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ABSTRACT 
 

MICHAEL J. TAPPA: Testing Competing Caldera Models using U/Pb 
Geochronology; Intrusive History of the Questa Caldera: Latir Volcanic Field, New 

Mexico, USA 
(Under the direction of Drew Coleman) 

 
A compelling new model for caldera evolution challenges the standard depiction 

of large-scale volcanism.  Here, I test these competing models by establishing the 

temporal and chemical relationship between ignimbrite and potential cogenetic plutons 

related to the Questa caldera, Latir volcanic field, New Mexico. 

Results from zircon U/Pb geochronology indicate that the majority of intrusive 

rocks formed after ignimbrite eruption.  The Rio Hondo pluton was assembled over a 

minimum of 500 k.y., and crystallization progressed from the structurally highest levels 

downward, consistent with top-down incremental assembly of the pluton.  Trace-element 

modeling demonstrates that the plutonic rocks are not the residua of crystal fractionation, 

and the predicted systematic difference in trace-element chemistries of plutonic and 

volcanic rocks is not observed.  Finally, the data presented here mostly support the new 

model for caldera evolution and is broadly inconsistent with the standard caldera model. 
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1. INTRODUCTION 

Debate persists on the nature of the relationship between plutonic and volcanic 

rocks (e.g. de Silva et al., 2007).  Opposing views propose that either plutonic rocks 

represent the unerupted crystal cumulates of volcanic eruptions and are thus 

complementary to volcanic rocks (Hildreth 2004; Eichelberger et al., 2006; Bachmann et 

al., 2007a; Lipman, 2007; de Silva and Gosnold, 2007), or that plutonic rocks are 

essentially unerupted equivalents of volcanic rocks (Glazner, 1991; Glazner et al., 2008).  

Large-scale (>100 km3) caldera eruptions represent one end-member in the discussion of 

plutonic/volcanic rock connections because current caldera models predict voluminous 

pluton formation, up to an order of magnitude larger than the erupted material, during 

ignimbrite eruption (e.g. Lipman, 2007). 

Traditional thought interprets caldera collapse and ignimbrite eruption to result 

from the partial evacuation of massive differentiated magma chambers at shallow crustal 

levels, the residuum of which is preserved as plutons (herein referred to as the “pluton-

building model”; Smith, 1979; Lipman, 1984; Bachmann et al., 2000; Bachmann et al., 

2002; Hildreth, 2004; Lipman, 2007).  The pluton-building model is built, in part, by 

noting the similarity between zoning of large ignimbrites and zoning of intrusive suites 

such as the Tuolumne Intrusive Suite of the Sierra Nevada batholith (Hildreth, 1981).  

However, recently published geochronologic data and petrologic evidence show some 

plutonic systems (including the Tuolumne Intrusive Suite) that were previously thought 

to be the remnants of now eroded ignimbrites never existed as single large chambers in 



the upper crust (Glazner et al.; 2004).  Rather, plutons in the Tuolumne and elsewhere 

were emplaced incrementally and amalgamated over millions of years (Coleman et al., 

2004; Matzel et al., 2006; Gracely, 2007).  If mapped plutons never existed as massive 

single chambers, they cannot fractionate the voluminous siliceous cap the traditional 

caldera model requires to form ignimbrites.  Consequently, there may be a disconnect 

between pluton-building events and ignimbrite eruptions (Glazner, 1991), and the 

traditional caldera model needs to be reevaluated. 

In light of geochronologic data, Glazner et al. (2004) recognized that not all 

voluminous plutons are associated with ignimbrite eruptions, and further suggest that 

ignimbrite eruptions may not result in voluminous pluton formation.  Their model, herein 

referred to as the “non-pluton-building model”, predicts caldera collapse to result from a 

period of high magma flux to upper crustal levels forming a shallow laccolithic magma 

body that is unstable in the upper crust and collapses quickly after rapid amalgamation.  

In the non-pluton-building model, the chamber evacuates almost entirely, leaving few 

remnant plutonic rocks (Roche and Druitt, 2001; Glazner et al., 2004). 

There are two fundamental differences between pluton-building and non-pluton-

building models for formation of ignimbrites.  First, the pluton-building model predicts 

massive remnant coeval plutons approximately three to ten times the volume of the 

ignimbrite (Smith, 1979; Bachmann et al., 2002; Hildreth, 2004; White et al., 2006; 

Lipman, 2007).  In contrast, the non-pluton-building model predicts ignimbrites to be the 

erupted products of magma chambers that are comparable in size to the erupted material 

that erupt nearly completely leaving little, if any, plutonic residue (Fig 1.1-A). 
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Fig. 1.1: Schematic representations of the fundamental differences in predictions from two end-member caldera 
models (pluton-building and non-pluton-building).  Pre-caldera and post-caldera stages are synonymous with 
"waxing" and "waning" stages defined by Lipman (2007).  Time progress to the right on the horizontal axis and is 
roughly to scale in (A) while the ignimbrite stage is exaggerated in (B).  A) A plot of predicted cumulative plutonic 
rock volume through time from the two end-member caldera models.  Colors correlate to plutonic rocks formed 
during different stages.  Green represents pre-caldera, blue and red respectively represent the pluton-building and 
non-pluton-building ignimbrite stage, and yellow represents the post-caldera stage.  In both models the final volume 
of plutonic rocks is identical, but the timing of pluton growth differs.  The pluton-building end-member predicts 
formation of voluminous plutonic rock coincident with ignimbrite eruption.  The non-pluton-building end-member 
predicts that the source magma chamber evacuates nearly completely during ignimbrite eruption, thus few plutonic 
rocks form during the ignimbrite stage and instead, most plutonic rocks form during the pre-caldera and post-caldera 
stages.  B)  Cross-sectional diagram demonstrating the two end-member predictions of chemical relations between 
plutonic and volcanic rocks.  The ignimbrite stage was expanded and divided to demonstrate the end member's 
predictions immediately prior to and following caldera collapse.  The colors for the plutonic rocks represent different 
stages and correlate to part A.  For the pluton-building model the volcanic rocks are red to pink, whereas for the non-
pluton-building model the volcanic rocks are the same colors as the plutonic rocks.  The ignimbrite (both erupted and 
unerupted portions) is red in both models.  The pluton-building end-member predicts magma that generates the 
ignimbrite, and other volcanic rocks, forms at the top of large chambers and is derived from magma differentiation.  
This process results in different, but complementary, chemistries for volcanic and plutonic rocks.  The non-pluton-
building model predicts that magma chamber differentiation does not significantly influence the chemistry of 
volcanic and plutonic rocks.  Instead, plutonic rocks represent unerupted volcanic rocks, so the chemistry of coeval 
rocks should be equivalent.
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A second distinction between the pluton- and non-pluton-building models is in the 

geochemical relation between plutonic and volcanic rocks.  The pluton-building model 

predicts that ignimbrites form via differentiation processes within voluminous “big tank” 

magma chambers. Consequently, the residual plutonic rocks should be chemically 

complementarily to the ignimbrite (residue and liquid, respectively).  The non-pluton-

building model predicts that shallow crustal magma chamber differentiation does not 

significantly influence the chemistry of ignimbrites or plutonic rocks, and chemically the 

rocks should be identical if derived from similar sources (Fig 1.1-B). 

