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ABSTRACT 

Bailey Cristina Eileen Peck: Analysis of microRNA function in the gastrointestinal tract 
 (Under the direction of Praveen Sethupathy) 

 
microRNAs (miRNAs) are a group of small non-coding RNAs that regulate gene 

expression through post-transcriptional targeting of messenger RNAs (mRNAs). Discovered in 

mammals in 2001, miRNAs have since become appreciated as both biomarkers and drivers of 

disease, including metabolic diseases such as type 2 diabetes. Metabolic diseases are 

characterized by systemic energy imbalance, which involve diverse tissues such as liver, 

pancreas, adipose, brain, muscle, and intestine. Understanding the role of miRNAs in the 

regulation of these organ systems during normal physiology and disease pathogenesis is a 

necessary step to help develop effective miRNA-based therapeutics. Toward this goal, in my 

dissertation research I identify miRNAs that act as biomarkers of metabolic and gastrointestinal 

(GI) diseases and evaluate their role in gene regulatory networks in the liver and small intestine. 

miRNAs are severely understudied in the intestine compared to most other metabolic tissues, and 

specifically in the intestinal epithelium, so I extended my research objective to help bridge this 

gap by identifying diet- and microbiota-sensitive miRNAs in distinct cell populations of the 

intestinal epithelium. I found that intestinal epithelial stem cells (IESCs) respond most robustly 

to these environmental stimuli. Furthermore, I demonstrated that specific microbiota-sensitive 

miRNAs regulate IESC proliferation, which is a key process underlying intestinal homeostasis. 

The findings of my research represent key advances in the GI field, and serve as a strong 

foundation for future research into the role of miRNAs in metabolic and GI disease.  
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To the duck whose one leg was both the same. 
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  layer with tight junctions, show increased TER 
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CHAPTER 1 – INTRODUCTION 

 

Metabolic diseases, including obesity and type 2 diabetes, represent a global health crisis. 

Particularly prevalent in the Western world, these diseases affect approximately one in three 

adults in the United States(Aguilar et al. 2015). During disease progression, systemic 

dysregulation occurs in tissues including the liver(Rottiers and Naar 2012), adipose(Grundy 

2015), skeletal muscle(Marette et al. 2014), brain(Codocedo et al. 2016), and intestine(Changting 

Xiao et al. 2015). There are clear environmental risk factors for disease onset, including diet and 

gut microbiota(Tremaroli and Bäckhed 2012), as well as diverse and numerous genetic 

components that modify and personalize metabolic disease progression.  

In my thesis research, I sought to understand the role of a subclass of regulatory RNAs, 

microRNAs, in regulating and driving metabolic disease pathogenesis. I began my studies in the 

liver, one of the most well studied organ systems with regard to type 2 diabetes and microRNAs 

(Figure 1.1). My research eventually led me to the intestine, where nearly 25% of the body’s 

glucose is produced(Mithieux et al. 2009), a feat which is vital to maintaining fasting glycaemia 

levels(Penhoat et al. 2014). Importantly, the intestine houses the gut microbiota, a metabolic 

organ in its own right. microRNAs are known to respond to a wide variety of environmental 

stimuli and are released into the blood stream where they may communicate with distant tissues. 

Yet little is known about the role of microRNAs in regulating normal physiological, let alone 

disease, processes in the intestine. In this dissertation, I evaluate microRNAs as tissue 
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biomarkers of type 2 diabetes (liver) and Crohn’s disease (CD; colon), identify two microRNAs 

of critical importance in maintaining physiological homeostasis in the liver and intestine, and 

establish microRNAs as key microbiota-sensitive regulators of physiological processes in the 

intestine (Figure 1.1C). 

 

 

Figure 1.1. The gastrointestinal tract and type 2 diabetes. (A) Medical illustration showing 
the interconnected organ systems that compose the GI tract. The liver receives blood, 
metabolites, and other molecules from the pancreas, visceral adipose (not shown), stomach, and 
intestine through a vascular network that feeds into the portal vein (blue). Image labeled free for 
reuse and acquired via Wikimedia. (B) The number of results are shown following a PubMed 
search for “type 2 diabetes” AND [tissue], which was conducted on 7/11/16. (C) Outline 
depicting the flow of my dissertation investigating miRNAs as biomarkers and drivers of disease, 
as well as responders to environmental risk factors for the development of metabolic diseases.  
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microRNA biogenesis and function 

microRNAs (miRNAs) are a population of small (18-24 nucleotide), noncoding RNAs 

that regulate gene expression through post-transcriptional targeting of messenger RNAs(Bartel 

2009). This relatively recently discovered class of RNA can be used as biomarkers of 

physiological states, but have also emerged as drivers of disease and responders to environmental 

stimuli. miRNAs have their own promoters and are endogenously transcribed (Figure 1.2), 

typically in a RNA polymerase II-dependent manner, before being capped, polyadenylated, 

cleaved by the RNase III Drosha, and actively transported to the cytoplasm(X. Liu et al. 2008). 

Once in the cytoplasm, miRNAs are processed into their mature form by Dicer, which loads 

them onto the multiprotein RNA-induced silencing complex (RISC)(X. Liu et al. 2008). An 

active metazoan miRNA on RISC will scan the transcriptome searching for accessible target 

sites typically located within 3’UTRs that are complementary to the miRNA’s seed region, bases 

2-8 at the 5’-end of a miRNA. A bound miRNA typically acts to repress a target gene by 

sequestering and preventing translation or by destabilizing the target RNA(X. Liu et al. 2008).  

Due to the short sequence-specific targeting requirement, a single miRNA has the 

potential to target hundreds of genes, and a single gene may be targeted by several different 

miRNAs(Mukherji et al. 2011; Bhajun et al. 2016). Complex miRNA and gene regulatory 

networks (GRNs) exist and may help a cell or organism respond to a diverse array of stimuli. 

miRNA degeneracy, which describes how multiple different miRNAs can perform the same or 

highly overlapping functions, contributes to the ability of a cell or system to adapt to diverse 

environmental perturbations(Bhajun et al. 2016). Most miRNAs singularly have a relatively 

modest repressive effect. They generally work to fine-tune and buffer gene expression(Tsang et 

al. 2007; Herranz and Cohen 2010; Su et al. 2011) and can also serve as switches to modulate the 
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output of large GRNs(X. Liu et al. 2008; H. Guo et al. 2010; Mukherji et al. 2011; Bhajun et al. 

2016). Researchers believe that single nucleotide polymorphisms (SNPs) located within miRNA 

target sites and miRNA promoter/enhancer regions may underlie some of the identified genome-

wide association study (GWAS) hits across various complex diseases(Bulik-Sullivan et al. 2013; 

Delay et al. 2016; Mullany et al. 2016), which strengthens evidence for a strong functional role 

of miRNAs in disease pathogenesis. Indeed, one prominent example is a SNP in the target site of 

miR-196 within the gene IRGM that significantly increases risk for CD(Brest et al. 2011). 

miRNAs may also act as intercellular communicators. Cells package miRNAs into 

exosomes and other microparticles, which may be released and taken up by distant cells to 

regulate gene expression(Mittelbrunn et al. 2011; Boon and Vickers 2013; L. Xu et al. 2013). 

miRNAs in exosomes appear to be targeted for loading, as specific miRNAs may be enriched 

and/or depleted relative to intracellular levels(Squadrito et al. 2014). miRNAs have been found 

circulating in various bodily fluids, including blood, breast milk, and feces, potentiating wide 

regulation of distant cells within and without the body. Moreover, patients with certain metabolic 

diseases have altered expression of miRNAs in these fluids, which provides a possible 

mechanism by which miRNAs may be involved in the systemic dysregulation(Karolina et al. 

2012). Environmental stimuli, such as hormones, cytokines, and nutrients/metabolites, are also 

established modulators of miRNA expression(Dalmasso et al. 2011; Dumortier et al. 2013; 

García-Segura et al. 2013; Nguyen et al. 2014). Because metabolic diseases include both genetic 

and environmental components, evaluating the contribution of miRNAs is of particular interest.  
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Figure 1.2. Cartoon depicting microRNA and mRNA biogenesis. This simplified cartoon 
contrasts canonical miRNA (left) and mRNA biogenesis (right).   
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microRNAs in metabolic disease 

A number of miRNAs have already been identified as biomarkers and regulators of 

metabolic disease, and multiple reviews have been published on the topic(Rottiers and Naar 

2012; Dumortier et al. 2013; Rotllan et al. 2016). However, in this section I will briefly detail a 

few of the most recognized miRNAs associated with metabolic disease, as well as others more 

recently identified. I hope to emphasize the diversity of roles for miRNAs across tissues, cell 

types, and developmental time points, all of which can lead to disease when dysregulated. 

microRNA-33 

miR-33a and miR-33b are isomiRs, miRNAs with identical targeting seed regions, and 

best known for their sophisticated regulation of lipid metabolism in the liver. These miRNAs are 

located within and processed from their respective host genes, SREBF1 and SREBF2, which 

encode transcription factors (TFs) that serve as master regulators of lipid homeostasis(Horie et 

al. 2010; Najafi-Shoushtari et al. 2010) in part by driving the expression of genes that encode 

enzymes in the fatty acid and cholesterol synthesis pathways in the liver, including FASN, SCD, 

SQLE, and HMGCR(Rottiers and Naar 2012; Dumortier et al. 2013; Rotllan et al. 2016). miR-33 

directly targets a number of hepatic mRNAs coding for fatty acid oxidation proteins, as well as 

negative regulators of fat production, cholesterol efflux, and glucose metabolism(Ramírez et al. 

2013). miR-33 acts to maintain lipid homeostasis, but when dysregulated can also lead to 

diseases such as hypercholesterolemia and atherosclerosis(Rayner, Sheedy, et al. 2011). 

Moreover, research shows that miR-33 mediated regulation of lipid metabolism pathways is 

conserved in both rodents(Rayner, Sheedy, et al. 2011) and non-human primates(Rayner, Esau, 

et al. 2011), strengthening the importance of research into its role and use as a potential 

therapeutic in the treatment of human diseases. Interestingly, miR-33-mediated regulation of 
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cholesterol pathways has also been linked to the control of the cell cycle and 

proliferation(Cirera-Salinas et al. 2012; Inukai and Slack 2012). 

microRNA-375 

The first miRNA to be attributed to taking part in insulin secretion, miR-375 was 

originally described as pancreatic islet cell specific. It has critical roles in regulating both the 

development and function of the pancreatic β-cells(Poy et al. 2004; Poy et al. 2009) and 

therefore is an important modulator of glucose homeostasis. More recently, miR-375 has been 

identified outside of the islet. Similar to its role in development, miR-375 has been shown to be 

downregulated in various cancer subtypes, which enhances proliferation(Yan et al. 2013). In 

healthy intestinal tissue, it drives enteroendocrine cell (EEC)(Knudsen et al. 2015) and possibly 

Goblet cell differentiation(Biton et al. 2011). Both the pancreas and intestine function as 

important metabolic and endocrine organ systems, making miR-375 a particularly relevant 

miRNA in the study of type 2 diabetes and other metabolic diseases. 

microRNA-378 

miR-378 is a notable miRNA in that both the -5p and -3p ends of the precursor miRNA 

are loaded onto RISC and have regulatory function. Interestingly, PPARGC1B, which codes for 

the energy metabolism transcription factor PGC-1β, is the host gene for miR-378. In adipocytes, 

miR-378-5p and miR-378-3p regulate differentiation and function of white adipose 

tissue(Romao et al. 2011). Knockout mice for miR-378a are resistant to HFD-induced weight 

gain and have increased oxidative capacity, and mitochondrial function across multiple 

metabolic tissues(Carrer et al. 2012). miR-378 is also established as a regulator of angiogenesis, 

muscle development, differentiation, and regeneration(Krist et al. 2015).  
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microRNA-24 

miR-24 was more recently identified as a metabolic disease-relevant miRNA, and has 

been shown to be dysregulated in the blood plasma and tissues of type 2 diabetics(Xiang et al. 

2015) and in animal models of metabolic disease(Zhu et al. 2013). miR-24 is a direct regulator of 

diabetes-linked TF Neurod1, which is involved in islet and endocrine development(Zhu et al. 

2013). miR-24 targets von Willdebrand factor, of which elevated levels are associated with 

thrombotic cardiovascular diseases, the leading cause of death for patients with type 2 diabetes 

(Xiang et al. 2015). Expression levels of miR-24 are responsive to glucose(Zhu et al. 2013; 

Xiang et al. 2015) and fatty acids(Ng et al. 2014), which is interesting given that miR-24 also 

acts to regulate lipid metabolism, in part through the targeting of Insig1 in the liver(Ng et al. 

2014). Knockdown of miR-24 in mice on a HFD, improves circulating plasma and hepatic 

triglyceride and cholesterol levels(Ng et al. 2014). miR-24, much like miR-33, miR-378, and 

miR-375, has also been attributed a role in regulating proliferation and differentiation, including 

in adipocytes and T-cells(Kang et al. 2013; Cho et al. 2016; Jin et al. 2016). 

microRNA-30 

miR-30 has recently been identified as a regulator of cholesterol synthesis and secretion 

in the liver. In 2013, Soh et al. showed that miR-30 directly targets MTP to reduce lipid 

synthesis in the liver(Soh et al. 2013). They showed in mice fed a HFD that hepatic 

overexpression of miR-30 reduced lipid synthesis. Moreover, in mice at risk for atherosclerosis 

(ApoE-/-), transduction of mice with a miR-30 overexpression vector reduced plasma cholesterol 

and resulted in fewer atherosclerotic plaques(Soh et al. 2013). Recently, researchers evaluated 

treatment with miR-30 mimic in models of metabolic disease. This approach has the benefit of 

not requiring viral vectors for overexpression, which are currently not feasible as therapeutic 
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vehicles. In this paper, on which I serve as co-author, we showed similar beneficial effects of 

reducing hypercholesterolemia, hepatic lipid synthesis, and atherosclerosis progression(Irani et 

al. 2016), suggesting miR-30 may be a highly promising therapeutic for patients with 

cardiovascular diseases. Outside of the regulation of lipid synthesis and secretion, miR-30 has 

also been linked to the regulation of proliferation and differentiation in a number of tissues and 

in the progression of cancer(F. Yu et al. 2010; T. Wu et al. 2012; Guess et al. 2015; B.-W. Zhang 

et al. 2016). 

 

microRNAs as therapeutics and therapeutic targets in the treatment of metabolic disease 

miRNAs are particularly attractive therapeutic targets. They can be inhibited using 

antisense oligonucleotides, or antimiRs, which sequester or inhibit miRNA action, and target 

miRNAs for degradation. Chemical modifications to these oligonucleotides, such as locked 

nucleic acids, increase the stability of the antimiRs in vitro and in vivo(van Rooij et al. 2012). 

Pharmaceutical companies have already designed antimiRs that have entered clinical trials for 

the treatment of various diseases. For example, miR-122, one of the first miRNAs to be 

developed as a therapeutic, is in phase II trials for the treatment of hepatitis C(Lindow and 

Kauppinen 2012; Sethupathy 2016). miR-122 is hijacked by the hepatitis C viral genome to 

assist in replication and miR-122 inhibitors have been shown to be effective at reducing viral 

activity(Lindow and Kauppinen 2012). Since this landmark development in miRNA therapeutics, 

several additional antimiR drugs have entered the preclinical arena, including several for the 

treatment of metabolic diseases including obesity and type 2 diabetes, such as miR-103/107 for 

treatment of type 2 diabetes associated hepatic steatosis(Sethupathy 2016). Interestingly, miRNA 
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mimics may also have some therapeutic potential. Anti-cancer miR-34 mimics, such as the drug 

MRX34, are in Phase 1 clinical trials and are showing promising results(Beg et al. 2015).  

A major identifiable theme across these metabolically relevant miRNAs is their context-

specific actions. A miRNA can have very different (though not necessarily incoherent) functions 

across diverse tissues. This is due to the very different gene expression profiles, 3’UTRs, and the 

environmental stimuli encountered by each cell population. Due to these considerations, several 

challenges still exist toward effective delivery and disease amelioration using miRNA 

therapeutics. As miRNAs have diverse, context-dependent functions, off-target effects may 

prove problematic. Additionally, certain organs like liver and kidney take up oligos more 

effectively than other tissues like brain and pancreas(Sethupathy 2016), identifying delivery 

vehicles or oligo modifications that improve this uptake with be key to solidifying the 

therapeutic potential of miRNAs in the future.  

Importantly, many of these metabolically-relevant miRNAs appear to have roles in both 

energy homeostasis and in regulating cell proliferation and fate decisions. While these diverse 

functional roles may complicate treatment strategies due to off-target effects, they also have 

important implications in terms of disease etiology. There is no tissue more pertinent to 

metabolism and proliferative capacity than the intestinal epithelium (IE), which is an essential 

regulator of energy homeostasis and the most rapidly renewing tissue in adult mammals.  

 

The intestinal epithelium as a metabolic tissue 

The IE is vital for a wide range of physiological functions, including pathogen defense, 

nutrient absorption, and metabolic homeostasis. It is also the most rapidly renewing tissue in the 

body, with cellular turnover occurring every 3-5 days in humans. This rate depends on the 
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stability of intestinal epithelial stem cells (IESCs), which give rise to transit amplifying 

progenitor cells that go on to differentiate into various types of mature intestinal epithelial cells 

(IECs), such as enterocytes, EECs, Paneth cells, and goblet cells. Precisely regulating gene 

expression in these cell types is critical for properly balancing proliferation and differentiation in 

the IE.  

While fasting, select tissues must carry out gluconeogenesis to maintain normoglycaemia 

levels. In addition to absorbing nutrients from diet during the fed state, the IE is responsible for 

20-25% of the body’s glucose production during fasting, which once released into the portal vein 

by the IE is able to signal to the brain through the periportal neural system to induce hunger-

stimulating hormone secretion(Mithieux and Gautier-Stein 2014). Interestingly, Roux-en-Y 

gastric bypass surgery ameliorates type 2 diabetes by improving glycemic control, and the effect 

can be seen in the hours following surgery before any weight loss is observed(le Roux et al. 

2007; Schauer et al. 2012; Schauer et al. 2014). Recent reports have linked IE gluconeogenesis 

and hormone production to this effect(le Roux et al. 2007; Reinehr et al. 2007; Troy et al. 2008; 

Schauer et al. 2014). 

The functions of miRNAs in the IE are understudied, particularly in relation to other 

metabolic tissues such as the liver and muscle. The limited number of published studies suggest 

that miRNAs are likely important in shaping IE architecture, barrier function, and 

proliferation(McKenna et al. 2010; Dalmasso et al. 2011; Ye et al. 2011). More recently, it has 

been proposed that miRNAs likely produced from IECs may regulate resident microbial 

communities(S. Liu et al. 2016). Because miRNAs are attractive therapeutic targets in an 

increasing array of disorders(van Rooij et al. 2012), it is important to identify specific miRNAs 

and their regulatory pathways that govern key physiological processes in the intestine. Such an 



12 
 

undertaking would provide a strong foundation for the development of novel, effective miRNA-

based therapeutic targets for gastrointestinal (GI) and metabolic disease. 

 

Gut microbiota and diet in metabolism and metabolic disease 

The intestine houses the gut microbiota, a collection of greater than 1012 commensal and 

symbiotic of bacteria, fungi, viruses, and more(Tremaroli and Bäckhed 2012; Devaraj et al. 

2013; Aron-Wisnewsky and Clément 2016), the largest density of which reside in the large 

intestine. The gut microbiome influences the host by modulating nutrient absorption(Semova et 

al. 2012), hormone secretion(Tolhurst et al. 2012; Chimerel et al. 2014), 

inflammation(Bonamichi-Santos et al. 2015; Zaiss et al. 2015), angiogenesis(Schirbel et al. 

2013), and intestinal physiology(Larsson et al. 2012; Aidy et al. 2013; Becker et al. 2013). High-

throughput sequencing technology has expanded our ability to analyze the complexity of the 

microbiome in real time without independent culturing, which has allowed researchers to 

evaluate how microbial diversity changes over time and in response to various stimuli. As such, 

a number of factors are known to influence the microbiome, including diet(David et al. 2014), 

ethnicity(Prideaux et al. 2013), drug and antibiotic use(Carvalho et al. 2012; Forslund et al. 

2015; Mikkelsen et al. 2015), age(Odamaki et al. 2016), and disease status(Tlaskalová-Hogenová 

et al. 2011; Qin et al. 2012; Forslund et al. 2015). To characterize the diversity of microbiomes, 

researchers in 2011 took a modeling approach to identify enterotypes, which are classified by the 

presence and abundance of three genera of bacteria(Arumugam et al. 2011). However, intra-

individual microbial composition varies widely based on localization within the intestinal tract 

and a number of environmental factors(Aidy et al. 2012). More research is needed to understand 
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not only the relationships within the microbial community, but also how various compositions 

might affect human health and disease. 

Metabolites generated by certain microbial species have also been associated with higher 

risk for metabolic diseases. One metabolite associated with disease risk is trimethylamine N-

oxide (TMAO). Hepatic flavin monooxygenase converts a metabolite of microbial digestion of 

phosphotidylcholine/choline/betaine into TMAO, which is a strong risk factor for adverse 

cardiovascular events(Z. Wang et al. 2011; Loscalzo 2013). Other byproducts are thought to be 

protective. For example, short chain fatty acids like butyrate act against colorectal cancer(Hu et 

al. 2011) and conjugated linoleic acid modulates hepatic and adipose fatty acid 

composition(O'Shea et al. 2012). Given the diversity of microbial metabolites, understanding the 

mechanism of their effect on other microbes and on host-physiology is a daunting but extremely 

important area of scientific research. 

Certain gut microbial profiles and byproducts are well appreciated as key environmental 

risk factors in metabolic disease pathogenesis(Larsen et al. 2010; Qin et al. 2012; Karlsson et al. 

2013; X. Zhang et al. 2013) and may also be important in developing personalized therapeutics. 

As mentioned in the previous section, Roux-en-Y surgery results in the rapid amelioration of 

type 2 diabetes. Robust changes in microbial composition have also been observed following 

surgery(Furet et al. 2010; J.V. Li et al. 2011), suggesting an additional role for the microbiota in 

mediating the beneficial effect of the surgery. Mice deficient for Toll-like receptor 5 (TLR5), 

which is expressed on IECs and recognizes bacterial flagellar ligands, will develop severe colitis, 

obesity, hypercholesterolemia, insulin resistance, and elevated blood pressure(Vijay-Kumar et al. 

2010). These metabolic phenotypes are corrected by treatment with antibiotics, implicating gut 

microbiota and their interactions with the host epithelium(Vijay-Kumar et al. 2010). 
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Interestingly, a dominant nonsense mutation in human TLR5 is also associated with type 2 

diabetes, but was found to be protective against obesity. The slight phenotypic dissimilarities 

between mice and humans lacking TLR5 may stem from differences in microbial composition or 

from slight functional variances(Al-Daghri et al. 2013).  

Notably, even microbially-derived drug byproducts are relevant in the study of metabolic 

disease pathogenesis. Recently, a meta-analysis of published metagenomic data found that 

Metformin treatment was a significant confounding variable(Forslund et al. 2015) in the 

comparison of microbiomes from type 2 diabetics and controls. Understanding the effect of 

Metformin on the GI tract is therefore relevant to the treatment of diabetes. Treatment with 

Metformin in mice reduces overall microbial diversity, but increases the amount of Akkermansia 

muciniphila, a bacterial species already linked to the improvement of metabolic disease(Everard 

et al. 2013; H. Lee and Ko 2014; Shin et al. 2014), which provides a possible mechanism of 

action and explanation for the variability of Metformin efficacy. These preliminary studies 

suggest a substantial role for microbiota in mediating the beneficial and off-target effects of 

Metformin. Understanding how the microbiome helps regulate metabolic disease, drug response, 

and IE physiology are important next steps toward developing novel, effective therapeutics for 

treating GI and metabolic disease. 

To study the role of gut microbiota, researchers have developed germ-free (GF) animals, 

which are housed and bred under gnotobiotic conditions. GF mice are leaner than conventional 

mice and are resistant to HFD-induced obesity, endotoxaemia and inflammation, steatosis, and 

insulin resistance(Rabot et al. 2010; Everard et al. 2013; Aron-Wisnewsky and Clément 2016). 

