarization plane at a backward-angle (dashed curve). Experimental
solid-angle geometry is detailed in Chapter 5.

and can be substituted for Fn(q) into Eq. (2.41). The nuclear Rayleigh cross section is

shown for the summed horizontal, summed vertical and summed backward-angled detec-

tors in Fig. 2.6. Solid-angle geometry is detailed in Chapter 5.

2.2.3 Delbrück Scattering

Delbrück scattering is the process by which γ rays are elastically scattered from the

Coulomb field of heavy nuclei. However, in the presence of an electromagnetic field where

the photons propagate in the direction perpendicular to the momentum k̂, it can be an inelas-

tic process [25]. Only the elastic case shall be considered here. The Delbrück amplitude D

will take the following form [21]:

D = (αZ)2r0

[
f (~e · ~e

′∗) + g(~e · k̂ ′)(~e
′∗ · k̂)

]
, (2.46)
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where α is the fine structure constant and k̂ is the momentum vector of the incoming γ ray.

The “*” denotes complex conjugate. This amplitude can be provided in components such

that

D‖ = r0 f cos θ − g sin2 θ (2.47)

and

D⊥ = r0 f . (2.48)

The functions f and g, in units of
(
32 × 72m2

)−1
, can be approximated by [26]

f = E2
γ (59 + 14 cos θ) (2.49)
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Figure 2.7: The Delbrück cross section between 0-7 MeV for γ rays scattering within
the parallel polarization plane (dotted curve). The perpendicular polarization plane (solid
curve) matches identically with the parallel polarization plane. Experimental solid-angle
geometry is detailed in Chapter 5.
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and

g = −14E2
γ . (2.50)

The Delbrück cross section is shown for the summed horizontal detectors in Fig. 2.7

which is identical to the cross section for the summed vertical detectors. The cross section

for the backward-angled detectors is zero.

2.2.4 Nuclear Resonance Scattering

Nuclear resonance scattering refers to the coherent process of γ rays elastically scat-

tering from a nucleus as opposed to the NRF process which is considered an incoherent

process. However, there is an additional incoherent contribution to the elastic scattering

cross section which arises from nuclear scattering of γ rays from the GDR. It is relatively

insignificant below 7 MeV [27] and will not be discussed. Therefore, the coherent part of

the nuclear resonance amplitude N [27] is then

N =
E2

4~cr0

2∑
ν=1

σνΓν
E2
ν − E2 + iEΓν(

E2
ν − E2)2

+ E2Γ2
ν

~e · ~e ′ , (2.51)

where ν stands for the number of resonances in the GDR (one for spherical and two for

deformed). Parameters of the GDR are as follows: the energy, Eν, the width, Γν, and

the amplitude σν. The term iEΓν is only significant above the neutron separation energy.

Finally breaking down N into components produces

N‖ =
E2

4~cr0

2∑
ν=1

σνΓν
E2
ν − E2 + iEΓν(

E2
ν − E2)2

+ E2Γ2
ν

sin θ cos φ (2.52)
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Figure 2.8: Nuclear resonance cross section between 0-7 MeV for γ rays scattering within
the parallel polarization plane (dotted curve) and the perpendicular polarization plane (solid
curve).

and

N⊥ =
E2

4~cr0

2∑
ν=1

σνΓν
E2
ν − E2 + iEΓν(

E2
ν − E2)2

+ E2Γ2
ν

. (2.53)

The nuclear resonance cross section is shown for the summed horizontal and summed

vertical detector orientations in Fig. 2.8. The cross section for the horizontal detectors

is about a factor of 30 larger than the one for the vertical detectors. For the summed

backward-angled detectors, the cross section is zero.

2.2.5 Coherent Scattering Summary

The total coherent cross section is made up of the superposition of each of the four

amplitudes T , R, D, and N, such that,

dσcoh

dΩ
= | − T − R + D + N |2 . (2.54)
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Table 2.2: Coherent scattering contributions (listed in percentages) to the total photon in-
teraction cross section at selected beam energies in the range between 2.0 and 6.2 MeV for
the summed vertical detectors. The dominant contribution is from Delbrück scattering.

E (MeV) T R D N Total Coherent Total NRF
2.01 0.004 0.06 1 0 1 99
2.64 0.004 0.01 3 0 3 97
3.04 0.003 0.02 3 0 3 97
3.62 0.003 0.05 7 0 7 93
4.04 0.003 0.09 12 0.001 12 88
4.63 0.002 0.07 13 0.001 13 87
5.06 0.001 0.03 8 0.001 8 92
5.62 0.001 0.01 7 0.001 7 93
6.02 0.001 0.02 14 0.001 14 86
6.14 0.001 0.02 23 0.002 23 77
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Figure 2.9: Total coherent-scattering cross section at energies between 2.0 and 6.2 MeV
for γ rays scattering within the parallel polarization plane (dotted curve), the perpendicu-
lar polarization plane (solid curve), or the parallel polarization plane at a backward-angle
(dashed curve).

This total coherent-scattering cross section is used in combination with the E1 γ-ray inter-

action cross section to find the total cross section in Section 7.3. Table 2.2 and Fig. 2.9 sum-
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marize the contribution of each coherent-scattering process between 2.0 and 6.2 MeV. In

this range, which is relevant to the present experiments, the overall contributing coherent-

scattering process is Delbrück scattering.

2.3 Collective Excitations

The nucleus can be excited by a γ ray in various modes with the lowest multipoles for

magnetic and electric radiation shown in Fig. 2.10. Through the NRF process in particular,

photon interactions with nuclei will produce dipole excitations with the most probability

since there is a low-momentum transfer involved. Furthermore, photons have a long wave-

length in comparison to the size of the system under investigation (i.e. the nucleus); this

choice of a photonic probe selectively excites dipole resonances only.

 

Figure 2.10: Nuclear excitations for which L≤2. Reproduced from Ref. [28].
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Regardless, dipole excitations can characterize the collective structure of the excited nu-

cleons [29] through various mechanisms such as the “scissors” mode, the spin-flip mode,

pygmy dipole resonances (PDR), and giant dipole resonances (GDR). Theoretical calcu-

lations (see Chapter 3) suggest that substantial dipole strength should exist in the energy

region between the “scissors” mode and the GDR from both magnetic (M1) and electric

(E1) dipole excitations in neutron-rich, deformed nuclei [30, 31]. These calculations pre-

dict that, in general, the number of M1 states decreases as the excitation energy increases,

while the number of E1 states increases with energy while approaching the GDR. Other

mechanisms which can also propagate dipole excitations are octupole deformations and

α-clusterings, as theorized by Iachello [32].

 

Figure 2.11: Most probable collective dipole excitations for a nucleus. Modified from
Ref. [33].

In the following sections, M1 collective excitations including the scissors mode and

the spin-flip mode as well as the E1 collective excitations including PDR, GDR, octupole,

and α-scattering, will be described in detail. The landscape of the most probable collective
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dipole excitations is shown in Fig. 2.11 as a function of excitation energy.

2.3.1 Magnetic Excitations

Collective M1 excitations are observed in highly-deformed nuclei, and are assigned to

one of the following modes: an orbital scissors mode or a spin-flip mode. Schematics of the

motions transcribed by a nucleus in order to emit magnetic radiation are shown in Fig. 2.12.

The M1 Scissors Mode

The orbital M1 “scissors” mode involves the motion of deformed bodies of protons and

neutrons vibrating against each other [35] such that the generated motion from vibration is

scissors-like, i.e. the M1 matrix element is proportional to the difference of ~Lp − ~Ln where

L is the orbital component of the total angular momentum. This is a low-lying M1 strength

 

Figure 2.12: Dipole Excitations with their assigned K values for their isoscalar (T=0) and
isovector (T=1) components. Reproduced from Ref. [34].
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which exists primarily in deformed nuclei such that an increase in A, the mass number, will

proportionally shift the M1 excitations down in energy by 61 · δA−1/3 where δ is the ground-

state quadrupole deformation parameter. Ground-state transition strength produced from

the “scissors” mode is generally fragmented and concentrated in the energy region around

2-3 MeV, with a considerable dependence on deformation [36].

In previous 238U(γ, γ′) experiments [1, 37], the scissors mode was observed to exist

between 2.0-2.5 MeV and the summed M1 strength was measured to be ΣB(M1) = 3.2(2)

µN
2 with a mean excitation energy ωM1 of 2.3(2) MeV. This ΣB(M1) is comparable to those

determined for spherical and deformed rare-earth nuclei, whose scissors mode is shown to

exist at energies between 2.4-3.7 MeV with ωM1 ∼3.0 MeV and with ΣB(M1) between

0.20(2)-3.7(6) µN
2, depending on the degree of deformation [38]. Enders et al. noted that

ωM1 depended linearly on the square of the deformation parameter δ [38].

The M1 Spin-Flip Mode

The M1 spin-flip mode describes the change in spin for a collective number of nucle-

ons and the subsequent motion of the spin-up nucleons oscillating against the spin-down

nucleons whether it be through translations (isoscalar) or rotations (isovector). This mode

is discussed within literature to a lesser extent than the scissors mode even though the spin-

flip mode carries the majority of the M1 strength [3]. The spin-flip mode is M1 strength

generally found at higher energies above the “scissors” mode.

The spin-flip mode has a “two peak” structure due to the separation of where the

isoscalar and isovector parts of the strength lie. The isoscalar B(M1) is proportional to

34A−1/3 whereas the isovector part is slightly higher, located at 44A−1/3. In some nuclei, the
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two peak structure is less pronounced and only a weighted average of the strength propor-

tional to 41A−1/3 is observed. See Fig. 4.8 for an illustration of this two-peak structure.

An inelastic proton-scattering experiment [39] estimated an upper limit for the M1

strength in 238U to lie between 15-25 µN
2 in the energy range of 4-10 MeV. M1 strength

found at these energies are thought to be a part of the M1 spin-flip resonance [3]. However,

investigations of this mode for actinide nuclei have been limited to measurements of the

continuum only because of the higher density of states as excitation energy is increased.

For comparison, ΣB(M1) has been found in similarly deformed rare-earth nuclei to be

between 10-15 µN
2 in the energy range of 6-10 MeV [40].

2.3.2 Electric Excitations

Collective E1 excitations have been observed in both spherical and deformed nuclei

alike. The majority of the total E1 strength in any given nucleus is produced by the giant

dipole resonance (GDR) which corresponds to the large scale motion of all the protons

collectively oscillating against all the neutrons in the nucleus [41]. It contains the resonant

states above S n, built by this coherent motion which involves many nucleons. The GDR has

been observed in all stable nuclei between excitation energies Ex=820 MeV. A thorough

investigation of the GDR in 238U was completed by Caldwell et al. [42] (see Fig. 2.13).

However, the strength produced from the GDR does not account for all of the observed

strength in a given nuclei and other types of collective motions have been observed. These

include the pygmy dipole resonance [43] as well as those caused by octupole deforma-

tion and by α-clustering [32]. Again, schematics of the possible motions transcribed by a

nucleus in order to emit electric radiation are shown in Fig. 2.12.
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Figure 2.13: The giant dipole resonance in 238U with the calculations shown as curves for
the K = 0 axis and for the K = ±1 axis as well as their sum. Reproduced from Ref. [44].

Pygmy Dipole Resonances

There has been a large number of recent measurements [45–47] of the pygmy dipole

resonance (PDR), which comprises of a concentration of low-lying electric dipole exci-

tations in deformed nuclei with a substantial neutron excess [43]. The origin of this E1

excitation is described as a vibration of the excess neutrons (“neutron skin”) against the

inert (isospin-symmetric) core of the nucleus. It is expected that little to no PDR strength

should exist in spherical nuclei and that as the neutron excess increases, so should the

strength. Furthermore, it has been suggested that this strength, existing at lower ener-

gies below S n and significantly above contributions from the low-energy tail of the GDR,

must be produced from the deformation present in the nucleus itself [48, 49]. This re-

quires complimentary measurements (photon scattering as well as photon dissociation) to

be performed in order to verify existence. Additionally, existence of the PDR can play a
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Figure 2.14: Schematics of octupole deformations and α-clustering of the nucleus. Repro-
duced from Ref. [32].

significant role in capture rates in p-process nucleosynthesis since its strength surrounds

the region of excitation energies near S n [50].

The existence of a PDR in 238U (δ ≈ 0.234) has been suggested by the authors of

Ref. [51] based on (γ, n) experiments but it was not quantitatively exploited (See Sec-

tion 4.2 for details). For reference, the low-lying E1 states found in deformed, rare-earth

nucleus 168Er (Nilsson deformation parameter δ ≈ 0.274) has a summed strength of about

23(2)× 10−3 e2fm2 within the energy range of 1.8-3.9 MeV [52]. It is unclear whether this

measured B(E1) is significantly greater than the strength produced by the low-energy tail of

the GDR. In 138Ba, a low-lying E1 strength was measured to be 0.96(18) × 10−3 e2fm2 with

a mean excitation energy of 6.7 MeV [45]. The experimental values were similar to theo-

retical calculations which predicted a strength of 1.22× 10−3 e2fm2 with a mean excitation

energy of 7.3 MeV for 138Ba.

Octupole Deformations

The octupole deformation is typically thought to be the origin of E1 transitions existing

in the energy range between 1-2 MeV when coupled to the GDR. This mechanism exists
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when a nonuniform distribution of protons and neutrons is present due to electrostatic ef-

fects such that a vibration of the nucleus is produced around its reflection-asymmetric shape

[32]. The octupole strength can be estimated for this mechanism by the following equation

[53]:

B(E1)oct =
9

4π
< Doct

2 > , (2.55)

where D is the electric dipole moment given as

Doct = 6.87 × 10−4AZβ2β3 [e fm] , (2.56)

and β2 (β3) is the quadrupole (octupole) deformation parameter (see Section 4.1 for details

on these parameters). The authors of Ref. [53] measured a significant amount of low-lying

E1 strength of 3.0(4), 3.1(5), and 5.0(4) × 10−3 e2fm2 in 150Nd, 160Gd, and 162Dy, respec-

tively, suggesting that the strength could be due to the octupole deformation of the nucleus.

They measured B(E1)oct to be 2.9, 3.7, and 4.0 × 10−3 e2fm2, for 150Nd, 160Gd, and 162Dy.

Since the values for B(E1)oct do not exhaust the full measured strength, other mechanisms

such as α-clustering, were considered. Schematics of the octopole deformations that would

excite the nucleus into emitting electric radiation are shown in the left panel of Fig. 2.14.

α-Clustering

The E1 strength due to α-clustering is thought to be an origin of transitions in the

energy range of 2-3 MeV. In this case, a nonuniform distribution of protons and neutrons

is present such that the nucleus bunches into fragments with differing charge to mass ratios
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[32]. This cluster configuration is most likely found in configurations other than the ground

state one with only slight admixtures (of amplitude η) into it. Additionally, fragments may

not be spherical in nature and a corresponding oscillation between clusters or bunches of

fragments could occur. This α-clustering strength is estimated by the following equation

[53]:

B(E1)α = η2 9
4π
< Dα

2 >

6
, (2.57)

where η is the clustering amplitude and Dα is given as

Dα = 2e
N − Z

A
r0

(
(A − 4)1/3 + 41/3

)
. (2.58)

Again, the authors of Ref. [53], unsure of what mechanism was producing the entirety of

the measured low-lying strength in their experiments, predicted that the strength could have

been generated by α-clustering as well. They measured B(E1)α to be 1.29, 1.34, and 1.15

× 10−3 e2fm2, for 150Nd, 160Gd, and 162Dy, respectively. Small admixtures, η = 10−3, were

assumed in calculating out the strengths. Schematics of α-clusterings that would excite the

nucleus into emitting electric radiation are shown in the right panel of Fig. 2.14.
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Chapter 3

Theoretical Model Calculations

Mean-field models have been successful in describing the shell structure of the nucleus

and the characteristics of single-particle excitations but they do not contain enough detailed

features of the exact solutions to the Schrödinger equation for reproduction of collective

excitations. However, random-phase approximation may be able to predict collective ex-

citations since it includes important two-body interactions as well as strong particle-hole

excitations. This forms the foundation for the quasiparticle random-phase approximation

which provides a good interpretation of the nucleon interactions for predicting discrete lev-

els in open-shell nuclei. The following chapter discusses some details of the formalism for

both microscopic descriptions of nuclear motion.

3.1 Random-Phase Approximation

Mean-field theory provides the approximation that the nucleons interact with other nu-

cleons through average potentials. The random-phase approximation (RPA) is a method of

building upon this mean-field theory to describe collective excitations. The Hamiltonian Ĥ



is written in terms of a particle-hole interaction potential V such that

Ĥ = −
~2

2m

N∑
i=1

∇i
2 +

N∑
i< j=1

Vi j =
∑
α

εαaα†aα + 1/2

∑
α<β,γ<δ

Vαβγδaα†aβ†aδaγ , (3.1)

where i ( j) is the number of particle (hole) states, εα is the single-particle energy, m is the

electron mass, and a† is the particle (hole) creation operator. Starting with the equation of

motion,

Ĥ | n〉 = En | 0〉 , (3.2)

where En is the excitation energy, the many-body Schrödinger equation can be written as

[
Ĥ, ζ̂n

†
]
| 0〉 = (En − E0) ζ̂n

†
| 0〉 , (3.3)

where E0 is the ground-state energy and creation ζ̂n
†

and destruction ζ̂n operators are de-

fined such that

| n〉 = ζ̂n
†
| 0〉 , (3.4)

and

ζ̂n | 0〉 = 0 . (3.5)

where ζ̂n
†

spans the space of n-particles-n-holes and | 0〉 is the true ground-state wavefunc-

tion. Within the random-phase approximation, | 0〉 is approximated by the ground-state

wavefunction of the RPA calculation, | RPA〉, such that

ζ̂n | RPA〉 = 0 . (3.6)
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The quantity ζ̂n
†

is approximated as

ζ̂n
†

=
∑

i, j

{
Xi j

nai
†a j − Yi j

na j
†ai

}
. (3.7)

with the following quasiboson approximation:

〈RPA |
[
ζ̂n, ζ̂n′

†
]
| RPA〉 ' 〈HF |

[
ζ̂n, ζ̂n′

†
]
| HF〉 = δnn′ , (3.8)

where | HF〉 is the Hartree Fock ground state. The RPA equations are now a set of linear

equations with normalized amplitudes Xkl
n and Ykl

n,

En


1 0

0 −1

 −


Ai jkl Bi jkl

B∗i jkl A∗i jkl




Xkl

n

Ykl
n

 = 0 (3.9)

with coefficients Ai jkl and Bi jkl defined as

Ai jkl = (εi − ε j)δikδ jl + Vil jk

Bi jkl = Vik jl .

(3.10)

From the solutions to the RPA equations, the energies and amplitudes are obtained. A

general one-body external field f̂ can be defined as

f̂ =
∑
αβ

fαβaα†aβ . (3.11)

42



The random-phase approximation approximates the transition matrix element of the field

operator as

〈n | f̂ | RPA〉 =
∑

i j

{
Xi j
∗n fi j

∗ + Yi j
∗n f ji

}
. (3.12)

The strength function S (E) is defined by

S (E) =
∑

n

|〈n | f̂ | RPA〉|
2
δ(E − En) . (3.13)

The partial width as well as the cross section can be written in terms of S (E).

3.2 Quasiparticle Random-Phase Approximation

RPA assumes a discontinuity at the Fermi energy within the occupational probabilities,

which means that there is either a particle returning below the Fermi surface or a particle

promoted above the Fermi surface. However this is not generally true for open-shell nuclei,

in particular for deformed rare-earth and actinide nuclei. There could be a mixture of these

states, part-particle and part-hole, for which are not accounted within the RPA. The occu-

pation probability of these quasiparticles is continuous at the Fermi energy, which means

that they can include the possibility of p-p, p-h, and h-h combinations. Quasiparticles are

therefore defined as linear combinations of normalized particle- and hole-states, such that

αλ
† = c1λaλ† − c2λa−λ , (3.14)
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Figure 3.1: QRPA calculation by Ref. [30] for M1 and E1 states in (a)232Th, (b) 236U,
and (c) 238U, with the experimentally observed M1 excitations with ∆K = 1 in (•) and E1
excitations with ∆K = 0 in (◦) [1, 54]. In the QRPA results, M1 excitations with ∆K = 1 are
shown as a solid line and E1 excitations as a dashed line, whereas E1 and M1 excitations
with ∆K = 0 are shown as open and hatched bars, respectively.
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Table 3.1: Magnetic and electric dipole strengths as calculated by QRPA [30] and QPNM
[31] for actinide nuclei.

Magnetic Dipole
232Th [30] 236U [30] 238U [30] 238U [31]

ω (MeV) 2.6 2.6 3.2 -∑
B (µN

2) 5.0 6.1 8.3 6.0∑
B/∆E (µN

2/MeV) 2.5 3.1 2.3 1.5
Range (MeV) 2 - 4 2 - 4 2 - 5.6 2.6 - 6.6

Electric Dipole
232Th [30] 236U [30]] 238U [30] 238U [31]

ω (MeV) 2.7 3.0 4.6 -∑
B (×10−3e2fm2) 35 40 120 308∑

B/∆E (×10−3 e2fm2/MeV) 18 20 33 77
Range (MeV) 2 - 4 2 - 4 2 - 5.6 2.6 - 6.6

where c1 and c2 are normalization coefficients. In order to create an excited state using the

quasiparticle operator and ground state, ζ̂n
†

needs to be redefined,

ζ̂n
†

=
∑
α>β

{
Xαβ

nαα
†αβ

† − Yαβnαβαα
}

. (3.15)

The quantity ζ̂n
†

is more or less a quasiboson creation operator which builds excited states

through a superposition of two-quasiparticle excitations of a quasiparticle ground state.