Testing these competing hypotheses requires the uncommon exposure of both 

plutonic and volcanic rocks related to the same caldera.  The atypical setting of the 

Questa caldera, located on the flank of the Rio Grande Rift, results in the exposure of 

ignimbrite and related plutonic rocks.  With detailed high-precision geochronology of the 

Questa plutonic and volcanic rocks, in should be possible to determine if they formed 

contemporaneously.  If contemporaneous plutonic/volcanic rock pairs are identified it 

should be possible to evaluate whether they plausibly are complementary residue and 

liquid compositions, or they share similar chemistries.  Independent of identifying 

plutonic/volcanic rock pairs, it should also be possible to test whether the timing of 

magma intrusion and geochemical evolution of the plutons is consistent with formation of 

magmas similar to the erupted rocks.
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2. GEOLOGIC BACKGROUND 

The Questa caldera, located in the Latir volcanic field of north-central New 

Mexico, formed in response to eruption of the Amalia Tuff (Lipman et al., 1986).  The 

Latir field is ideal for examining plutonic/volcanic connections because it has a simple 

eruptive history, and asymmetric uplift along the Rio Grande rift exposes subvolcanic 

plutons while preserving volcanic rocks including the Amalia Tuff (Lipman, 1984).   

The Latir volcanic field comprises the southern margin of the Southern Rocky 

Mountain volcanic field, a volcanic province that hosts multiple Oligocene calderas (Fig. 

2.1; Lipman, 1984).  The western margin of the Latir field is defined by the Rio Grande 

Rift valley (Meyer, 1991).  Structural reconstruction combined with geochronology of 

volcanic rocks indicates that rifting began in the Latir field at 28 Ma, reached a maximum 

extensional rate between 26-25 Ma, and continued into the Miocene with rates slowing 

considerably (Meyer, 1991; Smith et al., 2002).  Modern rifting began at approximately 

15 Ma, and resulted in a few km of relief along the main Rio Grande Rift escarpment 

(Chapin, 1979; Tweto, 1979), exposing the potential plutonic roots of the volcanic rocks 

(Lipman, 1984). 

Volcanism in the Latir field began approximately at the same time as rifting 

(Meyer and Foland 1991; Zimmerer, 2008).  Volcanism is categorized into three phases: 

precaldera, ignimbrite, and postcaldera stages, correlating respectively to the waxing, 

ignimbrite, and waning stages defined by Lipman (2007).  Precaldera volcanic rocks are 

dominated by intermediate compositions, but range from basalt to rhyolite (Lipman et al., 



Questa caldera/
Latir volcanic field

Fig. 2.1: Geologic map showing calderas in the Southern Rocky Mountain volcanic field modified from 
Lipman (2007) and originally from McIntosh and Chapin (2004).  The focus of this study, the Questa 
caldera/Latir volcanic field is located in the southernmost portion of this map.  A more detailed map of the 
Latir field is shown in figure 2.2.
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1986).  Recent detailed geochronology and geochemistry work reveals precaldera 

volcanic rocks fluctuate between alkaline and calc-alkaline compositions prior to 

ignimbrite eruption (Zimmerer, 2008), contrasting previous interpretations that precaldera 

volcanism evolved from calc-alkaline to alkaline then culminated with the peralkaline 

ignimbrite eruption (Lipman, 1984; Lipman et al., 1986).  Latir volcanism initiated with 

the eruption of an alkalic andesite at 28.31 ± 0.19 Ma and the precaldera stage concluded 

with a rhyolite eruption at 25.27 ± 0.06 Ma (Zimmerer, 2008).  Volcanism climaxed at 

25.23 ± 0.05 Ma with the ignimbrite eruption of the ~500 km3 peralkaline Amalia Tuff, a 

crystal-poor high-silica rhyolite welded tuff (Zimmerer, 2008).  Postcaldera volcanism 

was dominated by intermediate composition volcanic eruptions; however, whereas 

precaldera and ignimbrite volcanic rocks are preserved as individual units, the only 

preserved postcaldera volcanic rocks are found as reworked deposits in sedimentary 

layers on two intrarift horst blocks (Thompson et al., 1986). 

Nine subvolcanic plutons crop out within the Latir field (Fig. 2.2; Lipman, 1984).  

Existing geochronologic data suggest that the intrusive rock record is dominated by 

postcaldera rocks (Lipman et al., 1986, Czamanske et al., 1990; Zimmerer, 2008).  These 

can be divided into three groups based on ages and spatial proximity (Lipman et al., 

1986; Meyer, 1991).  The Cañada Pinabete, Virgin Canyon, Rito del Medio, and Cabresto 

Lake plutons form the oldest intracaldera northern group.  The Bear Canyon, Sulfur 

Gulch, and Red River plutons form the intermediate age caldera margin group.  The Rio 

Hondo and Lucero Peak plutons form the youngest southern group.  Early 40Ar/39Ar 

(Czamanske et al., 1990), K/Ar, and fission-track dates (Lipman et al., 1986),  that were 

used to estimate the timing of intrusions were recently supplanted by detailed 40Ar/39Ar 

7
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thermochronology on hornblende, biotite and K-feldspar for all the intrusive rocks 

(Zimmerer, 2008); thus Zimmerer (2008) dates are preferred in this study (Table  

2.1). 

The northern pluton group includes the oldest exposed Latir intrusions that are 

interpreted to have formed contemporaneously with the caldera (Lipman et al., 1986).  

Within this group, the Cañada Pinabete and Virgin Canyon plutons are interpreted to be 

the oldest intrusions and, because they are similar petrographically and geochemically 

they are typically viewed as the same intrusion (Lipman et al., 1986; Johnson et al., 1989; 

Czamanske et al., 1990; Zimmerer, 2008).   

Lipman (1988) identified three phases that comprise the Cañada Pinabete and 

Virgin Canyon plutons.  The structurally highest phase, locally distinctive peralkaline 

granite, is interpreted to represent unerupted Amalia Tuff (Lipman et al., 1986; Johnson 

et al., 1989; Zimmerer, 2008).  The other two phases, both metaluminous granites, are 

categorized as early and late components with the early phase being structurally above 

the late phase (Lipman, 1988).  Paleomagnetic and petrologic evidence suggest that the 

plutons crystallized from the top down (Hagstrum and Lipman, 1986; Johnson et al., 

1986).  Lipman (1988) described the contact between the peralkaline and early 

metaluminous phase as “locally sharp but partly gradational” and suggests it results from 

incomplete mixing or a disturbed differential gradient.  The three phases are roughly 

equally distributed in the Virgin Canyon pluton, but exposure of the Cañada Pinabete 

pluton is dominated by the late metaluminous granite.  Argon geochronology of the 

phases yield complicated results.  Zimmerer (2008) prefers plateau ages (26.50-25.28 

Ma) that suggests the plutons may have formed prior to the Amalia Tuff (25.23 Ma; 

9



Table 2.1 – 40Ar/39Ar Thermochronology of 
 Latir Intrusions (Zimmerer, 2008) 