Antibiotic treatment of mice on a HFD has similar beneficial effects(Carvalho et al. 2012), 

emphasizing the importance of microbiota in regulating metabolic disease outcomes. 
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Conventionalization of GF animals using one or more microbial species provides great insight 

into the effect of these species on host-physiology. For example, conventionalization of GF 

animals with a full cohort of microbiota from an obese human or mouse induces more weight 

gain and insulin resistance than when conventionalized with microbiota from lean 

individuals(Turnbaugh et al. 2008). Similarly, monocolonization studies have shed light on the 

role of the innate and adaptive immune system(Duan et al. 2010; D. Kim et al. 2016), both of 

which demonstrate the role of microbiota in host physiology. 

GF rodents have substantially altered intestinal physiology. Morphologically, rodents 

lacking microbiota have reduced IE renewal, increased passage rate, reduced IEC migration, 

shorter villi, longer microvilli, and reduced surface area, though some regional differences have 

been reported(Khoury et al. 1969; Gordon and Pesti 1971; Clarke 1975; Abrams 1977). Because 

microbiota are important in the conversion of primary bile acids, it is no surprise that GF animals 

have reduced secondary bile acids within the ileum, despite having greater total levels of bile 

acids(Wostmann 1973; Wostmann 1996). In other GF mammals, increased numbers of Goblet 

cells have been reported relative to conventionalized or conventionally-raised counterparts. GF 

mice have also been shown to have increased mucin production(Wostmann 1996). Elevated 

levels of hormones, including peptide YY and enteroglucagon, have been observed in GF 

animals, as well as increased numbers of EECs(Uribe et al. 1994; Arantes and Nogueira 1997), 

though this may be diet dependent(Sharma and Schumacher 1996). Nutrient absorption is also 

altered: GF animals better absorb calcium and magnesium(Reddy 1972), exhibit reduced 

intestinal tyrosine(Lifshitz et al. 1978) and cholesterol absorption, and increased sterol 

excretion(Zhong et al. 2015). Moreover, GF mice have impaired mucosal barrier 

function(Hernández-Chirlaque et al. 2016 Apr 26). In sum, GF animals show altered 
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proliferation, differentiation, nutrient absorption, and hormone secretion, most of which is 

rescued upon conventionalization. 

The role of miRNAs in responding to microbiota in the intestine is very poorly 

characterized. Interestingly, mice deficient for miRNAs show some similar phenotypes as GF 

animals, suggesting that perhaps miRNAs contribute to some of the microbiota-driven effects on 

intestinal physiology. For example, mice with inducible whole body knockout of Dicer1, a key 

enzyme in miRNA biogenesis pathway (Figure 1.2), undergo severe GI distress days after 

homozygous deletion, leading to death. Histological analyses of their intestines revealed 

distorted and disorganized IE morphology and lipid accumulation in small intestine enterocytes, 

which corresponds to the dysregulation of small intestinal proteins involved in fatty acid and 

triglyceride metabolism in these mice(T.-C. Huang et al. 2012). In IEC-specific Dicer1 knockout 

mice, crypt-villus architecture is disorganized, and mice have impaired barrier function and 

infiltration of immune cells into the lamina propria and reduced numbers of Goblet cells and 

mucin production(McKenna et al. 2010; Biton et al. 2011; Yoshikawa et al. 2013). These mice 

show reduced growth, impaired intestinal barrier function(McKenna et al. 2010; Biton et al. 

2011; S. Liu et al. 2016), and altered gut microbiota composition(S. Liu et al. 2016). 

Interestingly, mice heterozygous for IEC-specific Dicer1 deletion, but not homozygous deletion, 

show elevated risk for tumor development in a colitis-associated tumor mouse model, though no 

change in inflammation is observed(Yoshikawa et al. 2013). IEC-specific Dicer1 knockout mice 

have increased apoptosis in the crypt zone(McKenna et al. 2010; Nakato et al. 2016), unusual 

proliferation near the top of the crypt-villus junction(McKenna et al. 2010), and an overall 

elevated rate of cellular migration(McKenna et al. 2010), all of which suggest that miRNAs are 

key players in the regulation of IE proliferation, differentiation, migration, and function. 
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Moreover, given the similarities that can be drawn between GF and miRNA-deficient mice, it is 

possible that miRNAs mediate communication between gut microbes and the host epithelium.  

In this dissertation, I explore miRNAs as biomarkers and drivers of hepatic and intestinal 

physiology and disease (Figure 1.1C). As miRNAs are important signaling and gene regulatory 

molecules that have therapeutic potential, understanding their expression and action in key 

metabolic tissues of relevance is of critical importance. Leveraging the power of cell culture 

lines, mouse and human patient samples, with in silico, in vitro, ex vivo, and in vivo approaches, 

I make important contributions to the understanding of hepatic and intestinal miRNAs in health 

and disease. Both the liver and intestine play key roles in maintaining systemic energy 

homeostasis. The liver responds to circulating hormones and molecular ligands by modulating 

gluconeogenic, lipogenic, and glucogenolytic pathways. In Chapter 2, I evaluate miR-29, a 

biomarker of type 2 diabetes, as a regulator of hepatic insulin-responsive and lipogenic 

pathways. Recently, the contribution of intestinal microbiota in regulating metabolic disease has 

gained wider appreciation. The intestine, and specifically the IE, provides a barrier between 

enteric bacteria, food and other ingested material, and the rest of the body. Importantly, it also is 

responsible for nutrient absorption, gluconeogenesis, release of hormones and other signaling 

molecules in response to luminal stimuli (including diet), and communicating with the gut 

microbiota. Yet, little is understood about the role of miRNAs in regulating these fundamental 

processes in the intestine. To work toward addressing this limitation, I profile miRNAs in 

colonic mucosa to identify potential tissue biomarkers and prognostic indicators of CD in 

Chapter 3, evaluate the role of miR-30 in regulating key intestinal physiological processes in 

Chapter 4, and in Chapter 5, profile the intestinal epithelial miRNA landscape, and determine 

whether and how miRNAs respond to dietary and microbial stimuli in the IE. Combined, this 
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interdisciplinary dissertation research lays the groundwork for understanding the role of miRNAs 

in the IE as both drivers of physiological processes, and also as signaling molecules mediating 

communication between the host and gut microbiota. 
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CHAPTER 2 – MICRORNA-29 FINE-TUNES THE EXPRESSION OF KEY FOXA2-

ACTIVATED LIPID METABOLISM GENES AND IS DYSREGULATED IN ANIMAL 
MODELS OF INSULIN RESISTANCE AND DIABETES* 

 

Type 2 diabetes is characterized in part by resistance to insulin action in the liver and 

other metabolic tissues(Kadowaki 2000). MicroRNAs (miRNAs) are widely recognized as 

important regulators of a diverse array of biological processes(Bartel 2009), including 

metabolism(W. Kim and Kyung Lee 2012). Recently, miRNAs have also emerged as stable 

plasma biomarkers of physiologic and metabolic status(P.S. Mitchell et al. 2008; Karolina et al. 

2012), etiological factors in complex disease(Couzin 2008 Mar 28), and promising therapeutic 

targets(Jackson and A.A. Levin 2012; van Rooij et al. 2012). miRNA-mediated gene regulation 

occurs principally at the post-transcriptional level and has been the subject of intense research 

over the past decade. Several miRNAs have been implicated in the pathobiology of a variety of 

metabolic disorders, including type 2 diabetes(Fernandez-Valverde et al. 2011), cardiovascular 

disease(Quiat and Olson 2013), and obesity(Williams and G.M. Mitchell 2012). We reported that 

miR-27b is a post-transcriptional regulatory hub in liver lipid metabolism and is altered in 

dyslipidemia(Vickers et al. 2013). Another group of studies demonstrated that miR-33 modulates 

lipoprotein metabolism in mice(Horie et al. 2010; Marquart et al. 2010; Najafi-Shoushtari et al. 

                                                
* Portions of this chapter previously appeared as a journal article in Diabetes. The original 
citation is as follows: *Kurtz, C. L., *Peck, B. C. E., Fannin, E. E., Beysen, C., Miao, J., 
Landstreet, S. R., Ding, S., Turaga, V., Lund, P. K., Turner, S., Biddinger, S. B., Vickers, K. C., 
and Sethupathy, P. (2014) MicroRNA-29 fine-tunes the expression of key FOXA2-activated 
lipid metabolism genes and is dysregulated in animal models of insulin resistance and diabetes. 
Diabetes. 63, 3141–3148. http://doi.org/10.2337/db13-1015 
*Denotes co-first authorship. 
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2010; Rayner et al. 2010; Rayner, Sheedy, et al. 2011) and non-human primates(Rayner, Esau, et 

al. 2011), as well as insulin signaling in cultured human hepatocytes(Dávalos et al. 2011). Most 

recently, both miR-103/107 and miR-802(Kornfeld et al. 2013) were shown to regulate insulin 

sensitivity and glucose tolerance in mice(Trajkovski et al. 2011; Kornfeld et al. 2013). These 

findings strongly support the notion that miRNAs are critical players in pathways that underlie 

metabolic disease etiology, thus raising the possibility that miRNA-based therapy could be 

relevant for type 2 diabetes and related metabolic syndromes.  

miR-29 has been demonstrated to be an important regulator of numerous biological 

processes, including neuronal maturation(Kole et al. 2011), fibrosis(van Rooij et al. 2008)3, 

hematopoiesis(Han et al. 2010), replicative senescence(Martinez et al. 2011), and immune 

response(Ma et al. 2011). Our recent in silico work identified miR-29 as the strongest candidate 

miRNA regulatory hub in the type 2 diabetes gene network(Baran-Gale et al. 2013). Other 

groups have shown that miR-29 is highly responsive to glucose and may regulate β-cell 

proliferation and insulin secretion(Pullen et al. 2011; Bagge et al. 2012). We sought to 

investigate miR-29 in the liver, which is a metabolic tissue of critical relevance to type 2 diabetes 

etiology. 

In this study, we demonstrate that: 1) hepatic miR-29 and Foxa2 mRNA are significantly 

up-regulated in two different animal models of insulin resistance; 2) the insulin-sensitizing drug 

Pioglitazone corrects hepatic miR-29 and Foxa2 levels in the Zucker Diabetic Fatty (ZDF) rat 

model of diabetes; 3) miR-29 levels in hepatocytes are controlled in part by the insulin-regulated 

transcription factor FOXA2; and 4) miR-29 fine-tunes FOXA2-mediated regulation of key lipid 

metabolism genes. Taken together, our findings implicate miR-29 as an important regulatory 

factor for lipid homeostasis and motivate future studies to investigate the utility of miR-29 as a 



21 
 

tissue biomarker of type 2 diabetes drug efficacy, as well as a potential therapeutic target in 

metabolic syndromes.  

Research Design and Methods 

Animal studies 

Female C57BL/6J mice were from a UNC Chapel Hill colony and started at 4 weeks of 

age on high-fat diet (D01060502, 45% kcal from fat) or matched low-fat diet (D01060501, 10% 

kcal from fat) (Research Diets, New Brunswick, NJ). Livers were isolated after 16 weeks of diet 

and RNA was isolated using the Norgen Total RNA Purification kit (Thorold, ON, Canada). 

Male Zucker Diabetic Fatty (ZDF) rats (Charles River, Wilmington MA) were acclimated for 

two weeks and had access to a standard chow diet (Lab Diet). Four weeks of Pioglitazone 

treatment (30 mg/kg/day) started at 8 weeks of age. Blood was collected once per week during 

treatment in order to measure glucose levels. Livers were isolated at 12 weeks of age and RNA 

was isolated using TRiZol. 

Cell culture 

Huh7 cells (human hepatoma) were obtained from Dr. Stanley Lemon’s laboratory at 

UNC Chapel Hill. Huh7 cells were maintained in 5 mM glucose DMEM (Sigma-Aldrich, St. 

Louis, MO) supplemented with 10% FBS, 2 mM L-glutamine, 1 mM Na-pyruvate and 1X 

NEAA (Invitrogen, Grand Island, NY), in 100 mm collagen 1 coated cell culture dishes (Becton-

Dickinson, Bedford, MA). For transfections, cells were split into 6-well collagen-1 coated plates 

(Becton-Dickinson) to approximately 70-80% confluency and allowed 24 hours to adhere. All 

cells were cultured in a humidified incubator at 37oC and 5% CO2. 
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Transfection studies 

Huh7 cells were plated on collagen-1-coated 6-well plates (Becton-Dickinson, Bedford, 

MA) 1 day before transfection. At ~70-80% confluency, the cells were transfected with either 10 

ηM miRIDIAN hsa-miR-29a mimic (ThermoScientific; Waltham, MA), 10 ηM mmu-miR-29a-

3p LNA inhibitor (Exiqon; Woburn, MA), or 100 ηM ON-TARGET plus human siRNA against 

FOXA2 (ThermoScientific; Waltham, MA) using either Dharmafect 4 (ThermoScientific; 

Waltham, MA) or Lipofectamine 2000 (Life Technologies, Grand Island, NY) transfection 

reagent. A human FOXA2 expression vector containing FOXA2 transcript variant 1 in the 

pCMV6-XL5 plasmid (Origene, Rockville, MD) was transfected (1 µg) using Dharmafect Duo 

transfection reagent (ThermoScientific; Waltham, MA). Forty-eight hours after transfection, total 

RNA was isolated from the cells using the Total RNA Purification Kit from Norgen (Thorold, 

ON, Canada). 

Small RNA-sequencing analysis 

 Total RNA was extracted from mouse liver tissue using the Norgen total RNA 

purification kit (Norgen; Thorold, ON, Canada). RNA quality was assessed by Agilent 2100 

Bioanalyzer, and only very high quality samples with RNA Integrity Number (RIN) above 8.0 

were considered further. Small RNA libraries (n = 2 for each of HFD-fed and LFD-fed mice) 

were generated using the Illumina TruSeq small RNA library preparation kit. These libraries 

were then sequenced on the Illumina HiSeq 2000 platform (50 bp reads). miRNA and isomiR 

identification and quantitation was performed as described previously(Baran-Gale et al. 2013). 

Gene expression (RNA) analysis 

Total RNA was isolated from cultured Huh7 cells or mouse liver tissue using the Total 
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RNA Purification kit (Norgen; Thorold, ON, Canada), and subject to DNase treatment using the 

TURBO DNA-free kit (Applied Biosystems; Grand Island, NY). Complementary DNA (cDNA) 

was synthesized using either the TaqMan microRNA Reverse Transcription kit (Applied 

Biosystems; Grand Island, NY) or the High Capacity RNA to cDNA kit (Applied Biosystems; 

Grand Island, NY) according to the manufacturer’s instructions. Quantitative real-time PCR 

amplification was performed using TaqMan miRNA or gene expression assays in TaqMan 

Universal PCR Master Mix (miRNA qPCR) or TaqMan Gene Expression Master Mix (gene 

expression qRT-PCR) on a BioRad CFX96 Touch Real Time PCR Detection system (Bio-Rad 

Laboratories, Inc., Richmond, CA). Reactions were performed in triplicate using either U6 

(miRNA expression) or RPS9 (gene expression) as the internal control. miRNA and mRNA 

levels were expressed as relative quantitative values (RQVs). All TaqMan assays used in this 

study where purchased from Applied Biosystems, Inc. (Grand Island, NY) and include: miR-29a 

(4427975, 002112), miR-29b (4427975, 000412), miR-29c (444087, 000587), miR-15a 

(4427975, 000389), U6 (4427975-001973), RPS9 (human – 4331182, Hs02339424_g1; mouse – 

4331182, Mm00850060_s1), ABHD5 (4331182, Hs01104373_m1), HMGCS2 (4331182, 

Hs00985427_m1), G6PC (human – 4331182, Hs00609178_m1; mouse – 4331182, 

Mm00839363_m1), PPARGC1A (4331182, Hs01016719_m1), and FOXA2 (human – 4331182, 

Hs00232764_m1; mouse – 4331182, Mm01976556_s1; rat – 4331182, Rn0145600_m1). 

Western blotting 

Protein was isolated forty-eight to seventy-two hours after transfection. RIPA buffer 

(Sigma Aldrich, St. Louis, MO), supplemented with complete protease inhibitor (Roche, 

Indianapolis, IN), phosphatase inhibitor (ThermoScientific, Waltham, MA), 100 mM PMSF in 

100% isopropanol, 0.1% beta-mercaptoethanol (VWR International, Radnor, PA) and 1 mM 
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DTT (Fisher Scientific, Pittsburgh, PA) was used to passively lyse adhered cells. The lysate was 

collected and flash frozen before clarification by centrifugation. Protein concentration was 

calculated using the Pierce® Microplate BCA Protein Assay Kit – Reducing Agent Compatible 

(ThermoScientific, Waltham, MA) and run on an Any kDTM Mini-Protean TGXTM precast gel 

(Bio-Rad; Hercules, CA). Transfer was conducted using Bio-Rad Midi Transfer Packs on the 

Bio-Rad Trans-Blot® Turbo Blotting System. The membranes were blocked in 5% non-fat dry 

milk (Sigma-Aldrich, St. Louis, MO) in TBST and probed with 1:800 anti-ABHD5 antibody 

(Abnova, Cat# H00051099-M01, Taiwan) in 4% BSA (Applied Biosystems, Cat# AM2616) in 

TBST. Goat anti-rabbit secondary antibody (Abcam, Cat# ab131366) was diluted 1:3,000 in 1% 

milk/TBST. β-actin peroxidase (Sigma-Aldrich, St. Louis, MO, Cat# A3854) or GAPDH (Cell 

Signaling; Danvers, MA, Cat# 8884s) diluted 1:40,000 in 1% milk/TBST were used as controls. 

Signal was detected using the Amersham™ ECL™ Prime Western Blotting Detection Reagent 

(GE Healthcare Life Sciences; Piscataway, NJ) following manufacturer instructions and exposed 

using the LiCor C-DiGit Blot scanner (LiCor, Lincoln, NE). Signal intensity was determined by 

densitometry using LiCor Biosciences Image Studio Software.  

Reporter gene (Luciferase) assays 

Human embryonic kidney 293T (HEK293T) cells were plated at 1x105 cells/mL for 24 

hours prior to transient transfection using DharmaFect 4 and 500 ηg/mL MT01 Firefly/Renilla 

luciferase reporter with the entire 3’ UTR of HMGCS2 cloned immediately downstream of 

Firefly luciferase (Genecopoeia). Cells were dual transfected with 10 ηM of miR-29a mimic for 

48 hours prior to cell lysis and dual luciferase assays (Genecopoeia). Site-directed mutagenesis 

was completed using QuickChange II XL kits (Stratagene) and the following primers – Reverse 

5'-agccgttgcaccgtcaggcacaggg-3' and Forward 5'-ccctgtgcctgacggtgcaacggct-3'. A 3 base deletion 
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was created in the middle of the predicted “seed” target site for miR-29 

(…tgcctgacggtggtgcaacggctgatgga…). 

Bioinformatics 

 ChIP-seq data for Foxa2 in mouse liver and islet were published previously(Hoffman et 

al. 2010). Chromatin occupancy sites based on these ChIP-seq data were obtained directly from 

the lead author of the study (Brad Hoffman, University of British Columbia). Candidate Foxa2 

target genes in mouse liver and islet were assembled by cross-referencing the chromosomal 

locations of Foxa2 occupancy sites with gene promoter regions (defined as windows 5 kb 

upstream of transcription start sites as annotated in the RefSeq database). The miR-29ab 

promoter region was identified as recently described(Sethupathy 2013). Target site prediction for 

miR-29 was performed with TargetScan 6.2 (downloaded from http://targetscan.org). Statistical 

enrichment of predicted miR-29 target sites among Foxa2 target genes in the mouse liver and 

islet was assessed according to our recently published method, mirHub(Baran-Gale et al. 2013), 

using the “non-network” mode and requiring a predicted target site to be conserved among at 

least three mammalian species including mouse.  

 

Results 

Hepatic miR-29 is up-regulated in animal models of insulin resistance and is corrected by 

treatment with the insulin-sensitizing drug Pioglitazone 

To determine if hepatic miR-29 levels are altered in the insulin resistant state, we 

investigated two different animal models of metabolic dysfunction. First, we studied female 

C57BL/6J mice placed on a 16-week high-fat diet (HFD; 45% kcal from fat), which resulted in  
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Figure 2.1. Hepatic miR-29 levels are upregulated in diet-induced insulin resistance in 
mice. (A) Fasting blood glucose levels of C57BL/6J female mice on HFD for 16 weeks (n = 3) 
and matched LFD for 16 weeks (n = 3) are shown. (B) miRNA expression levels (RPMM, reads 
per million mapped reads) based on deep sequencing analysis of small RNAs from the livers of 
HFD-fed (n = 2) and LFD-fed (n = 2) C57BL/6J female mice are shown. Each circle represents a 
miRNA that is expressed at RPMM >100 in at least one murine liver sample. Dashed blue lines 
represent 1.5-fold difference in expression between HFD-fed and LFD-fed mice. (C) Relative 
levels (based on sequencing) of miR-29a, miR-29b, and miR-29c in the livers of HFD-fed (n = 
2) and LFD-fed (n = 2) C57BL/6J female mice are shown. (D) Relative levels (based on qRT-
PCR) of miR-29a, miR- 29b, and miR-29c in the livers of HFD-fed (n = 3) and LFD-fed (n = 3) 
C57BL/6J female mice are shown. P-values were calculated according to the one-tailed unpaired 
Student t test. a.u., arbitrary unit. *p < 0.05; **p < 0.01; ***p < 0.001. 
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Figure 2.2. Hepatic miR-29 levels are elevated in a rat model of diabetes and corrected by 
treatment with the insulin-sensitizing drug pioglitazone (PIO). Fasting blood glucose levels 
(A) and relative hepatic levels (based on qRT-PCR) of miR-29a, miR-29b, and miR-29c (B) in 
12-week-old healthy male rats (n = 8), ZDF fa/fa male littermates (n = 11), and pioglitazone-
treated (4 weeks) ZDF fa/fa male rats (n = 6) are shown. P-values were calculated according to 
the one-tailed unpaired Student t test. a.u., arbitrary unit. *p < 0.05; **p < 0.01. 

 

 

significantly elevated (~1.8-fold; p < 0.001) fasting blood glucose levels relative to age-, gender- 

and strain-matched mice on low-fat diet (LFD; 10% kcal from fat) (Figure 2.1A). We performed 

deep sequencing of liver small RNAs and found that miR-29b (~1.8-fold, p < 0.05) and miR-29c 

(~1.9-fold, p < 0.001) were significantly elevated in HFD-fed mice (Figure 2.1B & C, 

Supplementary Table 2.1†), matching the fold increase in miR-802 (Figure 2.1B, Supplementary 

Table 2.12), which was previously identified as a critical mediator of obesity-induced glucose 

intolerance(Kornfeld et al. 2013). To validate this finding, we performed real time quantitative 

PCR (qRT-PCR) and confirmed that hepatic levels of miR-29 were significantly increased in 

HFD-fed mice (Figure 2.1D). 

Next, we examined the Zucker Diabetic Fatty (ZDF) fa/fa rat model, which closely 

                                                
† Supplementary Table 2.1 is available online at 
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db13-1015/-/DC1 
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mimics human adult onset diabetes(Yokoi et al. 2013). We showed that, as expected, fasting 

blood glucose levels  

were significantly elevated (~2.5-fold, p < 0.005) in 12-week old male obese fa/fa rats compared 

to age- and gender-matched lean healthy littermates (Figure 2.2A). We then demonstrated by 

qRT-PCR that hepatic miR-29a and miR-29c levels were significantly (p < 0.05) higher for the 

fa/fa rats compared to the lean littermate controls (Figure 2.2B). Strikingly, we also observed 

that treatment with the insulin-sensitizing drug Pioglitazone for four weeks, which markedly  

improved glycaemia (Figure 2.2A), reduced hepatic miR-29 expression to levels comparable to 

that of the lean controls (Figure 2.2B). 

Hepatic miR-29 expression is controlled in part by the insulin-regulated transcription 

factor FOXA2 

To investigate the molecular mechanism(s) that mediate the up-regulation of miR-29 in 

insulin resistance, we sought to identify hepatic transcription factors (TFs) regulated by insulin 

signaling that could be involved in the control of miR-29 expression. First, we identified the 

transcription start sites (TSS) of miR-29a/b-1 (chromosome 7) and miR-29b-2/c (chromosome 1) 

in human hepatoma cells (HepG2) by analyzing chromatin data from ENCODE using our 

previously described bioinformatic pipeline(Sethupathy 2013). This strategy revealed that the 

most proximal active TSS for miR-29a/b-1 is ~36.5 kb upstream of the mature miR-29a 

sequence and for miR-29b-2/c is ~20kb upstream of the mature miR-29c sequence. We scanned 

these regions for areas of open chromatin and TF occupancy in HepG2 cells, as determined by 

ENCODE, and found >10 binding sites for FOXA2 at the miR-29a/b-1 locus and 4 binding sites 

at the miR-29b-2/c locus (Figure 2.3A). FOXA2 is negatively regulated by insulin(Yoon et al. 