Also, pairs of the fermion operators, αβαα, are treated as quasibosons within QRPA. Fi-

nally, within the quasiparticle random-phase approximation, the true ground-state is ap-

proximated by the ground-state wavefunction of the QRPA calculation, | QRPA〉, such that

ζ̂n | QRPA〉 = 0 , (3.16)

which is much like the prescriptions laid out within the previous section on RPA.
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Published examples of QRPA calculations are those done by Kuliev et al. [30, 55] for

232Th, 236U, and 238U (see Fig. 3.1) as well as by Soloviev et al. [31] for 154Sm, 168Er, 178Hf,

and 238U. Table 3.1 highlights the quantitative description of the calculations for summed

M1 and E1 strength of the actinides. Both calculations use axial symmetric Woods-Saxon

potentials to find single-particle energies. A separable form of Ĥ is used such that the two-

body interaction potential is further subdivided multiple interaction terms. The Ĥ used by

Kuliev et al. [30] is as follows:

Ĥ = Ĥsqp + ĥ0 + ĥ1 + V̂στ (3.17)

for M1 transitions and

Ĥ = Ĥsqp + ĥ0 + ĥδ + Ŵ1 (3.18)

for E1 transitions, where Ĥsqp is the Hamiltonian of the single-quasiparticle motion, ĥ0

and ĥ1 describe the isoscalar and isovector restoring interactions, V̂στ is the spin-isospin

interaction, ĥδ are the interactions for transitional and Galilean symmetries, and Ŵ1 are the

coherent isovector dipole vibrations of protons and neutrons. The Ĥ of Soloviev et al. [31]

is defined as

Ĥ = Ĥsp + V̂pair + V̂ph + V̂pp (3.19)

where Hsp is the one-body Hamiltonian, V̂pair is the monopole pairing interactions, and V̂ph

(V̂pp is the particle-hole (particle-particle) interactions. Soloviev et al. [31] take the QRPA

model a step further by using a quasiparticle -phonon nuclear model in which energies and

strengths were calculated within a space spanned by up to two RPA phonon states which

46



 

Figure 3.2: QPNM calculation by Ref. [31] for (a) K=0 and (b) K=1 E1 strength distribu-
tions in 238U.

produce the right order of magnitude. The strength is fragmented over several states instead

of all of the strength carried by only a couple states. An example of B(E1) calculations for

238U is shown in Fig. 3.2.

In Chapter 7, a comparison of these calculations are made with the present experiment

to which good agreement is found for the M1 strength but not for the E1 strength in 238U.
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Chapter 4

Experimental Information on 238U and

Other Deformed Nuclei

In order to put the measurements of this dissertation in proper perspective, a summary of

the previous experimental data from excitation of 238U using probes of photons, electrons,

and protons below the neutron separation energy, S n, is provided. The energy region above

S n is not the focus of this dissertation, however, a thorough investigation of the giant dipole

resonance was completed by Caldwell et al. in Ref. [42].

4.1 Collective Excitations in 140 < A < 180 Nuclei

There are an overwhelming number of experiments performed on rare-earth nuclei as

well as other nuclei with 140 < A < 180. It would be beneficial if these experiments could

provide insight into the actinide nuclei which are much like heavier-massed versions of

these nuclei. In Fig. 4.1, a NRF spectrum of 154Sm shows how peaks can be easily identified

at higher energies when the nucleus has a small density of states. A NRF spectrum from

a heavy-mass nuclei at a similar energy would be relatively harder to identify discrete



 

Figure 4.1: NRF spectra from 154Sm from Ref. [56]. Transitions to the ground state
(hatched peak areas) and to the first excited (unhatched peak areas) state are connected
by a bracket for a particular level. Top panel shows K = 0 states while the bottom panel
shows K = 1 states.

transitions than nuclei with 140 < A < 180 since there is a larger density of states present.

Some questions arise when looking at the two different types of nuclei: Does size matter

enough to produce different excitation modes between similar 140 < A < 180 nuclei and

actinide nuclei? Do collective excitation modes for similarly deformed nuclei, regardless

of mass, behave in the same way or are there other factors that contribute to the distribution

and intensity of the observed strength?

The strength and location of each collective mode of interest to this dissertation was

investigated for nuclei with 140 < A < 180, in particular, the rare-earth nuclei [38, 40,
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52, 57, 58]. The scissors mode has been observed at energies between 2.4-3.7 MeV with

a mean excitation energy ωM1 ∼3.0 MeV and with the total strength ΣB(M1) between

0.20(2)-3.7(6) µN
2, depending on the degree of deformation [38] (see below for details on

the sum rule used to calculate the strength). The total strength for the scissors mode is

observed to be ∼ 3 µN
2 while the maximum strength of any one individual state is never

greater than 1.5 µN
2.

The spin-flip excitation mode is presumed to be located in the energy range between

4 and 10 MeV, and is well separated from the scissors mode. In Fig. 4.2, the effect of a

heavier-mass nuclei is clear. The centroids of the isoscalar and the isovector parts of the

spin-flip mode are pushed to lower energies in the actinide nuclei than for the rare-earth

nuclei. As for the quantitative aspect of the spin-flip mode, ΣB(M1) has been found to be

between 10-15 µN
2 in the energy range of 6-10 MeV for nuclei with a similar deformation

as in 238U (δ = 0.234) [40].

On the other hand, experimental data on low-lying E1 strength in 140 < A < 180 nuclei

are currently being investigated. One example of an experiment looking for a possible PDR

is that of Ref. [52] which looked for low-lying E1 strength in deformed, rare-earth nucleus

168Er (deformation parameter δ ≈ 0.274). The authors of Ref. [52] found a total E1 strength

of about 23(2)×103 e2fm2 within the energy range of 1.8-3.9 MeV. It is unclear whether this

measured B(E1) is significantly greater than the strength produced by the low-energy tail

of the GDR.

There have also been some theoretical predictions of the strength from the rare-earth

nuclei [31, 38]. Table 4.1 provides an example of a comparison of experimental values
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Figure 4.2: NRF and proton-scattering spectra for various nuclei showing the separation of
the scissors and spin-flip modes. Reproduced from Ref. [3].

with the predicted values for 154Sm, 160Gd, and 178Hf. The sum-rule prediction of Ref. [38]

agrees well with the experimental scissors mode strength. For example, the sum rule pre-

dicts B(M1) for 178Hf to be 2.14 µN
2 where as the measured value is between 2.04-2.40

µN
2. However, it is uncertain whether the predictions from the theoretical calculations

from Ref. [31] on the E1 strength are well-justified and more experimental data on the

low-lying E1 strength of rare-earth nuclei are needed.

Enders et al. [38] compiled the existing data on scissors mode for nuclei with 140 <

A < 180 as well as actinide nuclei to compare with a parameter-free sum-rule prediction.

Under this description of the sum rule, the strength function S can be calculated from the
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Table 4.1: Experimental and theoretical values for the M1 (in units of µN
2) and E1 strengths

(in units of ×10−3 e2fm2) of 154Sm, 160Gd, and 178Hf. Energies are in units of MeV.

Magnetic Dipole

Experiment Theory
154Sm [57] 160Gd [53] 178Hf [58] 154Sm [31] 160Gd [59] 178Hf [31]

ω 3.26 3.06(4) 3.21 – – –∑
B 2.4(4) 3.6(4) 2.4(4) 5.7 3.54 7.1∑

B/∆E 1.6 1.8 1.6 1.4 1.8 1.8
Range 2.5-4 2-4 2.5-4 3.6-7.6 2-4 3.6-7.6

Electric Dipole

Experiment Theory
154Sm [57] 160Gd [53] 178Hf [58] 154Sm [31] 160Gd [59] 178Hf [31]

ω 2.81 2.9(1) – – – –∑
B 24(4) 16(2) >4 217 21 271∑

B/∆E 13 8 >2 54 11 68
Range 2-4 2-4 1.2-4 3.6-7.6 2-4 3.6-7.6

ground-state expectation values, separately for Jπ = 1+ and for Jπ = 1− such that the mean

excitation energy ωM1 is written as [38]

ω =

√
S (Jπ = 1+)
S (Jπ = 1−)

, (4.1)

while the total strength
∑

B(M1) is written as [38]

∑
B(M1) =

√
S (Jπ = 1+)S (Jπ = 1−) . (4.2)

From Lipparini and Stringari [38, 60], these quantities can be rewritten in terms of familiar

components. The final results are shown:

∑
B(M1) =

3
π

√
3

20
r0A5/6

√
4NZ
A2 ωD

√
mNξ

ωE2
δg2

IS (4.3)
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ωM1 =
2
√

15
r0A5/6

√
A2

4NZ
ωD

√
mNωE2ξδ , (4.4)

where Z, N, A are the proton, neutron, and mass number of the nucleus, r0 is the radius

of the nucleus (∼1.15 fm), ξ describes the contribution from isovector giant quadrupole

resonance (IVGQR), ωD describes the centroid energy of the isovector giant dipole res-

onance (IVGDR), δ is the Nilsson deformation parameter, mN is the nucleon mass, ωE2

describes mean E2 excitation energy, and gIS is the isoscalar orbital gyromagnetic factor of

the ground state rotational band which is dependent on gπ and gν, the gyromagnetic factor

for protons and neutrons, respectively.

The quantity δ can be written in terms of the quadrupole deformation parameter, β2,

such that

δ =
3
4

√
5
π
β2 +

125
32π2β2

4 −
175
64π2

√
5
π
β2

5 + . . . (4.5)

and

β2 =
4π

3Zr0
2

√
B(E2)

e2 =
4π

3Zr0
2

√
5

16π
Q0 (4.6)

where B(E2) is the reduced transition probability and Q0 is the quadrupole moment. Enders

et al. [38] predicted ωM1 and the M1 strength for the scissors mode of many 140 < A <

180 nuclei using these results. In Fig. 4.3, the upper panel shows a comparison of ωM1

while the bottom panel shows the comparison of ΣB(M1) observed for nuclei with different

deformations. From this compilation, ωM1 seems to be fairly independent of deformation,

although as the mass of the nuclei increases significantly, ωM1 decreases. The strength

ΣB(M1) however is strongly dependent on the deformation of the nucleus, and was deduced

as a quadratic dependence. This was shown experimentally for rare-earth nuclei in Ref. [36]
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such that the quantity ξ

ξ =
∑

B(M1)A2/3Z−2 (4.7)

was found to depend linearly on the square of the deformation such that ξ ≈ 0.27δ2. As

for the sum rule, it seems to predict ΣB(M1) of the least and most deformed nuclei of the

group but not those that are somewhere in between.

The deformation-dependent strength is illustrated in Fig. 4.3 for both nuclei with 140 <

A < 180 and the actinides. The mean excitation energy is also provided and is shown not

to vary with the square of the deformation, but with the change in mass region between

rare-earth and actinide nuclei. There are discrepancies between the measurements and

the sum-rule predictions in Fig. 4.3 which seem to suggest either missing M1 strength

within the experimental value of ΣB(M1) or an invalid phenomenological description of the

scissors mode as provided by this sum-rule prediction. Only a remeasurement of the energy

range relevant to the scissors mode would clear up any doubt to which was the accurate

description of the data. Finally, experimental information on deformed nuclei within 140 <

A < 180 may provide insight into the nuclear structure of the actinides by comparing and

contrasting features of the distributions of the dipole strengths, the frequencies of similar

Rexp values, as well as other characteristics discussed in Chapter 7.

4.2 Actinide Data

In 1972 and 1973, Bergére et al. [41] as well as Knowles and Mafra [61], performed

experiments above S n with high-intensity γ rays on 238U. Specifically, Knowles and Mafra
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Figure 4.3: The experimental mean excitation energy and M1 transition strength as well
as its sum-rule prediction as it depends on the deformation parameter δ squared for 140 <
A < 180 nuclei and actinide nuclei. The sum-rule prediction of Ref. [38]is in (♦) while
the experimental data is in (_) for 140 < A < 180 nuclei. For the actinides, the sum-
rule prediction is in (�) while the experimental data [1, 54] is in (�). There is a large
discrepancy between experiment and prediction for 238U. Reproduced from Ref. [38].
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Figure 4.4: The photoabsorption cross section of 238U shown as points with error bars. The
low-energy tail of the GDR is also shown as the dashed curve. Reproduced from Ref. [51].

used a Compton-monochromator facility to produce variable γ-ray beams between 3 and

8.3 MeV with an energy spread of about 3% [51]. Their results are shown in Fig. 4.4.

In 1980, Schumacher et al. [27] used the Grenoble high-flux reactor to irradiate 25 g of

cerium oxide to create a large flux of collimated neutron-capture γ rays at energies of 4.291

and 4.767 MeV. The reactor data was supplemented by lower-energy measurements [62]

using radioactive sources as the origin of the incident γ rays with the following energies:

0.279, 0.412, 0.662, 0.889, 1.121, 1.173, and 1.332 MeV. The differential elastic-scattering

cross section at 120◦ for 238U was measured and compared with predictions from Rayleigh

and Delbrück theory (shown in Fig. 4.5).

A year later, Mückenheim et al. [63], with a moving 56Co source in a high speed

centrifuge, stimulated the excitation of the 3.254 MeV level in 238U. Differential cross-

section measurements were made using a Ge(Li) detector placed about 30 cm from a block
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Figure 4.5: Differential elastic scattering cross sections for 238U (_) showing the contribu-
tions from coherent scattering processes of Raleigh (R), Delbrück (D), Thomson (T), and
nuclear resonance (N). Theoretical calculations including all four processes (a) and without
D (b) are shown as well. Reproduced from Ref. [27].

of metallic uranium and at various angles between 56◦ and 120◦.

In 1982, Rullhusen et al. [64] studied the elastic-scattering of high-intensity photons

between 2-10 MeV produced either by the neutron-capture reaction (created within a re-

actor) or with strong radioactive sources (such as 24Na, 56Co, and 66Ga). Transitions were

observed at 2.754, 3.809, 4.495, 4.592, 4.807, 5.140, 5.206, 5.666, and 5.843 MeV, but the

authors of Ref. [64] were unable to assign definite parity and spin for most of these levels.

Again in 1983, the Grenoble reactor setup was used by Zurmühl et al. [65] to create

neutron-capture γ rays for exploring NRF in 238U between 4 and 7 MeV. The scattering
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Figure 4.6: The photoabsorption cross section for 238U as derived from the elastic-scattering
cross section and compared with the Lorentzian extrapolation of the low-energy tail of the
GDR (dashed curve). Reproduced from Ref. [66].

target was made of 1.8 g of metallic uranium. Two Ge(Li) detectors were positioned at dis-

tances of 20 cm from the target at angles of 90◦ and 130◦. Fifteen NRF lines were observed

at the following energies: 4.220, 4.414, 4.536, 4.566, 4.618, 4.692, 4.739, 5.090, 5.165,

5.246, 5.343, 5.747, 5.949, 5.965, and 6.128 MeV. The differential NRF cross sections

were measured.

In 1987, Birenbaum et al. [66] measured the photon elastic scattering cross section on

238U between 4.8 and 6.4 MeV. A continuous γ-ray beam was created at the University of

Illinois using their tagged-photon facility and the target-scattered photons were collected

in a large volume NaI detector while post-Bremsstrahlung electrons were collected in coin-

cidence in an array of thirty-two plastic scintillators. Final results from Birenbaum et al. in

terms of the photoabsorption cross section are inconclusive on whether or not a PDR exists

in 238U (see Fig. 4.6).

At the advent of the discovery of the collective excitation mode known as the M1 scis-
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Figure 4.7: A comparison of the levels in 238U from NRF and electron-scattering exper-
iments. Reproduced from Ref. [1]. The arrows point to six ground-state M1 transitions,
found at the same energies using NRF and electron scattering.

sors mode, different rare-earth and actinide nuclei were tested in order to explore the phys-

ical nature of this mode. One such set of measurements was done in 1988 on 232Th and

238U by Heil et al. at the University of Stuttgart at the 4 MeV Dynamitron [1]. They used

a continuous γ-ray beam created through Bremsstrahlung with end point energies vary-

ing between 2.9 and 4.1 MeV. Three Germanium detectors were placed at 90◦, 127◦, and
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150◦ within the scattering plane of the γ rays in order to determine the parity. The targets

consisted of foils which had a total density of 10 mg/cm2 for both thorium and uranium.

Corresponding electron scattering experiments were performed for comparison with these

NRF experiments in order to identify M1 states propagated through the scissors mode ex-

citation (shown in Fig. 4.7) by only considering transitions found in both experiments.

Spectroscopic information was found for the magnetic dipole transitions at 2.043, 2.248,

2.274 and 2.296 MeV in 232Th and at 2.176, 2.209, 2.245, 2.299, 2.410 and 2.468 MeV in

238U. Specifically for 238U, the scissors mode was observed to exist between 2.0-2.5 MeV

and the summed M1 strength was measured to be ΣB(M1) = 3.2(2) µN
2 with a mean ex-

citation energy ωM1 of 2.3(2) MeV. For 232Th, the strength ΣB(M1) was measured to be

2.6(3) µN
2 with ωM1 of 2.1 MeV. As seen in Fig. 4.3, there are large discrepancies between

the measurement [1, 54] and the sum-rule prediction [38] for the uranium isotopes (see

also Table 4.2). However, the experimental and predicted strength values for 232Th seem to

Table 4.2: M1 strengths previous experiments [1, 54] compared with “sum rule” predictions
[38] for actinide nuclei.

Experiment
232Th [1] 236U [54] 238U [1]

ω (MeV) 2.1 2.3 2.3∑
B (µN

2) 2.6(3) 4.1(6) 3.2(2)∑
B/∆E (µN

2/MeV) 5.2 2.9 5.3
Range (MeV) 1.9 - 2.4 1.8 - 3.2 2 - 2.6

Sum Rule [38]
232Th 236U 238U

ω (MeV) 2.5 2.6 2.6∑
B (µN

2) 2.7(5) 5.4(2) 5.0(8)∑
B/∆E (µN

2/MeV) 2.7 5.4 5.0
Range (MeV) 2 - 3 2 - 3 2 - 3
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agree fairly well.

 

Figure 4.8: The spin-flip distribution in 232Th and 238U with open error bars as compared to
a QRPA model prediction with a spin gyromagnetic factor quenched by 30% (solid curve).
Reproduced from Ref. [39].

In 1994, Wörtche et al. [39] performed a set of inelastic-proton-scattering experiments

using a 200 MeV polarized proton beam and actinide targets of 232Th and 238U to exam-

ine the M1 spin-flip excitation mode at TRIUMF. Proton polarization was measured using

a spectrometer with a polarimeter in the focal plane. The total M1 spin-flip strength in

238U was measured to be 18(5)µN
2 with a mean excitation energy of about 5.7 MeV (See

Fig. 4.8). A similar result was found in 232Th for the total strength and it’s distribution. Dis-

crete M1 transitions to lower-lying states (below 3.5 MeV) were not a part of the objective

of these experiments.

Later in 1995, another set of 238U measurements, using the same methods as Heil et
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al. [1], were done by Zilges et al. at the University of Stuttgart at the 4 MeV Dynamitron,

this time a Bremsstrahlung beam with an end point energy at 2.5 MeV was used to look

at possible transitions below 2 MeV [37]. Three more magnetic dipole transitions were

observed in 238U at 1.782, 1.793, and 1.847 MeV and are shown in Fig. 4.9.

 

Figure 4.9: The levels in 238U from a NRF experiment. Reproduced from Ref. [37].

More recently in 2010, Warren et al. [67] reports of measurements done on 238U using

the S-DALINAC at the Technical University Darmstadt to create collimated Bremsstrahlung

γ rays with end-point energies of 8.3 and 10.0 MeV. Two high-purity Germanium detectors,

with BGO Compton suppression shielding, were positioned around the target, one at 90◦

and the other at 130◦. The target consisted of approximately 90 g of depleted uranium ma-

terial. No new NRF signatures between the energies of 5 and 9 MeV were observed. The

spectra from the measurements with an end-point energy of 10 MeV is shown in Fig. 4.10.

Finally, in 2011, Quiter et al. [68] in a series of NRF transmission experiments, reprised

the measurements of Heil et al. [1] with a fresh look at the states below 2.5 MeV. These new
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Figure 4.10: NRF spectra from 10 MeV end-point energy measurements where 235U is
shown as the black, solid histograms while 238U is shown as the red, dashed histograms.
Reproduced from Ref. [67].

experiments were conducted at the High Voltage Research Laboratory at Massachusetts

Institute of Technology where a lead-collimated Bremsstrahlung beam with an end-point

energy of 2.6 MeV was created. Several targets were used with varying purposes. De-

pleted uranium (DU) and lead assay targets were positioned after collimation to “remove”

γ rays from the beam. Farther down the beam axis, a second target is positioned to fill

the “notches” made from the first target within the NRF spectra. Two high-purity Germa-

nium detectors housed within steel shields were located on either side of the second DU

target at an angle of 62◦. These experiments resulted in a remeasurement of the states in

Ref. [1] while also providing newly observed γ-ray lines at 1996.6(3), 2035.0(2), 2080.0(2),

2146.0(3), 2241(1), and 2287.4(6) keV. Two new states at 2080 and 2287 keV were mea-

sured with the potential of a third state at 2101 keV. All new and remeasured states are

assumed to be M1 transitions by Ref. [1] and Ref. [68]. The assumption that transitions
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between 2-2.5 MeV should be a M1 transition seems to be a fair assessment based on prior

experiments. However, it does not hold true; the present work claims one of the states

measured by Ref. [68] is actually a transition to the first excited state from an E1 transition

to the ground-state. See Fig. 4.11 for their transmission spectra from 238U.

As a summary of the previous experiments on 238U, the known states of 238U prior

to this dissertation are given in Table 4.3. As described in Chapter 6, more than 100 new

states were observed in the course of the present experiment and well as the remeasurement

of most of the states provided in the table. The large number of observed states in the

 

Figure 4.11: NRF transmission spectra from all detectors for a single run. Lower spec-
tra are pre-summed while the upper spectrum is post-summing of the the lower spectra.
Reproduced from Ref. [68].

64



present experiment demonstrates the distinct advantage monoenergetic γ-ray beams have

over the continuous γ-ray beams of the previous measurements as a tool for investigating

low-energy nuclear structure. Comparisons to these previously measured states will be

discussed in Chapter 7.

Table 4.3: Previously known states in 238U.