Unit Sample Material Age (Ma) 
Southern plutons    
Lucero Peak MZQ-21 biotite† 19.22±0.10 
  K-feldspar§ 18.59±0.11 
 MZQ-32 biotite† 19.02±0.10 
  K-feldspar§ 19.27±0..09 
Rio Hondo MZQ-9 biotite† 21.08±0.10 
  K-feldspar§ 21.73±0.12 
 MZQ-19 biotite§ 21.37±0.09 
  K-feldspar† 21.27±0.08 
 MZQ-33 K-feldspar§ 21.96±0.13 
Caldera margin plutons   
Bear Canyon MZQ-8 biotite† 24.38±0.12 
  K-feldspar† 23.56±0.18 
 MZQ-34 biotite† 24.22±0.10 
  K-feldspar† 22.21±0.11 
Sulfur Gulch MZQ-6 biotite† 24.57±0.14 
  K-feldspar† 26.50±0.12 
 AR-171 biotite† 24.48±0.10 
Red River MZQ-5 biotite† 24.78±0.06 
  K-feldspar§ 24.36±0.21 
Northern plutons    
Cabresto Lake MZQ-12 biotite† 24.65±0.13 
  K-feldspar‡ 24.68±0.09 
 MZQ-13 biotite† 24.68±0.11 
  K-feldspar† 25.51±0.33 
Rito del Medio MZQ-16 biotite† 25.03±0.05 
  K-feldspar† 25.06±0.15 
 MZQ-39 biotite† 24.66±0.17 
  K-feldspar† 24.65±0.08 
Cañada Pinabete MZQ-15 biotite† 25.28±0.09 
  K-feldspar§ 29.19±0.27 
Virgin Canyon MZQ-1 K-feldspar§ 29.53±0.24 
 MZQ-2 K-feldspar† 26.50±0.09 
 MZQ-38 K-feldspar† 25.78±0.07 
Preferred dates reported by Zimmerer (2008). 
† Dates calculated from plateau. 
‡ Dates calculated from inverse isochron. 
§ Dates calculated from the total gas released during analysis. 
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Zimmerer, 2008) however, inverse isochron ages for the same samples yield mostly 

younger dates (25.6-25.2 Ma) and are all within uncertainty of the Amalia Tuff. 

Following intrusion of the northern plutons, magmatism shifted toward the 

southern margin of the caldera (Lipman et al., 1986; Czamanske et al., 1990; Zimmerer, 

2008).  Field relations show the caldera margin plutons cutting through the Amalia Tuff, 

confining the age of emplacement to occur after ignimbrite eruption (Meyer and Foland, 

1991), and confirmed by 40Ar/39Ar  thermochronology on biotite (24.78-22.22 Ma; 

Zimmerer, 2008).  The group consists of three intrusive rock map units: The Bear Canyon 

and Sulfur Gulch plutons, and the Red River intrusive complex.  The Bear Canyon and 

Sulfur Gulch plutons are hydrothermally altered high-silica granites, containing zones of 

molybdenite ore.  Drilling associated with molybdenum mining suggests that these 

plutons may be connected several hundred meters below the surface (Leonardson et al., 

1983).  The Red River intrusive complex, exposed on the southeast edge of the caldera 

margin, is a mostly moderate to high-silica (68-78 wt% SiO2) suite dominated by 

numerous dikes of various compositions (Johnson et al., 1989). 

The Rio Hondo pluton, of the southern pluton group, is the largest exposed 

intrusive rock map unit in the Latir field and varies compositionally from equigranular 

granite to megacrystic K-feldspar granodiorite. The granitic unit is thought to represent 

the cap or roof of a magma chamber, formed by differentiation from the main 

granodiorite body (Lipman et al., 1986; Johnson et al., 1989).  The Rio Hondo pluton is 

intruded by hundreds of granitic dikes not present in the Lucero Peak pluton, the other 

southern pluton group member (Lipman and Reed, 1989).  Argon thermochronology 

indicates that both the Rio Hondo pluton (21.37-21.08 Ma) and the Lucero Peak pluton 

11



(19.22-19.02 Ma), formed significantly after the ignimbrite eruption (Zimmerer, 2008), 

making the Lucero Peak pluton the youngest and southern-most exposed intrusion in the 

Latir field.  

Early K/Ar and fission track thermochronology was used to frame the 

geochemical evolution of the Latir plutonic and volcanic rocks (Dillett and Czamanske, 

1987; Johnson and Lipman, 1988; Lipman, 1988; Johnson et al., 1989; Johnson et al., 

1990).  Using major, trace, and rare earth elements (REE) Johnson et al. (1988; 1989) 

concluded that the extrusive and intrusive rocks were each highly evolved and suggested 

that, whereas both suites can be generated by magma chamber fractionation, the process 

differs for plutonic and volcanic rocks.  These authors proposed that volcanic rocks 

evolved in crystal-poor magma chambers in which crystallization primarily involved 

major minerals (e.g. alkali feldspar, plagioclase, quartz) yielding relatively enriched 

concentrations of REE and trace elements.  In contrast they proposed that the plutonic 

rocks evolved in crystal-rich chambers with extensive accessory mineral fractionation 

(e.g. titanite, apatite, zircon) resulting in low concentrations of trace elements, 

specifically middle REE. 

Johnson et al. (1989) proposed the compositional variations found within the 

Cañada Pinabete, Virgin Canyon, and Rio Hondo plutons to result from crystal 

fractionation, similar to the process envisioned to generate ignimbrites in the pluton-

building caldera model.  If the compositional variations are generated by crystal 

fractionation, formation of these compositional phases would be approximately 

concurrent with the stratigraphically highest and most evolved melts crystallizing last, 

12



and the chemical relationship between phases should display complementary chemical 

compositions. 
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3. METHODS 

One sample of the Cañada Pinabete pluton, two samples of the Cabresto Lake 

pluton, and four samples from the Rio Hondo pluton were collected for zircon U/Pb 

geochronology.  The samples are the same as those used by Zimmerer (2008) for 

40Ar/39Ar thermochronology.  All samples were crushed using a jaw crusher and a disc 

mill.  Zircon was isolated using standard density (water table and heavy liquids) and 

magnetic separation techniques.  Individual grains were selected using a binocular 

microscope on the basis of size, clarity, and morphology.  The selected grains were 

thermally annealed for 48 hours at 900°C (Mattinson, 2005) and chemically abraded for 

12 hours at 220°C in an attempt to remove any domains that experienced Pb loss 

(procedure modified from Mundil et al., 2004).  Zircons were separated into fractions, 

dissolved in 29 M HF acid and spiked using a 205Pb-233U-236U tracer (Krogh, 1973; 

Parrish and Krogh, 1987).  Anion exchange column chromatography was used to isolate 

U and Pb from the dissolved solution.  Analysis of U and Pb was completed using a VG 

Sector 54 thermal ionization mass spectrometer (TIMS) at the University of North 

Carolina at Chapel Hill.  Uranium was run as a metal after loading in graphite and H3PO4 

on single Re filaments.  Lead was loaded in silica gel on single Re filaments.  Both U and 

Pb were analyzed in single-collector peak-hopping mode using the Daly ion-counting 

system.  Data reduction was completed using TripoliTM software and percent standard 

errors are reported at 2σ confidence.  Data processing and age calculations were 

completed with the PbMacDat-2 program by D.S. Coleman using the algorithms of



Ludwig (1989, 1990) and Isoplot v. 3.00 (Ludwig, 2003).  Decay constants used are 

238U=1.55125 x 10-10 a-1 and 235U=9.8485 x 10-10 a-1 (Steiger and Jäger, 1977). 