2001; Wolfrum et al. 2004), and opposes insulin action(Puigserver and Rodgers 2006) by 
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promoting hepatic lipid catabolism and fatty acid oxidation(Wolfrum and Stoffel 2006). To 

further support the finding in HepG2 cells, we mined a recently published TF ChIP-seq dataset 

from adult mouse liver(Hoffman et al. 2010) and detected Foxa2 chromatin occupancy at the 

mouse miR-29 promoter regions (data not shown). 

We next performed real time quantitative PCR and observed that hepatic Foxa2 mRNA levels 

were increased in both HFD-fed mice (Figure 2.3B) and diabetic fa/fa rats (p < 0.05; Figure 

2.3C). Moreover, as with miR-29 (Figure 2.3D), hepatic Foxa2 expression in the fa/fa rats 

returned to that of the lean controls upon treatment with Pioglitazone (Figure 2.3C). To more 

directly evaluate the potential for FOXA2 to regulate hepatic miR-29 levels, we performed 

siRNA-mediated knockdown of FOXA2 in Huh7 cells. After 48 hours of siRNA treatment, 

FOXA2 mRNA was significantly reduced (p < 10-12; Figure 2. 3D). Under these conditions, we 

observed an almost 2-fold down-regulation of miR-29a (p < 0.001), miR-29b (p < 0.05), and 

miR-29c (p < 0.01; Figure 2. 3D). We also transiently transfected Huh7 cells with a FOXA2 

expression vector (1 µg), which led to a ~172-fold up-regulation in FOXA2 mRNA levels (p < 

0.05), and a concomitant >2-fold increase in miR-29a (p < 0.05), miR-29b (p = 0.06), and miR-

29c (p < 0.05). Collectively, these data suggest that the insulin-regulated FOXA2 is a 

transcriptional activator of miR-29. 

 

 miR-29 fine-tunes FOXA2 mediated regulation of key hepatic lipid metabolism genes 

Recent studies of GRNs indicate that coordinated regulation by TFs and miRNAs confer 

robustness against environmental fluctuation(Osella et al. 2011). We assessed the extent to which 

miR-29 is predicted to regulate Foxa2 gene targets in the liver. First, we assembled a list of high- 
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Figure 2.3. FOXA2 regulates miR-29 expression. (A) FOXA2 occupancy in HepG2 at the 
miR-29ab and miR-29b-2/c genomic loci are shown (based on ENCODE ChIP-seq data). 
LOC646329 represents the putative primary transcript of miR-29a and miR-29b-1 on 
chromosome 7 and Pri-miR-29b-2 represents the putative primary transcript of miR-29b-2 and 
miR-29c on chromosome 1. (B) Relative levels of Foxa2 mRNA in the livers of C57BL/6J 
female mice on HFD for 16 weeks (n = 3) and matched LFD for 16 weeks (n = 3) are shown. (C) 
Relative levels of Foxa2 mRNA in the livers of 16-week-old healthy male rats (n = 8), ZDF fa/fa 
male littermates (n = 11), and pioglitazone-treated (PIO) (4 weeks) ZDF fa/fa male rats (n = 6) 
are shown. (D) Effects of FOXA2-siRNA treatment (100 ηmol/L) in Huh7 cells on FOXA2 
(mock, n = 14; siRNA, n = 13), miR-29a (mock, n = 12; siRNA, n = 12), and miR-29b and miR-
29c (mock, n = 10; siRNA, n = 8) expression levels are shown. (E) Effects of FOXA2 open 
reading frame (ORF) overexpression plasmid (1 mg) in Huh7 cells on FOXA2 (mock, n = 6; 
plasmid, n = 5), miR-29a (mock, n = 6; plasmid, n = 5), miR-29b (mock, n = 5; plasmid, n = 4), 
and miR-29c (mock, n = 6; plasmid, n = 5) are shown. All transfections were conducted in 
triplicate and results were validated by at least two independent experiments. P-values were 
calculated according to the two-tailed unpaired Student t test. a.u., arbitrary unit. *p < 0.05; **p 
< 0.01; ***p < 0.001. 
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confidence hepatic target genes for Foxa2 from a published ChIP-seq study in mouse liver 

(Methods). We then determined, using our previously published method mirHub(Baran-Gale et 

al. 2013), that the Foxa2 mouse liver target gene set was significantly enriched for predicted 

miR-29 target sites (Figure 2.4A). Notably, we did not observe this enrichment among Foxa2 

target genes in the mouse pancreatic islet, in which the Foxa2 regulatory network is re-wired 

relative to the liver(Hoffman et al. 2010) (Figure 2.4A). To evaluate further the predicted 

FOXA2-miR-29 feed-forward circuit, we experimentally tested three specific instances of the 

circuit with the genes HMGCS2, ABHD5, and PPARGC1A, which encode proteins that activate 

the enzymatic breakdown of fat in the liver(Vilà-Brau et al. 2011; Lord et al. 2012). The mRNA 

levels of all three genes in Huh7 cells were significantly (p < 0.01) increased by the miR-29a 

locked nucleic acid (LNA) inhibitor and significantly (p < 0.05) reduced by the miR-29a mimic 

(Figure 2.4B). Consistent with this observation, the protein levels of ABHD5 were also 

significantly (p < 0.05) up-regulated by the miR-29a LNA inhibitor after 48 hours (Figure 2.4C). 

Also, to determine whether miR-29 regulation of HMGCS2 is mediated through the 3’ UTR, we 

performed a reporter gene assay (Methods). Over-expression of the miR-29a mimic (100 ηM) in 

HEK293T cells significantly reduced (p < 0.01, ~65% loss) relative Firefly luciferase activity 

when the HMGCS2 3’ UTR was inserted downstream of the Firefly reporter gene (Figure 2.4D). 

Moreover, targeted deletion (3 bp) of the predicted miR-29 target site in the HMGCS2 3’ UTR 

substantially mitigated the repressive effect of miR-29 on Firefly activity (Figure 2.4D). Finally, 

siRNA-mediated knockdown of FOXA2 led to a significant (p < 0.01) decrease in the expression 

of HMGCS2, ABHD5, and PPARGC1A (Figure 2.4E). The latter observation suggests that 

FOXA2 is the primary driver of the expression levels of its target genes, whereas miR-29 serves 

as a feed-forward negative modulator (Figure 2.5).  
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Figure 2.4. miR-29 fine-tunes FOXA2-mediated regulation of key lipid metabolism genes. 
(A) Significant enrichment of predicted miR-29 target sites among FOXA2-bound genes in 
mouse liver but not in mouse islet is shown. Dashed line reflects p = 0.05. (B) Effects of the 
miR- 29a mimic (10 ηmol/L) and the miR-29a LNA inhibitor (10 ηmol/L) in Huh7 cells on the 
mRNA levels of FOXA2-bound genes ABHD5 (mimic, n = 8; LNA, n = 6), HMGCS2 (mimic, n 
= 7; LNA, n = 7), and PPARGC1A (mimic, n = 7; LNA, n = 7) are shown. (C) Effect of the 
miR-29a inhibitor (LNA, 10 ηmol/L) in Huh7 cells on protein levels of ABHD5 is shown (mock, 
n = 3; LNA, n = 3). (D) Effects of the miR-29a mimic (100 ηmol/L) in HEK293T cells on the 
relative activity of Firefly reporter constructs containing either wild-type or mutated HMGCS2 
3’UTR are shown. Firefly activity was normalized to Renilla activity. (E) Effects of FOXA2-
siRNA treatment (100 nηol/L) in Huh7 cells on mRNA levels of ABHD5 (mock, n = 10; siRNA, 
n = 10), HMGCS2 (mock, n = 10; siRNA, n = 9), and PPARGC1A (mock, n = 8; siRNA, n = 4) 
are shown. P-values were calculated according to the two-tailed unpaired Student t test. a.u., 
arbitrary unit. *p < 0.05; **p < 0.01; ***p < 0.001. 

Discussion 

This study leveraged in vivo, in vitro, and in silico analyses to uncover a role for miR-29 

as a potentially critical regulator of hepatic metabolic pathways. A prior study suggested that 

miR-29 is significantly elevated in the livers of the diabetic mouse model db/db(Pandey et al. 



33 
 

2011); however, to our knowledge this result had not been validated in other models. We showed 

in this study that liver miR-29 levels are elevated in two different animal models of metabolic 

dysfunction, and notably, are returned to normal levels upon treatment with an insulin sensitizer, 

Pioglitazone, in the ZDF diabetic rat. This finding signals the possibility that miRNAs could 

serve as tissue biomarkers of drug efficacy in type 2 diabetes. 

Two recent miRNA profiling studies reported that type 2 diabetes might be associated 

with reduced levels of plasma miR-29(Zampetaki et al. 2010; Kong et al. 2011). We observe in 

this study that miR-29 is elevated in the liver of animals with insulin resistance and diabetes. The 

apparent inverse correlation between plasma and liver miR-29 levels in type 2 diabetes is 

intriguing. It is now widely appreciated that miRNAs are stably present in circulation and are 

transported by a variety of different types of extracellular vehicles (EVs), including exosomes 

and high-density lipoproteins(Arroyo et al. 2011; Creemers et al. 2012; Vickers and Remaley 

2012; Boon and Vickers 2013; Turchinovich et al. 2013). Several studies have shown that 

numerous cell types secrete miRNAs, which can then be loaded onto EVs and delivered to 

recipient cells with functional integrity(Mittelbrunn et al. 2011; Vickers et al. 2011; Montecalvo 

et al. 2012). However, the mechanisms that regulate intercellular miRNA transfer remain poorly 

characterized and it represents a nascent but promising topic of research. Progress in this area 

will be critical for understanding why liver miR-29 is elevated but plasma miR-29 is reduced in 

type 2 diabetes. miR-29 is highly expressed in numerous metabolic tissues, including the  
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Figure 2.5. Schematic of the FOXA2:miR-29 regulatory circuit in the liver. A possible 
model of FOXA2:miR-29 circuitry in the liver is shown. In the insulin-resistant state, FOXA2 
activity is upregulated, which in turn elevates miR-29 levels. FOXA2 drives the expression of 
genes involved in lipid metabolism, and miR-29 acts as a feed-forward fine-tuner of many of the 
same genes. 

 

 

pancreatic islet(Baran-Gale et al. 2013; van de Bunt et al. 2013), and the relative contribution of 

each of these tissues to circulating miR-29 remains to be determined and merits further 

investigation. 

We also demonstrated in this study that hepatic miR-29 expression is likely controlled at 

least in part by the insulin-regulated transcription factor, FOXA2, which contains >10 ChIP-seq 

derived binding sites in human hepatoma cells at the miR-29ab genomic locus on chromosome 7 

and 4 binding sites at the miR-29bc genomic locus on chromosome 1. The evaluation of the 

combinatorial effect of these binding sites on miR-29 transcription is not trivial; however, it 

certainly warrants further investigation in order to more definitively establish direct FOXA2-

mediated regulation of miR-29. Moreover, future studies in vivo should establish the extent to 

which FOXA2 controls miR-29 during hepatic insulin resistance. 

Finally, we showed that miR-29 serves as a dampener of FOXA2-mediated activation of 

key lipid metabolism genes. For example, FOXA2 transcriptionally activates HMGCS2, which in 
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turn is directly repressed by miR-29. It has been postulated that such TF:miRNA regulatory 

circuits, termed incoherent feed-forward loops, are likely important for noise-buffering of gene 

expression(Tsang et al. 2007; Osella et al. 2011; Siciliano et al. 2013). Further detailed studies in 

vivo may help elucidate the physiological importance of the FOXA2:miR-29 regulatory circuit in 

lipid homeostasis. 

Overall, this study strongly suggests that miR-29 merits further investigation as a 

candidate biomarker of metabolic status and drug efficacy, an etiological factor in type 2 

diabetes, and a potentially important therapeutic target for a range of metabolic disorders. 

Follow-up studies in the Sethupathy laboratory using a locked nucleic acid (LNA) against miR-

29 family in vivo resulted in reduced plasma cholesterol and liver fatty acid content, suggested a 

strong role for miR-29 on lipogenesis in mice(Kurtz et al. 2015). However, a significant change 

was not observed in plasma glucose levels upon treatment with miR-29 inhibitor, though plasma 

insulin levels were reduced(Kurtz et al. 2015). Importantly, these initial studies were conducted 

in mice, and will need to be repeated in other models such as non-human primates to better 

predict their effect in humans.  

Current treatment modalities for type 2 diabetes include pharmacotherpeutics such as 

Metformin, PIO or Rosiglitazone. However, both PIO and rosiglitazone have severe counter 

indications, as they are linked to increased risk of heart failure related death(Ahmadian et al. 

2013) and do not prevent diabetes-related complications. Treatment with Metformin may lead to 

increased weight gain and hypoglycemia, and many doctors choose to supplement Metformin 

treatment with second-line anti-diabetic drugs, some of the most effective of which are GLP-1 

receptor agonists (Zinman et al. 2009; Reusch et al. 2014). GLP-1 is a hormone secreted by 

intestinal epithelial enteroendocrine cells (EECs). Interestingly, Roux-en-Y gastric bypass 



36 
 

surgery, which bypasses a large portion of the small intestine, has been shown to rapidly improve 

type 2 diabetes. This recovery is likely due at least in part to increased intestinal 

gluconeogenesis(Troy et al. 2008) and jejunal leptin activity(Rasmussen et al. 2014). While the 

majority of studies focus on liver, adipose, and pancreatic islets in type 2 diabetes progression 

(Figure 2.6), these bariatric surgery studies emphasize the importance of the intestine as a 

metabolic organ and mediator of metabolic disease warranting further investigation. 

The intestine is understudied as a metabolic organ, and the field lacks understanding of 

miRNA expression and function in the intestine during health and disease. To move towards 

bridging this gap in understanding, the remaining chapters seek to first establish intestinal 

miRNAs as biomarkers of a GI disease (Chapter 3), identify functional roles for miRNAs in 

regulating intestinal physiology (Chapter 4), and finally evaluate how environmental factors 

regulate miRNA expression and function in the IE (Chapter 5). 

 

 

Figure 2.6. The intestine is an understudied metabolic organ. The number of PubMed search 
results are shown for the terms, “type 2 diabetes” AND [tissue]. Search was performed on 
7/3/16.  
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CHAPTER 3 – MICRORNAS CLASSIFY DIFFERENT DISEASE BEHAVIOR 
PHENOTYPES OF CROHN’S DISEASE AND MAY HAVE PROGNOSTIC UTILITY* 

 

Crohn's disease (CD) results from an aberrant immune response to the enteric microbiota 

in a genetically susceptible host. CD susceptibility genes identified through genome-wide 

association studies (GWAS) highlight mechanistic pathways. While many associated hits are 

found within innate immunity pathways, there are substantial overlap of GWAS hits for CD and 

type 1 and type 2 diabetes, including CDKAL1, GCKR, THADA, IL2RA, IL10, PTPN2 and 

others(Lees et al. 2011), suggesting underlying common biology. Chronic inflammation is a risk 

factor for the development of type 2 diabetes(Dregan et al. 2014). Identifying biomarkers and 

potential therapeutic targets for CD and other chronic inflammatory diseases may provide insight 

into common disease pathogenesis and have substantial benefit for patients with metabolic 

diseases. 

 The innate immune system forms the first line of defense against pathogens and mediates 

mucosal responses to resident microbiota. Microbial recognition is initiated by pathogen-

associated molecular patterns triggering extracellular receptors termed toll-like receptors or 

intracytoplasmic nucleotide-binding oligomerization domain-containing protein (NOD)-like 

                                                
* Portions of this chapter previously appeared as a journal article in Inflammatory Bowel 
Diseases. The original citation is as follows: Peck, B. C. E., Weiser, M., Lee, S. E., Gipson, G. 
R., Iyer, V. B., Sartor, R. B., Herfarth, H. H., Long, M. D., Hansen, J. J., Isaacs, K. L., Trembath, 
D. G., Rahbar, R., Sadiq, T. S., Furey, T. S., Sethupathy, P., and Sheikh, S. Z. (2015) 
MicroRNAs Classify Different Disease Behavior Phenotypes of Crohn's Disease and May Have 
Prognostic Utility. Inflammatory Bowel Diseases. 21, 2178–2187. 
http://doi.org/10.1097/MIB.0000000000000478 
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receptors. This leads to downstream signaling through pathways regulated by nuclear factor 

kappa-B, mitogen activated protein kinase, and interferons(Geremia et al. 2014). 

A number of miRNAs have already been identified as regulators of pathways that 

underlie the pathogenesis of inflammatory bowel diseases (IBD), which includes CD and 

ulcerative colitis (UC). For example, miR-192, miR-122, miR-29 and miR-146a have been 

shown to target and repress NOD2, which has been implicated in CD(Brain et al. 2013; Y. Chen 

et al. 2013; Ghorpade et al. 2013; Chuang et al. 2014). Furthermore, a single nucleotide 

polymorphism (SNP), rs3135500, in the 3’UTR of NOD2 weakens the miR-192 target site 

resulting in reduced inhibition of NOD2(Chuang et al. 2014). Another miRNA regulator of 

NOD2 expression, miR-146a, has been shown to drive interleukin 6 (IL-6) and tumor necrosis 

factor (TNF) secretion in muramyl dipeptide (MDP) activated macrophages in experimental 

models of colitis(Ghorpade et al. 2013). 

Recent studies have performed miRNA profiling in tissues of patients with IBD. Most of 

these studies used either microarray platforms(F. Wu et al. 2008; Fasseu et al. 2010; Takagi et al. 

2010; F. Wu et al. 2010) or quantitative reverse transcriptase PCR (qRT-PCR)(Feng et al. 2012; 

Pekow et al. 2012; Z. Huang et al. 2014). These approaches are informative, but harbor at least 

three major limitations. First, they are limited to known miRNAs, and are therefore not sensitive 

to functionally distinct miRNA variants known as isomiRs. Second, they often cannot adequately 

distinguish among miRNAs in the same family that differ by only one or two nucleotides. Third, 

microarrays have low dynamic range, which mitigates the accuracy of differential miRNA 

expression analysis across samples, particularly for more lowly expressed miRNAs.  

Small RNA-sequencing, while not without its own biases(Jayaprakash et al. 2011; 

Sorefan et al. 2012; Baran-Gale et al. 2013), ameliorates each of these three limitations. To our 
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knowledge, only one study has used this technology to investigate miRNAs in IBD(Lin, Cao, et 

al. 2013). In our study, we performed next-generation sequencing (NGS) of small RNAs (small 

RNA-seq) isolated from macroscopically non-inflamed colon tissue obtained from a set of 

extensively phenotyped patients with CD. We stratified the patients based on inflammatory, 

stricturing, or penetrating CD, and identified unique colonic miRNA signatures of each class. We 

also studied the effect of inflammation on miRNA expression through small RNA-seq of 

matched colon samples obtained from macroscopically inflamed regions from a subset of 

patients with CD. To determine disease-specificity of the inflammation effect, we used tissue 

samples from inflamed and non-inflamed regions of the colon in UC patients as controls. These 

studies revealed specific miRNAs that serve as colonic markers of distinct disease behaviors in 

CD. Furthermore, we reveal the potential prognostic utility of miRNAs in CD by demonstrating 

that miR-215 expression in index biopsies of well phenotyped patients with non-penetrating CD 

obtained at the time of diagnosis may predict progression to penetrating CD. Finally, using a 

statistical simulation strategy, we identified candidate miRNA drivers of the gene expression 

profiles associated with CD.  

 

Research Design and Methods 

Patient Population 

Well-characterized CD patients from the adult IBD Center at University of North 

Carolina were included in this study. A total of 35 samples were submitted for small-RNA and 
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RNA-seq analyses (Supplemental Digital Content, Table 3.1†). For qRT-PCR validation, 15 

Non-IBD controls as well as 20 CD and 6 UC patients were analyzed (Supplemental Digital 

Content, Table 3.2). In the prospective study, index biopsies from 10 NIBD control samples, 6 

non-B3 CD patients, and 6 B3 patients were analyzed (Supplemental Digital Content, Table 3.3). 

This study received IRB approval at UNC Chapel Hill (Protocol #s 10-0355 & 15-0024). 

Phenotyping 

All data were collected by chart review and stored in a secured database. For the purpose 

of this study, phenotype was defined as all variables that were not genetic. 

Clinical Phenotype 

Clinical phenotypes included demographic and clinical variables: age, gender, disease 

duration, age at diagnosis, disease location, and type of disease behavior (Supplemental Digital 

Content, Table 3.4 & 3.5). B1: non-stricturing, non-penetrating, B2: stricturing, B3: 

penetrating/fistulizing. Stricturing disease was defined as the occurrence of constant luminal 

narrowing demonstrated by radiologic, endoscopic or surgical examination combined with pre-

stenotic dilatation and/or obstructive signs or symptoms. Penetrating disease was defined as the 

presence of perianal, entero-enteric or entero-vesicular fistulae, intra-abdominal abscesses or 

intestinal perforation.  

Identification of formalin-fixed, paraffin-embedded (FFPE) sections in patients with CD 

We identified twelve adult patients followed at UNC’s adult IBD clinic for inclusion into 

the study. Each patient was diagnosed at UNC with FFPE tissue available from a 

                                                
† Supplemental Digital Content are available with the published version of the paper online at 
http://journals.lww.com/ibdjournal/Fulltext/2015/09000/MicroRNAs_Classify_Different_Diseas
e_Behavior.20.aspx  
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macroscopically and microscopically quiescent section of the colon taken at the time of 

diagnosis (index biopsy). All 12 patients at time of diagnosis had a B1 CD phenotype. 6 of 12 

patients as of 2015 had progressed to a B3 penetrating CD phenotype (5 with perianal fistulizing 

CD and 2 with intra-abdominal abscess secondary to CD affecting the terminal ileum). 6 of 12 

patients remained in the B1 phenotype (2 of 6 with disease remission and 4 of 6 with active CD). 

Mucosal sections were identified by a pathologist (DGT) from each FFPE sample and scrolls 

were obtained to process for small RNA isolation (Supplemental Digital Content, Table 3.3, 

Supplemental Digital Content, Fig 3.1-2). Sections were selected for no or minimal chronic 

inflammation. The presence or absence of acute (active) and chronic inflammation was 

determined after review of each H&E stained slide. Activity was determined by the presence of 

histologic features of acute inflammation, including neutrophilic inflammation of crypt 

epithelium and crypt abscess formation. Chronicity was determined based upon the presence of 

features such as architectural distortion and basal lymphoplasmacytosis of the lamina propria. 

Degree of activity was determined based on the percentage of mucosa involved by active 

inflammation. 

RNA isolation 

RNA was isolated from fresh-frozen human colon tissues using the Qiagen RNeasy Mini 

Kit (Valencia, CA), which preserves both miRNA and mRNA content. This kit utilizes a column 

based DNase treatment to eliminate DNA contamination. miRNA was enriched from FFPE 

tissue samples using the Roche HighPure miRNA Isolation Kit (Penzberg, Germany, 

Supplemental Digital Content, Figure 3.2). RNA purity and integrity were assessed with Thermo 

Scientific Nanodrop 2000 (Waltham, MA) and Agilent 2100 Bioanalyzer (Santa Clara, CA), 

respectively.  
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Small RNA and mRNA-sequencing and expression analysis 

Small RNA libraries were generated using Illumina TruSeq Small RNA Sample 

Preparation Kit (San Diego, CA). Single-end (50 bp) sequencing was performed on the Illumina 

HiSeq 2500 platform at the UNC High-Throughput Sequencing Facility (HTSF). Twelve 

libraries were randomly assigned to each sequencing lane. miRNAs and their isomiRs were 

annotated and quantified according to our previously described bioinformatics analysis 

pipeline(Baran-Gale et al. 2013). Sequencing quality and mapping statistics were compared 

across all samples (Supplemental Digital Content, Table 3.6). miRNAs with an expression level 

of 100 reads per million mapped (RPMM) in at least one sample were considered for differential 

expression analysis.  

Libraries for RNA-seq were prepared using the Illumina TruSeq polyA+ Sample Prep 

Kit. Paired-end (50 bp) sequencing was carried out on the Illumina HiSeq 2500 platform at the 

UNC HTSF. Genotype data from the Illumina Immunochip was available for all samples with 

RNA-seq data. Genotype imputation was performed with MaCH-admix(E.Y. Liu et al. 2013), 

and custom genomes were created using genotype calls for all genotyped and imputed variants. 