Energy (keV) Γ0 (meV) Jπ Reference

2080 5(5) 1 [68]
2176 58(5) 1+ [1]

31(5) 1 [68]
2209 58(6) 1+ [1]

31(6) 1 [68]
2245 31(3) 1+ [1]

23(7) 1 [68]
2295 14(2) 1+ [1]

7(11) 1 [68]
2410 28(1) 1+ [1]

11(14) 1 [68]
2468 32(4) 1+ [1]

24(23) 1 [68]
2754 0.084 1 [64]
3253 0.52(19) [62]
3809 1.6 (1, 2+) [64]
4495 0.047 (1, 2+) [64]
4592 0.28 (1, 2+) [64]
4807 0.25(1) 1 [64]
5140 0.41 [64]
5206 0.41 (1, 2+) [64]

4.2.1 National-Security Motivated Experiments

In the past five years, there has been a push for measurements of SNM within the

context of shipment container interrogation. Using basic-science techniques such as NRF,

hidden nuclear materials could be detected and identified inside shielded materials using
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high-intensity γ rays. Since the NRF technique has been well-established in characterizing

different nuclei with unique signatures, much effort has been put towards developing new

detector technologies required.

 

Figure 4.12: Schematic of NRF imaging.

These detectors must have good energy resolution as well as a robust design. Bertozzi et

al. [69, 70] have produced outlines for systems which meet these specifications as shown in

the schematic of Fig. 4.12. Their systems are built upon the basis of a Bremsstrahlung beam

and observations of scattered γ rays in backward-angled detectors. High-intensity photon

beams that are continuously distributed in energy would allow for the determination of all

possible nuclei present. For example, detection of NRF signatures can differentiate signals

of lead and of lead-encased uranium as in Fig. 4.13. However this depends on whether the

γ rays are intense enough to penetrate the steel shipping container and the emitted NRF γ

rays are intense enough to be registered in the detectors above the background of scattering
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γ rays.

 

Figure 4.13: Lower NRF spectrum is of lead only while upper NRF spectrum includes both
lead and uranium. Associated transitions to ground state and to the first excited state are
marked. Reproduced from Ref. [69].

In order to verify the feasibility of a detection system using NRF, transmission experi-

ments have been performed in 2009 by Hagmann et al. [9]. These transmission experiments

(see Fig. 2.2) use an absorber which is made up of a thick SNM target to create a deficit of

excited γ rays at a particular energy from the detected spectra thereby creating a “notch”.

This notch develops because of the preferential attenuation of γ rays near the resonant state.

The width of this notch should match the width of the absorbed state. Secondary experi-

ments were also performed, placing a scatterer target of the same SNM farther downstream

in order to attempt refill of this notch. A null result of this measurement was produced in

Ref. [9].
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Chapter 5

Facility and Experimental Setup

5.1 The HIγS Facility

NRF measurements of deexcitations in 238U were performed at the High-Intensity γ-ray

Source (HIγS) facility [71] at the Triangle Universities National Laboratory (see Fig. 5.1)

over the course of seven experiments totalling a little over 200 hours of useable beam time

(see Table 5.1 for details).

Bunches of electrons are linearly accelerated by a 270 MeV LINAC into an 0.2-1.1 GeV

electron storage ring which has a length of about 107 m and a radio frequency (RF) of about

2.79 MHz. These electron bunches go through a series of alternating electric and magnetic

fields in a system called “the wigglers”. The fields can be set to produce γ rays of either

100% linear or circular polarization which is important for identification of ground-state

and first-excited-state transition pairs in actinide nuclei. One-hundred percent linearly-

polarized photon beams were chosen for these experiments.

The electron bunch releases photons as it travels through the wigglers. This photon

bunch is trapped in the optical klystron by mirrors (190-1000 nm) placed on either end



 

Figure 5.1: Schematic of the HIγS facility. The electron storage ring is about 107 m across
its longest axis.

of the cavity. This cavity with mirrors is also known as the free-electron-laser (FEL).

The length of the optical cavity is selected in such a way that the amount of time it takes

the electron bunch to travel back through the wigglers a second time, it will coherently

interfere with the photon bunch already in the optical cavity created in its first pass through

the wigglers. The Compton backscattering of the FEL photons with electrons produces an

energetic photon beam directed towards the detector setup 60 m downstream. To maintain

the photon beam at the selected energy, new electron bunches are injected into the storage

ring from the booster ring. Thirty γ-ray energies in the range of 2.0-6.2 MeV were used in

the current experiment.
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Table 5.1: Parameters of the Present Experiments. (Note: “H,V,B” is the number of detectors in the horizontal, vertical, and backward-
angled orientations.) Target labels are detailed in Table 5.2.

Experiment Ebeam FWHM Unfolded Eγ Coll. Diam. H,V,B Detectors Targets Time Beam Flux
(keV) (keV) (keV) (cm) (h) (×106γ/s)

March 2008 2940 116 2939.0(3) 1.91 2,2,0 60% 3.1,3.2 6 2.87(9)
3020 133 3022.2(6) 1.91 2,2,0 60% 3.1,3.2 8 2.5(1)
3100 132 3109.3(5) 1.91 2,2,0 60% 3.1,3.2 8 2.80(9)
3180 133 3176.1(4) 1.91 2,2,0 60% 3.1,3.2 7 3.2(1)
3308 124 3311.1(3) 1.91 2,2,0 60% 3.1,3.2 12 2.9(1)
3414 144 3419.7(4) 1.91 2,2,0 60% 3.1,3.2,3.3 12 2.74(5)
3485 139 3488.0(4) 1.91 2,2,0 60% 3.1,3.2,3.3 8 2.60(7)
4008 148 4014.4(4) 1.91 2,2,0 60% 3.1,3.2,3.3 12 6.0(2)
4111 142 4113.0(3) 1.91 2,2,0 60% 3.1,3.2,3.3 11 6.1(2)
4210 152 4219.7(4) 1.91 2,2,0 60% 3.1,3.2,3.3 7 3.9(1)

December 2008 2000 94 1990.5(4) 1.27 2,1,2 60%,20% 3.1,3.2 8 18.3(4)
2125 115 2125.5(3) 1.27 2,1,2 60%,20% 3.1,3.2 4 22.6(4)
2260 106 2254.6(2) 1.27 2,1,2 60%,20% 3.1,3.2 4 27.8(5)
2359 121 2357.0(3) 1.27 2,1,2 60%,20% 3.1 6 29.7(7)
2500 130 2491.5(3) 1.27 2,1,2 60%,20% 3.1 5 32.8(6)
2616 141 2611.9(4) 1.27 2,1,2 60%,20% 3.1 6 28.4(5)

January 2009 2840 128 2836.8(2) 1.91 2,2,2 clovers,60%,20% 4.3(#1);3.2,3.3(#2) 3 11(1)
2941 132 2934.4(2) 1.91 2,2,2 clovers,60%,20% 4.3(#1);3.2,3.3(#2) 2 8(1)
3021 142 3022.4(2) 1.91 2,2,2 clovers,60%,20% 4.3(#1);3.2,3.3(#2) 2 9(1)
3177 144 3177.6(2) 1.91 2,2,2 clovers,60%,20% 4.3(#1);3.2,3.3(#2) 2 10.2(2)
3453 160 3454.5(3) 1.91 2,2,2 clovers,60%,20% 4.3(#1);3.2,3.3(#2) 3 10(1)
3592 161 3595.8(3) 1.91 2,2,2 clovers,60%,20% 4.3(#1);3.2,3.3(#2) 5 11(1)
3775 172 3777.6(3) 1.91 2,2,2 clovers,60%,20% 4.3(#1);3.2,3.3(#2) 5 12(2)

May 2009 4100 167 4108.9(3) 1.91 1,1,2 60% 3.2,3.3,4.3 5 6.7(4)
4445 187 4446.0(1) 1.91 1,1,2 60% 3.3,4.3 4 14.6(8)
4600 193 4591.6(2) 1.91 1,1,2 60% 3.3,4.3 8 2.3(2)
4769 203 4787.6(2) 1.91 1,1,2 60% 3.3,4.3 4 1.23(6)
4997 227 5010.2(2) 1.91 1,1,2 60% 3.3,4.3 7 1.18(6)
5243 220 5253.3(2) 1.91 1,1,2 60% 3.3,4.3 6 1.51(9)
5500 228 5513.4(1) 1.91 1,1,2 60% 3.3,4.3 5 1.35(7)

April 2011 5250 256 5223.1(9) 1.91 2,2,2 60%,20% 3.3,4.3 4 11.5(7)
5450 230 5422.7(1) 1.91 2,2,2 60%,20% 3.3,4.3 4 11.3(8)
5600 246 5566.7(9) 1.91 2,2,2 60%,20% 3.3,4.3 4 4.4(5)
5850 246 5820.4(2) 1.91 2,2,2 60%,20% 3.3,4.3 4 9.4(8)
6000 245 5967.8(1) 1.91 2,2,2 60%,20% 3.3,4.3 4 8.1(7)
6150 264 6085.1(4) 1.91 2,2,2 60%,20% 3.3,4.3 5 13(2)

70



5.1.1 Importance of Polarized Monoenergetic Beams

As mentioned in Chapter 2, using a polarized beam is important to the study of the

structure of the nuclei. With the orientation of the incident γ rays known, the target-emitted

γ rays will directly produce the angular distribution of radiation without any complicated

procedure involved. Just by observation alone, assignments can be made such that the

state decaying by emission of γ rays in the plane parallel to the polarization plane will be

assigned Jπ = 1+ (a M1 transition), and those decaying by emission of γ rays in the plane

perpendicular to the polarization plane will be assigned Jπ = 1− (an E1 transition). The

selected polarization of the beam will also choose where the detectors should be oriented

for the easiest method of parity assignment.

Another important feature of the present experiment is the use of monoenergetic beams

which provide the ability to distinguish between ground-state and branching transitions.

The width of these beams can be chosen through the selection of the size of the collimator.

 

Figure 5.2: The setup for (γ, γ’) experiments at HIγS (top view). Not all detectors were
used during data collection at each energy. The flux monitor is shown at the Compton
scattering position of 11.2◦. The figure is not drawn to scale.
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About 60 m from the collision point of the electrons with the FEL photons, the photon

beam is shaped by an aluminum or a lead collimator. The openings of 1.27 or 1.91 cm in

diameter were used in the present experiment. Collimation determines the profile. Addi-

tionally, the size of the electron bunch shapes the beam, although this is not an adjustable

parameter. Collimated beams have an energy spread ∆E/E between 3 and 5%, where ∆E is

the full-width half-maximum (FWHM) of the beam full energy peak. Very narrow energy

distributions can be produced to probe a target thereby eliminating any doubt to whether

a transition is to the ground state or to a low-lying excited state. In contrast, such charac-

terization is more challenging in NRF spectra measured using continuous Bremsstrahlung

beams, since the observed spectrum would contain all deexcitations (i.e. ground-state tran-

sitions together with feeding and branching transitions) from many different states.

Many of the previous basic-science experiments on 238U, described in Chapter 4, used

Bremsstrahlung beams, where characterization of transitions was certainly a problem. In

heavy-mass nuclei, the significance of using monoenergetic γ-ray beams is even greater,

since the density of states increases drastically with energy. Not only will the survey pre-

sented in this work extend the energy range investigated, but it will also verify the existing

data on the transitions between states in the 238U nucleus.

5.2 Polarimetry Detector Systems

As shown in Fig. 5.2, two detector arrays were used throughout the experiments, al-

though most runs used only one array. The first detector array consists of four clover

detectors (each with four segmented high-purity germanium (HPGe) crystals, where each
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Figure 5.3: The NRF spectra from the 238U target at a beam energy of 3177 keV. Spectra
are shown in log scale with energy range from 100 to 4000 keV with summed data from the
horizontal detectors in (a), from the vertical detectors in (b), and from the backward-angled
detectors in (c). The beam profile is overlayed (solid curve) in all.
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segment has ∼25% efficiency relative to a 7.6 cm × 7.6 cm NaI detector). The second array

consists of four HPGe detectors (each with ∼60% relative efficiency). A fifth and sixth

∼25% relative efficiency HPGe detectors were arranged with these two arrays as well.

 

Figure 5.4: Schematic of the angular distribution of γ rays with the horizontal detectors
circled in red and the vertical detectors circled in blue.

In five separate experiments, detectors were configured at six different spacial positions

to measure γ rays - (θ, φ) = (0, π/2), (π/2, π/2), (π, π/2), (3π/2, π/2), (0, π/4), and (0, − π/4), where

θ is the azimuthal angle measured from the scattering plane and φ is the polar angle of the

outgoing radiation with respect to the linearly-polarized beam (downstream is +ẑ axis). The

detector arrays were placed downstream from the collimator and positioned around 238U

targets. The targets were placed inside of an evacuated plastic pipe to reduce the amount

of background from small-angle scattering from the air. The clover detectors (detector

setup #1) and the 60% HPGe detectors (detector setup #2) were separated by about 1.5 m.

Example summed spectra spanning the entire energy range from 0 to 4000 keV are shown

for each detector orientation in Fig. 5.3.
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Figure 5.5: Photograph of the two HPGe detector arrays located at HIγS with horizontal
(H) and vertical (V) detectors labeled. Beam direction, polarization plane, and 238U target
position are specified.

 
Figure 5.6: Photograph of the backward-angled HPGe detectors (B) and one horizontal
HPGe detector (H) with evacuated plastic pipe and 238U target shown. Beam direction and
polarization plane are specified.

75



Unambiguous assignment of observed states is an important feature of experiments

involving linearly-polarized beams since beam polarization allows for straight-forward as-

signment of Jπ for excitations in even-even nuclei [72]. In the present work, γ rays cor-

responding to M1 transitions are observed predominately in the detectors placed at angles

of (0, π/2) and (π, π/2) (horizontal detectors) and those corresponding to E1 transitions are

observed in the detectors placed at angles of (π/2, π/2) and (3π/2, π/2) (vertical detectors). Back-

ward detectors placed at the angles of (0, π/4), and (0, − π/4) were used to distinguish between

M1 and E2 transitions. See the schematic of the angular γ-ray distribution for the horizon-

tal and the vertical detectors in Fig. 5.4. Photographs of the detector arrays as well as the

backward-angled detectors are shown in Fig. 5.5 and Fig. 5.6.

 

Figure 5.7: Schematic of the 110% HPGe detector for measuring the beam energy.

5.3 Flux Monitor

A large volume (110% relative efficiency) HPGe monitor detector was placed in the

beam axis prior to NRF data collection to measure the energy of the photon beam (see

Fig. 5.7). During the beam-energy measurement, copper-block attenuators were placed

40 m upstream from the detector setup #2 to decrease the γ-ray intensity on the detec-

tor. The spectra from these measurements were unfolded using GEANT3 [73] simulations

to correct for the detector response in order to determine the beam-energy profile (see

Fig. 5.8).
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Figure 5.8: Beam-energy measurement (in histograms) with detector-response corrected
beam profile overlaid (in dotted curve) for Eγ = 3.1 MeV.

After the beam-energy measurement was completed, this monitor detector was moved

out of the beam path and set to an angle of either 6.2(1)◦ or 11.2(4)◦ (with respect to the

beam axis) for an absolute measurement of the photon flux (see Fig. 5.9 and Fig. 5.10)). A

1.1-mm-thick copper plate was positioned directly in the beam path, about 100 cm down-

stream from detector setup #2 and about 151, 161, or 181 cm upstream from this flux

monitor, depending on the experiment. Thus, the absolute beam flux on target was estab-

lished during data acquisition for each energy using observed Compton-scattered γ rays.

See Section 6.3 for details on quantitative analysis of the beam flux using this procedure.

 

Figure 5.9: Schematic of the flux monitor for measuring Compton scattering.
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Figure 5.10: Photograph of the HPGe detector used as a flux monitor during measurements
with copper plate, beam dump, and detector identified.

5.4 Target

The targets consisted of depleted uranium disks, which were about 2.50(5) cm in diam-

eter and were enveloped within a thin, plastic sealant. One such disk is shown in Fig. 5.11.

Attenuation through the plastic sealant was negligible. Each disk of uranium has a mass

between 6-7 g with a thickness of about 0.16 cm (see Table 5.2 for exact values).

A target was assembled with 1, 2, or 3 disks (2.54-cm diameter) stacked together de-

Table 5.2: Masses of the 238U targets.

disk label 3.1 3.2 3.3 4.1 4.2 4.3
mass (g) 6.58 6.60 6.81 6.27 6.75 6.58
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pending on the flux of the photon beam and the detector dead time. This collection of

sealed 238U disks was housed within an evacuated plastic tube that extended ∼1 m past

detector setup #2. In each measurement, the photon beam spot size was smaller than the

cross-sectional area of the target. The front faces of the detectors were ∼10 cm away from

the center of the target for both detector setup #1 and detector setup #2.

5.5 Monte Carlo N-Particle X

Monte Carlo N-Particle X (MCNPX) [74] is a particle transport code in which geome-

tries and sources can be inputted with a selection of tallies outputted. It uses the theory

of particle transport as well as a knowledge of nuclear structure and nuclear reactions to

generate the requested output. It is written in Fortran and access to it is restricted by the US

government. It is an extension of an earlier code MCNP by allowing all particles and ener-

gies within the simulations, provided that data exists for them within the internal reference

libraries.

 
Figure 5.11: One slice of depleted uranium in its plastic sealant. Target diameter is 2.54 cm.
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The MCNPX input file describes the geometry of the problem being assessed, defines

the materials as well as the source particles, and designates what results to output from the

calculation. The input file has four major sections: title, cell, surface, and data. The title

section is self explanatory. The cell and surface sections define the geometry for the calcu-

lation. The data section includes commands for material, source, and tally in which cells

are assigned to a particular material, source particles are defined and positioned, physical

quantities are identified for tracking throughout the entire simulation, respectively. Newly

compiled versions of MCNPX offer some flexibility in nuclear model and parameter se-

lections although most of the physics implemented within the code is not available for

manipulation or redefinition.

The MCNPX transport code was used to simulate the efficiencies for the summed de-

tectors, the Compton-scattered spectra from the flux monitor, the γ-ray attenuation in the

depleted uranium targets. MCNPX simulations of the efficiency are given in Chapter 6.

Example input files are given in Appendix B.

 

Figure 5.12: Flowchart of the TALYS model code.
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5.6 Statistical Code TALYS

TALYS is a nuclear reaction program that uses a compilation of nuclear reaction models

through subroutines from one source code [75]. This stand-alone statistical code assumes

that paired reactions occur linearly and calculations, which abide by conservation laws, are

made at each step of the reaction process. It can calculate nuclear reactions involving multi-

ple particle types at a variety of incident energies. Nuclear structure and model parameters

are executed through a built-in reference library that closely resembles the Reference Input

Parameter Library (RIPL) [76]. See Fig. 5.12 for more details.

 

Figure 5.13: All the default assumptions of the TALYS code.

Calculating cross sections within the TALYS code framework takes a minimum input

file of four parameters: target element, target mass, incident projectile energy, and pro-
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jectile type. However, specific keywords can be included in this input file to exchange

included nuclear models, to redefine parameter values, or to control generated output val-

ues. Adjusting these calculations with specific nuclear models or parameters can be helpful

for comparisons with experimental data. For this project, compound reaction cross sections

are calculated using Hauser-Feshbach formulism with a Moldauer width correction model,

while γ-ray transmission coefficients follow a Brink-Axel prescription [75]. All of these

choices are the default assumptions of the TALYS code as seen in Fig. 5.13.

The TALYS code was used to calculate level densities and total photoabsorption cross

sections. Example input files are given in Appendix C. TALYS calculation results are

compared with experimental data in Chapter 7.
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Chapter 6

Data Analysis and Results

6.1 Details of the γ-Ray Spectra Measurement

Peaks in the collected γ-ray spectra were identified at first by those that had a signifi-

cant number of counts above background that were distinguishable by eye. Next those that

were not clearly visible by eye were only considered a peak if the peak area was above the

set condition for detection limit (Discussion of the detection limit is in Section 6.4). Once

peaks were identified either by primary or secondary discernment, they were fitted by the

Tv code [77] using a Gaussian function with an energy-dependent width and the back-

ground was subtracted. Quantitatively, the area was determined by brute force integration

from a region of interest window and also by integration of the fitted peak. Calculating both

areas to be the same value within the uncertainty allows for a cross-check for the Gaussian

fit as the correct function to describe the peak shape.

The summed spectra from the 238U(γ, γ′) measurements in the horizontal, vertical,

and backward-angled detectors are plotted in Fig. 6.1 for Eγ=2359 keV, in Fig. 6.2 for

Eγ=4210 keV, and in Fig. 6.3 for Eγ=5600 keV with the respective beam profile overlayed.



It can be seen that the ground-state transitions are present within the beam-profile window

while transitions to the first-excited-state can be found inside and outside of it.

Background in the observed γ-ray spectra can originate from one of the following: (1)

room background, (2) radioactive decay of the target material, (3) atomic scattering, (4)

coherent-scattering processes, and (5) small-angle scattering of the γ-ray beam from the

collimator. These backgrounds need to be subtracted in order to determine the NRF cross

sections. Room and target background can be easily identified and subtracted if they lie

within the window of where NRF peaks should be located. These background lines are de-

tailed in Table 6.1. The atomic-scattering background, which has the distribution form of a

decaying exponential, as well as the “bump” produced by coherently-scattered and inelas-

tic γ rays, upon which the NRF peaks sit, was fitted using a nth order polynomial, usually

with n ≤ 2, and subtracted. Small-angle scattering of the γ-ray beam from the collima-

tor is minimized by placing lead walls around the detectors and the collimator. Therefore,

this background is considered negligible since it is on the order of the uncertainty in the

counting statistics.

Natural room background peaks which were statistically significant in every spectra,

namely 1460.8 keV γ-ray line (from the 40K daughter) and 2614.5 keV γ-ray line (from the

208Tl daughter), along with calibration sources, were used to calibrate the γ-ray energy in

Tv [77] by producing a linear fit to the source peaks in order to obtain a global calibration

for all of the detectors. Due to the small variations in amplifier gain between runs, indi-

vidual calibrations were made to compensate for these shifts between each incident γ-ray

energy.
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Figure 6.1: NRF spectra from a 238U target using Eγ = 2359 ± 103 keV. (a) The spectrum in
the horizontal detectors with the beam profile (solid curve) overlayed. (b) The spectrum in
the vertical detectors. (c) The spectrum in the backward-angled detectors. Transitions to the
ground state and to the first excited state are labeled with solid arrowed lines. Branchings
to the first excited state are observed in multiple detectors which are denoted by a dotted
line.
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Figure 6.2: NRF spectra from the 238U target at a beam energy of 4210 keV. The histograms
in (a) and (b) are the same as in Fig. 6.1.
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Table 6.1: The room and target background observed in all detectors. SE
(DE) denotes single (double) escape lines.