Initially samples consistently produced poor results with apparent erroneously 

high common Pb concentrations and poor radiogenic Pb yield, so modifications were 

made to the dissolution and column procedures in an attempt to improve results.  After 

conducting experiments to isolate potential problems two issues were identified and 

modifications made to the procedures. One effective modification was altering the 

dissolution process from using HF gas to using HF liquid.  Using HF gas likely caused 

precipitation of an insoluble fluoride salt, which resulted in only a fraction of the total U 

and Pb (sample + tracer) being isolated during column chemistry, thus leading to poor Pb 

yield.  Since only a fraction of the total tracer was loaded onto the filament, the loading 

blank was exaggerated, and total common Pb artificially appeared high.   

A second successful modification was changing the anion column chemistry 

procedure.  Initially 50 uL columns were used, but column length and geometry varied 

creating inconsistencies between columns.  New uniformly shaped 150 uL columns were 

cleaned and calibrated, resulting in superior results with far greater consistency during 

analysis.  Consistency of successful analyses was greatly enhanced after these two 

procedural modifications were adopted. 
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4. RESULTS 

Data are presented in Table 4.1.  Zircons from all samples contain few inclusions 

and lack apparent inherited cores or rims. For most samples there is scatter in ages 

beyond analytical uncertainty, but there is also a cluster of a subset of analyses defined as 

three or more overlapping data points.  For these samples both the range in 206Pb/238U 

ages and the concordia age of the cluster is reported. 

4.1 Cañada Pinabete pluton  

One sample (MZQ-15) of the late metaluminous phase of the Cañada Pinabete 

pluton was analyzed (Fig. 4.1-G).  Three concordant and one slightly normally discordant 

fraction of MZQ-15 span from 25.41-25.17 Ma and three concordant points cluster and 

yield an age of 25.23 ± 0.09 Ma (MSWD = 1.8).  Two samples of the peralkaline phase 

were processed, but no zircon was liberated during initial separation steps.  Scanning 

electron microscopy revealed that the traces of zircon contained within the peralkaline 

phase are amorphous and of questionable use in determining the crystallization age of the 

sample. 

4.2 Cabresto Lake pluton 

Two spatially and mineralogically distinct samples (MZQ-12 and MZQ-13) of the 

Cabresto Lake pluton were dated.  The two samples are compositionally similar although 

only MZQ-13 contains titanite.



Results for the two samples yield overlapping ages at approximately 25 Ma (Fig. 

4.1-E,F,I).  Four concordant fractions of MZQ-12 cluster and yield an age of 25.02 ± 0.05 

Ma (MSWD = 1.2).  Five concordant fractions of MZQ-13 cluster and yield an age of 

24.94 ± 0.05 Ma (MSWD = 0.5). 

4.3 Rio Hondo pluton 

Four spatially and compositionally distinct samples (MZQ-9, MZQ-19, MZQ-33, 

and MZQ-40) of the Rio Hondo pluton were analyzed.  The structurally highest sample 

(MZQ-33) was collected from near the interpreted roof of the Rio Hondo (Lipman, 1988; 

Czmanske et al., 1990), and is high-silica granite with abundant rapikivi K-feldspar 

megacrysts.  Samples MZQ-19, MZQ-9, and MZQ-40 are granodiorite with the latter two 

hosting rapakivi K-feldspar megacrysts.  The relative structural positioning of the 

granodiorite samples is difficult to assess because differential uplift and faulting results in 

deeper level exposure in the southern region of the pluton (Lipman, 1988). 

Rio Hondo zircons yield ages from 23.00-22.47 Ma and each sample yields a 

concordant ellipse that does not overlap with the other samples of the Rio Hondo pluton 

within uncertainty (Fig. 4.1- A-D, H).  Five concordant and one normally discordant 

fraction of MZQ-33 span from 23.00-22.77 Ma and three points cluster and yield an age 

of 22.99 ± 0.12 Ma (MSWD = 2.6).  Four concordant fractions of MZQ-40 span from 

22.84-22.71 Ma and three points cluster and yield an age of 22.81 ± 0.06 Ma (MSWD = 

1.9).  Five concordant fractions of MZQ-19 cluster and yield an age of 22.63 ± 0.03 Ma 

(MSWD = 1.0).  Four concordant fractions of MZQ-9 span from 22.62-22.47 Ma and 

three points cluster and yield an age of 22.49 ± 0.04 Ma (MSWD = 0.7). 
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5. DISCUSSION 

5.1 Intrusive history of the Cañada Pinabete, Cabresto Lake, and Rio 

Hondo plutons 

Seven new high-resolution U/Pb zircon ages presented in this study establish an 

intrusive history for the Cañada Pinabete, Cabresto Lake, and Rio Hondo plutons.  One 

sample of the late metaluminous phase of the Cañada Pinabete pluton yields an age of 

25.23 ± 0.09 Ma, similar to both the age estimate using fission track and K/Ar (26 Ma) by 

Lipman et al. (1986), and 40Ar/39Ar plateau age (24.7 Ma) reported by Czamanske et al. 

(1990).  Two Cabresto Lake pluton samples yield statistically indistinguishable ages from 

one another of 25.02 ± 0.05 to 24.94 ± 0.05 Ma, confirming the ages reported in previous 

work (Lipman et al., 1986; Czamanske et al., 1990; Zimmerer, 2008).  Four Rio Hondo 

pluton samples range in age from 22.99 ± 0.12 to 22.49 ± 0.04 Ma.  This age range is 

substantially younger than the age estimate of 25-26 Ma from fission track and 40K/39Ar 

methods reported by Lipman et al. (1986), but is somewhat older than 40Ar/39Ar ages 

(Table 2.1) reported by Czamanske et al. (1990) and Zimmerer (2008). 

The ages determined in this study support previous interpretations of magmatism 

beginning with the northern plutons and migrating south (Lipman et al., 1986; 

Czamanske et al., 1990).  The zircon U/Pb age of the late metaluminous Cañada Pinabete 

pluton (25.23 ± 0.09 Ma) is identical to the sanidine 40Ar/39Ar age reported for the 

Amalia Tuff (25.23 ± 0.05 Ma; Zimmerer, 2008), using the decay constant of Steiger and



Jäger (1977).  The post-caldera Cabresto Lake pluton formed ~200 K.y. after ignimbrite 

eruption and two samples yield overlapping ages suggesting that the unit was assembled 

rapidly.  The Rio Hondo pluton formed ~2 M.y. after ignimbrite eruption and the time 

between formation of the Cabresto Lake and Rio Hondo plutons spans the majority of 

post-caldera magmatic activity.  The Rio Hondo pluton formed over at least 500 k.y. 

indicating protracted pluton assembly.  Thus, the ages demonstrate that the pluton that 

formed soon after caldera eruption, presumably during peak magma input, assembled 

rapidly and the pluton that formed after peak magma input was likely assembled 

incrementally, thereby supporting the general caldera evolution model proposed by 

Lipman (2007). 