RNA-seq reads were then aligned to personalized genomes using the “SNP-tolerant” GSNAP 

software(T.D. Wu and Nacu 2010). This alignment pipeline allows for elimination of mapping 

biases that arise from discrepancies in genetic variation between individual samples and a 

standard reference genome, at both homozygous and heterozygous sites. Sequencing quality and 

mapping statistics were compared across all samples (Supplemental Digital Content, Table 3.7). 

Differentially expressed (DE) genes in CD samples relative to NIBD samples were identified by 

unpaired Student’s t-test after variance stabilizing transformation of the data (DESeq(Anders and 

Huber 2010)).  
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miRNAs and genes were considered significantly DE in CD relative to NIBD if they had 

a log2 (fold-change (FC)) ≥ +/- 1.0 at a p-value ≤ 0.05 by an unpaired two-tailed Students t-Test. 

Small RNA and mRNA-sequencing data were deposited in GEO (Accession #GSE66209). 

Quantitative reverse transcriptase PCR 

Total RNA was isolated from tissues using the Norgen Total RNA Purification kit 

(Thorold, Ontario, Canada). Fifty ηg RNA was used for reverse transcription with the Life 

Technologies TaqMan microRNA Reverse Transcription kit. miRNA qRT-PCR was performed 

using the TaqMan Universal PCR Master Mix per Life Technologies’ protocol, on a BioRad 

Laboratories CFX96 Touch Real Time PCR Detection System (Richmond, CA). Reactions were 

performed in triplicate using RNU48 as the normalizer. 

miRhub analysis 

Candidate master miRNA regulators were identified by miRhub(Baran-Gale et al. 2013; 

Kurtz et al. 2014), using the “non-network” mode and requiring a predicted target site to be 

conserved between human and at least one other species. 

 

Results 

Small RNA-sequencing reveals distinct miRNA signatures in the non-inflamed colon of CD 

patients with different disease behaviors 

To characterize the small RNA transcriptome in different phenotypic classes of CD, we 

performed high-throughput sequencing of small RNA isolated from non-inflamed colon tissue 

from 21 patients and 14 NIBD controls (Methods). We obtained an average of ~18.5 million 

reads per sample, of which an average of ~75% were mapped to the human genome 
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(Supplemental Digital Content, Table 3.6). Individual miRNAs were annotated and quantified 

according to our previously described small RNA-seq analysis pipeline (Methods, GEO 

#GSE66209). We found that the expression levels of four miRNAs (miR-31-5p, miR-149-5p, 

miR-150-5p, and miR-375) were significantly altered (log2 (FC) > 1 or < -1, p < 0.05, two-tailed 

unpaired Student’s t-test) in CD compared to NIBD controls (Figure 3.1A). 

To identify miRNAs associated with specific CD phenotypes, we stratified the 21 

patients according to their disease subclass (B1/non-stricturing, non-penetrating, n = 8; 

B2/stricturing, n = 6; B3/penetrating, n = 7) and compared miRNA profiles in each class with 

those of the NIBD control group. We found 9, 6, and 9 significantly (log2 (FC) > 1 or < -1, p < 

0.05) DE miRNAs in the B1, B2, and B3 classes, respectively (Figure 3.1B-D, Supplemental 

Digital Content, Table 3.8). These included several 5’-end variants of canonical miRNAs 

(referred to as 5’-isomiRs), such as miR-375-3p+1, miR-143-3p-1, and miR-378a-3p+1, which 

have been shown to be functionally relevant and are only distinguishable from their canonical 

counterparts by sequencing-based analysis(Cloonan et al. 2011; Baran-Gale et al. 2013; Tan et 

al. 2014). 

Strikingly, we found that the majority of the significantly DE miRNAs in each disease 

class were unique to that class (Figure 3.1). Specifically, 9/9, 4/6, and 7/9 miRNAs were 

exclusively DE compared to NIBD controls in B1, B2, and B3, respectively (Figure 3.1E). For 

example, miR-150-5p, which normally represses the immune response(Changchun Xiao et al. 

2007), was significantly down-regulated only in the B1 disease class (Supplemental Digital 

Content, Figure 3.3). Also, miR-31-5p (up), miR-149-5p (down), miR-196b-5p (down), miR-215 

(up), miR-223-3p (up), and miR-203 (down) were altered in B2 and/or B3, both of which exhibit 

fibrosis and penetrating/fistulizing phenotypes, but not in B1 (Figure 3.2). The down-regulation  
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Figure 3.1. Colonic miRNAs are differentially expressed between Crohn’s disease patients 
and controls. Scatter plots showing average miRNA expression as determined by small RNA-
seq comparing (A) CD, (B) B1/non-stricturing, non-penetrating class, (C) B2/stricturing class, 
and (D) B3/penetrating class to NIBD patient samples. (E) Venn diagram showing overlap of 
significantly DE microRNAs relative to NIBD. Grey shaded region indicates log2 (FC) < 1 or > -
1. Size of point indicates significance level as determined by a two-tailed unpaired Student’s t-
Test, while color indicates direction of change. miRNAs achieving significance and log2 (FC) of 
> 1 or < -1 change in expression are labeled and considered DE.  

 

 

of miR-196(Kashiyama et al. 2012) and miR-203(Song et al. 2014), as well as the up-regulation 

of miR-192/215(Chung et al. 2010) and miR-223(Oglesby et al. 2013) have been associated with 

fibrosis in different tissues including kidney and skin. miR-31-5p and miR-149-5p were 

significantly DE in both B2 and B3 classes (Figure 3.2A, G). Although ileocolonic miR-31 

levels were previously associated with CD(Olaru et al. 2011; Lin, Welker, et al. 2013), miR-149-

5p has only been reported previously as a plasma marker of CD(Dalal and Kwon 2010; F. Wu et 

al. 2010). 

To validate these findings, we performed qRT-PCR (Methods) for three miRNAs (miR-

31-5p, miR-215, and miR-149-5p). We confirmed that all three were unchanged in B1 but DE in 
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both B2 and B3 (Figure 3.3). miR-31-5p was the most prominently up-regulated in both B2 (7.6-

fold) and B3 (9.2-fold), whereas miR-215 was more modestly up-regulated in B3 (1.7-fold), and 

miR-149-5p was significantly down-regulated in both B2 (-3.6-fold) and B3 (-2.6-fold). 

Taken together, these results reveal distinct miRNA signatures associated with different CD 

disease classes. In particular, patients with B2/stricturing and/or B3/penetrating phenotypes 

exhibit a completely different colonic miRNA profile than patients without either of those 

conditions. To our knowledge, these findings are the first to demonstrate that molecular subtypes 

of CD stratify according to miRNA profiles.  

Inflammation is not a primary driver of miR-31-5p, miR-215, and other CD-associated 

miRNAs 

To determine whether the DE miRNAs are further dysregulated by active inflammation, 

we performed small RNA-seq on total RNA isolated from inflamed colon tissue from six 

individuals with CD, including at least one from each disease class (B1, n = 3; B2, n = 1; B3, n = 

2), and compared the miRNA profiles with those of the patient-matched non-inflamed tissue 

(Supplemental Digital Content, Figure 3.4A, B; Supplemental Digital Content, Table 3.6, GEO 

#GSE66209). We found that none of the 22 miRNAs that were found to be significantly DE in 

the non-inflamed colon of B1, B2, or B3 classes of CD patients (Figure 3.1) were significantly 

altered in the matched inflamed tissue (Figure 3.4, Supplemental Digital Content, Figure 

3.4A,C,D), although miR-149-5p did trend upward (Figure 3.4E). As a positive control, we 

compared miR-132 and miR-99b-5p, both of which are known to be associated with pro-

inflammatory processes(Tserel et al. 2011; Maharshak et al. 2013), and found that they were 

indeed significantly elevated in inflamed relative to non-inflamed colon tissue (Supplemental 

Digital Content, Figure 3.4E & F). These findings suggest that the CD-associated miRNAs we 
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Figure 3.2. miRNAs are variably expressed across Crohn’s disease subtypes. miRNA 
expression (RPMM) as determined by small RNA-sequencing is shown for (A) miR-31-5p, (B) 
miR-196b-5p, (C) miR-215, (D) miR-223-3p, (E) miR-149-5p, (F) miR-203, in NIBD (grey, n = 
14) and CD (black, n = 21) patient samples. CD samples are further categorized as B1 (purple, n 
= 8), B2 (pink, n = 6), or B3 (orange, n = 7). Mean and standard error for each group are 
depicted using horizontal and vertical bars. Significance is determined using a two-tailed 
unpaired Student’s t-Test comparing each group to NIBD samples, *p < 0.05, **p < 0.01, ***p < 
0.001. 
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Figure 3.3. qRT-PCR confirms differential expression of four colonic miRNAs in Crohn’s 
disease patients and controls. Relative miRNA expression levels (2-ΔCt) as determined by qRT-
PCR and normalized to RNU48 are shown for (A) miR-31-5p, (B) miR-215, (C) miR-149-5p, in 
NIBD (n = 15, grey) and CD (n = 20, black) patient samples. CD samples are further categorized 
as B1 (purple, n = 7), B2 (pink, n = 6), or B3 (orange, n = 7). Mean and standard error for each 
group are depicted using horizontal and vertical bars. Significance is determined using a two-
tailed unpaired Student’s t-Test comparing each group to NIBD samples, *p < 0.05, **p < 0.01. 
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have identified are molecular markers of genetic predisposition to CD, as opposed to indicators 

of an acute inflammatory process.  

We measured miR-31-5p by qRT-PCR in colon tissue with low-grade inflammation from 

patients with UC (n = 6) and found that the levels were not changed compared to colon tissue 

from normal controls (n = 15) (Figure 3.4G). Interestingly, miR-31-5p was 4.2-fold elevated in 

UC patient-matched inflamed tissue (Figure 3.4G), unlike what we observed in CD (Figure 

3.4A).  

Taken together, these findings indicate that while inflammation may modulate miR-31-5p 

in some disease contexts such as psoriasis(N. Xu et al. 2013) or even within the IBDs (UC, 

Figure 3.4G), biological processes other than inflammation are primarily responsible for the 

dysregulation of colonic miRNAs, such as miR-31-5p, miR-215, and miR-196b-5p, in CD.  

miR-215 is a potential predictor of a penetrating disease phenotype in CD 

To determine whether miR-31-5p, miR-149-5p, and miR-215 could predict the 

progression of a B1 CD phenotype to a B3 phenotype, we obtained from twelve patients FFPE 

colon tissue that was available from biopsies taken at the time of diagnosis at the UNC Hospital. 

All twelve patients were classified as B1-type CD at the time of diagnosis. Six out of the twelve 

patients subsequently developed a B3 phenotype (“B1àB3”) whereas the remaining six did not 

(“B1ànon-B3”). We performed qRT-PCR (Methods) for three miRNAs (miR-31-5p, miR-215, 

and miR-149-5p) on small RNAs enriched from the FFPE tissue. There was no statistical 

difference in expression of the miRNAs between the two groups (Figure 3.5A and Supplemental 

Digital Content, Figure 3.5A & B). However, a post-hoc analysis revealed that two of the 

patients (both in the B1ànon-B3 group) were in complete clinical and mucosal remission, while 

the remainder had active disease. Adjusting for these two patients, we found that miR-215 was   
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Figure 3.4. Differential expression of miRNAs is not dependent on inflammation status. 
miRNA expression (RPMM) as determined by small RNA-sequencing is shown for (A) miR-31-
5p, (B) miR-196b-5p, (C) miR-215, (D) miR-223-3p, (E) miR-149-5p, (F) miR-203, in six 
matched non-inflamed (NI, grey) and inflamed CD samples (IF, black) patient samples. (G) 
Relative miR-31-5p expression levels (2-ΔCt) as determined by qRT-PCR and normalized to 
RNU48 are shown for samples from NIBD patients (n = 15), matched non-inflamed (NI) and 
inflamed (IF) CD patients (n = 19), and matched NI and IF UC patient samples (n = 6). 
Significance is determined using a two-tailed unpaired Student’s t-Test comparing each group to 
NIBD (blue) samples or matched non-inflamed tissue (red with bar), *p < 0.05. Significance was 
not achieved by a two-tailed paired Student’s t-Test comparing NI to IF in panels A-F. 

 

 



51 
 

 

Figure 3.5. miR-215 may have prognostic utility. Relative miR-215 expression levels (2-ΔCt) as 
determined by qRT-PCR and normalized to RNU48 for B1 patient samples that (A) either 
progressed to a non-B3/penetrating disease (B1->non-B3, n = 6, black) or progressed to 
B3/penetrating disease (B1->B3, n = 6, grey). (B) Samples from Panel B were subcategorized to 
include only B1 samples from patients with active CD that did not progress to B3/penetrating 
disease (B1->non-B3, n = 4) or progressed to B3/penetrating disease (n = 6). Mean and standard 
error for each group are depicted using horizontal and vertical bars. Significance determined 
using a one-tailed, unpaired and unequal variance Student’s t-Test comparing each group to B1-
>non-B3 samples, *p < 0.05. 
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Figure 3.6. RNA-sequencing of matched RNA reveals commonly dysregulated genes across 
disease subtypes and potential master regulatory miRNAs. Venn diagram showing the 
number of differentially expressed genes (p < 0.05) that were (A) upregulated, or (B) 
downregulated, compared to NIBD controls in each of the CD subclasses. Genes that were 
significantly up- or down- regulated in all three classes respectively are shown on the right in the 
bracketed table. (C) Enrichment analysis for target sites of expressed miRNAs (RPMM > 100) in 
differentially expressed genes as determined by RNA-seq. On the x-axis, differentially expressed 
gene lists were divided into upregulated and downregulated genes for four comparisons: CD vs. 
NIBD, B1 vs. NIBD, B2 vs. NIBD, or B3 vs. NIBD. P-values less than 0.05 are shown in shades 
of red. Candidate master regulators are highlighted in orange boxes. 
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4.8-fold enriched in the B1àB3 group of patients relative to B1ànon-B3 (p = 0.049, by one-

tailed, unpaired & unequal variance Students t-Test, Figure 3.5B). To our knowledge this is the 

first description of using miRNAs to prospectively predict disease phenotype in CD. 

Whole transcriptome analysis reveals that miR-31-5p and miR-203 are candidate drivers of 

the colonic gene expression profile in CD 

To determine whether any of the miRNA markers of CD are also candidate master 

regulators of gene networks underlying disease pathogenesis, we first performed paired-end 

high-throughput sequencing of mRNAs isolated from the same colon tissue samples that were 

used for small RNA-sequencing studies (Methods). We obtained an average of ~29.4 million 

paired-end reads per sample, of which an average of ~70% mapped uniquely to the human 

genome (Methods, Supplemental Digital Content, Table 3.7). We used DESeq(Anders and 

Huber 2010) to identify DE genes in CD, as well as in each of B1, B2, and B3 phenotype classes, 

relative to the NIBD control group (Figure 3.6A & B). Similar to the results of the small RNA-

seq analyses, there was very minimal overlap of DE genes between pairwise comparisons of B1, 

B2, and B3 classes (Figure 3.6A & B). These findings highlight the unique molecular identities 

of different disease behaviors of CD. 

We next applied the miRhub algorithm(Baran-Gale et al. 2013; Kurtz et al. 2014), which 

determines whether the predicted regulatory effect of any miRNA on a set of DE genes is 

significantly greater than expected by chance (empirical p < 0.05). Only one significantly 

upregulated miRNA, miR-31-5p, was identified as a candidate master regulator of genes that are 

downregulated in CD (Figure 3.6C). Likewise, only one significantly down-regulated miRNA, 

miR-203, was identified as a candidate master regulator of genes that are up-regulated in CD 

(Figure 3.6).  
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Discussion 

There is a rapidly expanding interest in evaluating the use of miRNAs as potential 

diagnostic markers of IBD. Most studies of miRNA expression in IBD have used qRT-PCR or 

microarrays to quantify miRNA abundance. Notable among these was the demonstration that 

miRNAs were DE in the sigmoid colons of patients with UC(F. Wu et al. 2008). A subsequent 

study demonstrated that none of the CD-associated miRNAs were altered in colon tissues from 

UC patients. Furthermore, miRNA expression in ileal CD was different than colonic CD(F. Wu 

et al. 2010). Inflammation was shown to alter the profiles of many of the implicated miRNAs, 

suggesting inflammation-dependent effects on miRNA expression. Our study is different in its 

unbiased, NGS-based approach to small RNAs. To our knowledge only one other study has 

employed small RNA-seq in patients with IBD(Lin, Welker, et al. 2013). This study, consistent 

with our findings, reported that miR-31 expression was increased in colon tissue from patients 

with CD. Although Lin et al. used tissues from patients with ischemic colitis and infectious 

colitis as controls, the effect of inflammation in the context of CD on miR-31 expression was not 

studied. miR-149 expression was found to be decreased in peripheral blood in patients with CD, 

but again, the effects of active CD versus inactive disease were not studied, making it difficult to 

interpret whether plasma miR-149 was truly a marker of genetic predisposition or a sequela of 

the inflammatory response. Using matched inflamed tissue from the same CD patients, we show 

that select groups of miRNAs, including miR-31, are aberrantly expressed in an inflammation-

independent fashion in patients with CD. This effect was not seen in the inflammatory tissue 

obtained from patients with UC, suggesting the potential for the use of miR-31 as a marker of 

genetic predisposition for CD.  

Perhaps most notably, our study is the first to demonstrate that miRNAs classify different 
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disease behaviors of CD. We identify a unique colonic miRNA profile for CD that is 

characterized by a penetrating (fistulas, perianal and intra-abdominal abscesses) inflammatory 

phenotype compared to a non-penetrating phenotype. Closer examination of the miRNAs 

uniquely altered in each disease behavior revealed pertinent altered biology in CD. For example, 

we found that miR-29c was uniquely downregulated in the B2 class, which is associated with 

stricturing secondary to fibrosis. The miR-29 miRNAs have long been established as potent 

repressors of fibrosis. The downregulation of miR-29c in B2 is consistent with the elevation in 

B2 of several extracellular matrix (ECM) genes, including COL6A1, COL6A3, COL21A1, and 

ELN. In fact, ELN is a validated target of miR-29 in several different cell types(Ott et al. 2011; P. 

Zhang et al. 2012). The downregulation of miR-29c in B2 likely leads to the increased 

expression of ECM genes, thereby contributing to the fibrotic phenotype. Also, miR-203 has 

been shown to regulate TNF-alpha, the major biological target in managing patients with 

CD(Primo et al. 2012). In our study, we found miR-203 to be downregulated in all classes of 

CD, but only significantly in the B2 class, which may contribute to elevated TNF-alpha levels 

seen in CD(Martínez-Borra et al. 2002). Importantly, we found that the degree of inflammation 

did not affect the expression of miR-203.  

Our findings highlight the exciting potential of using a miRNA signature as a disease 

biomarker. Olaru et al. found that miR-224 and miR-31 were increased successively at each 

stage of IBD progression from non-inflamed to inflamed non-neoplastic, dysplastic and finally 

cancer(Olaru et al. 2011; Olaru et al. 2013). Zhang et al. found miR-31 to be dysregulated in 

IBD but not microscopic colitis(C. Zhang et al. 2014). miR-21 is also widely reported as 

dysregulated in UC and CD. Specifically, Ludwig et al. (2013) found that miR-21 was up-

regulated in IBD-associated dysplastic lesions compared to active IBD patients(Ludwig et al. 
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2013). In our study, although highly expressed, there was no statistical difference in miR-21 

expression between NIBD and CD tissue. These differences may be related to use of colonic 

tissue for our study compared to ileal mucosal samples as previously reported(Fasseu et al. 2010; 

F. Wu et al. 2010). However, subgroup analysis based on disease behavior did reveal that there is 

a trend towards higher miR-21 expression in B3 vs. NIBD (FC = 4.99, p = 0.14) that is not seen 

in B2 (FC = 1) or B1 (FC = 1.2) vs. NIBD. This highlights the importance of studying different 

disease classes of CD independently. Future studies, similar to ours but incorporating a larger 

patient cohort, will help make these molecular distinctions more evident. Other than miR-31, we 

did not see significant changes in colonic expression between CD and NIBD patients for 

miRNAs most frequently associated with UC, such as miR-126(Fasseu et al. 2010). 

Our results reveal the importance of accounting for CD disease behavior in experimental 

design and data analysis in order to more sensitively capture potential diagnostic markers and 

therapeutic targets. Previous studies have been inconsistent in identifying miRNAs that may 

serve as biomarkers. Furthermore, no attempt has been made to use a miRNA signature as a 

potential prognostic marker of CD. By focusing on miRNAs that are highly expressed and 

demonstrate differences based on disease behavior, we have identified miRNAs with potential 

diagnostic and prognostic utility. miR-31 expression levels are similar between normal mucosal 

specimens from cecum, ascending, transverse, descending, sigmoid colon and rectum, making it 

a practical choice as a marker, given the frequency of colonoscopies and flexible sigmoidoscopes 

in patients with IBD(Olaru et al. 2011). 

Our study focused on miRNA expression in the colon. Signatures in the small bowel are 

likely different and may add to the value of our study, particularly since it has been shown that 

inflammation does affect miRNA expression in the ileum(Z. Guo et al. 2015). miRNAs that we 
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found to be associated with a penetrating phenotype of CD (B3), including miR-31 and miR-215, 

are known to be increased in the terminal ileum compared to the colon(F. Wu et al. 2010). A 

future study design with samples also obtained from the ileum, incorporating a larger number of 

patients, may be able to pinpoint which miRNAs are associated with penetrating/fibrosing 

disease in the small intestine compared to perianal fistulizing disease in the colon.  

Given the limitations of clinically phenotyping patients with CD, there is a need to 

develop molecular phenotypes that help predict disease behavior. Perhaps the most novel aspect 

of our study is the use of a new “prospective” patient cohort. By carefully selecting a group of 

patients with penetrating CD that on initial presentation lacked the presence of penetrating CD, 

we are able to identify a miRNA that may be predictive of this disease phenotype. Furthermore, 

the ability to test this in a FFPE sample block makes the application of our work a practical 

reality with potential for clinical use. There are many inherent difficulties in patient selection 

when conducting a prospective biomarker study. These include the availability of tissue at time 

of disease diagnosis, availability of detailed and carefully phenotyped patient’s disease course, 

clinical follow-up, and accurate technology for analysis of FFPE samples. Despite these 

challenges and small sample numbers, the study yielded novel and intriguing results that merit 

detailed further investigation. Interestingly, post-hoc analysis of the B1àB3 group showed that 

miR-215 increased most in patients with a penetrating CD phenotype of the ileum (Supplemental 

Digital Content, Figure 3.6) compared to the patients with perianal fistulizing CD. Given the 

recent study showing that peripheral blood miRNAs can be used to distinguish active CD and 

UC from healthy controls, it will be interesting to test the potential of the select group of 

miRNAs that share a common systemic and colonic expression profile. Our findings demonstrate 

that miRNAs can be used to classify different CD disease behaviors and lay the groundwork to 
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study their clinical utility as prognostic markers of IBD.  

To develop novel therapeutics for the treatment of IBD and other GI diseases, we must 

understand the role of miRNAs not only as biomarkers, but also as drivers of disease pathways. 

IBD is a complex disease involving immune cells, GI epithelia, metabolic networks, the 

mesenchyme, and diverse environmental factors(C. Li and Kuemmerle 2014). In combination, 

these factors mediate not only the progression and severity of disease, but also the response to 

treatment. This study investigated differences in miRNA expression from NI punch biopsies of 

CD and NIBD controls. This isolation method enriches for intestinal mucosa, which lacks 

inflammatory immune cells, suggesting that mucosal cell types (epithelia, mesenchyme, 

lymphatic and vasculature) likely drive differential expression of miR-215, miR-31, and miR-

149 in CD. However, the functions of these miRNAs in the intestinal mucosa during intestinal 

homeostasis are still largely unknown. Identifying the cell type(s) of origin for these miRNAs 

altered in CD is an important next step. 

CD is a chronic GI disease, and the IE undergoes constant and rapid renewal. For the IE 

to contribute to CD pathogenesis, there must be substantial changes to IE gene and miRNA 

expression. Our knowledge of the role of miRNAs during normal IE physiology is still quite 

limited, despite their well-established role in the regulation of proliferation and differentiation of 

other tissues and organ systems(Shenoy and Blelloch 2014). Understanding the role of miRNAs 

in normal intestinal epithelial homeostasis and their response to environmental stimuli will be 

vital next steps in developing miRNA therapeutics for CD and other GI diseases, including 

metabolic syndrome.  
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CHAPTER 4 – MIR-30 FAMILY CONTROLS PROLIFERATION AND 
DIFFERENTIATION OF INTESTINAL EPITHELIAL CELL MODELS BY 

DIRECTING A BROAD GENE EXPRESSION PROGRAM THAT INCLUDES SOX9 
AND THE UBIQUITIN LIGASE PATHWAY * 

 

To identify miRNAs potentially involved in intestinal epithelial homeostasis, we started 

by in silico prediction of miRNAs with putative target sites in SOX9, which encodes a 

transcription factor that is well known for its regulatory role in GI biology. Like other members 

of the SRY box family of transcription factors, SOX9 is tightly regulated by a complex network 

of transcriptional, post-transcriptional(S. Lee et al. 2014), and post-translational(She and W.-X. 