Energy (keV) Origin of Line Energy (keV) Origin of Line Energy (keV) Origin of Line

75 212,214Pb or 208Tl X ray 969 228Ac(β,γ)228Th 1639 228Ac(β,γ)228Th
84 208Tl X ray 1001 234mPa(β,γ)234U 1651 201Bi(ε,γ)201Pb
92 234Th(β,γ)234mPa 1063 207Pb(n,n′) 1654 234Pa(β,γ)234U

186 226Ra(α,γ)222Rn; 235U(α,γ)231Th 1120 214Bi(β,γ)214Po 1661 214Bi(β,γ)214Po
238 212Pb(β,γ)212Bi 1125 208Tl(β,γ)208Pb 1667 228Ac(β,γ)228Th
242 214Pb(β,γ)214Bi 1135 228Ac(β,γ)228Th 1684 214Bi(β,γ)214Po
295 214Pb(β,γ)214Bi 1138 201Bi(ε,γ)201Pb 1694 234Pa(β,γ)234U
338 228Ac(β,γ)228Th 1142 228Ac(β,γ)228Th 1719 234Pa(β,γ)234U
352 214Pb(β,γ)214Bi 1148 228Ac(β,γ)228Th 1729 214Bi(β,γ)214Po
463 228Ac(β,γ)228Th 1155 214Bi(β,γ)214Po 1738 234Pa(β,γ)234U
511 e+e− annihilation 1194 206Pb γ ray; 234Pa(β,γ)234U 1751 214Bi(β,γ)214Po
570 212Po(α,γ)208Pb; 207Pb(n,n′) 1238 214Bi(β,γ)214Po 1765 214Bi(β,γ)214Po
583 208Tl(β,γ)208Pb 1246 228Ac(β,γ)228Th 1809 234Pa(β,γ)234U
609 214Bi(β,γ)214Po 1283 208Tl(β,γ)208Pb 1831 234Pa(β,γ)234U
691 234Pa(β,γ)234U 1287 228Ac(β,γ)228Th 1838 214Bi(β,γ) SE
699 228Ac(β,γ)228Th 1293 41Ar(β,γ)41K 1847 214Bi(β,γ)214Po
703 214Bi(β,γ)214Po 1353 234Pa(β,γ) - SE 1853 64Mn(β,γ)64Fe
707 228Ac(β,γ)228Th 1378 214Bi(β,γ)214Po 1863 234Pa(β,γ)234U
727 212Bi(β,γ)212Po 1385 214Bi(β,γ)214Po 1868 234Pa(β,γ)234U
733 234Pa(β,γ)234U 1393 234Pa(β,γ)234U 1875 234Pa(β,γ)234U
742 214Bi(β,γ)214Po 1401 228Ac(β,γ)228Th 1887 228Ac(β,γ)228Th
766 214Pb(β,γ)214Bi 1408 214Bi(β,γ)214Po 1894 234Pa(β,γ)234U
782 228Ac(β,γ)228Th 1414 228Ac(β,γ)228Th 1897 214Bi(β,γ)214Po
786 214Pb(β,γ)214Bi; 214Bi(β,γ)214Po 1434 234Pa(β,γ)234U 1906 228Ac(β,γ)228Th
795 228Ac(β,γ)228Th 1461 40K(β,γ)40Ar 1911 234Pa(β,γ)234U
806 214Bi(β,γ)214Po 1496 228Ac(β,γ)228Th 1916 234Pa(β,γ)234U
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Table 6.1 – Continued

Energy (keV) Origin of Line Energy (keV) Origin of Line Energy (keV) Origin of Line

817 228Ac(β,γ)228Th 1501 228Ac(β,γ)228Th 1928 228Ac(β,γ)228Th
826 214Bi(β,γ)214Po 1510 234Pa(β,γ)234U 1937 234Pa(β,γ)234U
832 211Pb(β,γ)211Bi 1527 234Pa(β,γ)234U 1970 36Ar(γ,γ)36Ar
852 234Pa(β,γ)234U 1538 228Ac(β,γ)228Th 2104 208Tl(β,γ) - SE
860 208,210Tl(β,γ)208,210Pb 1548 228Ac(β,γ)228Th 2110 214Bi(β,γ)214Po
881 206Pb γ ray 1554 234Pa(β,γ)234U 2113 56Mn(β,γ)56Fe
883 208Tl(β,γ)208Pb 1558 228Ac(β,γ)228Th 2119 214Bi(β,γ)214Po
887 228Ac(β,γ)228Th 1571 228Ac(β,γ)228Th 2159 60Co(β,γ)60Ni
899 204Pb γ ray 1580 228Ac(β,γ)228Th 2204 214Bi(β,γ)214Po
911 228Ac(β,γ)228Th 1583 214Bi(β,γ)214Po 2294 214Bi(β,γ)214Po
922 234Pa(β,γ)234U; 228Ac(β,γ)228Th 1588 228Ac(β,γ)228Th 2312 14N(γ,γ)14N
927 208Tl(β,γ)208Pb 1594 208Tl(β,γ) - DE 2348 214Bi(β,γ)214Po
934 214Bi(β,γ)214Po 1621 212Bi(β,γ)212Po 2360 210Tl(β,γ)210Pb
946 234Pa(β,γ)234U; 228Ac(β,γ)228Th 1625 228Ac(β,γ)228Th 2448 214Bi(β,γ)214Po
965 228Ac(β,γ)228Th 1631 228Ac(β,γ)228Th 2614 208Tl(β,γ)208Pb
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6.2 Efficiency Calibration and Simulation

Standard calibration sources (see Table 6.2) were used to establish the absolute effi-

ciency ε(E) for all the HPGe detectors up to Eγ =3.4 MeV. For the γ-ray collecting de-

tectors, the sources were placed in the target position which was about 10 cm from any

detector in this setup. The efficiency of the flux monitor was measured by attaching a cal-

ibrated 56Co source to the copper plate with the flux monitor, positioned 147 cm from the

source at its Compton angle [78], as described in Section 5.3.

The geometries of the detectors as well as their spacial orientations were written into

MCNPX simulations [74] (see Appendix B for sample input files) which extended each

efficiency curve above Eγ =3.4 MeV for all detectors. The experimental and simulated

relative efficiencies of the detectors were fitted using the following exponential function,

ε(E) = c0

(
c1 +

(
c3E +

c4

E

)
e(c5E+

c6
E )

)
(6.1)

while the clover detectors were fitted using the following,

ε(E) = c0

((
c1 +

c2

E

)
+

(
c3E +

c4

E

)
e(c5E+

c6
E ) + e(c7E+

c8
E )

)
(6.2)

where ci are fitting coefficients determined for each detector and for each experiment (see

Tables 6.3 and 6.4 for experimental values). The efficiency calibration curves are shown

in Fig. 6.4 for the 60% relative efficiency detectors, in Fig. 6.5 for the clover detectors, and

in Fig. 6.6 for the flux monitor.

90



Table 6.2: Energy and intensities of the calibration sources used for efficiency measure-
ments [79].

Source Energy (keV) Intensity (%)
22Na 1274.5 99.9(1)
56Co 846.8 99.933(7)

1037.8 14.13(5)
1175.1 2.24(1)
1238.3 66.1(2)
1360.2 4.26(2)
1771.3 15.49(5)
2015.2 3.03(1)
2034.8 7.77(3)
2113.1 0.366(6)
2212.9 0.39(1)
2598.4 16.96(6)
3009.6 1.00(2)
3201.9 3.13(9)
3253.4 7.6(2)
3273.0 1.78(6)
3451.1 0.93(4)
3548.3 0.18(1)

60Co 1173.2 99.85(3)
1332.5 99.983(1)

88Y 898.0 93.7(3)
1836.1 99.2(3)
2734.0 0.71(7)

133Ba 223.2 0.450(4)
276.4 7.16(2)
302.9 18.33(6)
356.0 62.1(2)
383.9 8.94(3)
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Table 6.3: Fitting coefficients ci for each detector type - 20 and 60% relative efficiency
detectors, the clover detectors, and the flux monitor detector. Note: the distance between
the source and the flux monitor is about 147 cm.

Coefficient 60% detectors Clovers 20% detectors Flux monitor
c1 7.7×10−4 -9.9×10−1 1.7×10−4 4.68×10−5

c2 0 -3.8×10−6 0 0
c3 -2.2×10−7 8.1 -3.6×10−8 1.02×10−8

c4 3.8 -4.9×10−4 9.4×101 2.5×10−2

c5 -1.1×10−4 -5.7×101 -1.3×10−4 8.61×10−5

c6 -9.6×102 -3.4 -3.5×102 7.68×102

c7 0 -8.3×10−7 0 0
c8 0 2.8 0 0

Table 6.4: Fitting coefficient c0 for each experiment and for each orientation of the 60%
detector (horizontal, vertical, and backward) as well as for the flux monitor detector.

Experiment Horizontal Vertical Backward Flux monitor
March 2008 1.15(1) 1.15(2) 0.65

December 2008 0.97(3) 1.02(4) 0.52(4) 0.65
January 2009 0.34(5) 0.32(3) 0.47(4) 0.65

May 2009 0.83(2) 0.93(1) 0.42(2) 0.95
April 2011 0.80(1) 0.85(1) 1 0.65
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Figure 6.4: Relative efficiency measurements of the horizontal (�) and vertical (_) 60%
detectors at 10 cm from calibrated sources as well as the MCNPX simulated efficiency
shown as the solid curve.
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detectors at 10 cm from calibrated sources as well as the MCNPX simulated efficiency
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Figure 6.6: Relative efficiency of the flux detector at 147 cm from calibrated sources where
the measurements are shown as (�) and the MCNPX simulated efficiency as the solid curve.
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6.3 Beam Flux Analysis

The absolute γ-ray beam flux on target was established for each of the thirty γ-ray

energies using the Compton scattered spectra collected during the measurement. To obtain

the number of incident γ rays N(E), the number of counts in the scattered peak Nc is

normalized by the Compton-scattering cross section,

N(E) =
Nc

ε(E)σc(E, θc)nCu
, (6.3)

where σc(E, θc) is the Compton-scattering cross section, θc is the Compton-scattering angle

and nCu is the areal density of the copper atoms (see (2.25) for definition). The Klein-

Nishina differential cross section for linearly-polarized γ rays is defined as follows [80, 81]:

dσc

dΩ
= 4πZ

1
2

r0
2
(Ec

E

)2 (
Ec

E
+

E
Ec
− 2 sin2 θ cos2 φ

)
. (6.4)

The addition of the mass number Z in (6.4) accounts for use of copper as the scattering

material and has a value of 29. Integration proceeds over the solid-angle geometry of the

detector, with polar and azimuthal angles θ and φ, thereby deducing a value for σc. The

ratio of the Compton-scattered energy Ec to the initial energy E is defined as [80, 81]

Ec

E
=

1

1 +
E

mc2 (1 − cos θ)
, (6.5)

where mc2 is the electron rest energy, 0.511 MeV, and r0 is the electron radius, ∼2.8 fm.
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Figure 6.7: The Compton-scattered spectrum at Eγ=3100 keV is shown in the dotted his-
togram. Double Gaussian fits to the Compton-scattered peak and the Compton edge are
shown as a solid curve. The Compton-scattered full-energy peak is extracted from this fit
shown in the dashed curve.

Furthermore, the beam profile is incorporated into the calculation of N(E) such that

only flux exciting the specific level out of the total flux produced in the window of the beam

profile is taken into account. The beam profile is fitted with a double Gaussian distribution

in order to obtain the total flux in the beam-profile window, ΦA. Next, the centroid energy

and the value of the full-width half-maximum of a single transition is used to calculate

the energy-weighted average flux at the center of the transition,ΦB. A ratio of ΦB to ΦA

gives the percentage of γ rays from the total incident beam flux that were used to excite a

particular transition. Double Gaussian fits to the Compton-scattered peak and the Compton

edge were also used to find Nc (see Fig. 6.7).

The intensity of the γ-rays varied between runs from ≈ 1.18(6)×106 to 3.28(6)×107

γ/s. The error on the beam flux is due to the counting efficiency of the detectors as well
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as inaccuracy of the Gaussian fits to the Compton-scattered peak and Compton edge. To

check the values of flux, resonances in 11B were measured at 2.1 and 4.4 MeV. At these

energies, the NRF cross sections are well known [48]. The flux value was obtained in these

experiments agreed within the uncertainty with the value obtained using the Compton-

scattering cross section described above.

After the flux and the detector setup have been characterized, various observables can

be extracted from the data such as the integrated cross section, reduced width, branching

ratio, and γ-ray strength.

6.4 Detection Limit

The recommended condition that all observed states must either be at or above a 2σ

detection limit DL was used in order to assess the existence of NRF states measured in this

experiment. Assuming 5% errors of both the first kind and the second kind, the detection

limit is quantitatively defined as [82, 83]:

DL ' 5.4 + 3.3
√

2NB, (6.6)

where NB is the integral over the background with length of 2σ such that σ is the dispersion

of a Gaussian fit of the peaks observed at the same energy.

One example of the minimal detectable Is (solid line) is shown in Fig. 6.8 as compared

to the measured Is (solid points) for Eγ = 3.1 MeV. The detection limit varies with incident

beam energy, intensity, and duration of the measurement. Although a detection limit of 2σ
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was chosen, many peaks that were reported from the present experiment were at or above

a 3σ limit, particularly 30 out of 34 M1 transitions and 78 out of 90 E1 transitions to the

ground state. Using the definition of statistical significance αs in terms of the error function

is [84]

αs = 1 − erf
(

n
√

2

)
, (6.7)

where n is the number of standard deviations above the 2σ detection limit. Assuming

that the likelihood of a result obtained by coincidence is αs ≤ 10% and said result is thus

described as ”very likely”, about seventy-one and seventy-seven percent of the observed

M1 and E1 transitions, respectively, meet this criteria.
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Figure 6.8: The comparison of the minimal detectable Is with the experimental values for
Is at Eγ = 3.1 MeV. The detection limit varies with energy.

97



6.5 Corrections

In addition to the standard peak intensity analysis of nuclear resonance fluorescence

data, there are a few corrections that need to be made for (1) the attenuation of the beam

through the target either to the flux monitor or the γ-ray collecting detectors, (2) the time

the detectors were not actively collecting counts (dead time), and (3) the absorption of the

NRF γ rays within the 238U target itself.

6.5.1 Beam Attenuation in the Target

As a beam of γ rays travels through the target a certain percentage of those γ rays will

be absorbed by the target material thereby “attenuating” the beam. This is mathematically

defined through the following equation,

N = N0e−Cattρd = N0e−µd , (6.8)

where N is the attenuated number of γ rays, N0 is the unattenuated number of γ rays, Catt

is the attenuation coefficient which has been tabulated in Ref. [85], ρ is the density of the

target, and d is the thickness of the target. Using MCNPX (see Appendix Section B.4 for

sample input file), beams of monoenergetic γ rays were simulated to interact with and with-

out a 238U target before it is counted in a γ-ray collecting HPGe detector, ≈10 cm away.

The γ rays traveled through the target up to a maximum of the radius of the target, 1.27 cm.

A second simulation calculated the interaction of a γ-ray beam as it interacts with and with-

out a 238U target as well as a copper plate before it is counted in the flux monitor detector,
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≈150 cm away. Attenuation values N were determined from these MCNPX simulations for

all detectors to be between 2-10%.

6.5.2 Dead Time

Natural room background peaks at 1460.8 keV and 2614.5 keV, which were present in

every spectra, were also used to calculate the dead time for all of the detectors. Dead time

of the data-acquisition systems for the detectors was found by comparing the rate of γ rays

generating the 1460.8 keV lines in the spectra with and without beam. From this method,

the extendable dead time [86] was determined to first order for detector setup #1 to be about

15-40% and for detector setup #2, the dead time varied from 10-50%. Finally, for the flux

monitor the dead time was about 1-3%.

6.5.3 Self Absorption

Relative self absorption, S a, is a correction to Is, which depends on the Z of the target

material, the photon energy, and the Doppler-broadened width of the transition. Not to

be confused with the correction for attenuation of the beam through the target, the self-

absorption correction adjusts the integrated cross section for the percent of NRF γ rays that

are re-absorbed in the 238U target before they have a chance to exit the target.

As photon energy increases, self absorption decreases. It is defined as [18]

S a(d) =
R(0) − R(d)

R(0)
(6.9)

where R(x) is the count rate with (x = d) and without (x = 0) the absorbing material. For an
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in depth discussion of this correction, see Appendix A. In terms of experimental parameters

S a(d) reduces to

S a(d) =

(ntotσe) +
ntIs

aEr
√

2π
ntot

nt

σe

π2o2g
+ b

, (6.10)

where nt =
χi

100
ntot (i indicates the resonant isotope) which is the number of resonant target

nuclei per area, ntot is the total number of nuclei per area, Is is the integrated elastic photon

scattering cross section, and b is the branching ratio Γ0/Γ, σe is the total effective electronic

absorption cross section, and aEr is the resonant Doppler width.

Some assumptions were made to get Eq. (6.10) into it’s final form. First, σe is assumed

to be approximately constant or slowly varying with energy over the selected energy region

which means that it is independent of E. Also, N(E) is assumed to be either slow-varying

or linear in E, since N(E) is nearly constant over the width of the transitions described in

this dissertation which are on the order of 10−3 eV . Finally, a first order approximation of

the exponential terms is assumed.

S a(d) will have values between 0 and 1 where values closer to 0 indicate low self-

absorption within the target material and values closer to 1 indicate high self-absorption.

The integrated cross section Is has to be corrected for S a(d) in any target with a finite

thickness d. The extent of this S a correction is dependent on the individual transition being

assessed; The self-absorption correction 1− S a in terms of the unabsorbed NRF γ rays was

between 0.43-0.20 for M1 transitions and 0.20-0.94 for E1 transitions.
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Table 6.5: Systematic errors

Error Source Error Value (%)
Detector Efficiency 3-5
Detector Geometry 1-2
Target Thickness 1-2

Beam Flux 7-10

6.6 Results

The experimental observables for NRF γ-ray transitions are presented in the follow-

ing figures: integrated cross section (Eq. (2.24)) - Fig. 6.9, reduced ground-state width

(Eq. (2.26)) - Fig. 6.10, experimental branching ratio (Eq. (2.27)) - Fig. 6.11, branching

ratio (Eq. (2.30)) - Fig. 6.12, ground-state width (Eq. (2.31)) - Fig. 6.13, and finally, the

transition strength (Eq. (2.33)) - Fig. 6.14. The systematic errors for the observed transi-

tions are shown in Table 6.5. See Chapter 2 for details on the calculation of these values.
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Figure 6.9: Integrated cross sections of discrete M1 (red _) and E1 (blue _) transitions.
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Figure 6.10: The reduced widths of discrete M1 (�) and E1 (_) transitions.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1500 2000 2500 3000 3500 4000 4500

R
ex

p

Energy (keV)

Figure 6.11: The experimental branching ratios of discrete M1 (�) and E1 (_) transitions.
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Figure 6.13: The ground-state widths of discrete M1 (�) and E1 (_) transitions.
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Figure 6.14: The M1 (�) and E1 (_) transition strengths of discrete states.
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Many new discrete M1 and E1 transitions to the ground state were observed in the

present experiment between 2.0 and 4.2 MeV. The ratio of the M1 and E1 transitions for

each beam energy is shown as AHV for discrete transitions in Fig. 6.15. Listed in Tables 6.6

and 6.7 are the measured γ-ray energies and transition strengths of 113 newly observed

transitions (27 are M1 and 86 are E1) along with eight previously measured transitions

(seven M1 [1, 68] and one E1 [64]). All values are shown with their statistical uncertainties.

 

Figure 6.16: The angular distribution of a γ ray emitted through 0+ → 1± → 2+.

Most of the transitions to the ground state are accompanied by transitions to the first ex-

cited state. These transitions to the first-excited state were denoted by an almost isotropic

distribution of γ rays (see Fig. 6.16) as well as an energy difference of 45 keV between

transitions to the ground-state and to the first excited state (see Fig. 2.1 for level diagram).

These observations provide enough evidence that they are indeed NRF from 238U. How-

ever, for twenty-three of the measured states (eight M1 and fifteen E1), no accompanying

transition to the first excited state is observed above the detection limit.
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Table 6.6: The energy, integrated cross section, ground-state width, exper-
imental branching ratio, γ-ray strength, and the number of standard devi-
ations above the 2σ detection limit of the observed magnetic dipole tran-
sitions from Jπ = 1+ states in 238U. Statistical errors are shown with the
values.