The span of zircon U/Pb ages for the Rio Hondo pluton is not uncommon in large 

intrusive rock map units.  In a variety of tectonic settings, zircon U/Pb geochronology 

yields ages that range from 0.09 to 4 M.y. between multiple samples from individual 

plutons (Coleman et al., 2004; Cruden et al., 2005; Matzel et al., 2006; Gracely, 2007; 

Michel et al., 2008).  Those studies attribute these age ranges to incremental intrusion, in 

which mapped plutons are the final products of multiple pulses of magma that intruded 

the upper crust.  During incremental assembly, early pulses cool rapidly and quickly 

reach the solidus temperature after intrusion.  As the local geothermal gradient is elevated 

by continued intrusion, later pulses cool more slowly allowing the possibility for 

formation of a steady-state magma chamber that is smaller than the total assembled body 

(Hanson and Glazner, 1995; Wiebe and Collins, 1998; Yoshinobu et al., 1998).  

Consequently, voluminous eruptions are unlikely to be related to incrementally 
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assembled plutons, because there never is a large volume of magma generated for 

eruption. 

5.2 Pluton filling rates 

The well-determined geochronology and structural relief make the Rio Hondo 

pluton an interesting case study for examining pluton filling rates.  The geochronology 

presented in this study shows that the pluton took at least 500,000 years to form.  

Structural relief and field observations provide a minimum pluton thickness, used to 

calculate pluton volume.  The roof of the pluton is exposed at low-angle contacts between 

plutonic and basement rocks along ridge crests (Lipman, 1988).  At low elevations, the 

Rio Hondo pluton contains high concentrations of mafic enclaves, interpreted in other 

intrusions to result from underplated mafic dikes (Wiebe et al., 1997; Bachl et al., 2001), 

suggesting a level near the pluton floor.  These observations yield a thickness estimate of 

1.2 km for the Rio Hondo pluton.  Because the pluton floor is not exposed the volume 

estimate is a minimum.  However, the oblate geometry of the Rio Hondo pluton implied 

by the minimum outcrop area (90 km2) and a 1.2 km thickness provides an aspect ratio of 

7.5:1, comparable to most other pluton aspect ratios (Cruden and McCaffrey, 2001; 

Bachmann and Bergantz, 2008a).  This aspect ratio also seems reasonable when 

considering that plutons emplaced in extensional regimes have a relatively modest 

thickness in comparison to plutons emplaced in other tectonic settings (Vigneresse, 1995; 

Cruden, 2006). 

Using the 1.2 km thickness and a filling time of 0.5 M.y., the Rio Hondo pluton 

yields a steady-state filling rate of 6.1 x 10-3 m3/s.  If the thickness is underestimated, the 

filling rate is also undervalued.  Assuming a maximum thickness of 2.2 km for the Rio 
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Hondo pluton, calculated using assumptions for “typical” plutons by Petford et al. (2000), 

yields an aspect ratio of 4.1:1 and a filling rate of 1.1 x 10-2 m3/s.  Estimated filling rates 

for other plutons with precise geochronologic control yield rates similar to that of the Rio 

Hondo pluton (Table 5.1) ranging from 4.8 x 10-3 m3/s to 4.2 x 10-2 m3/s. 

The filling rates for the Rio Hondo and the other plutons reviewed are 

significantly slower than the modeled rate of 1.0 m3/s (Petford et al., 2000), calculated 

from estimates for pluton volume, magma viscosities, wall-rock/magma density contrasts, 

and dike morphologies.  The discrepancy between calculated and model filling rates is 

partially explained by noting that the modeled pluton thickness may be overestimated as 

Petford et al. (2000) acknowledge.  However, the most significant discrepancy is likely to 

result from the pluton-building timescales.  Petford et al. (2000) favor pluton-building 

timescales of <100,000 years and further suggest plutons may be completely emplaced in 

under 1,000 years, however these timescales are built on the assumption of continuous 

magma recharge.  Because more recent work demonstrates numerous plutons preserve 

evidence for complex and periodic intrusive histories (e.g. Coleman et al., 2004; Cruden 

et al., 2005; Matzel et al., 2006; Gracely, 2007; Michel et al., 2008, this study) the 

assumption of continuous magma recharge appears to be flawed.  Additionally, the range 

of ages for plutons must be interpreted as a minimum pluton building time, because 

additional sampling could yield ages outside of those reported, thus further decreasing 

estimates of pluton filling rates.  Therefore, the pluton filling rates and subsequent 

pluton-building timescales suggested by Petford et al. (2000) are unlikely and may occur 

only in atypical situations. 
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TABLE 5.1 - PLUTON FILLING RATES 

Pluton 
Surface area 

(km2) 
Thickness 

(km) †
Aspect 
ratio 

Volume 
(km3) 

Building time 
(My) ‡

Filling rate 
(m3/s) 

Rio Hondo 80 1.2 7.5 96 0.5 0.006 
Torres del Paine 96 1.25 7.8 120 0.09 0.042 
Half Dome 300 10 1.7 3000 3.9 0.024 
Mt. Stuart 480 2.5 8.8 1200 5.5 0.007 
Ten Peak 197 2 7.0 394 2.6 0.005 
†Thickness estimated from observations for Rio Hondo, Mt. Stuart, and Ten Peak plutons.  Thickness 
estimated from geophysical studies for Torres del Paine (Skarmeta and Castelli, 1977), and Half Dome 
(Oliver, 1977). 
‡ Geochronology established for the Rio Hondo (this study), Torres del Paine by Michel et al. (2008), 
Half Dome by Coleman et al. (2004), Mt Stuart and Ten Peak by Matzel et al. (2006). 
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5.3 Integrating U/Pb and Ar/Ar geochronology 

Multiple geochronometers with different closure temperatures can be used to 

establish the thermal history of an intrusive body (Dodson, 1973; McDougall and 

Harrison, 1989; Holm and Dakka, 1993).  Calibration of U/Pb and Ar/Ar systems is 

challenging due to the difference of uncertainty in the decay constants (Ivanov, 2006; 

Krumrei et al. 2006; Matzel et al., 2006).  Steiger and Jäger (1977) established the widely 

used decay constant values for 238U (λ=1.551 ± 0.024 e-10yr-1), 235U (λ=9.846 ± 0.048 e-

10yr-1), and 40K (λ=5.543 ± 0.020 e-10yr-1) with U decay constant errors reported by Jaffey 

et al. (1971) and K decay constant error reported by Min et al. (2000).  Accurate 

calibration of chronometers is particularly important when investigating young rocks 

because the uncertainty in decay constants can exceed uncertainty in dates from 

analytical precision alone.  The Fish Canyon Tuff, a widely used standard in 40Ar/39Ar 

geochronology, yields zircon ages ubiquitously older (0.4-0.5 Ma) than sanidine 

40Ar/39Ar ages when using the Steiger and Jäger (1977) decay constants (Oberli et al., 

1990; Bachmann et al., 2007b).  This systematic difference was attributed to zircon 

residence in a long-lived magma chamber until Schmitz and Bowring (2001) established 

a 230Th corrected disequilibrium U/Pb age on Fish Canyon Tuff titanite and concluded 

that prolonged residence was unlikely thus the 40K decay constant was potentially 

undervalued. 

Several studies have attempted to recalculate the 40K decay constant (Audi et al., 

1997; Min et al., 2000; Kossert and Gunther, 2004), and establish the precise 40Ar/39Ar 

age of standards including the Fish Canyon Tuff (Renne et al., 1998; Kuiper et al., 2008).  