Yang 2015) modifiers. It is known to regulate proliferation and differentiation of diverse stem 

and progenitor cells, including but not limited to gonad(Kanai et al. 2005), chondrocyte(Mori 

Akiyama et al. 2003), neural crest(Nunn 2012), lung(Rockich et al. 2013), pancreas(Belo et al. 

2013), and IE(Bastide et al. 2007; Belo et al. 2013; Rockich et al. 2013; Roche et al. 2015). The 

functional effect of Sox family members in general is frequently described as dosage dependent, 

with relative expression levels driving either cellular renewal or differentiation(Kamachi and 

Kondoh 2013; Sarkar and Hochedlinger 2013). Notably, varying levels of Sox9 have been shown 

to mark functionally distinct cell types of the mouse IE. Accordingly, a transgenic reporter 

mouse (Sox9-EGFP) has been developed to identify and isolate both differentiated cell types and 
                                                
* This chapter previously appeared as a journal article in the Journal of Biological Chemistry. 
The original citation is as follows: Peck, B. C. E., Sincavage, J., Feinstein, S., Mah, A. T., 
Simmons, J. G., Lund, P. K., and Sethupathy, P. (2016) miR-30 family controls proliferation and 
differentiation of intestinal epithelial cell models by directing a broad gene expression program 
that includes SOX9 and the ubiquitin ligase pathway. J. Biol. Chem. 
http://doi.org/10.1074/jbc.M116.733733 
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actively cycling IESCs and progenitors based on the levels of cellular EGFP expression driven 

by the Sox9 promoter(Formeister et al. 2009; Gracz et al. 2010; Van Landeghem et al. 2012; 

Andres et al. 2013; Mah et al. 2014). 

SOX9 is not uniquely expressed in IECs, and a few studies to date have assessed miRNA 

targeting of SOX9 in other tissues. For example, miR-145 has been shown to target SOX9 in 

various cancer subtypes(Dynoodt et al. 2013; C.-C. Yu et al. 2013) and chondrocytes(Martinez-

Sanchez et al. 2012). Both miR-145 and miR-495 target SOX9 in mesenchymal stem cells(B. 

Yang et al. 2011; S. Lee et al. 2014), and miR-101 targets SOX9 in hepatocellular carcinoma(Y. 

Zhang et al. 2012). As both miRNA expression and mRNA 3’UTR usage can vary across cell 

types and conditions, these findings are not necessarily generalizable to the IE. To date no study 

has investigated miRNA-mediated regulation of SOX9 in the context of IECs. More importantly, 

roles of specific miRNAs in the control of intestinal epithelial proliferation and differentiation 

are poorly characterized. In this study, we work toward bridging this knowledge gap using in 

silico, in vitro, and in vivo analyses. 

 

Research Design and Methods 

Animals 

All animal studies were approved by the University of North Carolina at Chapel Hill’s 

Institutional Animal Care and Use Committee (IACUC protocol #13-162). Sox9-EGFP female 

mice(Formeister et al. 2009; Gracz et al. 2010; Van Landeghem et al. 2012) on a CD1 

background were fed a standard chow diet (Prolab RMH3000) ad libitum. Eleven week old mice 

were euthanized with a lethal dose of Nembutal (150 µg/gram of body weight) and were 

processed for jejunal IEC dissociation and fluorescence activated cell sorting. 
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IEC dissociation for flow cytometry and FACS 

The small intestine was dissected and flushed with ice cold PBS to remove contents, then 

divided into 3 equal sections. The middle section was considered jejunum, and was prepared for 

FACS as previously described(Van Landeghem et al. 2012; Mah et al. 2014). IECs were sorted 

using a Mo-Flo XDP cell sorter (Beckman-Coulter, Fullerton, CA) at the University of North 

Carolina Flow Cytometry Core Facility using previously described gating parameters(Gracz et 

al. 2010; Van Landeghem et al. 2012; Mah et al. 2014). Cells that stained for CD31 (BioLegend, 

San Diego, CA), CD45 (BioLegend, San Diego, CA), and or Annexin-V (Life Technologies, 

Carlsbad, CA), were excluded prior to sorting. Following sorting, cells were pelleted by 

centrifugation and total RNA was isolated using the Norgen Total RNA kit (Norgen Biotek, 

Thorold, ON, Canada) as per the manufacturer’s instructions. Nanodrop 2000 was used to 

quantify RNA. 

Quantitative Reverse Transcription PCR (qRT-PCR) 

Assays were performed in triplicate using either U6 (miRNA expression) or RPS9 

(mRNA expression) as an internal control. All TaqMan assays were purchased from Applied 

Biosystems, and include: miR-30a (assay ID: 000417), miR-30b (assay ID: 000602), miR-30c 

(assay ID: 000419), miR-30d (assay ID: 000420), miR-30e (assay ID: 002223), miR-101a (assay 

ID: 002253), miR-101b (assay ID: 002531), miR-320a (assay ID: 002277), miR-145 (assay ID: 

000467), U6 (assay ID: 001973), Sox9 (assay ID: Mm00448840_m1), Rps9 (assay ID: 

Mm00850060_s1), SOX9 (assay ID: Hs01001343_g1), HES1 (assay ID: Hs00172878_m1), SI 

(assay ID: Hs00356112_m1), and RPS9 (assay ID: Hs02339424_g1). 
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Cell culture and transfections 

Human intestinal epithelial cells (HIECs) were acquired from the Beaulieu 

laboratory(Perreault and Beaulieu 1996) and were cultured in OptiMEM 1 (Life Technologies) 

supplemented with 10% FBS (Life Technologies), 0.01 M HEPES (Life Technologies), and 5 

ηg/mL hEGF (Invitrogen, Grand Island, NY). Cells were used between passages 20-30, and were 

maintained at 70% confluency. HIECs were seeded onto tissue culture-treated plates and 

transfected at 70% confluency with 3.25 µL/mL Lipofectamine 2000 (Life Technologies).  

Caco-2 colon carcinoma cells were cultured in high glucose DMEM (Sigma-Aldrich, St. 

Louis, MO) supplemented with 10% FBS. Cells were used between passages 18 and 30, and 

were maintained at 70% confluency. Caco-2 cells were seeded onto tissue culture-treated plates 

and transfected at 70% confluency with 1.875 µL/mL Lipofectamine 3000 (Life Technologies). 

Locked Nucleic Acids (LNAs) were purchased from Exiqon (Woburn, MA) including 

hsa-miR-101* (cat. 4101585-101), mmu-miR-30bcd (cat. 199900), and hsa-miR-320a (cat. 

4101458-101). LNAs against mouse miR-30 family members are cross reactive with human 

miR-30 family.  

For MG132 treatment studies, 6 µL of 10 mM MG132 (Z-Leu-Leu-Leu-al, Sigma-

Aldrich, cat. C2211) or DMSO vehicle was added to each well of a 6-well plate for a final 

concentration of 25 µM MG132 at 68 hours post-transfection. Following a 4-hour treatment, 

cells were isolated for RNA and protein as described below. 

Caco-2 differentiation 

Similar to methods previously described(Basuroy et al. 2003; Andres et al. 2013; Gil-

Zamorano et al. 2014), Caco-2 cells between passages 23 - 27 were grown on 100 mm tissue-

culture treated plates (Corning cat. 430167). At 70% confluency, cells were transfected with 100 
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ηM LNA against miR-30bcd, miR-320a, or miR-101*. At 24 hours post-transfection, cells were 

trypsinized, and 2 x 105 cells were seeded onto transwell inserts (Costar #3460, Fisher 

Scientific). Reseeding onto the transwells following transfection was done to avoid differences in 

cell density due to cell death or changes in cell proliferation following transfection with each 

LNA. Differentiation was monitored every other day using transepithelial electric resistance 

(TER) beginning at 72 hours post-transfection. Cells were considered fully differentiated after 1 

week following the beginning of the TER plateau(Briske-Anderson et al. 1997). Throughout 

differentiation, media was changed from both the top and bottom wells every other day 

following TER measurement. At 72 hours post-transfection, undifferentiated cells were 

harvested for RNA. At 21 days post-transfection, differentiated cells were harvested for RNA. 

Western blot 

Protein was isolated from cells, quantified, and run on a gel as previously described in 

Chapter 2(Kurtz et al. 2014). The membranes were blocked 1 hour in 5% milk, before being 

probed overnight at 4°C with SOX9 antibody (1:800, Abcam cat. ab26414). Secondary antibody 

was applied for 2 hours following wash steps at the following dilutions: goat α-rabbit (1:4000, 

Abcam ab97069). Precongugated β-actin-HRP (1:40,000, Sigma-Aldrich cat. A3854) was 

applied for 20 minutes and used as loading control. Western blot densitometry analysis was done 

using ImageJ(Rasband 2008). 

RNA-sequencing 

Total RNA from mock- and miR-30bcd LNA-treated HIECs was isolated at 24, 48, and 

72 hours post-transfection. RNA quality was assessed using Agilent RNA Nano 6000 kit 

(Agilent Technologies, Inc, Santa Clara, CA) then run on a Bioanalyzer 2100 (Agilent). All 
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samples had high RNA integrity numbers (RINs), with RINs above 9.2 (with an average of 9.7). 

Samples were submitted to the UNC High Throughput Sequencing Facility (HTSF) for TruSeq 

Stranded Total RNA library preparation (Illumina, San Diego, CA) and paired-end 50 bp 

sequencing on a HiSeq 2000 (Illumina) multiplexing 6 samples per lane.  

Bioinformatics 

Following sequencing and demultiplexing by the UNC HTSF, reads were aligned to the 

hg19 genome using MapSplice(K. Wang et al. 2010), and transcripts quantified using RSEM(B. 

Li and Dewey 2011) by the UNC Bioinformatics Core Facility. Samples had an average of 119M 

reads, with 94.6% of reads uniquely mapping. Differential gene expression analysis was 

conducted using edgeR(Robinson et al. 2009). Genes with low expression (CPM < 10 in more 

than half the samples) were filtered out of our analysis. Gene counts were then TMM normalized 

and evaluated for differential gene expression. Raw sequencing data, as well as the raw and 

normalized counts tables are available through GEO (Accession # GSE79923). 

 

Results 

miR-30 is predicted to target SOX9 and is robustly expressed in the IE 

We carried out a bioinformatic strategy using TargetScan6.2(Lewis et al. 2005; Grimson 

et al. 2007; Friedman et al. 2009; Garcia et al. 2011) to predict miRNA target sites in the SOX9 

3’UTR that are conserved between mouse and human. We identified putative target sites for nine 

miRNA families. To narrow this list of possible miRNA regulators of SOX9 in the IE, we 

analyzed the only dataset of publically available small RNA-sequencing data from mouse 

intestinal mucosa(McKenna et al. 2010). Only four miRNA families were expressed at a 



65 
 

minimum of 10 reads per million mapped (RPMM): miR-145, miR-101, miR-320, and miR-30 

(Figure 4.1A). Of these, miR-30 has the strongest predicted base pairing with SOX9, consisting 

of an 8-mer seed as well as supplementary 3’-end pairing for two of the family members. 

Moreover, the miR-30 target site and flanking ~15 bases are highly conserved among most 

mammals including human, rodent, dog, opossum, and horse, as well as distant vertebrates such 

as lizard. 

Because the intestinal mucosa includes diverse cell types not limited to epithelia, we next 

sought to evaluate the expression of the members of these four miRNA families across four main 

epithelial cell types. Specifically, we sorted functionally distinct IECs by fluorescence-activated 

cell sorting (FACS) from the jejunum of female conventionally raised Sox9-EGFP mice. This 

model allows for the isolation of four populations based on cellular EGFP, including EECs 

(Sox9High), IESCs (Sox9Low), transit amplifying cells (Sox9Sublow), and differentiated enterocytes, 

Paneth and goblet cells (Sox9Negative). We then performed RT-PCR for each of the four miRNA 

families across each IEC population. miR-101 and miR-145 were very lowly expressed, indeed 

barely detected, in any cell type of the IE (Figure 4.1B). It is worth noting that while miR-145 

was reported to have robust expression in the McKenna et al. (2010) study of the entire intestinal 

mucosa, it was recently demonstrated that miR-145 is specific to mesenchymal cells in the 

intestine(Chivukula et al. 2014). By using FACS, we obtain a highly pure epithelial population, 

whereas the earlier McKenna et al. (2010) data was generated using an intestinal scraping 

method, which could lead to some mesenchymal, lymphatic, and/or vascular contamination. 

Based on these differences, we conclude that it is likely that both miR-145 and miR-101 are 

robustly expressed in a non-epithelial mucosal tissue, but not in IECs. In contrast, members of 

the miR-30 family and miR-320a showed robust expression in IECs (Figure 4.1B). Moreover, 
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only miR-30 family members exhibited differential expression across functionally distinct IECs, 

leading us to select this miRNA family for follow-up analyses.  

Knockdown of miR-30 in vitro results in increased SOX9 mRNA expression but decreased 

levels of SOX9 protein 

To evaluate miR-30 regulation of SOX9 in IECs, we knocked down miR-30 expression 

using LNAs complementary to miR-30b, miR-30c, and miR-30d (LNA30bcd) in human 

intestinal epithelial cells (HIECs). Upon knockdown of these miR-30 family members, we 

observed a significant increase in SOX9 mRNA at 48 and 72 hours post-transfection (Figure 

4.2A), which is consistent with alleviation of negative post-transcriptional regulation of SOX9 by 

miR-30. However, we unexpectedly found that SOX9 protein was significantly down-regulated 

(Figure 4.2A & 4.2B). In fact, SOX9 mRNA and protein expression were strongly inversely 

correlated (Pearson’s r = -0.93, p = 0.006, Figure 4.2A) across three time points post-transfection 

with LNA30bcd. We confirmed that this inverse relationship between SOX9 mRNA and protein 

exists in a second intestinal cell culture model, Caco-2 (Figure 4.2B), indicating that the finding 

is not unique to HIECs. To test for a direct relationship between miR-30 and the SOX9 3’UTR, 

we performed a luciferase reporter assay in Caco-2 cells. We observed increased relative 

luciferase activity in cells transfected with 100 ηM LNA30bcd (Figure 4.2D), consistent with 

direct targeting of SOX9 by miR-30 that has been previously shown in cartilage(Chang et al. 

2016). We hypothesized that the opposite effect of miR-30 inhibition on SOX9 mRNA and 

protein levels could be due to miR-30-mediated regulation of factors that modify SOX9 protein 

stability without affecting SOX9 RNA levels, such as post-translational modifiers (Figure 4.2E).  
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Next-generation high-throughput RNA-sequencing reveals that miR-30 regulates genes 

enriched in the ubiquitin ligase pathway 

To evaluate this hypothesis, we next sought to define the regulatory program that miR-30 directs 

in HIECs and to identify potential miR-30 targets that may be regulating SOX9 protein levels. 

Specifically, we performed next-generation high-throughput RNA-sequencing on total RNA 

isolated from mock- and LNA30bcd-transfected HIECs at three time points (see Methods). 

Following read alignment and transcript quantification, we identified DE genes using 

edgeR(Robinson et al. 2009). To avoid bias from lowly expressed genes, we filtered out genes 

that did not reach an expression threshold of 10 counts per million (CPM) in at least three of the 

samples. A total of 10,096 genes were included in our analysis. We first normalized gene counts 

using the generalized linear model (GLM) in edgeR in order to account for both the treatment 

and time variables in our experimental design. Samples were tightly clustered by treatment and 

time point according to multidimensional scaling, principal components, and hierarchical 

clustering analyses (Figure 4.3A, 4.3B, & 4.3C). Notably, cells treated with 100 ηM LNA30bcd 

at 24 hours post-transfection clustered with mock-transfected samples (Figure 4.3C). 

However, cells treated with 100 ηM LNA30bcd at 48 and 72 hours post-transfection 

clustered into a distinct subclade, indicating that the regulatory effect of LNA30bcd was greatest 

at the later time points. Next, we performed differential expression analysis, and found that half 

of all genes (50.1%, or 5055) included in the analysis are significantly DE (FC ± 1.5 & FDR < 

0.05) between mock- and LNA30bcd-transfected cells in at least one time point post-transfection 

(Figure 4.4A-C, Supplemental Table 4.1†). Notably, while SOX9 was found to be upregulated as 

expected by LNA30bcd treatment at 72 hours post-transfection, it was certainly not the most  

                                                
† Supplemental Table 4.1 & 4.2 are available with the published version of this article, online at 
http://www.jbc.org/content/early/2016/06/03/jbc.M116.733733/suppl/DC1 
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Figure 4.1. miR-30 is predicted to target the 3’UTR of SOX9 and is differentially expressed 
across functionally distinct cell types of the intestinal epithelium. (A) Cartoon depicting the 
SOX9 3’UTR. miRNAs with predicted target sites conserved between mouse and human are 
labeled. Below, we show the conservation of the predicted miR-30 target site (red text) across 
various species (TargetScan6.2). miR-30b and miR-30e targeting are shown in detail with 
predicted base paring colored in red. (B) RT-PCR of Sox9 and miRNAs with predicted target 
sites in the Sox9 3’ UTR across functionally distinct mouse jejunal intestinal epithelial cells (n = 
2-4). Significance determined by Students two-tailed paired t-test relative to non-sorted intestinal 
epithelial cells. ♭p < 0.001, ♮p < 0.01, ♯p < 0.05. 
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Figure 4.2. Knockdown of miR-30 increases SOX9 mRNA and decreases SOX9 protein 
expression. (A) Relative quantitative value (RQV), across three time points, of SOX9 mRNA by 
RT-PCR (left) and protein by Western blot densitometry (right) in HIECs upon either mock-
transfection or 100 ηM LNA30bcd-transfection. (B) RQV of SOX9 mRNA by RT-PCR (left) and 
protein by Western blot densitometry (right) in Caco-2 cells upon mock transfection or 100 ηM 
LNA30bcd transfection after 48 hours (mock and 100 ηM LNA30bcd mRNA n = 15 each, 
protein n = 6 each). (C) Images of representative western blots are shown for the protein 
expression data shown in panels (A & B). (D) Correlation of mean RQVs of SOX9 mRNA and 
protein across time points and transfection conditions. (E) Relative firefly luciferase activity in 
Caco-2 cells at 48 hours after transfection with plasmids encoding both firefly (with and without 
the SOX9 3’UTR) and renilla luciferase genes. Caco-2 cells were subjected to either mock co-
transfection or 100 ηM LNA30bcd co-transfection (n = 10-11 each). (F) Model of miR-30 
regulation of SOX9 in the intestinal epithelium. For panels (A & B), a standard box-and-whisker 
plot is shown, with shaded box indicating interquartile range (IQR), thick horizontal line 
showing median, and extending whiskers showing maximum and minimum points within 
1.5*IQR. Actual data points are plotted as filled circles superimposed on their respective box-
and-whisker plots. 
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robustly or significantly altered gene (Figure 4.4D). 

To evaluate the efficacy of our knockdown, we performed analysis with miRhub(Baran-

Gale et al. 2013; Kurtz et al. 2014; Peck et al. 2015), which tests for miRNA target site 

enrichment among specific genes of interest. We found that both highly conserved and species-

specific predicted miR-30 targets sites were significantly enriched (p < 0.05) in genes 

upregulated at both 48 and 72 hours post-transfection, but as expected not in down-regulated 

genes (Figure 4.4E). At 24 hours post-transfection, predicted miR-30 target sites were not 

enriched. Together, these data suggest that our knockdown of miR-30 using LNA30bcd was 

specific and highly effective in HIECs, particularly in the later time points of our study. 

 To identify genes that might act as post-translational regulators of SOX9 protein in 

response to LNA30bcd treatment, we performed Gene Ontology (GO) Molecular Function 

enrichment analysis(Ashburner et al. 2000; Gene Ontology Consortium 2015) using 

Enrichr(E.Y. Chen et al. 2013) on genes with predicted miR-30 target sites that were 

significantly upregulated (FC > 1.5 & FDR < 0.05) relative to mock-treated cells at each time 

point (see Supplemental Table 4.2 for gene lists). Only three terms were identified as being 

significantly enriched (adjusted p-Value < 0.05; Figure 4.5A & 4.5B) at any time point in the 

upregulated gene sets. Interestingly, these included ‘ubiquitin-protein transferase activity’ and 

‘ligase activity.’ Ubiquitin ligase mediated regulation of SOX9 has been shown previously in 

chondrocytes(Hattori et al. 2013), and therefore is consistent with our hypothesis that miR-30 

may regulate SOX9 protein levels indirectly through control of post-translational modifiers of 

SOX9.  

 To evaluate whether miR-30 influences ubiquitin ligase mediated degradation of SOX9 

protein, we subjected Caco-2 cells to either mock or LNA30bcd transfection and then treated   
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Figure 4.3. Next-generation high-throughput RNA-sequencing of LNA30bcd treated 
HIECs (A) Multi-dimensional scaling plot of normalized reads (counts per million or CPM > 10 
in 3+ samples) in HIECs subjected to either mock-transfection or 100 ηM LNA30bcd-
transfection at 24 hours (24H), 48 hours, (48H) and 72 hours (72H) post-transfection, n = 3 each. 
(B) Principal components analysis of normalized reads (CPM > 10 in 3+ samples) across all time 
points and transfection conditions. (C) Heat map showing all genes with CPM > 10 in 3+ 
samples (n = 10,096). Samples are hierarchically clustered by Euclidean distance. For each 
column, samples are listed along the bottom, with the first letter indicating mock (M) or 100 ηM 
LNA30bcd (L) treated HIECs, followed by the replicate number (1-3), and the time point post-
transfection (24, 48, or 72 hours). 
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Figure 4.4. LNA30bcd-treated HIECs undergo robust changes in gene expression over a 
three-day time course. (A) Venn diagram s showing significantly down-regulated genes (fold-
change or FC < -1.5, FDR < 0.05) across time points in HIECs after 100 ηM LNA30bcd 
transfection compared to mock transfection. (B) Venn diagram showing significantly up-
regulated genes (FC > 1.5, FDR < 0.05) across time points in HIECs after 100 ηM LNA30bcd 
transfection compared to mock transfection. (C) Bar graph showing the number of significantly 
downregulated and upregulated genes across time points. (D) Volcano plot showing 
differentially expressed genes at 72H. Red dot shows SOX9. Horizontal dashed line shows p = 
0.05, and vertical dashed lines indicate FC = -1.5 and 1.5. (E) Results of miRhub analysis to test 
for enrichment of predicted miR-30 target sites in significantly upregulated (purple) and 
downregulated (green) genes at each time point. Our analysis was run human-centric. Each row 
indicates the conservation of the miRNA target site on the gene list, with “Human” indicating a 
site found in human genes, while “Human+1” indicates a site found in human genes and 
conserved in one additional species, and so on. Vertical dashed line (red) indicates empirical p = 
0.05. 
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them with vehicle or MG132, a potent proteasome inhibitor. We found that MG132 treatment for 

4 hours was sufficient to rescue SOX9 protein expression following LNA30bcd treatment 

(Figure 4.5C). This suggests that miR-30 is able to regulate SOX9 protein expression through 

post-transcriptional regulation of ubiquitin ligases (Figure 4.5D). 

miR-30 promotes IEC proliferation and inhibits IEC differentiation 

 Based on previous work, altered levels of SOX9 are expected to lead to changes in the 

balance between proliferation and differentiation(Bastide et al. 2007; Belo et al. 2013; Shi et al. 

2013). Therefore, given the strong regulatory effect of miR-30 on SOX9 protein, we 

hypothesized that treatment of HIECs with LNA30bcd would affect this balance as well. 

Notably, we found by analysis of the RNA-seq data in the HIECs that the expression of genes 

previously associated with regulation of proliferative balance in the IE (Figure 4.6A), including 

CTNNB1(Mologni et al. 2010), DLL4(He et al. 2015), and LGR4(Mustata et al. 2011), were 

significantly reduced. Consistent with this observation, we found that knockdown of miR-30 

significantly reduces HIEC proliferation, as measured by H3-thymidine uptake (Figure 4.6B). At 

48 hours post-transfection, HIECs showed a 65% reduction in H3-thymidine uptake after 

treatment with 100 ηM of LNA30bcd (p < 0.001; Figure 4.6B).  