Eγ Is Γ2
0/Γ Rexp B(M1) n Eγ Is Γ2

0/Γ Rexp B(M1) n
(keV) (eVb) (meV) (µN

2) (keV) (eVb) (meV) (µN
2)

2017.7(4) 2.6(6) 1.5(3) 2.0(5) 0.14(5) 1.6 2932.6(6) 2.8(6) 2.5(5) 1.5(4) 0.06(2) 1.0
2079.3(4)a,b 6(1) 2.4(5) 0.0(1) 0.07(2) 2.0 2951.2(3) 6.8(5) 5.7(5) 0.9(1) 0.12(2) 2.4
2175.8(3)b 40(2) 24(1) 0.57(3) 0.96(8) 17.3 2963.9(8)a 2.2(5) 1.8(4) 0.0(1) 0.02(1) 0.5
2208.8(3)b 29(2) 18(1) 0.22(8) 0.7(1) 4.0 3014.5(3) 4.5(8) 3.9(7) 0.4(1) 0.05(2) 1.8
2244.4(3)b 27(2) 14.2(8) 0.15(1) 0.41(3) 6.8 3030.6(3)a 7.3(7) 6.2(6) 0.0(1) 0.06(1) 5.3
2294.1(3)b 6.6(9) 4.0(5) 1.09(6) 0.18(3) 2.7 3037.7(3) 7(1) 7(1) 1.2(2) 0.15(3) 2.5
2410.0(3)b 18(2) 11(1) 1.8(1) 0.61(7) 4.0 3042.5(6)a 24(6) 22(6) 0.0(1) 0.20(4) 0.4

2467.8(5)a,b 80(8) 48(5) 0.0(1) 0.83(8) 5.1 3135.0(3) 5.1(9) 4.9(8) 0.9(3) 0.08(3) 2.2
2499.4(3) 32(2) 20(1) 0.50(5) 0.48(4) 8.8 3153.7(3) 5.0(6) 4.8(6) 0.39(5) 0.08(2) 3.6
2638.3(3) 10(1) 7.3(7) 1.4(1) 0.25(3) 10.3 3171.0(3) 1.9(3) 2.0(3) 1.1(1) 0.06(1) 2.0
2647.3(8) 25(2) 18(1) 0.84(8) 0.46(5) 20.4 3217.6(6) 2.6(5) 2.5(5) 0.6(2) 0.03(1) 0.9
2702.2(3)a 16(2) 10(1) 0.0(1) 0.14(2) 5.4 3234.5(7) 3.8(8) 4.1(8) 1.7(4) 0.09(3) 2.1
2738.9(9) 11(3) 8(2) 1.5(5) 0.3(1) 1.2 3307.3(3) 9(1) 10(1) 0.6(2) 0.11(4) 5.4

2756.4(3)a,c 7(2) 5(1) 0.0(1) 0.06(1) 1.5 3348.3(3) 6.3(8) 13(2) 2.0(2) 0.23(4) 2.9
2773.0(3) 8(1) 6(1) 1.1(3) 0.16(5) 3.6 3366.0(5) 6(1) 8(1) 0.55(6) 0.08(2) 4.0
2816.8(4)a 26(5) 19(4) 0.0(1) 0.22(4) 1.6 3448.3(6) 4(1) 5(1) 1.1(1) 0.07(2) 0.6
2881.4(5) 2.8(6) 2.3(5) 1.4(3) 0.06(2) 2.0 3460.7(3) 6.4(8) 8(1) 0.58(7) 0.07(1) 4.3

a No observed transition to first excited state.
b Remeasurements of previously known states.
c New parity assignment for previously known state.
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Table 6.7: The energy, integrated cross section, ground-state width, exper-
imental branching ratio, γ-ray strength, and the number of standard devia-
tions above the 2σ detection limit of the observed electric dipole transitions
from Jπ = 1− states in 238U. Statistical errors are shown with the values.

Eγ Is Γ2
0/Γ Rexp B(E1) ×10−3 n Eγ Is Γ2

0/Γ Rexp B(E1) ×10−3 n
(keV) (eVb) (meV) (e2fm2) (keV) (eVb) (meV) (e2fm2)

1996.7(3) 7.0(8) 2.8(3) 0.19(2) 1.2(2) 7.9 3470.7(3) 7(2) 9(2) 0.3(3) 0.8(8) 0.1
2080.7(4) 14(2) 8(1) 1.6(2) 6(1) 4.7 3475.2(3) 7(2) 10(2) 0.6(3) 1.1(7) 0.3

2093.3(4)a,b 7(1) 3.1(6) 0.0(1) 1.0(2) 2.8 3479.0(3) 12(1) 14(1) 0.45(9) 1.4(3) 3.1
2145.6(3)a,b 8(1) 3.6(6) 0.0(1) 1.1(2) 3.2 3489.0(3) 13(4) 24(7) 1.5(6) 4(2) 0.2
2332.7(3) 10(2) 5.4(9) 1.4(1) 2.6(5) 3.6 3500.5(3)a 14(2) 16(2) 0.0(1) 1.1(1) 6.9
2365.6(3)a 44(6) 23(3) 0.0(1) 5.1(7) 5.4 3509.1(9) 12(3) 18(4) 0.7(2) 2.0(7) 1.4
2422.8(3)a 12(1) 6.2(7) 0.0(1) 1.2(1) 6.9 3528.0(4)a 4.8(7) 5.5(8) 0.0(1) 0.36(5) 3.9
2491.5(5) 9(1) 5.2(8) 0.7(3) 1.6(8) 4.5 3548.0(6) 5.7(8) 7(1) 2.0(3) 1.3(3) 5.0
2529.0(3) 12(2) 7(1) 0.3(1) 1.8(5) 5.4 3562.8(3) 5.4(6) 6.8(8) 1.3(3) 0.9(2) 5.8
2593.7(6) 6.6(7) 4.1(4) 0.18(4) 0.8(2) 8.9 3594.9(5) 6.4(8) 8(1) 1.2(2) 1.1(2) 5.6
2602.5(4) 3.1(3) 1.9(2) 0.4(1) 0.4(1) 9.6 3608.7(3) 12(1) 14(1) 0.50(8) 1.3(2) 8.0
2844.2(9)a 3.5(5) 2.6(4) 0.0(1) 0.33(4) 4.5 3615.9(3) 3.7(5) 5.1(7) 2.6(5) 1.0(2) 4.2
2862.2(5) 4.3(5) 3.6(4) 1.5(3) 1.1(2) 6.2 3623.9(3) 3.4(4) 4.5(6) 1.5(3) 0.6(1) 4.9
2877.1(3)a 4.1(6) 3.1(4) 0.0(1) 0.37(6) 2.3 3640.1(3) 3.5(6) 4.5(7) 0.8(2) 0.5(1) 2.3
2896.6(3) 5.4(8) 4.4(6) 0.8(2) 0.9(3) 3.6 3650.5(3) 8.2(9) 11(1) 0.9(1) 1.1(2) 6.8
2908.9(3) 7.5(9) 6.2(8) 0.8(2) 1.3(3) 5.3 3659.7(6) 3.5(5) 4.4(7) 0.7(1) 0.4(1) 3.4
2910.0(4) 11(1) 11(1) 1.1(1) 2.6(4) 9.2 3673.7(6) 4.1(7) 5.8(9) 2.0(4) 1.0(3) 2.8
3005.9(4) 6.2(7) 5.8(6) 0.7(8) 1.0(2) 2.6 3728.0(9) 4(1) 5(1) 0.9(3) 0.5(2) 0.1
3018.9(3) 2.9(6) 2.6(5) 1.0(3) 0.6(2) 1.0 3738.5(8) 13(2) 18(2) 0.8(2) 1.7(5) 4.0
3043.6(3) 5.0(6) 4.4(5) 0.1(9) 0.40(7) 2.6 3759.9(3) 16(2) 23(2) 0.9(2) 2.3(5) 9.3
3046.9(3)a 5.0(6) 22(3) 0.0(1) 2.2(3) 6.5 3805.1(3)b 18(2) 26(2) 0.9(1) 2.5(4) 9.4
3051.7(3) 7.8(7) 7.2(6) 0.7(1) 1.4(2) 5.2 3819.0(6) 11(1) 16(2) 1.1(2) 1.9(4) 6.9

Continued on Next Page. . .
a No observed transition to first excited state.
b New parity assignment for previously known state.
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Table 6.7 – Continued

Eγ Is Γ2
0/Γ Rexp B(E1) ×10−3 n Eγ Is Γ2

0/Γ Rexp B(E1) ×10−3 n
(keV) (eVb) (meV) (e2fm2) (keV) (eVb) (meV) (e2fm2)

3057.1(4) 15(2) 14(1) 0.03(1) 1.9(2) 2.4 3828.7(3)a 5.2(8) 7(1) 0.0(1) 0.36(5) 3.4
3060.6(3) 7(1) 7(1) 0.58(5) 1.1(2) 2.7 3965.7(4) 10(2) 18(3) 0.49(4) 1.2(2) 3.0
3086.7(4) 4.8(9) 4.5(9) 0.29(3) 0.6(1) 2.0 3990.7(9) 4.7(4) 9.5(8) 1.2(1) 0.9(1) 0.3
3090.6(4) 8(1) 7(1) 0.24(2) 0.9(1) 3.7 3995.8(3) 6(1) 11(2) 0.6(4) 0.8(1) 0.9
3094.2(3) 7.2(8) 7.8(7) 1.4(2) 1.8(2) 2.8 4023.7(7) 5(1) 10(2) 1.0(1) 0.9(2) 2.0
3096.4(3) 11(1) 13(2) 1.1(3) 2.8(4) 5.5 4031.4(7) 7.5(8) 15(2) 0.5(1) 1.2(3) 2.2
3101.7(4) 3.8(7) 3.7(7) 0.65(6) 0.6(2) 0.0 4046.7(3) 5.0(8) 11(2) 1.3(4) 1.0(4) 3.2
3117.7(4) 8(2) 9(2) 1.0(1) 1.7(4) 2.0 4065.3(3) 3.8(7) 9(2) 1.7(4) 1.1(3) 1.8
3207.8(4) 2.8(5) 2.8(6) 0.42(6) 0.5(1) 0.2 4072.1(6) 8(1) 14(2) 0.6(1) 1.0(2) 4.6
3239.6(3) 3.6(8) 4.0(9) 2.6(7) 1.2(4) 1.3 4088.9(7) 3.3(5) 7(1) 1.0(3) 0.6(2) 2.8
3274.4(3) 7(1) 9(2) 0.9(1) 1.5(3) 2.8 4093.4(3) 8.4(7) 15(2) 0.40(4) 0.9(1) 8.0
3297.2(4)a 6(1) 7(1) 0.0(1) 0.53(9) 3.4 4100.2(3) 4.1(4) 10(1) 1.8(2) 1.2(2) 5.6
3303.6(3) 2.5(4) 3.5(5) 1.1(1) 0.6(1) 2.9 4105.2(3)a 3.9(5) 6.5(8) 0.0(1) 0.27(3) 5.4
3329.1(6) 7(1) 9(1) 0.89(9) 1.4(2) 4.6 4122.9(5) 3.7(9) 7(2) 0.84(9) 0.6(2) 0.8
3384.3(3) 10(2) 13(2) 0.43(5) 1.4(3) 4.0 4138.9(7) 5.2(6) 10(1) 0.41(7) 0.5(1) 3.8
3397.9(8) 10(1) 12(2) 0.38(4) 1.3(2) 4.6 4145.8(3) 2.7(5) 6(1) 0.6(6) 0.7(1) 0.3
3416.0(4) 2.7(6) 12(2) 4.0(4) 2.0(5) 1.8 4151.3(6) 3.3(9) 7(2) 1.0(3) 0.5(2) 0.5
3421.5(5)a 3.0(6) 3.5(6) 0.0(1) 0.25(5) 2.7 4155.4(3)a 12(2) 20(4) 0.0(1) 0.8(2) 1.1
3441.0(9) 6(1) 6(1) 0.5(2) 0.7(2) 1.4 4175.8(4) 11(2) 21(3) 0.28(3) 1.1(2) 3.4
3454.1(4) 3(1) 7(2) 2.6(3) 1.8(6) 0.0 4181.5(7) 7(1) 16(3) 1.0(1) 1.2(3) 1.9
3467.8(6) 9(1) 10(1) 0.6(1) 1.2(3) 5.3 4217.3(8) 5(1) 12(2) 1.1(1) 0.9(2) 1.1

4239.1(3)a 14(2) 26(3) 0.0(1) 1.0(1) 5.6
a No observed transition to first excited state.
b New parity assignment for previously known state.

108



Chapter 7

Discussion of the Results

In the following sections, the characteristics of the observed discrete dipole excitations

as well as of the continuum will be discussed. A comparison to previous experiments on

140 < A < 180 and actinide nuclei as presented in Chapter 4 is addressed in their relation

to the current experiments. The QRPA model described in Chapter 3 is also compared with

the current experiment.

7.1 Comparison to Previously-Known 238U States

Since the lower energy range studied by this dissertation also covers those investigated

by the previous experiments, comparisons can be made between the features of these over-

lapping energy ranges. Notably the most significant difference is the absence of the M1

transition at Eγ = 3253 keV (Γ0 = 0.52(19) meV) [62, 64] which was not observed above

the detection limit in this experiment. The uncertainty of another previously measured M1

transition, originally with a width of Γ0 = 5(5) meV [68], is reduced in the present work to

2.4(5) meV. A M1 transition measured originally at Eγ = 2754 keV with Γ0 = 0.08 meV

[64] was observed in this experiment at 2756 keV with the new width of Γ0 = 5(1) meV.
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Figure 7.1: The ground-state widths of the present experiment (_) compared with those
from Heil et al. [1] (∗) and Quiter et al. [68] (�).

The M1 transition at 2287 keV [68] is reassigned by the present work as a transition to the

first excited state of the E1 transition at 2332 keV. Previously measured E1 transitions at

Eγ = 3809 keV with Γ0 = 1.6 meV [64] as well as Eγ = 4217 keV with Γ0 = 1.6 meV [65]

are assigned new widths of Γ0 = 41(7) meV and 25(6) meV, respectively. The ground-state

widths from previous measurements of Heil et al. [1] and Quiter et al. [68] are compared

with those from the present experiment in Fig. 7.1.

7.2 Magnetic Dipole Excitations

In the present measurement, M1 excitations are observed at incident energies in 2.0 <Eγ

<3.5 MeV range with a strong concentration of M1 states observed around 2.5 MeV. As Eγ

increased, the M1 strength decreased until no more discrete states (above the detection limit

of about 3 eVb) are observed above 3.5 MeV. The upper limit of the integrated cross section

of a M1 transition to the ground-state between 3.5 MeV <Eγ <4.2 MeV is estimated to be
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<1 eVb. For incident-beam energies in the range of 2.0-4.3 MeV, ΣB(M1) is found to be

8(1) µN
2 with mean excitation energy ωM1 of 2.6(6) MeV for the observed M1 transitions.

The observed M1 strength may include states from both the scissors mode and the spin-

flip mode, which are indistinguishable from each other based solely on the use of the NRF

technique. A combination of theoretical models and experimental data from reactions other

than (γ,γ′) are needed for firm identification.

The authors of Ref. [1] used a reformulation of the two-rotor model [87, 88] and deter-

mined the mean excitation energy (in MeV) of the scissors mode to be,

ωM1 =

(
A2

4NZ
26A4/3δ2

Iπ + Iν

)1/2

≈

(
26A4/3δ2

Iπ + Iν

)1/2

' 42|δ|A−1/6 , (7.1)

where Iπ (Iν) is the moment of inertia for protons (neutrons) and is assumed to be a rigid

body in order to make the approximation. For 238U, where δ = 0.234, the mean excitation

energy ωM1 calculated with this model is 2.03 MeV, which is lower than the experimental

value. For rare-earth nuclei, the ωM1 increases to ∼3 MeV. The interacting boson model

(IBA-2) [89] was used to determine the transition strength for the scissors mode,

B(M1) ↑=
3

4π
8NπNν

2 (Nπ + Nν) − 1
(gπ − gν)2 , (7.2)

where Nπ (Nν) is the valence proton (neutron) boson number and gπ (gν) is its corresponding

boson gyromagnetic factor. Using bare boson parameters, gπ − gν = 1, B(M1) is 13 µN
2.

However with the average g-factors given in Ref. [90] (gπ = 0.65 and gν = 0.08), B(M1) is

reduced to 4.2 µN
2.
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About two-thirds of the M1 strength found in the present measurement is observed in

between 2 and 3 MeV, doubling the previous experiment’s value [1] of 3.2 µN
2. The ob-

served strength is also about twice of the value measured for the rare-earth nuclei [38] as

shown in Fig. 7.2. The “sum rule” by Enders et al. puts the range of the scissors mode

between 2 and 3 MeV and predicts a strength of 5.0(8) µN
2 which agrees with the strength

of 6.1(9) µN
2 observed in the present work within the same energy range. These authors

suggest that even though there is a possibility of scissors mode strength lying outside the re-

gion specified, it would only be a small fraction and no larger than the inherent uncertainty

on the strength itself.

Using the energy range of 2-3 MeV of the sum rule presented by Enders et al. [38],

ωM1 is determined for 238U to be 2.4(4) MeV, which is close to the ωM1 observed in 232Th of

2.5 MeV [14]. It is smaller than the observed scissors mode ωM1 for many rare earth nuclei

which is usually found at ∼3 MeV for the energy range of 2.4-3.7 MeV [38]. Similar to

Eq. (7.2), the phenomenological relation of the strength to the nuclear deformation is given

by Lo Iudice and Richter [91] such that,

B(M1) ↑= 0.0042ωA
5
3 δ2 (gπ − gν) , (7.3)

where gπ − gν is approximated by 2Z/A. If the mean excitation energy ω of the scissors

mode is 2.4 MeV, then the B(M1) ↑ is 3.02 µN
2 which is, again, about half of the strength

observed in the range of 2-3 MeV.

The remaining ∼2.6 µN
2 of the total M1 strength observed at energies above the scissors

mode range is about one-half of the value found in similarly deformed rare-earth nuclei
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[40], and only one-fifth of the spin-flip strength measured by a (p,p′) experiment [39]. One

should note that the calculation of Ref. [92] for 238U extends the scissors mode energy range

to 4 MeV and pushes the spin-flip mode above 5-6 MeV. Due to the lack of any definitive

theoretical models and the lack of comparison with data from the (e,e′) reaction over the

same energy range, it can not be established which prediction is correct.

7.3 Electric Dipole Excitations

Most of the E1 transitions observed are above 3 MeV. As Eγ increased, the number

of E1 states and the E1 strength increased due to the increasing proximity of the GDR.

Multiple concentrations of states centered around the energies 3.1, 3.5, and 4.1 MeV are

observed. For the energy range of 2.0-4.2 MeV, the observed ΣB(E1) is 110(30) ×10−3

e2fm2 withωE1 of 3.3(8) MeV. For comparison, the E1 strength found in similarly deformed

154Sm is 53 ×10−3 e2fm2 [57], which is a factor of 2 smaller than the strength in 238U.

The enhanced E1 strength above the extrapolated GDR tail could arise from octupole

deformations or from α-clustering, two mechanisms discussed by Iachello in Ref. [32]

(see Section 2.3). Using values for the quadrupole and octupole deformation parame-

ters from RIPL-2 [76], the octopole deformation E1 strength B(E1)oct was deduced to be

16×10−3e2fm2 (see Section 2.3.2). On the other hand for α-clustering, in order to repro-

duce the experimental E1 strength in 238U in the energy range between 2 and 3 MeV, the

amplitude must be η = 0.12 which gives an E1 strength of B(E1)α ≈ 31 × 10−3e2fm2 (see

Chapter 2 for details on calculating the strength from octupole scattering and α clustering).

A value significantly greater than 10−3 for η would denote a large amount of states mixing
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into the ground state.

With less than half of the observed E1 strength assigned to those two mechanisms, the

rest of the observed E1 strength could be produced by the low-energy tail of the GDR.

To evaluate this GDR-tail influenced strength, the NRF cross section is extracted from the

continuum between 2.0-6.2 MeV. Assuming that only ground-state transitions would ap-

pear on the right-hand side of the beam profile, an integration window is created at each

beam energy. This window started at Ebeam and then extended one standard deviation to-

ward the high-energy side of the beam profile, thus excluding all transitions to the first

excited state (see Fig. 7.3). The incident γ-ray flux, associated with this window, is used
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Table 7.1: Modified double Lorentzian GDR fit parameters using the present data and data
from Ref. [42].

First Peak

Er (MeV) σr (mb) Γr (MeV)
Ref. [42] 10.78 315.9 2.39

Present work + Ref. [42] 10.85 (4) 344 (10) 3.0 (1)
Second Peak

Er (MeV) σr (mb) Γr (MeV)
Ref. [42] 13.81 455.5 5.08

Present work + Ref. [42] 14.04 (5) 430 (7) 4.9 (2)

to produce the total cross section values. An average Rexp, weighted by the E1 strength, is

extracted from Table 6.7 to be 0.96(23). This value is used to determine the cross sections

of the integration window.

The average total γ-ray interaction cross section σtot for E1 transitions is calculated

using the methods from Ref. [64, 93]. For a zero-spin ground state and a dipole excitation,

the ratio of the elastic scattering cross section to σtot is 0.67(16) with no other reaction

channels open except the photon scattering one. The quantity σtot is corrected for coherent

scattering involving the following processes: Rayleigh scattering [22], nuclear Thomson

scattering, Delbrück scattering [21, 26], and coherent nuclear resonance scattering [27].

Table 2.2 from Chapter 2 lists the coherent scattering contribution at selected beam energies

used during this experiment.

To evaluate the energy dependence of the E1 cross section, both a modified double

Lorentzian (MLO) and a standard double Lorentzian (SLO) functions were used to fit the

238U(γ,tot) data of Ref. [42] which included both photoneutron and photofission reaction

cross sections. The strength function ~fMLO(E), measured in MeV−3, with free parameters
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describing the energy Er, the amplitude σr, and the width Γr, is of the following form [76]:

~fMLO(E) =
8.7 · 10−8E

1 − e
− E

T f

2∑
i=1

σr,iΓr,i
2(

E2 − Er,i
2
)2

+
(
E Γr,i

)2
, (7.4)

where T f is the final state temperature which can be approximated by the effective tem-

perature Te f f of the target [18] such that it is ∼1.2 MeV for the MLO fit to the data of

Ref. [42]. The strength function for the SLO fit is similar to Eq. (7.4), but does not include

the exponential term. See Table 7.1 for values of the fit parameters. The total cross section

σtot is calculated from

σtot = 3 (π~c)2 E ~fMLO(E) . (7.5)

The results are shown in Fig. 7.4: the σtot for E1 transitions from the present work,

the experimental 238U(γ,γ′) cross section data from 4.9-6.2 MeV [66], the experimental

238U(γ,tot) cross section data [42], as well as the MLO and SLO fits to the GDR data of

Ref. [42].

In the present work, a large amount of E1 cross section was observed between 2.0 and

6.1 MeV to be a summed total of 394(78) mb. However, it is very similar to the summed

cross section produced from the MLO fit to the GDR, which has a cross section of about

400 mb in the same energy range. This observation is illustrated in Fig. 7.4 where σtot from

the present work follows the MLO and SLO fits. It must be concluded that no evidence is

seen in the present data for the presence of a PDR in 238U. Furthermore, this is the only

analysis to date in which the existence of a PDR has been analyzed in the actinides.