The decay constant proposed by Min et al. (2000; λ=5.463 ± 0.214 e-10yr-1) demonstrates 
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that the uncertainty in the Steiger and Jäger (1977) 40K decay constant was under- 

assigned.  The Min et al. (2000) decay constant was used by Kuiper et al. (2008) during 

calculations to determine the accurate age of the Fish Canyon Tuff.  Kuiper et al. (2008) 

recognized that if astronomical age estimates could be determined for a sequence of 

sedimentary rocks intercalated with volcanic tephras, the 40Ar/39Ar ages of the tephras 

must be consistent with the astronomical age estimates.  Once this was established, the 

40Ar/39Ar ages of the tephras became the known variable so the samples were viewed as 

the standards, and the age of the actual standard, in this investigation the Fish Canyon 

Tuff, was recalculated.  The age for the Fish Canyon Tuff proposed by Kuiper et al. 

(2008) increases the accepted age from 28.02 ± 0.56 Ma (Renne et al., 1998) to 28.201 ± 

0.046 Ma closing most of the gap between U/Pb and 40Ar/39Ar ages of the Fish Canyon 

Tuff.  The new Fish Canyon Tuff age, combined with the Min et al. (2000) 40K decay 

constant, results in 40Ar/39Ar dates increasing in age by approximately 0.65% relative to 

dates calculated using the Steiger and Jäger (1977) 40K decay constant and Renne et al. 

(1998) Fish Canyon Tuff age.  Additional independent studies are necessary to confirm 

the finding of Kuiper et al. (2008) before the geochronology community accepts the new 

age of the Fish Canyon Tuff as the best current estimate.  However, participants in the 

2009 EARTHTIME meeting unanimously agreed to informally adopt the Kuiper et al. 

(2008) standard.  Consequently this discussion focuses on 40Ar/39Ar ages calculated using 

the 40K decay constant proposed by Min et al. (2000) with the standard proposed by 

Kuiper et al. (2008), but the implications of using the 40K decay constant proposed by 

Steiger and Jäger (1977) with the standard proposed by Renne et al. (1998) are also 

explored. 
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In order to understand the thermal evolution of plutons in the Latir field, cooling 

plots were constructed for samples from the Cabresto Lake and Rio Hondo plutons (Fig. 

5.1).  Because zircon separates were obtained from the identical samples that Zimmerer 

(2008) used when determining biotite and K-feldspar 40Ar/39Ar ages, there is no 

uncertainty introduced through comparison of data from different samples.  Using 

geochemical data from Johnson et al. (1989), the zircon saturation temperature is 

calculated to be ~800°C for the Cabresto Lake pluton and ~725°C for the Rio Hondo 

pluton (Watson and Harrison, 1983; Miller et al., 2003).  Biotite and K-feldspar closure 

temperatures are estimated to be approximately 300°C and 250°C, respectively (Harrison 

et al., 1985).  Although the closure temperatures are only estimates, these temperatures 

provide a framework for understanding differences between cooling histories of multiple 

plutons. 

For samples from which we have both biotite and K-feldspar 40Ar/39Ar, 

calculation of cooling rates through biotite closure yield the same result within 

uncertainty as cooling rates through K-feldspar closure.  Using the 40K decay constant 

reported by Min et al. (2000) with the standard reported by Kuiper et al. (2008) the 

Cabresto Lake pluton samples (MZQ-12, MZQ-13) yield cooling rates of 2.4°C/K.y. and 

5.0°C/K.y. respectively, indicating rapid cooling below the biotite closure temperature 

soon after intrusion.  In contrast, all samples of the Rio Hondo pluton yield slow cooling 

rates.  The northernmost granodiorite sample (MZQ-19) of the Rio Hondo pluton 

produces a monotonic cooling rate of 0.39°C/K.y. from zircon saturation temperature to 

K-feldspar closure temperature, whereas a megacystic K-feldspar granodiorite sample 

(MZQ-9) yields a monotonic cooling rate of 0.33°C/K.y. from zircon saturation to biotite 
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closure temperatures.  Using the 40K decay constant proposed by Steiger and Jäger (1977) 

with the standard reported by Renne et al. (1988), all 40Ar/39Ar ages are younger, 

therefore cooling rates are slowed by approximately 50% for the Cabresto Lake samples 

and approximately 10% for Rio Hondo samples. 

The disparity between cooling histories for the Cabresto Lake and Rio Hondo 

plutons is likely attributed to many factors.  Exposure suggests the Cabresto Lake pluton 

is significantly smaller then the Rio Hondo pluton (Fig. 2.2), therefore the rate of heat 

loss by diffusion is expected to be greater for the Cabresto Lake pluton.  Zircon U/Pb 

ages indicate the Cabresto Lake pluton assembled rapidly and soon after ignimbrite 

eruption.  Magma input rates are likely to be greatest during ignimbrite formation 

(Lipman, 2007).  Therefore, it seems reasonable that the Cabresto Lake pluton assembled 

rapidly after ignimbrite eruption and cooled immediately after intruding.  In contrast, the 

much younger Rio Hondo pluton intruded during the waning stages of magmatism when 

magma input rates may have been sufficiently less.  The zircon geochronology suggests 

that the Rio Hondo pluton was assembled over at least 500 k.y., and the addition of later 

magma pulses may have allowed the system to maintain temperatures in excess of the 

biotite and K-feldspar closure temperatures for extended time periods. 

If the Cabresto Lake pluton cooled rapidly because of the depth of emplacement 

and formation during high magma input, then the Cañada Pinabete pluton would also be 

expected to cool rapidly given it likely formed at structurally higher levels and during the 

peak of magma input.  Cooling rates were not calculated for the Cañada Pinabete pluton 

because the zircon U/Pb age (25.23 ± 0.09 Ma) is within uncertainty of the biotite Ar/Ar 

age (25.28 ± 0.08 Ma) reported by Zimmerer (2008) suggesting very rapid cooling. 
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5.4 Potential plutonic/volcanic rock pairs 

The geochronology of the Cañada Pinabete pluton and Amalia Tuff highlight the 

importance of accurate calibration of chronometers when using different systems.  The 

zircon U/Pb age (25.23 ± 0.09 Ma) of the late metaluminous phase of the Cañada 

Pinabete pluton is identical to the sanidine 40Ar/39Ar age (25.23 ± 0.05 Ma) of the Amalia 

Tuff reported by Zimmerer (2008) calculated using the Renne et al. (1998) value for the 

Fish Canyon Tuff and the 40K decay constant proposed by Steiger and Jäger (1977).  

Using the updated standard value (Kuiper et al., 2008) and 40K decay constant (Min et al., 

2000) the Amalia Tuff yields an older age (25.39 ± 0.05 Ma) than the late metaluminous 

phase of the pluton.  However, because the peralkaline phase of the Cañada Pinabete is 

thought to be older than the late metaluminous phase it is plausible that the peralkaline 

phase is the same age as the Amalia Tuff (Hagstrum and Lipman, 1986).  Unfortunately, 

the peralkaline phase has yielded no datable zircon and has a very poorly known 

40Ar/39Ar date (K-spar inverse isochron 25.6 ± 0.7 Ma; Zimmerer, 2008).  Although the 

available geochronology cannot directly establish an age correlation between the 

peralkaline phase of the Cañada Pinabete pluton and the Amalia Tuff, they are consistent 

with the correlation of the two made on the basis of nearly identical chemistry (Johnson 

and Lipman 1988; Johnson et al., 1989). 