Given the reduced proliferation and reduced expression of proliferative markers, we 

hypothesized that treatment with LNA30bcd may promote differentiation of IECs. We evaluated 

differential expression of genes known for their role in regulating differentiation in the IE using 

the RNA-seq data. Interestingly, we observed a 5-fold increase in HES1 expression in HIECs 

transfected with 100 ηM LNA30bcd (Figure 4.6B). HES1 is an early marker of enterocyte 

differentiation in the IE(Noah et al. 2011). The Caco-2 cell line is one of very few cell models 

that will spontaneously differentiate into small intestinal enterocyte-like cells and express key  
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Figure 4.5. miR-30 target genes in intestinal epithelial cells are over-represented in the 
ubiquitin ligase pathway. (A & B) Gene Ontology Molecular Function enrichment analysis 
using Enrichr identifies three terms as enriched in the upregulated gene lists across time points. 
p-value (A) and combined scores (B) are shown for upregulated (purple) and downregulated 
(green) gene lists. (C) Relative SOX9 protein expression in Caco-2 cells subject to mock 
transfection (n = 2 each) or 100 ηM LNA30bcd transfection (n = 3 each) at 72 hours post-
transfection following 4 hours of treatment with either 25 µM MG132 or vehicle (DMSO). 
Below, representative western blot. (D) Cartoon showing model of miR-30 regulation of SOX9 
mRNA and protein expression levels. 
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Figure 4.6. miR-30 promotes proliferation and inhibits enterocyte differentiation. (A) 
Relative quantitative value (RQV) of mean counts per million (CPM) of markers of proliferation 
in 100 ηM LNA30bcd treated HIECs across time points. Significance determined by using 
edgeR generalized linear model (GLM) accounting for treatment and time. ♭False Discovery Rate 
(FDR) < 0.001, ♮FDR < 0.01, ♯FDR < 0.05. (B) RQV of H3-thyimidine incorporation in HIECs 
subjected to mock transfection or LNA30bcd transfection (10 ηM or 100 ηM) at 48 hours post-
transfection (n = 12 each). Significance determined by two-tailed unpaired Student’s t-test. ♭p < 
0.001, ♮p < 0.01, ♯p < 0.05. (C) RQV of mean CPM of Hairy and Enhancer of Split 1 (HES1) in 
100 ηM LNA30bcd-treated HIECs across time points (n = 3 each). Significance determined by 
GLM accounting for treatment and time. ♭FDR < 0.001, ♮FDR < 0.01, ♯FDR < 0.05. (D) RQV of 
miR-30c by RT-PCR in Caco-2 cells at 72 hours and 21 days after either mock transfection (72H 
n = 9, 21 days n = 6), 100 ηM LNA30bcd transfection (72H n = 9, 21 days n = 6), 100 ηM 
LNA101* (72H n = 6, 21 days n = 3), or 100 ηM LNA320a (72H n = 9, 21 days n = 6). 
Significance determined using two-tailed unpaired Students t-test. ♭p < 0.001, ♮p < 0.01, ♯p < 
0.05. (E) RQV of Sucrase Isomaltase (SI) by RT-PCR in in Caco-2 cells at 72 hours and 21 days 
after either mock transfection (72H n = 9, 21 days n = 8), 100 ηM LNA30bcd (72H n = 9, 21 
days n = 9), 100 ηM LNA101* (72H n = 6, 21 days n = 6), or 100 ηM LNA320a (72H n = 9, 21 
days n = 9). Significance determined using two-tailed unpaired Students t-test. ♭p < 0.001, ♮p < 
0.01, ♯p < 0.05. 
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markers of mature enterocytes upon reaching confluency(Van Beers et al. 1995; Borchardt 

2011). To test whether miR-30 regulates enterocyte differentiation of IECs, we transfected Caco-

2 cells with 100 ηM LNA30bcd, and allowed the cells to differentiate on transwell membranes 

(see Methods). With a single transfection of LNA30bcd, we observed significant and sustained 

knockdown of miR-30 levels for 21 days, the latest time point measured (Figure 4.6D). At 21 

days post-transfection, we also observed that Caco-2 cells transfected with LNA30bcd expressed 

significantly higher levels of sucrose isomaltase (SI), a classic marker of differentiated 

enterocytes(Zweibaum et al. 1983), compared to mock transfected cells or those transfected with 

LNAs against other miRNAs (Figure 6E). Taken together, our data suggest that miR-30 normally 

acts to promote proliferation and inhibit enterocyte differentiation in the IE through a broad 

regulatory program that includes the proteasome pathway. 

Discussion 

In this study, we sought to investigate miRNA control of intestinal epithelial proliferation 

and differentiation. Our starting point was to identify miRNAs that might regulate SOX9, a key 

transcription factor in intestinal epithelial homeostasis. We focused on miR-30 because it has a 

SOX9 target site that is broadly conserved across vertebrates, including human and rodent, and it 

is robustly and variably expressed among stem, progenitor, and differentiated cell types of the 

IE. Upon knockdown of miR-30 in two intestinal-relevant cell lines, we unexpectedly found 

inverse effects on SOX9 mRNA and protein expression. We performed next-generation high-

throughput RNA-sequencing and found that the upregulated genes with predicted miR-30 target 

sites were most significantly enriched for ubiquitin ligases. Post-translation regulation of SOX9 

by UBE3A has been described previously(Hattori et al. 2013). Moreover, UBE3A does have a 

predicted miR-30 target site, and is upregulated in LNA30bcd-treated HIECS. However, the 
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predicted miR-30 target site in UBE3A is human specific. It is therefore possible that the inverse 

relationship between SOX9 mRNA and protein in response to LNA30bcd treatment is human 

specific. More research will be needed to identify the specific miR-30-directed ubiquitin ligase 

protein that acts on SOX9 protein in IECs. 

Knockdown of the miR-30 family in HIECs and Caco-2 cells resulted in reduced 

proliferation and enhanced enterocyte differentiation. This finding is consistent with the 

relatively higher expression levels of miR-30 in proliferating subpopulations, such as the 

progenitors, compared to non-proliferating enterocytes (Figure 4.1B). Previous literature 

investigating the role of miR-30 suggests a dosage and cell type-specific response on 

proliferation. While increased proliferation has been seen in many cancer cells in response to 

reduced miR-30 levels, studies have found knockdown of miR-30 result in decreased 

proliferation(Agrawal et al. 2009). In terms of differentiation, the miR-30 family has been shown 

to regulate myogenic and osteoblastic differentiation. Upregulation of miR-30 family members 

in myoblasts promotes differentiation(Guess et al. 2015). Alternatively, knockdown of miR-30 in 

an osteoblast precursor cell line promotes differentiation(T. Wu et al. 2012). Our results, and 

those of previous studies, emphasize the importance of conducting cell type-specific analyses on 

miRNA regulatory networks. Moreover, further research is warranted to evaluate miR-30 

regulatory networks in the IE in vivo. 

More broadly, our RNA-sequencing revealed a complex and widespread network of 

genes influenced by knockdown of a single miRNA family. Through time-course mRNA 

profiling following knockdown of a single miRNA family, we found that the effect of treatment 

with LNA30bcd on miR-30 target genes was only beginning to emerge at 24 hours, evident at 48 

hours, and very robust at 72 hours post-transfection. Most studies using LNAs against target 
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miRNAs evaluate knockdown and gene expression changes at a single time point post-

transfection. It is clear from our data that there are highly variable effects of miRNA knockdown 

across a span of only two days, emphasizing the importance of evaluating multiple time points 

following treatment with LNAs. In Caco-2 cells we observed significant knockdown of miR-30 

even 21 days following a single transfection with LNA30bcd; therefore, it would of interest to 

evaluate gene expression at this time point to determine whether the effects on miR-30 target 

genes are still robust. Detailed time-course studies may help elucidate the short-term and long-

term effects of LNA treatment, which has relevance both for experimental design and for 

therapeutic development. 

Our analyses provide new evidence that miR-30 plays a significant role in regulating 

proliferation and differentiation in the IE. Further analyses in vivo (mouse) or through ex vivo 

culture systems (mouse or human) are warranted to extend the definition of miR-30’s function 

across distinct cell types of the IE in health and disease. This study represents one of the very 

first to investigate the regulatory activity of a specific miRNA in IECs using a highly 

interdisciplinary strategy, and therefore provides a blueprint for similar studies of other miRNAs.  

Importantly, given the heterogeneity of cell types within the IE, other miRNAs are also 

likely to be important regulators of IEC function, and many may have cell type-specific 

functions. However, there is a dearth of information regarding miRNA expression in distinct cell 

populations of the IE. In 2010, McKenna et al. published the only small RNA-sequencing data 

from mouse intestine(McKenna et al. 2010), which motivated some of the follow-up studies in 

this chapter; however, McKenna et al. investigated whole mucosa and did not assay functionally 

distinct IEC types separately. Understanding the expression of miRNAs across cell types of the 

IE and in response to environmental stimuli would lay the groundwork for understanding their 
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functions in the context of health and disease. Moreover this knowledge would fill a vital 

knowledge gap in the development of therapeutics toward the treatment of GI diseases.  
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CHAPTER 5 – MICRORNA PROFILING IN INTESTINAL EPITHELIAL 
SUBPOPULATIONS AND FUNCTIONAL STUDIES IN ENTEROIDS IDENTIFY GUT 
MICROBIOTA-RESPONSIVE MIR-375 AS A CANDIDATE REGULATOR OF STEM 

CELL PROLIFERATION1 
 

The IE is a single layer of cells exposed to the intestinal lumen, and is composed of 

multiple cell types including the proliferative IESCs and progenitor cells (also known as transit 

amplifying cells), as well as differentiated absorptive enterocytes and secretory goblet, Paneth, 

and EECs (Figure 5.1A). IESCs divide to yield more rapidly proliferating progenitors that give 

rise to all of the other IEC types and drive continuous renewal of the IE every ~3-5 

days(Creamer et al. 1961). Proper renewal facilitates important intestinal epithelial functions 

including barrier integrity to protect against invasion of harmful toxins present in the intestinal 

lumen, nutrient digestion and absorption, and the production of hormones that regulate systemic 

energy homeostasis. These physiological processes are mediated in part by interactions with 

resident microbiota(Velasquez-Manoff 2015). Studies using GF animals have demonstrated that 

gut microbiota influence intestinal barrier function, nutrient absorption, proliferation, 

differentiation, cellular signaling, and migration(Jaladanki and J.Y. Wang 2011; Everard and 

Cani 2014). However, the molecular factors and mechanisms underlying microbiota-mediated 

control of IEC functions, particularly IESC proliferation, are unknown. 

                                                
1 Portions of this chapter will be submitted for publication in a peer-reviewed journal. The full 
manuscript is available on the preprint server, bioRxiv. See: Peck, B. C., Mah, A. T., Pitman, W. 
A., Ding, S., Lund, P. K., and Sethupathy, P. (2016) Functional transcriptomics in diverse 
intestinal epithelial cell types reveals robust gut microbial sensitivity of microRNAs in intestinal 
stem cells. bioRxiv. http://dx.doi.org/10.1101/087882. 
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microRNAs (miRNAs) have emerged as critical regulatory factors of many biological 

processes in numerous tissues and are known to confer phenotypic robustness in response to 

environmental stimuli. However, less is known about miRNA expression and function in the IE 

when compared to most other tissues. Recently, however, miRNAs were implicated in the 

regulation of IEC physiology. McKenna et al. (2010) demonstrated in mice that the IEC-specific 

knockout of Dicer1, an essential enzyme for canonical miRNA biogenesis, results in altered IEC 

proliferation, differentiation, nutrient absorption, and impaired barrier function, indicating that 

miRNAs are likely important modulators of intestinal homeostasis(McKenna et al. 2010). 

Furthermore, the presence of microbiota in the gut has been shown to alter miRNA expression 

profiles in intestinal macrophages(D. Wang et al. 2012), as well as in whole intestine 

tissue(Dalmasso et al. 2011; Archambaud et al. 2013). Understanding the mechanisms by which 

microbiota regulate miRNA expression in IESCs and other IEC subtypes will elucidate a critical 

molecular network that controls intestinal homeostasis and, given the heightened interest in 

miRNA-based therapies, may offer novel therapeutic strategies in the treatment of GI diseases 

associated with altered IESC function. However, to our knowledge no study to date has 

investigated miRNA expression and activity across the functionally distinct IEC subtypes, and 

cell type-specific effects of microbiota on miRNAs is completely unknown. We hypothesized 

that each IEC subtype has a distinct miRNA profile, and that miRNAs respond to gut microbiota 

in a cell type-specific manner in order to control function and overall homeostasis of the IE.  

Research Design and Methods 

Animals 

The University of North Carolina at Chapel Hill’s Institutional Animal Care and Use 

Committee approved all animal studies. The original source (GENSAT Brain Atlas Project) and 
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maintenance of Sox9-EGFP mice have been described elsewhere(Formeister et al. 2009; Gracz 

et al. 2010; Van Landeghem et al. 2012). Sox9-EGFP mice on a C57BL/6J background were 

generated by the P. Kay Lund Laboratory by crossing Sox9-EGFP mice on a CD1 background 

wih a C57Bl/6J mice for 10 generations. Germ-free (GF) animals were generated at the UNC 

Gnotobiotic Core Facility. Four pairs of female GF littermates were used in these experiments at 

8-10 weeks of age. A single sex, female, was selected for these initial experiments for a number 

of reasons, including cost. This sex was selected because experiments in the Sethupathy lab have 

previously focused on female mice, and comparability across experiments in the lab and the 

power to determine differential miRNA expression was of paramount. Future studies will 

evaluate males. Each littermate pair came from separate litters born between April and July 

2015. GF mice were housed with animals of the same sex from the same litter, on Envigo 7070C 

Tekland Diamond Dry Cellulose bedding. Four age-matched, conventionally-raised Sox9-EGFP 

animals and wild-type C56BL/6J animals were included as controls in each individual FACS 

experiment. Crypt culture studies were performed using female conventionally-raised C56BL/6J 

and GF Sox9-EGFP animals. For HFD experiments, conventionally-raised Sox9-EGFP animals 

on a C57BL/6J background were maintained beginning at 8 weeks of age on either a 45% kcal 

from fat HFD (Research Diets #D12451) or normal chow diet (ProLab RMH 3000). Animals 

were monitored for weight gain each week. Fasting blood glucose was taken from HFD and 

chow-fed animals after 16 weeks on diet. Animals were sacrificed and IECs isolated for FACS 

after 20 weeks on diet. Conventionally-raised mice were bedded on Andersons irradiated ¼ inch 

Bed-O’cobs laboratory animal bedding. 

Conventionalization (CV) 

For each littermate pair, 0.2 - 0.7 g of fresh fecal pellets were collected on separate days 
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from multiple animals across 6-8 cages in the conventionally-raised Sox9-EGFP animal colony 

housed at UNC and were frozen at -80°C until reconstitution. Less than one hour before 

conventionalization, the fecal sample was thawed on ice and then reconstituted at 1 g/10 mL cold 

PBS under anaerobic conditions. The fecal slurry was passed through a 100-µm filter to remove 

debris and 1 mL was aliquoted into a fresh microcentrifuge tube. For each littermate pair, one GF 

animal was conventionalized using prepared fecal slurry and administered by oral gavage at 10 

µL/g body weight. To ensure conventionalization, whiskers and anus were swabbed and the 

remaining slurry was painted onto several pieces of food left on the bottom of the animal’s cage. 

Conventionalized animals were housed individually throughout the duration of 

conventionalization with access to food and water ad libitum. Conventionalized mice were 

bedded on Andersons irradiated ¼ inch Bed-O’cobs laboratory animal bedding. 

IEC isolation and fluorescence-activated cell sorting (FACS)  

After a two-week conventionalization period, both the CV and GF animals were 

anesthetized using isofluorane, then euthanized by cervical dislocation. The small intestine was 

removed and divided into 3 equal sections. The proximal and distal 10 cm were considered 

duodenum and ileum, respectively. The middle section was considered jejunum and used for all 

studies. Jejunum was flushed with ice cold PBS to remove contents, and total IEC were prepared 

for FACS as previously described(Van Landeghem et al. 2012) in Chapter 4. Conventionally-

raised age-matched Sox9-EGFP animals were included in each individual sorting experiment and 

used to set Sox9-EGFP gates. Sox9-EGFP cells were sorted based on Sox9-EGFP intensity 

directly into RNA lysis buffer (Norgen Biotek, Thorold, ON, Canada). Additionally, non-sorted 

IECs (NS) were collected for each animal, except one conventionalized mouse (CV314), which 

did not have enough remaining sample to isolate a NS IEC population. NS IECs were purified by 
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FACS to exclude non-epithelial and dying cells, but were not sorted based on Sox9-EGFP 

intensity. Due to the density of cells, Sox9Neg cells were sorted into cell culture media, then 

pelleted following sorting by centrifugation. Total RNA was isolated using either the Norgen 

Total RNA kit (for Sox9Neg & NS IECs) or the Norgen Single-Cell RNA Purification kit, which 

has a smaller column (for low cell number populations including Sox9High, Sox9Low, Sox9Sublow) 

as per the manufacturer’s instructions. Nanodrop 2000 was used to quantify RNA.  

mRNA library preparation and sequencing 

mRNA-sequencing libraries were prepared from 10 ng total RNA using the Clonetech 

SMARTer Ultra Low Input library preparation kit combined with Nextera XT DNA sample 

preparation kit (Illumina) by the UNC High Throughput Sequencing Core Facility (as per the 

Clonetech sample preparation guide). Four libraries were randomly pooled per lane and 

sequenced 100 bp single-end on a HiSeq2000 platform at the UNC High Throughput Sequencing 

Core Facility. Seven bases were trimmed from the beginning of each read using Trimmomatic 

(v0.36)(Bolger et al. 2014) to eliminate remaining SMART adapter sequences, then reads were 

aligned to the UCSC mouse transcriptome (mm10) using Salmon (v0.5.1)(Patro et al. 2015)in 

quasi-mapping-based mode. Transcript counts were then imported into R (v3.1.2), and filtered 

using edgeR (v3.8.6)(Robinson et al. 2009) to include transcripts with expression of greater than 

10 counts per million (CPM) in 4 or more samples. Counts were normalized and differential 

expression of genes quantified using edgeR. Raw sequencing data as well as counts are available 

through GEO (Accession #GSE81126). 

Small RNA library preparation and sequencing 

The small RNA-sequencing was done at the Genome Sequencing Facility of Greehey 
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Children's Cancer Research Institute at University of Texas Health Science Center at San 

Antonio. Libraries were prepared using an average of 50 ng of total RNA using the TriLink 

CleanTag Small RNA Ligation kit (TriLink Biotechnologies, San Diego, CA) and suggested 

library preparation method. Six to seven libraries were pooled per lane, and were sequenced 

single-end 50x on the HiSeq2000 platform. One GF Sox9Sublow sample failed during sequencing. 

However, for the remaining samples, we received an average of 26.5 million reads per sample 

(range 6.2 - 42.5). 

Bioinformatics 

Sequencing quality was extremely high as assessed using FASTQC. Reads were trimmed 

and aligned to the mouse genome (mm9) as previously described(Baran-Gale et al. 2013), with 

the following modification: only contigs with greater than one read alignment were passed into 

the Shrimp alignment pipeline. An average of 58.9% of reads mapped to the mouse genome 

across samples. Due to the large number of reads mapping throughout the genome in the NS IEC 

sample from mouse CV315, Shrimp failed to align this sample, and it was eliminated from 

further analysis. Raw sequencing data and miRNA quantification tables for all samples can be 

accessed through GEO record GSE81126. Annotated miRNAs with a reads per million mapped 

(RPMM) expression threshold of greater than 100 in at least one sample were used in further 

analyses. Spearman correlation was determined for all samples, and the correlation matrix was 

hierarchically clustered using the complete linkage method. One aberrant CV Sox9Sublow sample 

was identified on the basis of poor clustering by PCA and hierarchical clustering analyses, and 

was removed from subsequent analyses. 
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Enteroid culture  

Jejunum was isolated and flushed with cold PBS (Gibco cat. 14190-144, ThermoFisher 

Scientific, Waltham, MA), opened, and divided into 6 cm sections. Sections were placed in cold 

high-glucose DMEM and rocked to remove excess fecal matter. Each section was then placed in 

3 mM EDTA (cat 46-034-Cl, Corning, Corning, NY) diluted in PBS and rocked at 4º C for 15 

minutes. The luminal side of the tissue was gently scraped to remove villi and placed into fresh 3 

mM EDTA/PBS and rocked an additional 30 minutes at 4º C. Sections were shaken for 2 

minutes in ice cold PBS to remove crypts, then filtered through a 70 µm cell strainer and 

counted. For each well, 400 crypts were resuspended into 10 µL of Reduced Growth Factor 

Matrigel (cat. 356230, BD Biosciences, Franklin Lakes, NJ) supplemented with PBS or an equal 

volume of 500 ηM miRCURY LNA Power Inhibitor against miR-375-3p (cat # 4101397, 

Exiqon, Woburn, MA) or Negative Control A (cat # 199006, Exiqon). Advanced DMEM/F12 

(Gibco, ThermoFisher) supplemented with GlutaMAX (Gibco cat. 35050-061, ThermoFisher), 

Pen/Strep (Gibco cat. 15140, ThermoFisher), HEPES (Gibco cat 15630-080, ThermoFisher), N2 

supplement (Gibco cat. 17502-048, ThermoFisher), 1 ηg/µL EGF (cat. 2028-EG, R&D Systems, 

Minneapolis, MN), 2 ηg/µL Noggin (cat # 250-38, PeproTech, Rocky Hill, NJ), 10 ηg/µL murine 

R-spondin (cat # 3474-RS-050, R&D Systems), and Y27632 (cat. ALX-270-333-M025, Enzo 

Life Sciences, Farmingdale, NY) was added. Enteroids were counted at Day 1 and bud formation 

assessed at Day 4 and Day 8 using an Olympus IX83 Inverted Microscope fixed with a live 

imaging incubator. Media supplemented with 250 ηM LNA or PBS was changed at Day 4, and 

growth factors supplemented every other day. Enteroids were harvested at Day 8 and RNA was 

isolated using the Norgen Total RNA isolation kits as per manufacturers instructions. For whole 

mount staining, enteroids were fixed in 2% PFA, permeabilized and then stained using 
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antibodies against PCNA (ab29, 1:500, Abcam, Cambridge, MA) and Ki67 (ab15580, 1:250, 

Abcam). Nuclear staining was done using Hoechst 33342 (cat. H3570, ThermoFisher). Confocal 

imaging was performed at the UNC Microscopy Core Facility on a Zeiss CLSM 710 Spectral 

Confocal Laser Scanning Microscope.  

Validation of miRNA expression levels 

miRNA expression in the CV and GF animals was validated by qRT-PCR using Taqman 

assays (Applied Biosystems, Foster City, CA). Relative quantitative value (RQV) is determined 

relative to control gene U6.  

Linear Model 

The model covariates include cell type, T; condition, C; littermate pair, P; and sequencing 

group, G; as well as an interaction term between cell type and condition (1).  

𝑌!"#  =  𝛽! + 𝛽!𝜒! + 𝛽!𝜒! + 𝛽!"#$%&'#()"𝜒! ∗ 𝜒! + 𝛽!𝜒! + 𝛽!𝜒! + 𝜀!"# (1) 

To determine significance, a multiple testing correction (False Discovery Rate) was performed 

on p-values for each covariate across all miRNAs. 

 

Results 

GF animals have fewer stem and more EECs 

To evaluate miRNA expression and response to microbiota in functionally distinct IEC 

subpopulations, we used the well-characterized Sox9-EGFP transgenic mouse model, which 

permits the isolation and analysis of four IEC populations using FACS based on differing levels 

of cellular EGFP intensity (Figure 5.1C). These are Sox9Low (actively cycling IESCs), Sox9Sublow 

(progenitor cells), Sox9Neg (mostly differentiated enterocytes as well as goblet cells and Paneth 
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cells), and Sox9High (primarily EECs as well as reserve/quiescent stem cells)(Formeister et al. 

2009; Gracz et al. 2010; Van Landeghem et al. 2012; Andres et al. 2013; Mah et al. 2014). To 

assess the effect of microbiota on these distinct IEC populations, we used four pairs of GF Sox9-

EGFP littermates. One littermate from each pair was randomly selected at 8 to 10 weeks of age 

for conventionalization. Following a two-week conventionalization (see Methods), IECs were 

collected from GF and CV littermates and FACS isolated based on Sox9-EGFP intensity. Special 

care was taken to gate out cellular debris, dead and dying cells, immune cells, and multiplets. 