Using the statistical code TALYS [75], the strength above and below the GDR was
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Figure 7.4: The average of the total γ-ray interaction cross section for E1 transitions from
the discrete and unresolved transitions of the present work (_) compared with experimental
238U(γ,γ) cross section data [66] (♦), and with 238U(γ,tot) cross section data [42] (�). MLO
fit (solid curve) and SLO fit (dashed curve) to the GDR [42, 76] is also shown.

modeled with and without including a PDR around the neutron separation energy S n, us-

ing the parameters from the MLO fits. The back-shifted Fermi gas model was chosen to

calculate the level density. In order to include a PDR into the model, another Lorentzian-

shaped contribution was added to the Brink-Axel strength function [75]. This modeled

PDR was arbitrarily centered around S n = 6.15 MeV with a strength of 13 mb and a width

of 1 MeV. The TALYS results, with and without a PDR included, are shown in Fig. 7.5,

along with the experimental 238U(γ,γ′) cross sections from the present work and the exper-

imental 238U(γ,tot) cross sections [42]. Again, the TALYS calculation verifies that even a

PDR with a small intensity does not fit the intensity of the current results for 238U.
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Figure 7.5: Total γ-ray interaction cross section for E1 transitions from the present work
(_) compared with the 238U(γ,tot) cross section data [42] (�). TALYS models of the GDR
(solid curve) and including one PDR around S n (dashed curve) are also shown.

7.4 Continuum of States

Above Eγ=4.2 MeV, the level density becomes too high to observe individual excited

states and only the strength of the continuum can be observed. Using ∆E = 50 keV energy

bins around the beam energy centroid Ebeam within a Ebeam±2∆E window (see Fig. 7.6), an

asymmetry profile ĀHV was calculated for each beam energy and the results are shown in

Fig. 7.7. Recall from the discussion of AHV in Chapter 2 that the average asymmetry ĀHV

is not only a relative asymmetry between the horizontal and vertical detectors but it is also

weighted by the Is in order to compare ĀHV across all energies in the present experiment.

In addition to removing the fitted background within each spectrum, all known room-
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background peaks are also subtracted from the spectra at energies below 2.7 MeV. Between

2 and 3 MeV there is a lot of positive-valued ĀHV bins which could denote the presence

of the scissors mode. As the beam energy increased, ĀHV decreased, indicating increasing

E1 strength and decreasing M1 strength. This effect is expected, given that there is an

increasing presence of the GDR through its low-energy tail. However, when the γ-ray

energy starts to approach 4 MeV, the intensity of E1 radiation returns to a level where it

resembles the intensity of M1 radiation. This could be due to the presence of the spin-flip

mode, which is observed to be between 4-8 MeV [39]. However, ĀHV bins are primarily on

the negative side of zero, which could demonstrate the significance of the GDR as a mode

of greater intensity. In general, most of the ĀHV values are within ±0.1 of zero, indicating

0

10

20

30

40

50

60

50004800 4900 5100 5200 5300 5400 5500 5600
Energy (keV)

co
un

ts
 / 

1.
74

 k
eV

100 keV
50 keV

Figure 7.6: The γ-ray spectrum, observed in the vertical detectors, of Eγ=5250 keV with
the beam profile overlayed. The integration windows of 50 keV and 100 keV are shown.
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M1 and E1 transitions have a similar population frequency in the low-energy range as well

as similar excitation energies.

7.5 Comparison to 140 < A < 180 Nuclei

7.5.1 Comparison of Rexp for 140 < A < 180 Nuclei with the Actinides

For the deexcitation of both dipole states, the Alaga selection rules [19] give R = 1/2 for

K = 1 states and R = 2 for K = 0 states as discussed in Section 2.1.2. A value for R which

lies between these Alaga values implies that there is K-mixing between the M1 and E1

transitions. For the rare-earth nuclei, Zilges et al. [94] compiled the Rexp values of about

170 levels and plotted the frequency distribution of these ratios. These results are shown in

Fig. 7.8. Two maxima, one at R = 1/2 and one at R = 2, are observed, thus showing that a
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Figure 7.7: The Is-weighted asymmetry ĀHV of the discrete and unresolved transitions for
all 30 incident beam energies. Each point corresponds to a 50-keV wide energy bin.
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large fraction of transitions observed in the rare-earth nuclei follows the Alaga rules.

For comparison, the nonzero Rexp values of about 150 levels from 232Th [14], 235U

[78], 236U [54], 238U [37], and the present work are collected and the results are shown in

Fig. 7.8. The most prominent distinction between the rare-earth and the actinide nuclei is

the missing maximum of K = 0 states in the actinide data, which could be explained by the

large amount of M1 strength observed at low energies in the actinides. Due to the selection

rules, states with K = 0 are only observed with E1 transitions. However, in the current

experiment on 238U, there is a significant amount of E1 strength present which suggests

that there should be a greater amount of K = 0 states present than what was observed. In

both the rare-earth and the actinide nuclei, there is a large number of transitions with Rexp

values between 1/2 and 2. This is may be evidence of the K-mixing which is known to
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Figure 7.8: The frequency distribution of Rexp values for rare-earth nuclei (♦) from
Ref. [94] and for actinide nuclei (_) from the present work and Refs. [14, 37, 54, 78].
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increase in regions of high level density [95]. This is the first compilation of Rexp values

for the actinide nuclei.

7.5.2 Spreading Widths

The width of an isobaric analog state (IAS), also called the spreading width Γ ↑, is

proportional to the matrix element that couples the IAS to lower-spin states. The spreading

widths for many nuclei were extracted experimentally from the strength function. It was

observed that although the distance between levels changes drastically between nuclei, the

spreading width hardly varies [96]. The spreading width, Γ ↑ is defined as

Γ ↑=
2πH̄2

C

D
, (7.6)

where D is the mean level spacing and H̄C is the mixing matrix element such that,

< HC >= |Eoct − EGDR| ·

√
B(E1)

B(E1,GDR)
, (7.7)

where Eoct (EGDR) is the excitation energy of the low-lying octupole states (GDR) and

B(E1) (B(E1,GDR)) is the strength from E1 ground-state transitions (from the GDR).

Zilges et al. [97] calculated the spreading widths from averaged mixing matrix elements

for rare-earth and actinide nuclei, comparing the widths with those extracted from isobaric

analog resonances [96] (see Fig. 7.9). In Ref. [97], the spreading width for 238U, ∼8 keV,

grossly underestimates the one obtained from the isobaric analog state, 142(37) keV. How-

ever, substituting for the present work’s E1 strength, the spreading width increases to
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Figure 7.9: The spreading widths for select nuclei with 140 < A < 180. The spreading
width calculations of Ref. [97] are in (♦) while the experimental data complied by Ref. [96]
are in (_). The present experimental value for the spreading width is shown as (∗).

133(30) keV, which is in very good agreement with the value from Ref. [96].

7.5.3 Comparison of Experimental Transition Strengths from 140 <

A < 180 Nuclei

Many nuclei with 140 < A < 180 have deformations and neutron excesses which could

provide a comparison with the structure of the heavier nuclei in the actinide region with

similar deformations. Two deformed nuclei of 154Sm (δ = 0.273) and 178Hf (δ = 0.230)

were subjects of many experiments and theoretical calculations [31, 59]. If the deforma-

tion of a nucleus is the primary generator of M1 strength then it is plausible that similarly

deformed nuclei should contain a similar amount of M1 strength. A comparison of the ob-

served M1 strength within the same energy range shows that the strength observed in those
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two nuclei is only 75% of the 238U (δ = 0.234) strength measured in Ref. [1] and only 33%

of the strength found in the current experiment. However, the M1 strength measured in

232Th (δ = 0.216) [14] is of a similar magnitude. QRPA calculations of Ref. [31] of the

M1 strength detail that a similar strength should be found with similarly deformed nuclei

in both the rare-earth and actinide nuclei. However, these calculations are only approxi-

mations and do not describe each particular nuclei as an exact solution. This inconsistency

between comparisons indicates that deformation is not the primary generator of the M1

strength and that other physical processes need to be taken into account.

Within the E1 transition strengths, the deviations between the 140 < A < 180 nuclei

and the actinides are more significant. The theoretical calculations of Ref. [31] predict for

the 140 < A < 180 nuclei only about 70-80% of the strength predicted for the actinides.

With limited experimental values of E1 strength for the 140 < A < 180 nuclei available,

it is hard to say whether this is a good indication of a disagreement between the two mass

regions.

Therefore, these 140 < A < 180 nuclei provide some insight into the M1 and E1

strengths in actinide nuclei. The experimental transition strengths are not the same as the

calculations which could suggest that some other physical processes remain unaccounted

within the calculations. In general, the actinides have a larger strength present than the

140 < A < 180 nuclei, which could possibly be due to the larger neutron excess present.

More experimental data are needed on both dipole strengths for the 140 < A < 180 and

actinide nuclei in order to make a fair assessment of their compatibilities. With more ex-

perimental data, better theoretical calculations could be developed to assess the similarities

125



between similarly deformed nuclei.

7.6 Comparison to Theoretical Calculations

The strengths of the dipole states observed in the present measurement are similar in

magnitude to the strength predicted by QRPA calculations of Kuliev et al. [30] described

in Section 3.2. Comparisons of experimentally summed strengths to the calculated values

are given in Tables 7.2 and 7.3 for 154Sm, 160Gd, 232Th, and 238U from Refs. [14, 53, 57].

The calculations of the M1 strength in 154Sm and of the E1 strength in 160Gd show that the

QRPA calculations reproduce dipole strength distribution and intensity fairly well for the

rare-earth nuclei. Well-studied rare-earth nuclei can be used to test the robustness and the

ability of the calculation to reproduce measurements. The experimental M1 strengths from

232Th [14] and 238U are similar to those from the calculations [30, 31]. However, the E1

strengths from the present work and from the QRPA calculations of Kuliev et al. [30] have

a different conclusion. The calculation for E1 strength in 232Th is about ten times larger

than what was experimentally observed [14]. For 238U, the reverse is true and the calcu-

lation underproduces the observed E1 strength in the same energy range from the present

experiment by a factor of two. The possible differences between the two calculations could

be due to the different type of ground states used in each (see Chapter 3 for more details).

The results of the QRPA calculation by Kuliev et al. [30, 55] reproduce the gross struc-

ture of the current experimental summed M1 and E1 strengths in this energy region fairly

well. In Fig. 7.10, the calculations of Ref. [30] and the present measurement are compared

using a 0.2 MeV bin size. The present measurement of the M1 and E1 strength is shown
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Table 7.2: M1 strength of the present work compared with other experiments [14, 54, 57]
and theoretical calculations [30, 31] for actinide nuclei. Energy range for comparison was
chosen based on predicted location of the scissors mode.

Experiment
154Sm [57] 232Th [14] 238U

ω (MeV) 3.26(9) 2.5 2.4(4)∑
B (µN

2) 2.4(4) 4.3(6) 6.1(9)∑
B/∆E (µN

2/MeV) 1.6 2.2 6.2
Range (MeV) 2.5-4 2-4 2-3

Theory
154Sm [31] 232Th [30] 238U [30] 238U [31]

ω (MeV) – 2.6 2.4 –∑
B (µN

2) 3.3 5.0 4.6 3.7∑
B/∆E (µN

2/MeV) 1.7 2.5 4.6 2.5
Range (MeV) 2-4 2-4 2-3 1.5-3

in two ways on Fig. 7.10: as strength originating from the discrete states and as strength

extrapolated from the continuum of states using the method described in Section 7.3. Both

methods compare well with the QRPA calculation. The extrapolated strength from the con-

tinuum is slightly lower than that from the discrete states because the extrapolated strength

uses an average Rexp since it is taken from a 50-keV window while the strength derived

from the discrete states uses real Rexp values measured in this experiment.

Over half of the predicted M1 strength is present within 2.0-2.6 MeV and are assumed

to be part of the scissors mode. Away from this narrow energy region, the predicted M1

strength decreases. Both of those features are observed in the present experiment. However,

M1 strength above 3.5 MeV is predicted with a similar amplitude as the transitions at lower

energies. This feature is not observed in the present experiment within the detection limit.

Calculations of the M1 strength for the actinides by the authors of Ref. [30] yield a result

of ∼ 6 µN
2 which underestimates the measured strength of the present experiment by 25%.
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Table 7.3: E1 strength of the present work compared with experiments [14, 53] and theo-
retical predictions [30, 31, 59] for actinide nuclei.

Experiment
160Gd [53] 232Th [14] 238U

ω (MeV) 2.9(1) 3.7(4) 3.3(8)∑
B (×10−3e2fm2) 16(2) 3.3(7) 110(30)∑

B/∆E (×10−3 e2fm2/MeV) 8 2 48
Range (MeV) 2-4 2-4 2-4.3

Theory
160Gd [59] 232Th [30] 238U [30] 238U [31]

ω (MeV) – 2.7 3.6 –∑
B (×10−3e2fm2) 21 35 50 ∼40∑

B/∆E (×10−3 e2fm2/MeV) 11 18 22 24
Range (MeV) 2-4 2-4 2-4.3 2.6-4.3

In the present work, eight E1 transitions are observed below 2.5 MeV of a summed

strength equal to 20(4) µN
2, which is much larger than predicted. The E1 strength calcula-

tions do not predict the summed E1 strength well since there is a significant amount of the

summed strength due to discrete transitions above 4.3 MeV, which are not resolved in the

experiment. Over 70% of the E1 strength predicted is located in the range between 4.3 and

5.6 MeV, and not at the lower energies, as observed in the experiment. Furthermore, there

is a significant amount of observed strength around 3.5 MeV that the calculation misses en-

tirely. Again, the example of 160Gd from the rare-earth nuclei provides verifiability of the

choices for models and parameters used within these calculations [59]. However, this same

calculation does not seem to predict the fragmentation of the strength very well for heavier

nuclei. It is possible that more higher-order quasiparticle states are needed to describe the

collective excitations in the actinides or that the effective charge used to model the nuclear

charge quenches too much of the predicted strength.
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The calculations by Soloviev et al. [31] predict two concentrations of transitions in the

area of interest. One concentration of M1 strength is predicted between 2.6-3.0 MeV, and

the second concentration of E1 strength is predicted between 3.4-4.0 MeV. In the present

experiment, four concentrations are observed: one for M1 states around 2.5 MeV and three

for E1 states around 3.1, 3.5, and 4.0 MeV. The authors of Ref. [31] also predicted that

within the energy range of 3-11 MeV, 28% of the total M1 strength would be from the

scissors mode and 107% would be from the spin-flip mode. A value over 100% indicates

some interference between the orbital and spin components of the M1 matrix element. The

M1 strength predicted by Ref. [31] is similar in magnitude to the prediction by Ref. [30].

It is found in Ref. [31] that the total E1 strength is about 3-4 times larger than the total

M1 strength. Also the calculated E1 strength for 238U is about three times larger than the

experimental value.

Comparing the calculation by Soleviev et al. [31] for 154Sm and 178Hf between the en-

ergies of 3.6-7.6 MeV, the B(M1) values were predicted to be 5.7 and 7.1 µN
2, respectively,

and the B(E1) values were 217 and 271 ×10−3e2fm2, respectively. These B(M1) values

are about twice as large as the experimental ones while the B(E1) values are about two or-

ders of magnitude too large from their associated experimental values (see Section 4.1 for

details). Also these B(E1) predictions are twice as large as the experimental E1 strength

for 238U. Since the energy ranges for the experiment and the calculation are different, a

comparison of
∑

B/∆E may prove to be a better testament of the calculation’s abilities of

predicting strength. For
∑

B(M1)/∆E, the measured and calculated values are similar but

for
∑

B(E1)/∆E, these values are quite different (see Table 4.1 for values).
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Figure 7.10: Experimental (a) M1 and (b) E1 strengths such that (_) are from this work
and (∗) are from Ref. [1]. The data points shown as (◦) are extrapolated from the total cross
section data. These data are compared with a QRPA calculation (|) from Ref. [30] with a
0.2 MeV bin size. Experimental strength values are shown with statistical error bars.
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In summary, the present experimental data on dipole transitions in 238U were compared

with previous data as well as data on 140 < A < 180 nuclei. The experimental transition

strengths were in good agreement with the theoretical calculations of Ref. [30].
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Chapter 8

Conclusions

In the course of this work, NRF measurements were performed on 238U at the HIγS

facility using 100% linearly-polarized, quasi-monoenergetic beams with energies between

2.0 and 6.2 MeV. Over 200 hours of beam time was used to observe one-hundred thirteen

new discrete deexcitations to the ground state at energies between 2.0 and 4.2 MeV. Their

spin and parity were determined using the unique polarimetry setup of the detector array.

Thirty percent of the observed states were M1 transitions and the rest were E1 transitions.

Strengths, Rexp values, as well as other spectroscopic data were measured for these states

and were compared to data from previous experimental sets on 140 < A < 180 nuclei as

well as other actinide nuclei. The first Rexp compilation for the actinide nuclei was made,

which provided the observation that a significant amount of K-mixing is present in the

actinides.

Above 4.2 MeV, only the asymmetry of the continuum of states could be investigated

due to the detection limit of the experiment and the increasing level density. The average

total γ-ray interaction cross section were determined from 2.0 to 6.2 MeV in order to de-

duce the origins of the low-lying strength. Comparison of the low-lying E1 strength to the



MLO and SLO fits to the low-energy tail of the GDR as well as statistical model calcula-

tions provided evidence that the observed strength is not from a pygmy resonance. This is

the first analysis on any actinide nuclei which investigates the existence or nonexistence of

a PDR.

Discrete states were compared with QRPA calculations and “sum rule” predictions.

These calculations and predictions describe the overall structure of the observed states but

do not describe its finer details well. In particular, the calculations seem to represent the

observed fragmentation of the M1 strength fairly well but this is not the case for the E1

strength where it is largely concentrated towards higher energies. More comparisons be-

tween experiments and theoretical calculations are needed for other 140 < A < 180 and

actinide nuclei in order to provide a better understanding of the low-energy structure of

nuclei with large deformations and large neutron excess.

The present work on 238U was a part of a larger effort to extensively study the low-

energy nuclear structure of the actinide nuclei in which 232Th [14] and 235U [78] were also

studied. Algorithms for data acquisition for NRF experiments were established and tested

through experiments on 11B [48], on 138Ba [45], on 142,150Nd [98], on 232Th [14], on 235U

[78], as well as on many others. These methods provide robust systems that are much

improved from their initial deployment. Future efforts may include NRF experiments on

other actinides such as 234,236U as well as 239,240Pu. It may also involve other deformed

nuclei between 140 < A < 180 for more thorough comparisons with actinide nuclei.

National security efforts funded the present experiments since safeguarding national

borders from terrorist threats are an important undertaking and the NRF process provides
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a well-understood and efficient way to procure information from hidden SNM. In the fu-

ture, the NRF technique will most likely be used in monitoring nuclear waste assays or

exploring the concentrations of reprocessed nuclear fuel rods. With the miniaturization of

high-intensity γ-ray beams from large facilities [71] to table-top optical systems [99, 100],

the feasibility of scanning many nuclear assays across the nation seems much more attain-

able with the development of new technologies.

Finally, as more NRF measurements are produced, a database for isotope-specific iden-

tification will need to be developed in order to organize and compare experimental data

with ease. This library of results would be resourced by those trying to identify unknown

materials inside sealed containers. The present work made a substantial contribution to-

wards establishing such a database.

This work was supported in part by the United States Department of Homeland Security

through the Academic Research Initiative with grants 2008-DN-077-ARI014 and 2008-
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Appendix A

Self Absorption

Rel-

ative self absorption, S a, is a correction to Is, which depends on the Z of the target material,

the photon energy, and the Doppler-broadened width of the transition. As photon energy

increases, self absorption decreases. It is defined as [18]

S a(d) =
R(0) − R(d)

R(0)
, (A.1)

where R(x) is the count rate with (x = d) and without (x = 0) the absorbing material.

S a(d) =

∫
N(E)e−ntotσe

(
1 − e−ntσγγ(E)−ntotσe

)
(1 − e−ntσD) dE∫

N(E)e−ntotσe
(
1 − e−ntσγγ(E)−ntotσe

)
dE

, (A.2)

where N(E) is the number of incident γ rays, σe is the total effective electronic absorption

cross section, ntot is the total number of nuclei per area, nt is the number of resonant target

nuclei per area, σγγ(E) is the elastic scattering Doppler broadened cross section, and σD(E)

is the Doppler broadened absorption cross section.

σe = σph + σc + σpp , (A.3)

where subscripts ph, c, and pp stand for photoelectric effect, incoherent (Compton) scatter-

ing, and pair production, respectively. Each electronic cross section takes on the following
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form:

σx =
Mn

NA
µx , (A.4)

where Mn is the nuclear mass, NA is Avogadro’s number, and µx is the corresponding elec-

tronic process’s mass attenuation coefficient in cm2/g. Mass attenuation coefficients for

the three processes are found in NIST’s XCOM database [85]. As seen in Fig.A.1, σe is

approximately constant over the selected energy region. Assuming slow-energy variation

of σe means that it is independent of E and can be pulled out from the integral.
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Figure A.1: Total electronic cross section between 2.0 and 6.2 MeV (thick,solid curve).
The cross sections of photoelectric (thin,solid curve), Compton (dotted curve), and pair
production (dashed curve) are shown as well.