5.5 Evaluating fractional crystallization models for the Rio Hondo 

pluton 

Johnson et al. (1989) proposed that most compositional variations within 

individual Latir intrusive units could be generated through fractional crystallization 

combined with filter pressing, and additionally suggested potential crystal fractionation 
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relationships between map units.  Within the Rio Hondo pluton, the granitic roof was 

interpreted to have been fractionated/filter pressed from the more mafic roots in a two-

stage process. The first stage involved derivation of “typical” granodiorite from “mafic” 

granodiorite, followed by a second stage from “typical” granodiorite to granite.  The new 

geochronologic data presented here directly contradict this model. 

Within the Rio Hondo pluton, the structurally highest granite crystallized before 

either of the structurally lower granodiorite units – precisely opposite the predicted age 

relationship.  If the Rio Hondo pluton was incrementally assembled, as the 

geochronology, filling rates, and cooling rates all suggest, then no chemical relationship 

is expected between the granite and granodiorite, and fits of the geochemical data to a 

fractionation model is likely the result of an over-determined model. 

5.6 Evaluating fractional crystallization trends between plutonic and 

volcanic rocks 

Pluton-building caldera models require ignimbrites and remnant plutons to evolve 

via fractionation from the same parental magma body (Fig. 1.1-B; Hildreth, 2004; 

Lipman 2007). These models generally envision fractionating magma chambers with 

high-silica caps evolving above more mafic granodiorite roots (e.g., Hildreth, 1981; 

Bachmann and Bergantz, 2008b), much like the Johnson et al. (1989) model for the Rio 

Hondo granite.  Although the data presented here rule out this possibility for the Rio 

Hondo itself, it is possible to compare the potential fractionation trends in the intrusive 

rocks as outlined by Johnson et al. (1989) to determine if the geochemistry of any of the 

exposed plutonic and volcanic rocks appear to be related through fractionation. 
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To investigate possible in situ geochemical evolution of the plutonic rocks, a 

simple trace-element equilibrium crystallization model was constructed.  The proposed 

fractionation relationship investigated here is whether the peralkaline granite of the 

Cañada Pinabete pluton could be derived by fractionation/filter pressing of the early 

metaluminous magma (Johnson et al., 1989).  Since the major, trace, and rare-earth 

element chemistry of the peralkaline granite is essentially indistinguishable from the 

Amalia Tuff it is interpreted to be unerupted ignimbrite (Lipman, 1988; Johnson et al., 

1989).  Therefore, understanding the chemical relationship within the Cañada Pinabete 

pluton is paramount to understanding the genetic relationship between the pluton and the 

ignimbrite. 

To illustrate the trend that this fractionation assemblage would produce the model 

was calculated at 10, 20, 30, 40, 50, 70, and 90% crystals using the same geochemistry, 

modal mineral abundances, and fractionation relationship described by Johnson et al. 

(1989).  The mineral partition coefficients proposed by Johnson et al. (1989) calculated 

using the data of Dillet and Czamanske (1987), however, are not used.  Because no glass 

is preserved within the Questa plutonic rocks, the composition of the melt at the time of 

mineral formation is unknown, and the partition coefficients used by Johnson et al. 

(1989) were calculated from whole-rock and mineral data.  Instead of these coefficients, 

those established by Bachmann et al. (2005) for the Fish Canyon Tuff calculated from 

mineral and glass compositions are used.  Although using calculated values from another 

locality is not ideal, this compromise seems reasonable for several reasons.  The Fish 

Canyon Tuff is comparable in bulk chemistry and modal mineralogy to the calc-alkaline 

plutonic rocks in the Latir field (Whitney and Stormer, 1985; Johnson et al., 1989).  
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Partition coefficients can vary significantly in high-silica melts (Mahood and Hildreth, 

1983; Nash and Crecraft, 1985); consequently it is dubious to assume that any one set of 

coefficients is applicable to the entire crystallization of a magma.  Finally, I do not seek 

any quantitative fractionation model, only an evaluation of differentiation trends.  

Whereas the magnitude of the partition coefficients for the Fish Canyon Tuff may be 

inappropriate for the Questa plutonic rocks, the direction of fractionation vectors should 

be the same. 

An important caveat in Johnson et al. (1989) fractionation model is the potential 

role of halogen-rich fluid fluxes.  While this process could alter the chemistry of the 

rocks during fractionation it is impossible to quantify, so it cannot be modeled.  However, 

the bases on which Johnson et al. (1989) suggest halogen-fluxes occur and the effect this 

mechanism would have on specific elements is unclear.  Thus it appears that halogen-rich 

fluid fluxes could be an example of a mechanism introduced so the data better fits the 

over-determined model.  Regardless, these authors do not suggest that this mechanism 

occurs ubiquitously throughout the Latir field, so my objective of comparing the 

fractionation trends of plutonic and volcanic rocks does not appear to be comprised. 

Results from the fractionation model (Fig. 5.2) demonstrate three key points: 1) 

Latir plutonic and volcanic rocks generally overlap and do not display the systematic 

difference in trace-element compositions observed between melt and residue in the 

model.  2) The trend of the model fractionation vector for the elements examined is 

oblique in reference to the overall trend of plutonic and volcanic rocks.  Clearly the 

fractionation vector would change in angle, magnitude, and direction using different 

mineral assemblages, partition coefficients, and parent magma; yet nearly all Latir 
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plutonic and volcanic rocks plot along the same general trend.  3) It appears the trace 

element geochemistry of the peralkaline granite could be generated by fractionation of 

early metaluminous magma; however, this would also produce crystal residues with 

compositions unlike any found in the Latir rocks. 

5.7 Top-down pluton construction 

It appears the compositional variations within Latir plutons do not result from 

magma chamber differentiation, but instead represent sequential intrusion of 

compositionally distinct magmas.  Within the Cañada Pinabeté pluton, field, 

paleomagnetic, and petrologic studies suggest the structurally highest peralkaline phase 

crystallized before the early metaluminous phase and structurally deepest late 

metaluminous phase (Hagstrum and Lipman, 1986; Johnson et al., 1986; Lipman, 1988).  

If the structurally highest, peralkaline phase of the pluton is unerupted Amalia Tuff 

(Lipman, 1988; Johnson et al., 1989), then it must have formed contemporaneously with 

the tuff (25.39 ± 0.05 Ma).  Therefore the updated standard (Kuiper et al., 2008) and 

decay constant values (Min et al., 2000) suggest the peralkaline granite is older than the 

metaluminous granite (25.23 ± 0.09 Ma), which is consistent with the sequence of 

magma intrusion.  Thus, available data suggest that the Cañada Pinabeté was built from 

the top downward. 

Top down construction of the Rio Hondo pluton also seems likely.  Zircon 

geochronology on the Rio Hondo pluton demonstrates that the granite (22.99 ± 0.12 Ma), 

the structurally highest sample, yields the oldest age, and the structurally lower 

granodiorite (22.81 ± 0.06; 22.63 ± 0.03; 22.49 ± 0.04 Ma) samples yield younger ages.  