Additionally, a strict gating scheme was used to avoid ambiguity between cell populations. No 

statistical difference between CV and GF animals was observed for spleen weight, small 

intestine length, or colon length, even when accounting for animal body weight (Figure 5.2A-D). 

However, there was a statistical difference in body and liver weight (Figure 5.2E-F). Although 

GF and CV animals exhibit similar percentages of Sox9-EGFP populations, there is a notable 

trend toward more Sox9High (p = 0.056, two-tailed, paired Student’s t-Test) and less Sox9Low (p = 

0.14, two-tailed, paired Student’s t-Test) cells in GF vs. CV animals (Figure 5.1D). Reduced 

numbers of actively proliferating cells have been observed in GF animals previously(Sommer 

and Bäckhed 2013).  

Conventionalized IESCs show enrichment for genes involved in proliferation. 

To determine whether the gene expression profile in Sox9Low cells (which we will refer to 

as IESCs for simplicity) from GF mice is consistent with reduced proliferation, we isolated total 

RNA from GF and CV IESCs and performed high-throughput RNA- sequencing. Of the ~12.2k 

genes that met our inclusion criteria (see Methods), we found 138 genes to be significantly 

elevated in CV IESCs, and 552 genes to be significantly elevated in GF IESCs (Figure 5.3A). 

Gene Ontology Biological Process(Ashburner et al. 2000; Gene Ontology Consortium 2015)  
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Figure 5.1. The Sox9-EGFP mouse model can be used to define cell type-specific responses 
to microbiota. (A) Cartoon showing location and types of intestinal epithelial cells (IECs). (B) 
Diagram of the experimental design. (C) IEC subtypes found in each Sox9-EGFP sort. (D) Mean 
percentage of each IEC subtype sorted from jejunal IEC from GF (GF) and conventionalized 
(CV) animals (n = 4 each). Error bars depict standard error of the mean. 
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Figure 5.2. Biological data from conventionalized (CV) and GF (GF) animals. (A) Weight in 
grams of the spleen, (B) length of small intestine (SI) in centimeters (cm), (C) length of colon in 
cm, (D) ratio of spleen to body weight in grams, (E) body weight in grams, (F) liver weight in 
grams, and (G) ratio of liver to body weight, are shown for GF (white filled) and CV animals 
(grey filled). Littermate pairs are shown in the same color. Note, due to FACS machine failure, 
Pair B was not included in FACS, small or RNA-sequencing analyses. Data are shown in 
standard box-and-whisker plots with median displayed as thick horizontal line, shaded region 
depicting the interquartile range (IQR), and whiskers extending to the maximum and minimum 
data points that fall within 1.5*IQR. * p < 0.05, ** p < 0.01.  
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Figure 5.3. RNA-seq of the Sox9Low population from GF and conventionalized animals. 
(A)Volcano plot showing differentially expressed genes in Sox9Low intestinal epithelial stem 
cells (IESCs) between GF (GF) and conventionalized (CV) mice. Horizontal dashed grey line 
indicates a False Discovery Rate (FDR) of 0.05. Vertical dashed grey lines indicate fold change 
(FC) > 1.5 or < -1.5. Significantly changed genes are colored in orange and red, representing 
genes that at enriched in CV or GF IESCs, respectively. (B) Top Enrichr Gene Ontology 
Biological Process enrichment terms for genes significantly upregulated in CV (top) or GF 
(bottom) IESCs. (C) Relative quantitative values (RQV), which is in arbitrary units (a.u), of 
normalized counts per million (CPM) for selected genes in CV and GF IESCs (n = 4 animals per 
condition). Genes selected include Sox9; genes known as markers for enteroendocrine (EEC) cell 
types; other differentiated lineages, including Paneth cells (Lyz), goblet cells (Muc2), enterocytes 
(Elf3); reserve/quiescent IESCs (rIESCs); actively cycling IESCs (aIESCs); as well as other 
markers of proliferation. Significance was determined using edgeR differential expression 
analyses, combined with multiple testing correction, and is denoted as follows: * FDR < 0.05, ** 
FDR < 0.01, *** FDR < 0.001. Error bars depict standard error of the mean.   
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enrichment analysis using Enrichr(E.Y. Chen et al. 2013) revealed that genes elevated in CV 

IESCs are most significantly over-represented in pathways related to proliferation such as 

‘mitotic cell cycle’ and ‘nuclear division’ (Figure 5.3B). The genes elevated in GF IESCs genes 

were associated with processes related to hormone secretion and transport (Figure 5.3B). 

Consistent with these findings, we observed that established markers of proliferation (Ccnb1, 

Cdk1, and Mki67) are significantly up-regulated in CV IESCs (Figure 5.3C), whereas several, 

but not all, classic markers of EECs (Neurod1 and Chga) are significantly up-regulated in GF 

IESCs (Figure 5.3C). Interestingly, Lgr5 a known marker of actively cycling IESCs is 

upregulated in CV IESCs, however, given that this gene codes for a receptor protein that signals 

to the Wnt pathway, it is possible that the upregulation is due to increased Wnt activity upon 

conventionalization. Known markers of reserve (quiescent) stem cells were not significantly 

different between CV and GF Sox9Low cells (Figure 5.3C), nor were markers for Paneth cells 

(Lyz), goblet cells (Muc2), or enterocytes (Elf3). These data confirm that the Sox9Low cells are 

indeed enriched for IESCs and that CV IESCs harbor a gene signature consistent with increased 

proliferative capacity. We therefore moved forward with small RNA- sequencing of each of the 

functionally distinct IEC subpopulations. 

Small RNA-sequencing of each IEC population reveals cell type-specific expression of 

miRNAs 

Total RNA was isolated from the four sorted populations from each animal, as well as 

from non-sorted IECs (NS IECs; NS IECs were purified by FACS, but not sorted based on Sox9-

EGFP intensity). Small RNA-sequencing was performed in two batches, each of which contained 

small RNA libraries from sorted and unsorted IECs from two GF animals and two CV animals. 

miRNAs and their isomiRs were aligned and quantified using miRquant, our previously 
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described method (see Methods for details)(Baran-Gale et al. 2013). To test our hypothesis that 

miRNAs are DE among functionally distinct IEC subtypes, we evaluated miRNAs with an 

expression level of at least 100 reads per million mapped (RPMM) in one or more samples. We 

showed that miRNA expression profiles are sufficient to cluster most samples by their respective 

cell types regardless of GF/CV status (Figure 5.4A). For example, Sox9Neg cells and NS IECs are 

tightly clustered, which is expected given that NS IECs are composed of 85-90% Sox9Neg cells. 

However, we found that the only exception is the Sox9Low IESC population, which segregates 

into two different clusters based on the GF/CV condition (Figure 5.4A). Specifically, GF 

Sox9Low cells exhibit a miRNA profile that 

more closely resembles that of Sox9High cells 

(EECs) than CV Sox9Low cells. GF or CV 

status was not sufficient to segregate any 

other IEC subtype into distinct clades, which 

indicates that IESCs are particularly sensitive 

to the presence or absence of microbiota. 

Importantly, similar results were seen when 

clustering samples using reads per million 

mapped to miRNAs (RPMMM) as our 

normalization (Figure 5.5).  

To investigate differential expression 

of miRNAs across the distinct IEC subtypes, 

we performed hierarchical clustering of the 

Table 5.1. miRNAs enriched at least 2-fold in 
one intestinal epithelial cell (IEC) subtype 
relative to all others studied. The ‘fold 
enrichment’ is the ratio of mean expression in 
the listed cell type over that of the next highest 
expressed population. 

miRNA Cell type Fold enrichment 
miR-194-1-3p Sox9Neg 4.59 

miR-194-1-3p+1 Sox9Neg 4.20 
miR-194-1-5p Sox9Neg 3.16 

miR-194-1-5p+1 Sox9Neg 3.54 
miR-194-2-5p+1 Sox9Neg 2.02 

miR-215-3p Sox9Neg 3.87 
miR-215-5p Sox9Neg 2.26 

miR-215-5p+1 Sox9Neg 2.48 
miR-215-5p+5 Sox9Neg 2.46 

miR-139-3p Sox9High 2.90 
miR-182-5p Sox9High 3.54 
miR-183-5p Sox9High 3.43 

miR-183-5p+1 Sox9High 3.92 
miR-200b-3p+1 Sox9High 2.09 

miR-3107-5p Sox9High 3.23 
miR-340-5p Sox9High 2.35 
miR-486-5p Sox9High 3.23 
miR-672-5p Sox9High 6.18 
miR-122-5p Sox9Sublow 3.95 
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top 100 most highly expressed miRNAs across all of the sorted populations (Figure 5.4B). Many 

miRNAs were uniquely enriched in one IEC subtype relative to all others (>2-fold more highly 

expressed than any other cell type; Table 5.1). For example, we found that miR-215 and miR-

194 are robustly enriched in Sox9Neg cells, which consist primarily of enterocytes. Both of these 

miRNAs are processed from a single primary miRNA transcript on Chr1 and were previously 

shown to be induced by HNF4α during differentiation of Caco-2 colon carcinoma cells(Hino et 

al. 2008). Six miRNAs are enriched in Sox9High cells (EECs and reserve stem cells), including 

miR-182-5p and miR-183-5p (Table 5.1), which are also generated from a single primary 

miRNA transcript. Consistent with enrichment in a subpopulation of cells composed largely of 

EECs, miR-182 has been shown to have important functions in other endocrine cells, 

specifically, pancreatic beta cells(Melkman-Zehavi et al. 2011). miR-122-5p is the only miRNA 

enriched in Sox9Sublow cells. In the liver, miR-122-5p has been identified as a negative regulator 

of proliferation(Bandiera et al. 2015). Unexpectedly, we did not find any miRNAs enriched in 

the Sox9Low IESCs; however, this population demonstrated the most robust miRNA changes in 

response to microbial presence (Figure 5.4 & 5.6). 

To evaluate the cell type-specific responses to microbiota and to account for batch and 

littermate effects, we used a linear modeling approach (see Methods). We found that no miRNA 

is significantly altered by microbiota in every cell type, but 44 miRNAs are significantly altered 

by microbiota in at least one cell type (Figure 5.6), which underscores the highly cell type-

specific miRNA response to microbiota.  

miR-375 is robustly and DE in IESCs of GF and conventionalized mice 

Of these 44 miRNAs, only two are altered in differentiated cell types: miR-215-5p and 

miR-184-3p, which are upregulated in Sox9Neg (primarily enterocytes) and downregulated in 
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Sox9High (EECs) in response to conventionalization. miR-184-3p is a prominent negative 

regulator of insulin secretion in the endocrine pancreas(Tattikota et al. 2015), but to our 

knowledge has not been reported in EECs previously. In contrast, we found seventeen miRNAs 

to be significantly altered by conventionalization in the Sox9Sublow progenitor population, all of 

which are upregulated. Moreover, thirty-three miRNAs are significantly altered by the presence 

of microbiota in the Sox9Low IESC population (Figure 5.6). Twenty-five of these are uniquely 

changed in the Sox9Low population, while eight others are also significantly changed in either 

Sox9Sublow or Sox9High cells. miR-375-3p is ~2-fold (FDR = 0.04) reduced in CV IESCs 

compared to GF IESCs and is the most highly expressed of the 33 microbiota-sensitive miRNAs 

in IESCs (Figure 5.7A). Notably, miR-375-3p is 2.2- and 8-fold more highly expressed than the 

next-most significant microbiota-sensitive miRNA in the CV and GF IESC populations, 

respectively (Figure 5.7A). We also found that its isomiR, miR-375-3p-1, is significantly 

downregulated in IESCs upon conventionalization (FC = -1.85, FDR = 0.03; Figure 5.7A). qRT-

PCR in Sox9Low cells confirmed that the miR-375-3p family is significantly downregulated by 

conventionalization (FC = -3.85, p = 0.03; Figure 5.7B).  

Knockdown of miR-375 in ex vivo enteroids results in increased proliferation 

To test the functional effect of miR-375-3p downregulation, we knocked down miR-375-

3p by gymnosis of locked nucleic acid (LNA) inhibitors (Figure 5.8)(Stein et al. 2009; Knudsen 

et al. 2015) in ex vivo enteroid cultures derived from intestinal crypts of GF mice (Figure 5.9). Ex 

vivo enteroid culture systems have been shown to maintain in vivo cellular composition and 

molecular gene expression profiles over time(Grün et al. 2015). Gymnosis allows for the 

knockdown of mRNA and miRNAs using complementary LNAs without the use of often toxic 

transfection reagents(Stein et al. 2009; Knudsen et al. 2015). We achieved a ~700-fold   
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Figure 5.4. miRNAs in the intestinal epithelium show cell type-specific expression and 
responses to microbiota. (A) Hierarchical clustering of samples by global miRNA expression 
(including only miRNAs with reads per million mapped [RPMM] > 100 in 1+ samples). (B) 
Hierarchical clustering of the top 100 most highly expressed miRNAs across sorted intestinal 
epithelial cell (IEC) subtypes. Color bars denote cell type, condition, and sequencing group (G1 
or G2). 
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Figure 5.5. Similar clustering of CVGF samples is seen using RPMMM normalization. (A) 
Hierarchical clustering of samples by global miRNA expression (including only miRNAs with 
reads per million mapped to miRNAs [RPMMM] > 100 in 1+ samples). (B) Hierarchical 
clustering of the top 100 most highly expressed miRNAs across sorted intestinal epithelial cell 
(IEC) subtypes. Color bars denote cell type, condition, and sequencing group (G1 or G2). 
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Figure 5.6. Cell type-specific response of miRNAs in response to conventionalization 
revealed through linear modeling analysis. (A) A linear model was used to account for the 
following covariates: cell type, condition, sequencing batch, and littermate pair. For each 

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

miR−122−5p
miR−142−5p−2
miR−3107−5p
miR−486−5p
miR−142−5p

miR−208a−3p+6
miR−215−5p+5
miR−208a−3p+7
miR−25−3p+1

miR−194−2−5p+1
miR−34a−5p

miR−215−5p+1
miR−106b−5p
miR−101a−3p
miR−30a−3p+1
miR−672−5p
miR−139−3p
miR−872−5p
miR−125a−5p
miR−143−3p
miR−30b−5p

miR−484
let−7f−1−5p+1
miR−15a−5p
miR−222−3p
miR−132−3p

let−7f−2−5p+1
miR−92b−3p

miR−19b−1−3p
miR−19b−2−3p

let−7d−5p−1
miR−185−5p
miR−1224−5p
miR−423−3p−1
miR−10a−5p+1
let−7c−1−5p+1
miR−1981−5p
let−7c−2−5p+1
miR−99b−5p
miR−361−5p
let−7g−5p+1

miR−101b−3p
miR−146b−5p

miR−194−1−3p+1
miR−10b−5p
miR−1198−5p
miR−146a−5p
miR−23b−3p
miR−186−5p

miR−194−1−5p+1
miR−200a−3p+1

miR−184−3p
miR−30a−3p
miR−29a−3p

miR−200c−3p−1
miR−320−3p+1
miR−7a−2−3p
miR−532−5p

miR−92a−1−3p+1
miR−140−3p

let−7d−3p
miR−10a−5p

miR−192−5p+2
miR−1839−5p
miR−5117−5p
miR−151−5p
miR−221−3p
miR−340−5p
miR−28−5p
miR−802−5p

miR−200b−3p+1
miR−744−5p
miR−130b−3p
miR−378−3p+1
miR−106b−3p
miR−191−5p+1
miR−328−3p

miR−181b−1−5p
miR−200a−5p
miR−30e−3p

miR−375−3p+1
miR−20a−5p
miR−200b−5p
miR−28−3p

miR−181b−2−5p
miR−30c−2−5p
miR−30c−1−5p
miR−194−2−3p
miR−24−2−3p
miR−24−1−3p
miR−148b−3p
miR−17−5p

miR−140−3p+1
miR−183−5p+1
miR−92a−2−3p
miR−181c−5p
miR−5099−2
miR−107−3p

miR−194−1−3p
miR−425−5p
miR−423−3p
miR−423−5p
miR−181d−5p
miR−151−3p

let−7e−5p
miR−203−3p+1
miR−203−3p

miR−181a−2−5p
miR−181a−1−5p

miR−183−5p
miR−16−1−5p
miR−16−2−5p
miR−30e−5p
miR−98−5p
miR−215−3p
miR−22−3p
miR−320−3p
miR−141−3p

miR−103−1−3p
miR−103−2−3p
miR−30a−5p
miR−429−3p
miR−27b−3p
miR−93−5p

miR−375−3p−1
miR−25−3p

miR−200b−3p
miR−7b−5p

miR−148a−3p
miR−26b−5p
miR−30d−5p

let−7d−5p
miR−378−3p
miR−191−5p
let−7a−2−5p
let−7a−1−5p
miR−31−5p
miR−182−5p

miR−26a−1−5p
miR−26a−2−5p

let−7g−5p
let−7i−5p

let−7f−1−5p
miR−194−2−5p

let−7f−2−5p
miR−200a−3p
miR−192−5p+1
miR−200c−3p
miR−7a−2−5p
miR−21−5p

miR−92a−1−3p
miR−7a−1−5p
let−7c−1−5p
let−7c−2−5p

miR−194−1−5p
let−7b−5p

miR−375−3p
miR−192−5p
miR−215−5p

0.0010.0501.000

FDR

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

miR−122−5p
miR−142−5p−2

miR−3107−5p
miR−486−5p
miR−142−5p

miR−208a−3p+6
miR−215−5p+5

miR−208a−3p+7
miR−25−3p+1

miR−194−2−5p+1
miR−34a−5p

miR−215−5p+1
miR−106b−5p
miR−101a−3p

miR−30a−3p+1
miR−672−5p
miR−139−3p
miR−872−5p

miR−125a−5p
miR−143−3p
miR−30b−5p

miR−484
let−7f−1−5p+1

miR−15a−5p
miR−222−3p
miR−132−3p

let−7f−2−5p+1
miR−92b−3p

miR−19b−1−3p
miR−19b−2−3p

let−7d−5p−1
miR−185−5p

miR−1224−5p
miR−423−3p−1
miR−10a−5p+1
let−7c−1−5p+1
miR−1981−5p

let−7c−2−5p+1
miR−99b−5p
miR−361−5p
let−7g−5p+1

miR−101b−3p
miR−146b−5p

miR−194−1−3p+1
miR−10b−5p

miR−1198−5p
miR−146a−5p
miR−23b−3p
miR−186−5p

miR−194−1−5p+1
miR−200a−3p+1

miR−184−3p
miR−30a−3p
miR−29a−3p

miR−200c−3p−1
miR−320−3p+1
miR−7a−2−3p

miR−532−5p
miR−92a−1−3p+1

miR−140−3p
let−7d−3p

miR−10a−5p
miR−192−5p+2

miR−1839−5p
miR−5117−5p
miR−151−5p
miR−221−3p
miR−340−5p
miR−28−5p

miR−802−5p
miR−200b−3p+1

miR−744−5p
miR−130b−3p

miR−378−3p+1
miR−106b−3p

miR−191−5p+1
miR−328−3p

miR−181b−1−5p
miR−200a−5p
miR−30e−3p

miR−375−3p+1
miR−20a−5p

miR−200b−5p
miR−28−3p

miR−181b−2−5p
miR−30c−2−5p
miR−30c−1−5p
miR−194−2−3p
miR−24−2−3p
miR−24−1−3p
miR−148b−3p

miR−17−5p
miR−140−3p+1
miR−183−5p+1
miR−92a−2−3p

miR−181c−5p
miR−5099−2
miR−107−3p

miR−194−1−3p
miR−425−5p
miR−423−3p
miR−423−5p

miR−181d−5p
miR−151−3p

let−7e−5p
miR−203−3p+1

miR−203−3p
miR−181a−2−5p
miR−181a−1−5p

miR−183−5p
miR−16−1−5p
miR−16−2−5p

miR−30e−5p
miR−98−5p

miR−215−3p
miR−22−3p

miR−320−3p
miR−141−3p

miR−103−1−3p
miR−103−2−3p

miR−30a−5p
miR−429−3p
miR−27b−3p
miR−93−5p

miR−375−3p−1
miR−25−3p

miR−200b−3p
miR−7b−5p

miR−148a−3p
miR−26b−5p
miR−30d−5p

let−7d−5p
miR−378−3p
miR−191−5p
let−7a−2−5p
let−7a−1−5p
miR−31−5p

miR−182−5p
miR−26a−1−5p
miR−26a−2−5p

let−7g−5p
let−7i−5p

let−7f−1−5p
miR−194−2−5p

let−7f−2−5p
miR−200a−3p

miR−192−5p+1
miR−200c−3p
miR−7a−2−5p

miR−21−5p
miR−92a−1−3p
miR−7a−1−5p

let−7c−1−5p
let−7c−2−5p

miR−194−1−5p
let−7b−5p

miR−375−3p
miR−192−5p
miR−215−5p

0.0010.050 0.0101.000
FDR

● Sox9High

Sox9Low 
Sox9Sublow

Sox9Neg     

M
ean E

xpression (R
P

M
M

) 

25	
7 

10 

1 

1 



99 
 

miRNA that met an expression threshold of reads per million mapped (RPMM) > 100 in 1+ 
samples, the False Discovery Rate (FDR) multiple testing correction of the cell type*condition 
covariate interaction p-value is plotted. miRNAs are ordered by average expression across all 
intestinal epithelial cells (IEC) subtypes, and vertical red dashed line indicates FDR = 0.05. Cell 
type is signified by color and shape. (B) Venn diagram showing the number of significantly 
altered miRNAs in each IEC subtype between GF and CV mice. Cell type is signified by color 
scheme provided in panel (A). 
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Figure 5.7. miR-375-3p is highly expressed in Sox9Low intestinal epithelial stem cells and is 
significantly downregulated upon conventionalization. (A) Mean relative expression in reads 
per million mapped (RPMM) of miRNAs (n = 33) that were significantly altered (FDR < 0.05; n 
= 4) in the Sox9Low population in response to conventionalization. Y-axis is shown on a square 
root scale. Error bars depict standard error of the mean. (B) qRT-PCR confirming miR-375 is 
reduced upon conventionalization (n = 4 for each condition). Data are shown in a standard box-
and-whisker plot with median displayed as thick horizontal line, shaded region depicting the 
interquartile range (IQR), and whiskers extending to the maximum and minimum data points that 
fall within 1.5*IQR. * p < 0.05, two-tailed Student’s t-Test. 
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knockdown of miR-375-3p at day 8 in enteroids treated with an LNA complementary to miR-

375-3p (LNA-375; Figure 5.9A). At both day 4 and 8, LNA-375-treated enteroids from GF 

Sox9-EGFP mice exhibited dramatically increased budding, a marker of IESC proliferative 

capacity(Fuller et al. 2012; Seiler et al. 2015), relative to mock and LNA-Scramble-treated 

enteroids (Figure 5.9B & 5.9C). Consistent with this finding, whole mount staining of the 

enteroids also showed increased PCNA and Ki67 staining upon knockdown of miR-375-3p 

(Figure 5.9D). These data indicate that miR-375-3p is a potent regulator of IESC proliferation 

and that microbiota may regulate IESC renewal in part via modulation of miR-375-3p (Figure 

5.10).  