Also, if we assume that N(E) is either slow-varying or linear in E then this term can also

be pulled from the integral and subsequently cancels out of S a. This is a valid assumption

since N(E) is nearly constant over the width of the transitions described in this dissertation

which are on the order of 10−3 eV while the width of the beam is on the order of 102 keV .
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The exponentials in Eq. (A.2) can be written in an series form,

e−x =

∞∑
n=0

xn (−1)n

n!
(A.5)

and

ex =

∞∑
n=0

xn

n!
. (A.6)

Assuming a first order approximation of the exponential terms including σγγ(E) and σD(E)

we can rewrite e−x as (1 − x):

S a(d) =

∫ (
1 −

(
1 − ntσγγ(E)

)
e−ntotσe

)
(1 − (1 − ntσD(E))) dE∫ (

1 −
(
1 − ntσγγ(E)

)
e−ntotσe

)
dE

. (A.7)

Rearranging the terms,

S a(d) =
nt (entotσe − 1)

∫
σD(E)dE + n2

t

∫
σγγ(E)σD(E)dE

(entotσe − 1)
∫

dE + nt

∫
σγγ(E)dE

, (A.8)

but ∫
dE =

∫ E+Γ0/2

E−Γ0/2
dE′ = Γ0 , (A.9)

which is the width of the ground state resonance. If we again take a first order approxima-

tion of the term entotσe where ex ≈ (1 + x), we have

S a(d) =
(ntotσe)

∫
σD(E)dE + nt

∫
σγγ(E)σD(E)dE

ntot

nt
σeΓ0 +

∫
σγγ(E)dE

. (A.10)

From the discussion of the photon scattering cross section in Chapter 2, we have the defi-
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nitions for two of these integrals, Eq. (2.20) and Eq. (2.22), such that,

∫
σγγ(E)σD(E)dE = π3o4g2 Γ3

0

Γ

∫
1
∆2 e−2( E−Er

∆ )2

dE . (A.11)

Recall that ∆ = aE and change the integration variable to z where z = Er/E

∫
σγγ(E)σD(E)dE =

π3o4g2

a2Er

Γ3
0

Γ

∫ ∞

−∞

e−
2

a2 (1−z)2
dz , (A.12)

where ∫ ∞

−∞

e−
2(1−z)2

a2 dz = a
√
π

2
, (A.13)

and ∫
σγγ(E)σD(E)dE =

π7/2o4g2

aEr
√

2

Γ3
0

Γ
. (A.14)

Therefore, the self absorption is defined as,

S a(d) =

(ntotσe) π2o2gΓ0 + nt

π7/2o4g2
(
Γ3

0/Γ
)

aEr
√

2
ntot

nt
σeΓ0 + π2o2g

(
Γ2

0/Γ
) , (A.15)

or in terms of experimental parameters,

S a(d) =

(ntotσe) +
ntIs

aEr
√

2π
ntot

nt

σe

π2o2g
+ b

, (A.16)

where nt =
χi

100
ntot (i indicates the resonant isotope), Is is the integrated elastic photon

scattering cross section, and b is the branching ratio Γ0/Γ. S a(d) will have values between
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0 and 1 where values closer to 0 indicate low self-absorption within the target material

and values closer to 1 indicate high self-absorption. The integrated cross section Is has to

be corrected for S a(d) in any target with a finite thickness d. For a thin target (negligible

thickness), the terms with σe would be eliminated from Eq. (A.15) making for a much

smaller correction:

S a =

√
π3

2
o2gnt

Γ0

∆
, (A.17)

where E = Er in the definitions of o and ∆.
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Appendix B

Sample MCNPX Input Files

B.1 Summed 60% Detectors Efficiency Calculation

The 60% Ge-detector; original by A. Tonchev & A. Chyzh;
(modified by S. L. Hammond)

c ---------------------------CELLS-------------------------------------
c *
11 1 -2.6989 -11 21 u=1 $ Al End Cap
12 1 -2.6989 -12 31 23 u=1 $ Al Foild
21 0 -21 12 22 u=1 $ Inner Vacuum
23 0 -23 22 u=1 $ Top Vacuum
24 1 -2.6989 -24 12 22 u=1 $ Al mount cup base
31 3 -5.323 -31 22 u=1 $ Ge Crystal
c 34 3 -5.323 -34 12 u=1 $ Dead Zone
22 5 -8.96 -22 u=1 $ Hole
62 5 -8.96 -62 63 11 u=1 $ Cu attenuator
63 6 -11.35 -63 62 11 u=1 $ Pb attenuator
13 0 11 62 63 u=1 $void
2 0 -11 u=2 fill=1 $detector object
25 0 -62 u=2 fill=1
26 0 -63 u=2 fill=1
20 0 11 62 63 u=2 $ void
3 like 2 but *trcl=(0 0 6.20 0 -90 -90 90 -90 -180 -90 0 90 -1) u=3
32 like 25 but *trcl=(0 0 6.20 0 -90 -90 90 -90 -180 -90 0 90 -1) u=3
33 like 26 but *trcl=(0 0 6.20 0 -90 -90 90 -90 -180 -90 0 90 -1) u=3
4 like 2 but *trcl=(0 0 6.20 0 -90 90 -90 90 0 90 180 90 -1) u=3
42 like 25 but *trcl=(0 0 6.20 0 -90 90 -90 90 0 90 180 90 -1) u=3
43 like 26 but *trcl=(0 0 6.20 0 -90 90 -90 90 0 90 180 90 -1) u=3
74 4 -0.00129 #3 #32 #33 #4 #42 #43 u=3 $ Air Environment
52 0 -52 fill=3 $ empty cell filled
10 0 52 $ Void
c *
c ---------------------------------------------------------------------
c *
c -------------------------SURFACES------------------------------------
c *
11 rcc 0.0 0.0 16.2 0.0 0.0 11.576 3.806 $ Al End Cap
12 rcc 0.0 0.0 16.7 0.0 0.0 10.576 3.306 $ Al Foil Cup
21 rcc 0.0 0.0 16.3 0.0 0.0 11.376 3.706 $ Inner Vacuum
22 rcc 0.0 0.0 17.596 0.0 0.0 7.27 0.56 $ Hole
23 rcc 0.0 0.0 24.866 0.0 0.0 2.09 3.23 $ Top Vacuum
24 rcc 0.0 0.0 26.956 0.0 0.0 0.244 3.23 $ Al mount cup base
31 rcc 0.0 0.0 16.776 0.0 0.0 8.09 3.23 $ Ge Crystal
c 34 rcc 0.0 0.0 19.11 0.0 0.0 0.1 3.23 $ Dead Zone
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62 rcc 0.0 0.0 15.677 0.0 0.0 0.4 3.806 $ Cu attenuator
63 rcc 0.0 0.0 15.147 0.0 0.0 0.53 3.806 $ Pb attenuator
52 rcc 0.0 0.0 -50.0 0.0 0.0 100.0 100.0 $ Air Environment
c *
c ---------------------------------------------------------------------
c *
c -------------------------MATERIALS-----------------------------------
c *
c #1 (Aluminum)
M1 13000.02p 1.0
c #3 (Germanium)
M3 32000.02p 1.0
c #4 (Air)
M4 8016.02p 0.23555

7014.02p 0.75086
18000.02p 0.01281
1001.02p 0.00064
6012.02p 0.00014

c #5 (Copper)
M5 29000.02p 1.0
c #6 (Lead)
M6 82000.02p 1.0
c #7 (238U target)
c M7 92238.02p 0.9927
c 92235.02p 0.0072
c 92234.02p 0.0001
c
c -------------------------SOURCE--------------------------------------
c (5 mm diameter source)
SDEF POS= 0.0 0.0 0.0 RAD=D2 PAR=P ERG=5.5
c
SI2 0.25
c ---------------------------------------------------------------------
c *
c -------------------------TALLIES-------------------------------------
FC18 *Pulse Height Ge-Detector at cell 31 Ge-crystal*
F18:P 31
E18 0.0 1E-5 1000i 6.5
c ---------------------------------------------
c *
c -------------------------Physics-------------------------------------
IMP:P,E 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0
MODE P E
CUT:P,E j 0.1
NPS 1e6

B.2 Clover Detector Efficiency Calculation

c Tony Hutcheson (modified by S.L.Hammond)
c ----------------------------- Cell Definitions ------------------------------
1 2 -2.6989 (-1 5 3 4):(-2 6 4):(-7 3 4) TRCL=1 $ Al Walls
2 4 -7.13 (-10:-11) 8 9 TRCL=1 $ BGO
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3 1 -0.00129 (-5 10 11):(-6 11):(-8 7):(-9 7) TRCL=1 $ Inner Space
4 3 -5.323 -21 -25 31 TRCL=1 $ Ge 2Q1
5 3 -5.323 -22 -26 32 TRCL=1 $ Ge 2Q2
6 3 -5.323 -23 -27 33 TRCL=1 $ Ge 2Q3
7 3 -5.323 -24 -28 34 TRCL=1 $ Ge 2Q4
8 2 -2.6989 -30 29 TRCL=1 $ Al Cap
9 2 -2.6989 (-31 35):(-32 36):(-33 37):(-34 38) TRCL=1 $ Al Inner
10 0 (-25 21):(-26 22):(-27 23):(-28 24):(-29 25 26 27 28):-35:-36:-37:-38 &

TRCL=1
11 LIKE 1 BUT TRCL=2
12 LIKE 2 BUT TRCL=2
13 LIKE 3 BUT TRCL=2
14 LIKE 4 BUT TRCL=2
15 LIKE 5 BUT TRCL=2
16 LIKE 6 BUT TRCL=2
17 LIKE 7 BUT TRCL=2
18 LIKE 8 BUT TRCL=2
19 LIKE 9 BUT TRCL=2
20 LIKE 10 BUT TRCL=2
90 0 90 $ Void
99 1 -0.00129 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 &

#11 #12 #13 #14 #15 #16 #17 #18 #19 #20 &
#90 $ Air

c --------------------------- Surface Definitions -----------------------------
1 arb 5.950 5.950 0.000 5.950 -5.950 0.000 -5.950 -5.950 0.000 &

-5.950 5.950 0.000 10.60 10.60 12.77 10.60 -10.60 12.77 &
-10.60 -10.60 12.77 -10.60 10.60 12.77 &
1234 5678 1265 4378 1584 2673 $ Al Walls #1

2 box 10.60 10.60 12.77 -21.20 0.000 0.000 0.000 -21.20 0.000 &
0.000 0.000 12.93 $ Al Walls #2

3 box 4.25 4.25 0.00 -8.50 0 0 0 -8.50 0 0 0 1.00 $ Inner Hollow #1
4 box 5.10 5.10 1.00 -10.2 0 0 0 -10.2 0 0 0 24.7 $ Inner Hollow #2
5 arb 6.045 6.045 0.700 6.045 -6.045 0.700 -6.045 -6.045 0.700 &

-6.045 6.045 0.700 10.45 10.45 12.77 10.45 -10.45 12.77 &
-10.45 -10.45 12.77 -10.45 10.45 12.77 &
1234 5678 1265 4378 1584 2673 $ Inner Wall #1

6 box 10.45 10.45 12.77 -20.9 0 0 0 -20.9 0 0 0 12.85 &
$ Inner Wall #2

7 box 5.18 5.18 0.700 -10.36 0 0 0 -10.36 0 0 0 24.92 &
$ Inner Wall #3

8 arb 5.18 5.18 0.700 5.18 -5.18 0.70 -5.18 -5.18 0.70 &
-5.18 5.18 0.700 5.25 5.25 2.173 5.25 -5.25 2.173 &
-5.25 -5.25 2.173 -5.25 5.25 2.173 1234 5678 1265 4378 1584 2673

$ Inner BGO #1
9 arb 5.25 5.25 2.173 5.25 -5.25 2.173 -5.25 -5.25 2.173 &

-5.25 5.25 2.173 7.14 7.14 25.62 7.14 -7.14 25.62 &
-7.14 -7.14 25.62 -7.14 7.14 25.62 1234 5678 1265 4378 1584 2673 &

$ Inner BGO #2
10 arb 5.975 5.975 0.70 5.975 -5.975 0.70 -5.975 -5.975 0.70 &

-5.975 5.975 0.70 7.450 7.450 4.76 7.450 -7.450 4.76 &
-7.450 -7.450 4.76 -7.450 7.450 4.76 &
1234 5678 1265 4378 1584 2673 $ Outer BGO #1

11 arb 7.450 7.450 4.76 7.450 -7.450 4.76 -7.450 -7.450 4.76 &
-7.450 7.450 4.76 9.128 9.128 25.62 9.128 -9.128 25.62 &
-9.128 -9.128 25.62 -9.128 9.128 25.62 &
1234 5678 1265 4378 1584 2673 $ Outer BGO #2

21 rcc 2.26 2.26 4.40 0.00 0.00 8.00 2.5 $ Ge Q1
22 rcc -2.26 2.26 4.40 0.00 0.00 8.00 2.5 $ Ge Q2
23 rcc -2.26 -2.26 4.40 0.00 0.00 8.00 2.5 $ Ge Q3
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24 rcc 2.26 -2.26 4.40 0.00 0.00 8.00 2.5 $ Ge Q4
25 box 0.03 0.03 4.40 4.50 0.00 0.00 0.0 4.5 0.0 0.0 0.0 8.0
26 box -0.03 0.03 4.40 -4.50 0.00 0.00 0.0 4.5 0.0 0.0 0.0 8.0
27 box -0.03 -0.03 4.40 -4.50 0.00 0.00 0.0 -4.5 0.0 0.0 0.0 8.0
28 box 0.03 -0.03 4.40 4.50 0.00 0.00 0.0 -4.5 0.0 0.0 0.0 8.0
29 box -4.90 -4.90 3.75 9.80 0.00 0.00 0.0 9.8 0.0 0.0 0.0 8.65
30 box -5.05 -5.05 3.60 10.1 0.00 0.00 0.0 10.1 0.0 0.0 0.0 8.95
31 rcc 2.26 2.26 5.90 0.00 0.00 6.50 0.5 $Au Outer Surface
32 rcc -2.26 2.26 5.90 0.00 0.00 6.50 0.5 $Au Outer Surface
33 rcc -2.26 -2.26 5.90 0.00 0.00 6.50 0.5 $Au Outer Surface
34 rcc 2.26 -2.26 5.90 0.00 0.00 6.50 0.5 $Au Outer Surface
35 rcc 2.26 2.26 5.95 0.00 0.00 6.45 0.45 $Au Inner Surface
36 rcc -2.26 2.26 5.95 0.00 0.00 6.45 0.45 $Au Inner Surface
37 rcc -2.26 -2.26 5.95 0.00 0.00 6.45 0.45 $Au Inner Surface
38 rcc 2.26 -2.26 5.95 0.00 0.00 6.45 0.45 $Au Inner Surface
90 so 50
c ------------------------------ Material List --------------------------------
c Material #1 (Air)
M1 7000.04p 0.75527 GAS=1 &

8000.04p 0.23178 GAS=1 &
18000.04p 0.01283 GAS=1 &
6000.04p 0.00012 GAS=1

c Material #2 (Aluminum)
M2 13000.04p 1.0
c Material #3 (Germanium)
M3 32000.04p 1.0
c Material #4 (BGO)
M4 8000.04p 0.63158 &

32000.04p 0.15789 &
83000.04p 0.21053

c
*TR1 0 10 0 0 90 90 90 -90 -180 90 0 -90
*TR2 0 0 10 0 90 90 90 0 90 90 90 0
c
imp:p,e 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
mode p e
c
c ---------------------------------- Source Definition ------------------------
c (5mm diameter source)
SDEF POS=0.0 -0.3175 0.0 RAD=D2 PAR=P ERG=0.625
c
SI2 0.25
c
F8:P 4
E8 0.0 1E-5 2000I 6.0
F18:P 5
E18 0.0 1E-5 2000I 6.0
F28:P 6
E28 0.0 1E-5 2000I 6.0
F38:P 7
E38 0.0 1E-5 2000I 6.0
F48:P 14
E48 0.0 1E-5 2000I 6.0
F58:P 15
E58 0.0 1E-5 2000I 6.0
F68:P 16
E68 0.0 1E-5 2000I 6.0
F78:P 17
E78 0.0 1E-5 2000I 6.0
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c
NPS 1e6

B.3 Flux Monitor Efficiency Calculation

The 123% Ge-detector; original by A. Tonchev & A. Chyzh;
(modified by S. L. Hammond)

c *
c ---------------------------CELLS-----------------------------------
c *
11 1 -2.6989 -11 21 u=1

$ Al End Cap at 158.7cm from Cu-target
12 1 -2.6989 -12 31 23 u=1 $ Al Foild
21 0 -21 12 62 u=1 $ Inner Vacuum
23 0 -23 62 u=1 $ Top Vacuum
31 3 -5.323 -31 22 u=1 $ Ge Crystal
22 0 -22 62 u=1 $ Hole
62 5 -8.96 -62 u=1 $ Cu Contact
41 6 -11.35 -41 11 u=1 $ Pb Shield around Ge
10 0 41 11 u=1 $ Void
2 0 -42 u=2 fill=1

$ Ge-detector as an object in u=2
20 0 42 u=2 $ Void
3 like 2 but $ Ge-detector in u=3

trcl=(0 -2.22 -11.4825 $ [x y z]-translation vector; origin is
1 0 0 $ [xx xy xz] at Cu-target, so no translation;
0 .9806 -.1959 $ [yx yy yz]-rotation matrix, just rotate;
0 .1959 .9806 1) u=3 $ [zx zy zz]

73 4 -0.00129 #3 u=3 $ Air around Ge-detector
52 0 -52 61 fill=3 $ Empty cell filled by u=3
61 5 -8.96 -61 $ Cu-Target
71 7 -2.4 -71 $ Concrete End Wall
100 0 52 71 $ Void
c *
c -------------------------------------------------------------------
c *
c -------------------------SURFACES----------------------------------
c *
11 rcc 0.0 0.0 158.7 0.0 0.0 14.46 4.75 $ Al End Cap
12 rcc 0.0 0.0 159.197 0.0 0.0 13.0 4.175 $ Al Foil Cup
21 rcc 0.0 0.0 158.8 0.0 0.0 14.04 4.65 $ Inner Vacuum
22 rcc 0.0 0.0 160.49 0.0 0.0 8.51 0.575 $ Hole
23 rcc 0.0 0.0 169.0 0.0 0.0 1.5575 3.9 $ Top Vacuum
31 rcc 0.0 0.0 159.2 0.0 0.0 9.80 3.9 $ Ge Crystal
41 rcc 0.0 0.0 158.7 0.0 0.0 14.46 10.0 $ Pb Shield u=1
42 rcc 0.0 0.0 158.7 0.0 0.0 14.46 10.0 $ Pb Shield u=2
43 rcc 0.0 0.0 158.7 0.0 0.0 14.46 10.0 $ Pb Shield u=0
62 rcc 0.0 0.0 160.49 0.0 0.0 10.06 0.2 $ Cu Contact
61 rcc 0.0 0.0 0.0 0.0 0.0 -0.1 5.0 $ Cu Target
52 rcc 0.0 0.0 -20.0 0.0 0.0 279.9 200.0 $ Air Environment
71 rcc 0.0 0.0 260.0 0.0 0.0 50.0 200.0 $ Concrete End Wall
c *
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c -------------------------------------------------------------------
c *
c -------------------------MATERIALS---------------------------------
c *
c #1 (Al End Cap)
M1 13000.02p 1.0
c #3 (Ge-crystal)
M3 32000.02p 1.0
c #4 (Air)
M4 8016.02p 0.23555

7014.02p 0.75086
18000.02p 0.01281
1001.02p 0.00064
6012.02p 0.00014

c #5 (Cu-plate)
M5 29000.02p 1.0
c #6 (Pb-shield)
M6 82000.02p 1.0
c
c #7 (Concrete End Wall)
M7 8016.02p 0.67

14000.42c 0.33
c -------------------------------------------------------------------
c *
c -------------------------SOURCES-----------------------------------
SDEF POS=0.0 0.0 0.3175 RAD=D2 PAR=P ERG=0.025
c
SI2 0.25
c -------------------------------------------------------------------
c *
c -------------------------TALLIES-----------------------------------
F8:P 31
E8 0 1E-5 1000i 6
c ---------------------------------------------
c *
c -------------------------Physics-----------------------------------
IMP:P,E 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 $ Importance for each cell
MODE P E $ dE/dX for P,E
NPS 7E7 $ Number of histories
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B.4 Attenuation Calculation

The 60% Ge-detector; original by A. Tonchev & A. Chyzh;
(modified by S.L. Hammond)

c *
c ---------------------------CELLS-------------------------------------
c *
11 1 -2.6989 -11 21 $ Al End Cap
12 1 -2.6989 -12 31 23 $ Al Foild
21 0 -21 12 22 $ Inner Vacuum
23 0 -23 22 $ Top Vacuum
24 1 -2.6989 -24 12 22 $ Al mount cup base
31 3 -5.323 -31 22 $ Ge Crystal
c 34 3 -5.323 -34 12 $ Dead Zone
22 5 -8.96 -22 $ Hole
62 5 -8.96 -62 63 $ Cu attenuator
63 6 -11.35 -63 62 $ Pb attenuator
70 7 -19.1 -70 62 63 11 $ 238U
74 4 -0.00129 -74 11 62 63 70 $ Air Environment
10 0 74 $ Void
c *
c ---------------------------------------------------------------------
c *
c -------------------------SURFACES------------------------------------
c *
11 rcc 0.0 10.0 0.0 0.0 11.576 0.0 3.806 $ Al End Cap
12 rcc 0.0 10.50 0.0 0.0 10.576 0.0 3.306 $ Al Foil Cup
21 rcc 0.0 10.10 0.0 0.0 11.376 0.0 3.706 $ Inner Vacuum
22 rcc 0.0 11.39 0.0 0.0 7.27 0.0 0.56 $ Hole
23 rcc 0.0 18.67 0.0 0.0 2.09 0.0 3.23 $ Top Vacuum
24 rcc 0.0 20.75 0.0 0.0 0.244 0.0 3.23 $ Al mount cup base
31 rcc 0.0 10.57 0.0 0.0 8.09 0.0 3.23 $ Ge Crystal
c 34 rcc 0.0 0.0 19.11 0.0 0.1 0.0 3.23 $ Dead Zone
62 rcc 0.0 9.48 0.0 0.0 0.4 0.0 3.806 $ Cu attenuator
63 rcc 0.0 8.95 0.0 0.0 0.53 0.0 3.806 $ Pb attenuator
70 rcc 0.0 0.0 0.0 0.0 0.0 0.204 1.27 $ 238U target
74 rcc 0.0 0.0 -293.8 0.0 0.0 500 100.0 $ Air Environment
c *
c ---------------------------------------------------------------------
c *
c -------------------------MATERIALS-----------------------------------
c *
c #1 (Aluminum)
M1 13000.02p 1.0
c #3 (Germanium)
M3 32000.02p 1.0
c #4 (Air)
M4 8016.02p 0.23555

7014.02p 0.75086
18000.02p 0.01281
1001.02p 0.00064
6012.02p 0.00014

c #5 (Copper)
M5 29000.02p 1.0
c #6 (Lead)
M6 82000.02p 1.0
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c #7 (238U target)
M7 92238.02p 0.9927

92235.02p 0.0072
92234.02p 0.0001

c
c -------------------------SOURCE--------------------------------------
c *E MeV gamma at POS=[xyz], weight 1, in vec=Z-direction under DIR=0-deg*
SDEF POS 0 0 0 RAD 0.9525 PAR=P ERG=D1
c
SI1 A 2.847 2.848 2.849 2.850 2.851 2.852 2.853 2.854