HFD induces robust changes in IESC gene expression but minimal changes in miRNA 

expression across Sox9-EGFP populations 

To evaluate the role of diet in regulating miRNA expression of distinct cell types of the 

IE, we performed FACS on IECs from Sox9-EGFP mice following a 20-week HFD. Mice on a 

HFD doubled in body weight (Figure 5.11A) and had elevated blood glucose (Figure 5.11B), and 

a decreased liver to body weight ratio (Figure 5.11C). No difference was seen in spleen weight 

between HFD and chow animals when body weight increase was taken into account. By RNA-

sequencing, HFD IESCs were enriched for genes (n = 50 genes) involved in the positive 

regulation of lipid catabolism (data not shown, GO Biological Process enrichment analysis 

adjusted p-Value = 0.011), and had enrichment for PPARD binding sites (ENCODE and ChEA 

Consensus TFs from ChIP-X, adjusted p-Value = 0.02). The latter point is consistent with recent 

reports showing PPARD being activated in Lgr5+ cells of HFD- treated mice and implicated as 

contributing to the development of colon cancer(Beyaz et al. 2016). Downregulated genes (n = 

462) were enriched for those involved in the regulation of hormone secretion and transport,   
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Figure 5.8. Schematic of miRNA knockdown in enteroids using gymnosis. Crypts are 
embedded in reduced growth factor BD Matrigel supplemented with 500 ηM locked nucleic acid 
(LNA) complementary to a specific miRNA dissolved in PBS. Target miRNAs are inhibited by 
the LNA, which is taken up via gymnosis, a term coined by the Troels Koch laboratory in 
2009(Stein et al. 2009), to describe a transfection method that uses no carrier reagent. Instead, 
naked LNA are taken up by cells via endocytosis following binding to receptor molecules, or 
possibly taken up through a nucleic acid transport protein. The precise mechanisms by which 
gymnosis occurs are still under investigation. 
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Figure 5.9. Ex vivo knockdown of miR-375 in enteroids results in increased proliferation. 
Crypts were isolated from female GF (GF) Sox9-EGFP mice, (A) Relative quantitative values 
(RQVs) are shown for miR-375-3p in mock-, LNA-375-, and LNA-Scramble-treated enteroids at 
Day 8 as measured by qRT-PCR relative to U6 expression. (B) Representative images of 20X 
magnified enteroids at Day 1, Day 4, and Day 8, following mock, LNA-375, or LNA-Scramble 
uptake by gymnosis. Sox9-EGFP expression (green) is overlaid on the bright field images. (C) 
Mean percent of GF enteroids with 0, 1, 2, or 3+ buds at Day 4 and Day 8 following mock (n = 
12), LNA-375 (Day 4 n = 12, Day 8 n = 11), or LNA-Scramble (Day 4 n = 12, Day 8 n = 9) 
uptake by gymnosis. (D) 10X confocal images of whole mount enteroids stained for PCNA, 
Ki67, and nuclei. White arrows indicate cells within the enteroid that stained for PCNA. 
Experiments were performed in duplicate. The ‘n’ refers to number of wells, which were seeded 
with ~400 crypts at Day 0. Significance was determined using a Student’s two-tailed unpaired t-
Test relative to mock (black asterisks) or LNA-Scramble (blue asterisks). * p < 0.05, ** p < 0.01, 
*** p < 0.001. Error bars depict standard error of the mean. 
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Figure 5.10. Current working model of miR-375-3p mediation of the effects of microbiota 
on intestinal epithelial stem cell (IESC) proliferation. Previous research shows increased 
intestinal epithelial proliferation upon conventionalization of GF (GF) mice. We found that miR-
375-3p is downregulated in IESCs upon conventionalization, and that ex vivo knockdown of 
miR-375-3p results in increased proliferative capacity. 
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Figure 5.11. Mice on a 20-week high-fat diet show increased weight gain, blood glucose, 
and liver weight. (A) Weight gain as a percentage of starting weight are shown for animals on a 
high-fat diet (HFD) or chow diet. Groups were significantly different after 5 weeks on diet. (B) 
Fasting blood glucose levels for animals on a chow or HFD are shown at 16-weeks, p = 0.08. (C) 
Body weight in grams, (D) liver weight in grams, (E) ratio of liver to body weight, (F) spleen 
weight in grams, and (G) ratio of spleen to body weight. Littermate pairs are shown in color. 
Note, due to FACS machine failure, pair C & D, and one HFD animal from pair F were not 
included in small or RNA-sequencing analyses. Data are shown in standard box-and-whisker 
plots with median displayed as thick horizontal line, shaded region depicting the interquartile 
range (IQR), and whiskers extending to the maximum and minimum data points that fall within 
1.5*IQR.* p < 0.05, ** p < 0.01.  

 

 

insulin secretion, and glucose homeostasis (GO Biological Process enrichment analysis adjusted 

p-Value < 0.001). Interestingly, downregulated genes were also enriched for hemostasis and 

blood coagulation terms, and cellular response to cytokines (GO Biological Process enrichment 

analysis adjusted p-Value < 0.05). These terms are consistent with the known effects of long-
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Small RNA-sequencing analysis of HFD Sox9-EGFP sorted populations revealed tight 

clustering by cell type, however, no population segregated by dietary condition (data not shown). 

Importantly, these samples did cluster with like cell types in CV and GF animals (Figure 5.12). 

Although a linear modeling analysis revealed no miRNAs significantly changed between HFD 

and chow-fed animals in any cell population, using either RPMM or RPMMM normalization, 15 

miRNAs were significantly changed (FDR < 0.05) between HFD and chow IESCs by t-Test in 

the RPMM data. These include members or isomiRs of the let-7, miR-215, miR-192, miR-30, 

and miR-148 families.  

Discussion 

In this study, we have shown that miRNAs are responsive to the presence of gut 

microbiota in a cell type-specific manner. Microbiota exert the strongest effect on host miRNA 

expression in the Sox9Low population, which is highly enriched in IESCs. Subpopulation analysis 

was necessary to identify this effect, as IESCs make up only 1-3% of all IEC types. miR-375-3p 

was identified as significantly downregulated in the IESC population in response to microbiota, 

and follow-up experiments ex vivo demonstrated miR-375-mediated control of IESC expansion 

and proliferation, thereby providing a mechanism by which microbiota may regulate these 

processes in vivo. miR-375-3p has been associated previously with the regulation of proliferation 

and differentiation in several tissues(Y. Wang et al. 2013; Yan et al. 2013; Knudsen et al. 2015). 

It is predicted to target many members of the Wnt/β-catenin and Hippo signaling pathways, but 

so far has only been shown to inhibit Frizzled-8(Y. Wang et al. 2013) and Yap1(Z.-W. Zhang et 

al. 2013). miR-375-3p has been knocked down systemically in mice, and while the authors did 

not study intestinal proliferation, they observed an increased rate of intestinal transit(Nezami et 

al. 2014). miR-375-3p is best studied in the context of pancreatic endocrine cell differentiation  
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Figure 5.12. Global miRNA expression profile is sufficient to cluster HFD, CV, and GF 
samples by cell type. (A) Hierarchical clustering of all samples, and of (B) HFD and Chow 
samples alone, by global miRNA expression (including only miRNAs with reads per million 
mapped to miRNAs [RPMMM] > 100 in 1+ samples). Color bars denote cell type and condition. 
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and function(Poy et al. 2004; Poy et al. 2009; Nathan et al. 2015), although more recently, 

Knudsen at al. (2015) identified a role for miR-375-3p in regulating EEC 

differentiation(Knudsen et al. 2015). We found that miR-375-3p is robustly expressed in both 

IESCs and EECs; however, we observed that miR-375-3p is responsive to microbiota only in 

IESCs but not in EECs. This observation might suggest cell type-specific microbial signaling 

pathways and cell type-specific roles for miR-375-3p. 

An important added value of our study is the first ever map of miRNA expression across 

different IEC subtypes, and the cell type-specific influence of microbiota on miRNA expression. 

We also provide evidence that IESC microbiota-sensitive miR-375-3p influences IEC 

proliferation, most likely through physiological maintenance of actively cycling IESC. Of course 

many questions still remain, including how microbiota influence miRNA expression in IESCs. 

This phenomenon may be explained by direct and/or indirect mechanisms. Regarding direct 

mechanisms, although thus far bacteria have only been found to reside within the crypts of the 

caecum and colon, where microbial density is highest(Pédron et al. 2012), it nevertheless 

remains a possibility that bacteria residing within the jejunal crypt may directly influence 

miRNAs in the stem cell subpopulation. Indirect mechanisms are also possible, such as changes 

in the microenvironment (metabolites and bacterial endotoxins) or through indirect signaling by 

immune or mesenchymal cells, which were not profiled in this study. Though outside the scope 

of this analysis, further research is certainly warranted to investigate the interesting relationship 

between host miRNAs and resident microbiota. 

An unexpected finding was that GF IESCs (Sox9Low) have a miRNA expression profile 

more similar to that of Sox9High cells. Interestingly, our RNA-sequencing data of IESCs also 

showed enrichment for markers of EECs in the GF mice. One possibility is that Sox9Low cells are 
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primed for the EEC lineage in the absence of microbial influence. Alternatively, one of the 

caveats of the Sox9-EGFP model is that while the Sox9High population consists primarily of 

EECs, it also includes a small population of reserve or quiescent stem cells(Roche et al. 2015). It 

is therefore possible that microbiota influence the maintenance of reserve stem cells in addition 

to their role in regulating actively cycling IESCs through miR-375-3p. Though outside the scope 

of this study, more research, including single cell analyses, will need to be conducted to delineate 

more precisely the differences between GF and CV IESCs, as well as to determine which 

miRNAs are involved in the maintenance of active and quiescent IESC states.  

It is also important to note that each segment of the IE has distinct physiological roles and 

differing magnitudes of microbial load. Our study only examined changes in response to 

microbiota in IECs from the jejunum. In the future we would like to assess differences in cell 

type-specific responses to microbiota along the length of the intestine. Conventionalization is a 

gradual process in mice. Our study examined a signle time point post- conventionalization of 

young GF mice.  Experimental variation in age at conventionalization and timepoint post-

conventionalization are important future directions toward fully understanding the role of 

microbiota in regulating stem cell function. Additionally, it would be interesting to investigate 

cell type-specific responses to microbiota in other populations not sorted herein, including goblet 

and Paneth cell populations. These cell types do not express Sox9-EGFP, and are rare cell 

populations in the Sox9Neg fraction, which comprise primarily enterocytes. Nevertheless, Paneth 

and goblet cells may experience robust changes in response to microbial presence, based on their 

known functions. While our current focus is on the Sox9-EGFP model, which precluded 

examining these populations, they deserve attention in future work.  

Perhaps the most surprising finding in these studies is that we did not see robust changes 
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in miRNA expression in any population in response to a long-term HFD. It is possible that 

significant changes in miRNA expression may be found in other regions of the intestine, or at 

different time points on a HFD. While not as robust as the changes observed in CV compared to 

GF animals, the HFD data do support the idea that IESCs are very responsive to environmental 

stimuli. Given that microbiota are known to change in response to a HFD, it is worth 

investigating when this change occurs and whether particular species are involved in altering 

IESC miRNA expression. It is possible that the changes in microbiota contributed to the altered 

miRNA expression in HFD-fed animals. However, many more studies will need to be conducted 

to better understand the relevant time points and changes that occur at the axis of microbiota, 

miRNA, and diet. Future evaluations of the GE data for HFD, CV, and GF animals include TF-

binding enrichment analysis and miRhub(Baran-Gale et al. 2013) analyses. Nevertheless, this 

study represents the first to our knowledge to evaluate the effect of diet and microbiota on 

miRNA expression in distinct cell populations of the mouse jejunum. 

In summary, we provide novel evidence about the miRNA landscape in four distinct cell 

populations from the IE, and demonstrate that miRNA profiles are highly different across the 

IEC subtypes, and also that miRNAs respond to the presence of microbiota in a highly cell type-

specific manner. We investigate one IESC microbiota-sensitive miRNA, miR-375-3p, and show 

that its downregulation results in significantly increased proliferative capacity, providing one 

possible mechanism by which microbiota regulate proliferation of IESCs in vivo. The data 

provided herein progresses the field, and offers the scientific community a valuable resource 

through which researchers can initiate novel studies into miRNAs and microbiota-mediated 

regulation of intestinal physiology, homeostasis, and disease pathogenesis.  
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CHAPTER 6 – DISCUSSION, CONCLUSIONS, & FUTURE DIRECTIONS 

 

In this dissertation, I have evaluated miRNAs as biomarkers of metabolic and intestinal 

disease, drivers of physiological processes in the liver and IE, and responders to environmental 

stimuli in a cell type-specific manner in the IE. Both the liver and intestine are highly relevant 

metabolic organ systems, which when dysregulated contribute to the development of many 

metabolic disorders including obesity and type 2 diabetes. In evaluating the roles of miRNAs in 

these processes, I have set the groundwork for future research to identify potential miRNA 

therapeutic targets toward the treatment of a wide range of metabolic and GI diseases. 

The research presented in Chapter 2 evaluated hepatic targets of one miRNA, miR-29, 

that is not only upregulated in the plasma of type 2 diabetics, but also in the plasma and liver of 

several animal models of metabolic disease. My pathway analysis identified a potential 

mechanism of miR-29’s action in fine-tuning hepatic lipid metabolism driven by modulating 

FOXA2, which is dysregulated in the liver of type 2 diabetics, spawned several follow-up studies 

in the lab to investigate the use of anti-miR-29 treatment in alleviating insulin resistance and 

hypercholesterolemia in vivo(Kurtz et al. 2015). While these pre-clinical trials in mice hold great 

promise, understanding the dynamics of miR-29’s dysregulation in humans, as well as the off-

target effects of systemic delivery of miR-29 inhibitors in primates are important next steps 

toward vetting miR-29’s potential as a metabolic disease therapeutic. These early findings also 

inspired my own research objectives to focus more on the intestine, which is the primary site of 
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nutrient absorption, response to diet, and interaction with components of the gut microbiota, all 

of which are altered during metabolic disease pathogenesis. The intestine is highly understudied 

relative to other major metabolic organs despite its clear importance and likely role in early 

metabolic disease progression.  

The limited understanding of miRNA expression and relevance in the intestine posed a 

certain challenge. I began by focusing on identifying potential colonic miRNA biomarkers of CD 

(Chapter 3), which is an inflammatory intestinal disease that puts patients at risk for the 

development of both type 2 diabetes and cancer. Given the elevated risk and common GWAS 

associated genes, it is possible that there are common underlying intestinal processes 

dysregulated during disease pathogenesis further motivating my study.  

Our adult CD patients showed extreme heterogeneity between patient phenotypes, gene, 

and miRNA expression, which complicated our analysis. Perhaps unsurprisingly, given the 

diversity of phenotypes found across CD patients, we found that miRNAs do not necessarily 

segregate CD vs. Non-IBD patients, but instead miRNAs more robustly distinguish subtypes of 

CD, which indicate multiple pathways leading to the various forms of CD. In investigating 

enrichment for miRNA target sites in DE genes within distinct subtypes of CD, we identified 

several putative master regulatory miRNAs, including miR-31, which suggest a key role for 

these miRNAs in driving disease pathogenesis. Further analysis of these miRNAs and our 

potential prognostic markers of CD are ongoing in the lab. Importantly, a larger cohort may 

improve power and clarity of the associations we identified and would strengthen our resolve to 

evaluate the functional effects of these miRNAs in vitro, ex vivo, and in vivo. Further 

characterization of the cohort we do have, including drug history and environmental risk factors 

(like smoking and diet) may also help strengthen our model, as would evaluating other small 
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regulatory RNAs identified by sequencing but not evaluated in our study. Functional 

characterization of the DE miRNAs in intestinal culture models would also be beneficial, as it 

would inform us as to the possible effect their dysregulation has on disease phenotype and 

progression. In on-going follow-up studies to identify potential prognostic indicators of disease 

progression and response to treatment in the lab, we have initiated a large-scale study of pediatric 

CD patients using index biopsies, which are collected at diagnosis before treatment begins, 

which we hope will reduce noise and improve power. Our hope is to use the knowledge gained 

from these studies to better treat pediatric patients and prevent or reverse disease progression.  

In Chapter 3, we confirmed that intestinal miRNAs are dysregulated during disease, 

strengthening evidence for a key role for them as potential drivers of disease pathogenesis. To 

evaluate whether miRNAs were important in regulating key intestinal epithelial physiological 

processes, I sought to identify and characterize key miRNA networks in the IE in Chapter 4. We 

began by evaluating conserved miRNA target sites of SOX9, a well-established transcriptional 

regulator of proliferation and differentiation in the IE. Our in silico analyses led us to focus on 

miR-30, which we went on to show plays a key role in regulating both proliferative and 

enterocytic differentiation pathways. Surprisingly, our data suggests that this role is not 

exclusively through the regulation of SOX9, but a much broader GRN. While this is an important 

finding in the field of intestinal biology, our findings also have profound implications for 

miRNA biology. Specifically, we found that miR-30 targets SOX9 to upregulate mRNA 

expression. But, through a larger inhibitory network involving ubiquitin ligases, miR-30 

knockdown actually has a net-negative effect on SOX9 protein expression. Understanding 

transcriptional control of miR-30 in the IE is of particular interest in the future.  
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Our data show that miR-30 expression is positively correlated with Sox9 across distinct 

cell types of the mouse IE. Understanding the co-regulatory relationship, as well as the identities 

of other positively correlated miRNAs, would advance the field of intestinal biology. Our study 

involved a deep sequencing time course of HIECs following knockdown of miR-30. Further 

analysis of this information-rich dataset could provide insight on the dynamics of miRNA:GRNs. 

As most studies aimed at identifying potential miRNA therapeutic targets focus on only a few 

genes or pathways, this data set may hold keys to understanding the extent to ‘off-target’ effects 

following miRNA knockdown within tightly controlled culture conditions. miR-30 has been 

identified as a regulator of hepatic lipogenesis and recent studies have delivered systemic miR-

30 mimic to assess the potential of these therapeutic approaches in the treatment of 

hypercholesterolemia and atherosclerosis(Irani et al. 2016); however, few analyses to assess the 

potential ‘off-target’ effects of mimic delivery on the intestine or the effect of delivery mode 

(oral compared to intravenous) have been conducted. For miRNAs, like miR-30, with significant 

roles in intestinal proliferation and differentiation, care in analyzing the effect of treatment on the 

IE is critical to avoid triggering the development of intestinal lesions or physiological disorders. 

miRNAs are well-known to regulate large GRNs through inhibitory post-transcriptional 

regulation. Nevertheless, it is likely that miRNA target mRNA and protein expression are 

positively correlated in some cases, such as was seen with miR-30 and SOX9 in the IE. However, 

as we show in Chapter 4, regulation of gene expression relies on more than just the 

transcriptional and post-transcriptional regulators, emphasizing the importance of studies 

evaluating mRNA, miRNA, and protein dynamics together. Our study also confirms an 

important role for miRNAs in regulating key IE processes. However, given the variety of 

functionally-distinct cell types in the intestine, a finer understanding of cell type-specific miRNA 
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expression in the IE is needed to begin to understand fully their roles in responding to 

environmental cues and regulating gene expression. 

In Chapter 5, not only do I provide the first ever map of the IE miRNA landscape, but 

also show that IECs have unique miRNA expression profiles across functionally distinct cell 

populations of the IE. Further, I show that miRNAs respond to the presence of microbiota in a 

highly cell type-specific manner. To my knowledge, my study also provides the first ever gene 

expression profile of GF and conventionalized IESCs. Consistent with the increased rate of IE 

proliferation and migration seen in CV animals(Khoury et al. 1969; Savage et al. 1981), our CV 

IESCs showed enrichment for genes involved in cell cycle. GF IESC were enriched for genes 

involved in hormone production and secretion, which is also consistent with reports of GF 

animals having increased numbers of EECs and circulating hormones(Uribe et al. 1994). Further 

functional characterization of GF and CV IESCs in the context of the Sox9-EGFP mouse model 

is an important next step to validate the model and assess the effect of microbiota on IESCs. Our 

identification of miR-375 as a microbiota-responsive miRNA in IESCs provides a mechanism 

for both proliferative and hormonal differences seen between CV and GF animals, as knockdown 

of miR-375 ex vivo increased proliferation, and a recent study by Knudsen et al. showed miR-

375 is an important regulator of EEC differentiation. Yet, many questions remain. These include 

the precise mechanism by which miR-375 exerts its pro-proliferative influence and the mode by 

which microbial presence influences the expression of miR-375 and other DE miRNAs. miR-375 

is predicted to target many genes, including Fzd8, Klf4, Klf5, and Yap1, in the Wnt/β-catenin, 

Hippo, and other proliferation-associated signaling pathways. However, due to IESCs rarity in 

enteroid culture, demonstrating direct targeting of these genes by miR-375 in IESCs has proven 
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difficult. Further knockdown studies ex vivo followed by FACS to isolate IESCs may help 

confirm these targets and identify others.  

Identifying the mechanisms by which microbiota influence miRNA expression in IESCs 

is a complex task. The influence exerted by microbiota could be direct, such as through a TLR 

ligand binding. However, there are several possible indirect mechanisms including IESC or non-

epithelial cell sensing of metabolites, which may impact IESCs possibly through cytokine-

directed signaling. Additionally, IESCs may sample luminal contents or uptake/sense bacterial-

derived metabolites that induce changes in IESC miRNA expression. Isolating the key 

mechanism(s) will require further analyses of GF Sox9-EFGP animals and ex vivo culture 

systems using modified colonization studies or injection strategies with heat-killed and live 

monocultures. As a first step, analyzing the matched jejunal contents using DNA-sequencing will 

allow us to better model and predict which microbial species influence IESC miRNA expression.  

It is very likely that many miRNAs are involved in regulating these intestinal 

physiological processes in response to microbiota. As stem cells are implicated in the 

development of colorectal carcinoma, and are vital drivers of tissue repair following injury 

including that induced by IBD(Moossavi et al. 2013), further research into microbiota- and diet-

sensitive IESC miRNAs and the precise role of the DE miRNAs in regulating IESC function are 

important next steps. Toward this goal, functional evaluations of the miRNAs that were deemed 

significantly enriched using miRhub will help us identify master miRNA drivers of microbial 

influence. For example, in preliminary analyses miR-34 and miR-25 target sites were 

significantly enriched in genes downregulated in IESCs of CV mice, and miR-24 targets were 

enriched in genes downregulated in HFD IESCs. Functional studies of these miRNAs ex vivo are 

warranted. Importantly, we can also begin evaluating the mechanisms of miRNA changes in 
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IESCs by evaluating their transcriptional drivers. Enrichment analyses of TF binding sites in DE 

gene and miRNA promoter regions will help identify additional drivers of microbiota-responsive 

gene networks. These networks can be further evaluated using assays in vitro and ex vivo.  

An important technique for the field relevant to these follow-up studies is also described 

in Chapter 5, which is the use of gymnosis to knockdown gene expression in ex vivo enteroids. 

Other methods to knockdown gene expression in enteroids rely on time-consuming, costly, and 

low-efficiency viral transduction, electroporation, or transfection. Using no transfection reagent, 

and affordable LNA technology, we show effective knockdown of miRNA expression in 

enteroids for just the second time(Knudsen et al. 2015). Ongoing work in the lab aims to further 

characterize this technique to knockdown miRNA and gene expression in enteroids, which may 

then be further extrapolated for use in other organoid model systems. For example, next steps 

include evaluating the knockdown efficiency in specific cell populations of the IE including 

IESCs and EECs, and determining the concentration and half-life of LNAs in this culture system. 

Understanding the mechanisms behind this technique holds great promise for the broader 

scientific and medical community. 

Finally, there is still a substantial amount that we do not know about miRNAs and other 

non-coding RNAs in the IE and their role in maintaining homeostasis or contributing to 

metabolic disease pathogenesis. Using a large array of approaches spanning functional genomics, 

molecular biology, bioinformatics, physiology, and stem cell biology I have begun to address 

some of the most pertinent questions. These include whether known biomarkers of metabolic 

disease have functional significance or whether miRNAs can be used as biomarkers of disease 

severity, progression, and as prognostic indicators of GI disease. I have asked how key 

environmental stimuli like the presence or absence of microbiota, or dietary stimuli, affect 
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distinct cell populations of the IE. I have found that miRNAs in the adult actively cycling IE 

stem cell population are the most microbiota-sensitive cell population in the IE. This information 

has a profound impact on how we must now think about the IE and its constant exposure to 

microbiota, frequent encounters with anti-microbial agents, and ever-changing dietary stimuli. 

As the stem cell population is long-lived in the IE, and changes in miRNA expression can affect 

proliferation and differentiation of IECs, DE miRNAs in IESCs could have a prolonged 

influence on IE physiology and thereby disease progression. Understanding the role of miRNAs 

in maintaining metabolic homeostasis in the IE is a key objective toward substantially improving 

current therapeutic options for the treatment of GI and metabolic diseases.  

From a broader perspective, my study has profiled the changes in miRNA expression in 

response to microbial presence and a single dietary perturbation in a single mouse strain and in a 

single sex. The effect of host-genetic variation on miRNA responses to microbiota across the IE 

has not been evaluated, but is of great interest both biologically and from a precision medicine-

perspective, as is understanding the relationship between diet and microbiota, which would 

influence bioavailability and presence of certain metabolites and microbial species. Toward the 

development of effective therapeutics for the treatment of GI and metabolic diseases, 

understanding the interaction and relationship between dietary macromolecules, specific 

microbial species, and IESC miRNA expression based on host-genotype is a vital, but long-term 

goal for which my research lays the ground work. 

This dissertation, and the accompanying published journal articles and publicly released 

next-generation high-throughput sequencing datasets provide substantial groundwork from 

which the scientific community can build upon for years to come.  
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