2.855 2.856 2.857 2.858 2.859 2.860 2.861 2.862
2.863 2.864 2.865 2.866 2.867 2.868 2.869 2.870
2.871 2.872 2.873 2.874 2.875 2.876 2.877 2.878
2.879 2.880 2.881 2.882 2.883 2.884 2.885 2.886
2.887 2.888 2.889 2.890 2.891 2.892 2.893 2.894
2.895 2.896 2.897 2.898 2.899 2.900 2.901 2.902
2.903 2.904 2.905 2.906 2.907 2.908 2.909 2.910
2.911 2.912 2.913 2.914 2.915 2.916 2.917 2.918
2.919 2.920 2.921 2.922 2.923 2.924 2.925 2.926
2.927 2.928 2.929 2.930 2.931 2.932 2.933 2.934
2.935 2.936 2.937 2.938 2.939 2.940 2.941 2.942
2.943 2.944 2.945 2.946 2.947 2.948 2.949 2.950
2.951 2.952 2.953 2.954 2.955 2.956 2.957 2.958
2.959 2.960 2.961 2.962 2.963 2.964 2.965 2.966
2.967 2.968 2.969 2.970 2.971 2.972 2.973 2.974
2.975 2.976 2.977 2.978 2.979 2.980 2.981 2.982
2.983 2.984 2.985 2.986 2.987 2.988 2.989 2.990
2.991 2.992 2.993 2.994 2.995 2.996 2.997 2.998
2.999 3.000 3.001 3.002 3.003 3.004 3.005 3.006
3.007 3.008 3.009 3.010 3.011 3.012 3.013 3.014
3.015 3.016 3.017 3.018 3.019 3.020 3.021 3.022
3.023 3.024 3.025 3.026 3.027 3.028 3.029 3.030
3.031 3.032 3.033 3.034 3.035 3.036 3.037 3.038
3.039 3.040 3.041 3.042 3.043 3.044 3.045 3.046
3.047 3.048 3.049 3.050 3.051 3.052 3.053 3.054
3.055 3.056 3.057 3.058 3.059 3.060 3.061 3.062
3.063 3.064 3.065 3.066 3.067 3.068 3.069 3.070
3.071 3.072 3.073 3.074 3.075 3.076 3.077 3.078
3.079 3.080 3.081 3.082 3.083 3.084 3.085 3.086
3.087 3.088 3.089 3.090 3.091 3.092 3.093 3.094
3.095 3.096 3.097 3.098 3.099 3.100 3.101 3.102
3.103 3.104 3.105 3.106 3.107 3.108 3.109 3.110
3.111 3.112 3.113 3.114 3.115 3.116 3.117 3.118
3.119 3.120 3.121 3.122 3.123 3.124 3.125 3.126
3.127 3.128 3.129 3.130 3.131 3.132 3.133 3.134
3.135 3.136 3.137 3.138 3.139 3.140 3.141 3.142
3.143 3.144 3.145 3.146 3.147 3.148 3.149 3.150
3.151 3.152 3.153 3.154 3.155 3.156 3.157 3.158
3.159 3.160 3.161 3.162 3.163 3.164 3.165 3.166
3.167 3.168 3.169 3.170 3.171 3.172 3.173 3.174
3.175 3.176 3.177 3.178 3.179 3.180 3.181 3.182
3.183 3.184 3.185 3.186 3.187 3.188 3.189 3.190

c
SP1 0.013 0.025 0.031 0.025 0.034 0.020 0.016 0.023

0.024 0.043 0.026 0.026 0.021 0.020 0.027 0.029
0.033 0.034 0.045 0.032 0.035 0.036 0.035 0.055
0.039 0.033 0.034 0.041 0.019 0.046 0.046 0.047
0.045 0.047 0.054 0.046 0.053 0.052 0.062 0.066
0.051 0.061 0.061 0.062 0.064 0.080 0.084 0.066
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0.061 0.080 0.084 0.077 0.092 0.089 0.100 0.097
0.107 0.106 0.101 0.111 0.097 0.120 0.128 0.121
0.128 0.124 0.134 0.156 0.152 0.155 0.141 0.167
0.170 0.176 0.167 0.178 0.172 0.183 0.192 0.200
0.184 0.208 0.204 0.214 0.225 0.236 0.238 0.231
0.237 0.253 0.254 0.251 0.270 0.264 0.264 0.281
0.287 0.302 0.324 0.311 0.303 0.321 0.327 0.331
0.337 0.342 0.347 0.352 0.365 0.380 0.373 0.380
0.394 0.387 0.397 0.423 0.411 0.403 0.428 0.414
0.435 0.435 0.464 0.449 0.457 0.466 0.467 0.467
0.477 0.484 0.486 0.495 0.515 0.498 0.529 0.509
0.519 0.514 0.541 0.537 0.522 0.542 0.538 0.555
0.553 0.566 0.560 0.567 0.565 0.579 0.563 0.581
0.564 0.601 0.594 0.590 0.590 0.608 0.600 0.604
0.599 0.590 0.615 0.621 0.601 0.625 0.615 0.620
0.612 0.619 0.622 0.641 0.615 0.639 0.646 0.626
0.616 0.627 0.621 0.623 0.640 0.642 0.617 0.627
0.631 0.626 0.639 0.636 0.641 0.619 0.617 0.628
0.608 0.621 0.603 0.613 0.610 0.621 0.615 0.596
0.607 0.596 0.581 0.600 0.578 0.592 0.573 0.551
0.573 0.563 0.574 0.545 0.557 0.553 0.542 0.550
0.533 0.528 0.518 0.525 0.525 0.510 0.490 0.490
0.481 0.491 0.479 0.475 0.481 0.463 0.458 0.450
0.447 0.435 0.441 0.431 0.422 0.425 0.407 0.407
0.398 0.405 0.388 0.381 0.397 0.386 0.375 0.366
0.360 0.343 0.342 0.340 0.338 0.335 0.314 0.314
0.304 0.314 0.302 0.283 0.283 0.280 0.280 0.266
0.257 0.259 0.237 0.246 0.236 0.232 0.229 0.211
0.216 0.200 0.206 0.199 0.182 0.192 0.179 0.169
0.166 0.161 0.156 0.150 0.147 0.146 0.139 0.135
0.129 0.126 0.120 0.108 0.103 0.100 0.094 0.095
0.090 0.081 0.077 0.073 0.078 0.073 0.065 0.059
0.060 0.056 0.050 0.049 0.045 0.042 0.039 0.033
0.031 0.031 0.030 0.026 0.027 0.021 0.020 0.021
0.018 0.014 0.013 0.014 0.012 0.007 0.010 0.006
0.007 0.006 0.006 0.004 0.004 0.004 0.003 0.003
0.002 0.002 0.002 0.001 0.002 0.001 0.001 0.001

c ---------------------------------------------------------------------
c *
c -------------------------TALLIES-------------------------------------
FC18 *Pulse Height Ge-Detector at cell 31 Ge-crystal*
F18:P 31
E18 0.0 6000i 6.0
c ---------------------------------------------
c *
c -------------------------Physics-------------------------------------
IMP:P,E 1 1 1 1 1 1 1 1 1 1 1 0
MODE P E
CUT:P,E j 0.1
c
NPS 1e6
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B.5 Compton-Scattered Spectrum Simulation

The 123% Ge-detector; original by A. Tonchev & A. Chyzh;
(modified by S.L. Hammond)

c *
c ---------------------------CELLS-----------------------------------
c *
11 1 -2.6989 -11 21 u=1

$ Al End Cap at 158.7cm from Cu-target
12 1 -2.6989 -12 31 23 u=1 $ Al Foild
21 0 -21 12 62 u=1 $ Inner Vacuum
23 0 -23 62 u=1 $ Top Vacuum
31 3 -5.323 -31 22 u=1 $ Ge Crystal
22 0 -22 62 u=1 $ Hole
62 5 -8.96 -62 u=1 $ Cu Contact
41 6 -11.35 -41 11 u=1 $ Pb Shield around Ge
10 0 41 11 u=1 $ Void
c
2 0 -42 u=2 fill=1
c $ Ge-detector as an object in u=2
20 0 42 u=2 $ Void
c
3 like 2 but $ Ge-detector in u=3

trcl=(0 -1.22 6.77 $ [x y z]-translation vector; origin is
1 0 0 $ [xx xy xz] at Cu-target, so no translation;
0 .9781 -.2079 $ [yx yy yz]-rotation matrix, just rotate;
0 .2079 .9781 1) u=3 $ [zx zy zz]

73 4 -0.00129 #3 u=3 $ Air around Ge-detector
c
52 0 -52 51 61 fill=3
c $ Empty cell filled by u=3
51 4 -0.00129 -51 $ Air Det 1
61 5 -8.96 -61 $ Cu-Target
71 7 -2.4 -71 $ Concrete End Wall
100 0 52 71 $ Void
c *
c -------------------------------------------------------------------
c *
c -------------------------SURFACES----------------------------------
c *
11 rcc 0.0 0.0 158.7 0.0 0.0 14.46 4.75 $ Al End Cap
12 rcc 0.0 0.0 159.197 0.0 0.0 13.0 4.175 $ Al Foil Cup
21 rcc 0.0 0.0 158.8 0.0 0.0 14.04 4.65 $ Inner Vacuum
22 rcc 0.0 0.0 160.49 0.0 0.0 8.51 0.575 $ Hole
23 rcc 0.0 0.0 169.0 0.0 0.0 1.5575 3.9 $ Top Vacuum
31 rcc 0.0 0.0 159.2 0.0 0.0 9.80 3.9 $ Ge Crystal
41 rcc 0.0 0.0 158.7 0.0 0.0 14.46 10.0 $ Pb Shield u=1
42 rcc 0.0 0.0 158.7 0.0 0.0 14.46 10.0 $ Pb Shield u=2
43 rcc 0.0 0.0 158.7 0.0 0.0 14.46 10.0 $ Pb Shield u=0
62 rcc 0.0 0.0 160.49 0.0 0.0 10.06 0.2 $ Cu Contact
61 rcc 0.0 0.0 0.0 0.0 0.0 -0.1 5.0 $ Cu Target
51 rcc 0.0 0.0 -10.0 0.0 0.0 0.2 0.635 $ Air Det 1
52 rcc 0.0 0.0 -20.0 0.0 0.0 279.9 100.0 $ Air Environment
71 rcc 0.0 0.0 260.0 0.0 0.0 50.0 100.0 $ Concrete End Wall
c *
c -------------------------------------------------------------------
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c *
c -------------------------MATERIALS---------------------------------
c *
c #1 (Al End Cap)
M1 13000.02p 1.0
c #3 (Ge-crystal)
M3 32000.02p 1.0
c #4 (Air)
M4 8016.02p 0.23555

7014.02p 0.75086
18000.02p 0.01281
1001.02p 0.00064
6012.02p 0.00014

c #5 (Cu-plate)
M5 29000.02p 1.0
c #6 (Pb-shield)
M6 82000.02p 1.0
c
c #7 (Concrete End Wall)
M7 8016.02p 0.67

14000.42c 0.33
c -------------------------------------------------------------------
c *
c -------------------------SOURCES-----------------------------------
c *9.5 MeV gamma at POS=[xyz], weight 1, in vec=Z-direction under DIR=0-deg*
SDEF POS=0.0 2.54 -4.0 AXS=0 0 1 VEC=0 0 1 DIR=1.0

RAD=0.635 PAR=2 ERG=D1
c
SI1 A 2.301 2.302 2.303 2.304 2.305 2.306 2.307 2.308

2.309 2.310 2.311 2.312 2.313 2.314 2.315 2.316
2.317 2.318 2.319 2.320 2.321 2.322 2.323 2.324
2.325 2.326 2.327 2.328 2.329 2.330 2.331 2.332
2.333 2.334 2.335 2.336 2.337 2.338 2.339 2.340
2.341 2.342 2.343 2.344 2.345 2.346 2.347 2.348
2.349 2.350 2.351 2.352 2.353 2.354 2.355 2.356
2.357 2.358 2.359 2.360 2.361 2.362 2.363 2.364
2.365 2.366 2.367 2.368 2.369 2.370 2.371 2.372
2.373 2.374 2.375 2.376 2.377 2.378 2.379 2.380
2.381 2.382 2.383 2.384 2.385 2.386 2.387 2.388
2.389 2.390 2.391 2.392 2.393 2.394 2.395 2.396
2.397 2.398 2.399 2.400 2.401 2.402 2.403 2.404
2.405 2.406 2.407 2.408 2.409 2.410 2.411 2.412
2.413 2.414 2.415 2.416 2.417 2.418 2.419 2.420
2.421 2.422 2.423 2.424 2.425 2.426 2.427 2.428
2.429 2.430 2.431 2.432 2.433 2.434 2.435 2.436
2.437 2.438 2.439 2.440 2.441 2.442 2.443 2.444
2.445 2.446 2.447 2.448 2.449 2.450 2.451 2.452
2.453 2.454 2.455 2.456 2.457 2.458 2.459 2.460
2.461 2.462 2.463 2.464 2.465 2.466 2.467 2.468
2.469 2.470 2.471 2.472 2.473 2.474 2.475 2.476
2.477 2.478 2.479 2.480 2.481 2.482 2.483 2.484
2.485 2.486 2.487 2.488 2.489 2.490 2.491 2.492
2.493 2.494 2.495 2.496 2.497 2.498 2.499 2.500
2.501 2.502 2.503 2.504 2.505 2.506 2.507 2.508
2.509 2.510 2.511 2.512 2.513 2.514 2.515 2.516
2.517 2.518 2.519 2.520 2.521 2.522 2.523 2.524
2.525 2.526 2.527 2.528 2.529 2.530 2.531 2.532
2.533 2.534 2.535 2.536 2.537 2.538 2.539 2.540
2.541 2.542 2.543 2.544 2.545 2.546 2.547 2.548
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2.549 2.550 2.551 2.552 2.553 2.554 2.555 2.556
2.557 2.558 2.559 2.560 2.561 2.562 2.563 2.564
2.565 2.566 2.567 2.568 2.569 2.570 2.571 2.572
2.573 2.574 2.575 2.576 2.577 2.578 2.579 2.580
2.581 2.582 2.583 2.584 2.585 2.586 2.587 2.588
2.589 2.590 2.591 2.592 2.593 2.594 2.595 2.596
2.597 2.598 2.599 2.600 2.601 2.602 2.603 2.604
2.605 2.606 2.607 2.608 2.609 2.610 2.611 2.612
2.613 2.614 2.615 2.616 2.617 2.618 2.619 2.620
2.621 2.622 2.623 2.624 2.625 2.626 2.627 2.628
2.629 2.630 2.631 2.632 2.633 2.634 2.635 2.636
2.637 2.638 2.639 2.640 2.641 2.642 2.643 2.644
2.645 2.646 2.647 2.648 2.649 2.650 2.651 2.652
2.653 2.654 2.655 2.656 2.657 2.658 2.659 2.660
2.661 2.662 2.663 2.664 2.665 2.666 2.667 2.668
2.669 2.670 2.671 2.672 2.673 2.674 2.675 2.676
2.677 2.678 2.679 2.680 2.681 2.682 2.683 2.684
2.685 2.686 2.687 2.688 2.689 2.690 2.691 2.692
2.693 2.694 2.695 2.696 2.697 2.698 2.699 2.700

c
SP1 0.001 0.017 0.002 0.002 0.007 0.012 0.009 0.011

0.014 0.012 0.008 0.017 0.018 0.035 0.031 0.018
0.024 0.013 0.011 0.013 0.014 0.027 0.023 0.028
0.019 0.013 0.038 0.025 0.032 0.022 0.014 0.046
0.036 0.037 0.033 0.030 0.033 0.053 0.043 0.053
0.043 0.049 0.052 0.060 0.036 0.047 0.056 0.059
0.047 0.056 0.058 0.063 0.071 0.074 0.075 0.060
0.073 0.080 0.081 0.090 0.095 0.100 0.091 0.087
0.088 0.102 0.094 0.095 0.101 0.105 0.113 0.110
0.109 0.117 0.121 0.124 0.126 0.120 0.130 0.129
0.140 0.135 0.148 0.150 0.141 0.151 0.144 0.171
0.163 0.176 0.174 0.180 0.188 0.211 0.174 0.193
0.192 0.217 0.215 0.211 0.223 0.239 0.234 0.232
0.240 0.255 0.253 0.270 0.279 0.282 0.298 0.282
0.290 0.294 0.329 0.312 0.321 0.315 0.343 0.344
0.337 0.347 0.357 0.346 0.369 0.384 0.379 0.397
0.412 0.415 0.429 0.427 0.434 0.440 0.445 0.445
0.456 0.473 0.490 0.481 0.496 0.505 0.494 0.512
0.529 0.515 0.533 0.558 0.560 0.555 0.552 0.563
0.563 0.567 0.588 0.578 0.594 0.617 0.594 0.613
0.622 0.633 0.630 0.642 0.633 0.642 0.655 0.656
0.657 0.675 0.679 0.664 0.692 0.687 0.691 0.703
0.695 0.697 0.706 0.722 0.704 0.727 0.726 0.733
0.730 0.734 0.744 0.720 0.715 0.735 0.746 0.726
0.737 0.733 0.716 0.732 0.738 0.742 0.744 0.726
0.733 0.751 0.742 0.721 0.715 0.712 0.728 0.729
0.709 0.704 0.708 0.697 0.699 0.675 0.673 0.666
0.666 0.657 0.651 0.628 0.624 0.609 0.612 0.611
0.618 0.572 0.563 0.570 0.534 0.564 0.532 0.510
0.509 0.503 0.482 0.475 0.462 0.470 0.449 0.446
0.436 0.424 0.416 0.403 0.408 0.395 0.392 0.374
0.368 0.356 0.346 0.333 0.325 0.334 0.322 0.308
0.304 0.306 0.285 0.285 0.276 0.275 0.268 0.264
0.252 0.241 0.239 0.228 0.223 0.222 0.211 0.206
0.202 0.197 0.187 0.179 0.179 0.179 0.169 0.162
0.160 0.148 0.150 0.141 0.134 0.135 0.126 0.122
0.109 0.112 0.104 0.094 0.092 0.090 0.089 0.080
0.075 0.074 0.069 0.067 0.066 0.066 0.058 0.050
0.051 0.043 0.046 0.048 0.043 0.035 0.033 0.031
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0.025 0.027 0.024 0.023 0.024 0.025 0.026 0.021
0.018 0.014 0.013 0.009 0.010 0.007 0.006 0.007
0.007 0.006 0.005 0.005 0.004 0.003 0.004 0.003
0.002 0.002 0.002 0.001 0.002 0.001 0.002 0.001
0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.001
0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.001
0.001 0.001 0.000 0.001 0.000 0.000 0.001 0.001
0.001 0.001 0.000 0.001 0.000 0.000 0.001 0.001
0.001 0.000 0.001 0.001 0.000 0.001 0.001 0.001
0.001 0.000 0.001 0.000 0.001 0.001 0.001 0.001
0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.001

c
c -------------------------------------------------------------------
c *
c -------------------------TALLIES-----------------------------------
c
FC8 *Pulse Height Ge-Detector at cell 31 Ge-crystal*
F8:P 31
c
E8 0.0 6000i 4.0
c ---------------------------------------------
c *
c -------------------------Physics-----------------------------------
IMP:P 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 $ Importance for each cell
MODE P $ dE/dX for P,E
c
CUT:P j 0.001 $10 keV cutoff for P,E
c
NPS 9e8 $ Number of histories
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Appendix C

Sample TALYS Input

C.1 Total Photoabsorption Cross Section

projectile g
element 92
mass 238
energy energies
ejectiles g n
#
ldmodel 2
shellmodel 2
spincutmodel 1
strength 2
strengthM1 2
preeqmode 1
mpreeqmode 2
pairmodel 1
fismodel 5
#
partable y
urr y
best n
fullhf y
autorot y
optmodall y
recoil y
fission y
gshell y
electronconv y
preequilibrium y
multipreeq y
twocomponent y
statepot y
colenhance y
colldamp y
channels y
channelenergy y
rotational n
maxrot 4
maxband 6
gammax 2
#
sysreaction n
maxchannel 1
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maxlevelstar 30
maxlevelsres 30
Nlevels 92 238 0
transpower 2
transeps 0
Elow .001
#
aadjust 92 238 0.05
pair 92 238 0.31493
pairconstant 1
Pshift 92 238 0
Pshiftconstant 0
deltaW 92 238 3.01190
gammald 92 238 0.06621
D0 92 238 3.5
# Nlow 92 238 3
# Ntop 92 238 18
#
egr 92 238 10.8466 E1 1
egr 92 238 14.0378 E1 2
sgr 92 238 344.231 E1 1
sgr 92 238 430.312 E1 2
ggr 92 238 3.02075 E1 1
ggr 92 238 4.9271 E1 2
#
outgamma y
outdensity y
outexcitation y
#
filedensity y
filegamdis y
filetotal y

C.2 Total Photoabsorption Cross Section with PDR

projectile g
element 92
mass 238
energy energies
ejectiles g n
#
ldmodel 2
shellmodel 2
spincutmodel 1
strength 2
strengthM1 2
preeqmode 1
mpreeqmode 2
pairmodel 1
fismodel 5
#
partable y
urr y
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best n
fullhf y
autorot y
optmodall y
recoil y
fission y
gshell y
electronconv y
preequilibrium y
multipreeq y
twocomponent y
statepot y
colenhance y
colldamp y
channels y
channelenergy y
rotational n
maxrot 4
maxband 6
gammax 2
#
sysreaction n
maxchannel 1
maxlevelstar 30
maxlevelsres 30
Nlevels 92 238 0
transpower 2
transeps 0
Elow .001
#
aadjust 92 238 0.05
pair 92 238 0.31493
pairconstant 1
Pshift 92 238 0
Pshiftconstant 0
deltaW 92 238 3.01190
gammald 92 238 0.06621
D0 92 238 3.5
# Nlow 92 238 3
# Ntop 92 238 18
#
egr 92 238 10.8466 E1 1
egr 92 238 14.0378 E1 2
sgr 92 238 344.231 E1 1
sgr 92 238 430.312 E1 2
ggr 92 238 3.02075 E1 1
ggr 92 238 4.9271 E1 2
#
epr 92 238 6.15 E1 1
spr 92 238 13 E1 1
gpr 92 238 1 E1 1
#
outgamma y
outdensity y
outexcitation y
#
filedensity y
filegamdis y
filetotal y
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