These ages are consistent with incremental downward-stacking assembly of the pluton.   
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A growing number of examples suggest that downward-stacking of intrusions 

may be a common assembly sequence.  High-precision geochronology and field relations 

suggest that the Tuolumne (Coleman et al., 2008) and Whitney (Hirt, 2007) intrusive 

suites of the Sierra Nevada Batholith, the Trachyte Mesa Laccolith of the Henry Mnts. 

(Morgan et al., 2008), and Torres Del Paine (Michel et al., 2008) along with other South 

American Cordilleran plutons (Cruden et al., 2005) are all downward-stacked sill-type 

intrusions. 

Recent experimental studies and modeling predict downward stacking as a 

dominant mode of incremental pluton assembly (Kavanagh et al., 2006; Menand, 2008).  

These experiments demonstrate that magma rising along dikes will stall at rheological 

boundaries.  Rising magma then spreads laterally at the boundary, and sill or laccolith 

formation is likely to occur.  In the Cañada Pinabete and Rio Hondo plutons, after 

intrusion of the peralkaline and granite magmas (respectively), these units may have 

acted as rheological barriers, trapping later metaluminous and granodiorite pulses below.  

The rheological barriers may have formed either because the initial intrusions crystallized 

quickly, becoming a cohesive unit that resists fracturing, or because the sill contained 

melt when the next pulse of magma intruded (Coleman et al., 2008).  If significant melt 

was still present, brittle deformation necessary for dike propagation is unlikely to have 

occurred when the next magma pulse intruded, thus trapping later pulses below earlier 

ones (Bacon et al., 1980; Wiebe and Collins, 1998). 

5.8 Caldera model reevaluation 

Differences between the pluton-building and non-pluton-building end-member 

caldera models are most clearly observed in two ways: 1) the volume of plutonic rocks 

37



estimated to form contemporaneously with ignimbrite eruption (Fig 1.1-A) and 2) the 

predicted chemical relationship if plutonic rocks and volcanic rocks are related by crystal 

fractionation (Fig 1.1-B).  Geochronology of the Latir plutons indicates the Cañada 

Pinabeté and Virgin Canyon plutons are the only plutons that may have formed 

synchronously with the ignimbrite, although using updated standard (Kuiper et al., 2008) 

and 40K decay constant (Min et al., 2000) values it appears the Amalia Tuff is older than 

the metaluminous phases of the plutons.  Thus, only the small (total exposure <10 km2) 

peralkaline phase of the plutons is permissibly the same age as the tuff.  This unit is 

preserved dominantly as thin dikes and a small capping unit, not as a large volume 

residue.  These observations are much more consistent with the predictions of the non-

pluton building model for caldera formation. 

Geochemistry indicates that the peralkaline phase of the Cañada Pinabete pluton 

and the Amalia Tuff are essentially identical, leading previous workers to conclude that 

they were plutonic/volcanic equivalents (Lipman, 1988; Johnson et al., 1989).  This 

observation is also most consistent with the non-pluton-building model for calderas – the 

units are chemically indistinguishable, not crystal/liquid pairs.  Considering the Latir 

field as a whole, trace-element modeling indicates that none of the plutonic and volcanic 

rocks are likely to be related by crystal fractionation of the phases present in the plutonic 

rocks.  Thus again, it appears the non-pluton-building caldera model seems more 

appropriate for the Questa caldera. 

Two important caveats to the arguments presented against the pluton-building 

caldera model should be considered.  First, only a small fraction of the plutonic rocks 

likely to be preserved under the Questa caldera are exposed.  What if the coeval 
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cumulates of the Amalia Tuff are preserved at deeper, unexposed structural levels?  

Second, could the fraction of liquid withdrawn from the magma chamber during eruption 

of the Amalia Tuff be so small that its removal could be masked by a large 

intrusive:extrusive rock ratio? 

The Questa caldera sits above a regional gravity anomaly inferred to result from a 

composite batholith (Cordell et al., 1985; Long, 1985).  This batholith is proposed to 

represent the source from which the Amalia Tuff was generated (Lipman, 1988; Johnson 

et al., 1989; Lipman 2007).  Gravity lows are commonly found in the subsurface beneath 

caldera systems (e.g. Davy and Caldwell, 1998; Marti et al., 2008), and whereas some 

interpretations suggest they represent the plutonic rock from which the ignimbrite was 

fractionated (Lipman, 2007), others suggest these anomalies reflect the presence of post-

caldera (waning stage) intrusions (Steck et al., 1998).   

Although it is not presently possible to know the geochemistry, petrology or age 

of the inferred batholith under the Questa caldera, it seems reasonable to expect that if 

this gravity anomaly results from a voluminous crystal cumulate then these cumulates 

should be exposed in other volcanic systems.  However, consideration of other plutonic 

and volcanic Cenozoic rocks in New Mexico and Colorado available on the NAVDAT 

database reveals that few samples are likely fractionation residues (Fig. 5.2).  Instead, 

expansion of the data inquiry beyond the Latir field reinforces the observation that the 

chemistry of plutonic and volcanic rocks is essentially identical (Mills et al., 2008).  It 

appears that either fractionation residua are suspiciously absent in rocks exposed in the 

dataset or in situ fractionation may not be the process that determines the chemistry of 

these rocks. 
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However it is possible to dilute the effect of shallow fractionation in the chemistry 

of sub-caldera plutonic rocks if these rocks are generated in systems with very high 

intrusive:extrusive rock ratios (Lipman, 2007).  The inferred batholith at Questa is 

approximately equal in size to the ignimbrite (500 km3) and therefore yields a ratio of 

approximately 1:1 (Cordell et al., 1985).  This ratio is significantly less than the most 

prominently cited 10:1 ratio (Smith, 1979), but compares more favorably to lower ratios 

(2-3:1) proposed in recent work (White et al., 2006).  These low intrusive:extrusive ratios 

are not conducive to hiding the geochemical signature of melt extraction in plutonic 

rocks.  In fact, as the ratio converges on low estimates (e.g. 1:1 Latir ratio), the problem 

is exacerbated.  Thus it appears that the intrusive:extrusive rock ratio of the Latir field is 

not sufficiently high enough to dilute the effect of fractionation. 

If the chemistry of plutonic and volcanic rocks of the Latir and southern Rocky 

Mountain region is not controlled by upper-crustal crystal fractionation then what is the 

origin of the high-silica rocks?  I suggest that the magmas that form the Latir rocks could 

be derived from basaltic sources in the lower crust and chemical diversity is inherited at 

the time of formation, consistent with crystal residues not found in the upper-crust. 

Experimental petrology demonstrates that high-silica rocks can be produced by 

melting of basaltic sources in the deep crust (Sisson et al., 2005).  Annen et al. (2006) 

propose that most arc magmas are derived in the lower crust, primarily by partial 

crystallization of basalt sills (generated by decompression melting of mantle wedge) and 

melting of pre-existing crustal rock.  While the Latir rocks are derived from rift-related 

processes, the low trace-element concentrations are typical of cold-wet arc-related 

magmas (Bachmann and Bergantz, 2008b).  This distinction is notable since water 
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content promotes the melting of crustal rocks.  Following derivation in the lower-crust, 

compositionally evolved silicic magma pulses ascend to shallow crustal levels where 

crystallization occurs rapidly and little alteration occurs to the chemistry of the melt.  

Subsequent pulses intruded along the same conduit plane will likely stall structurally 

below prior intrusions forming plutons constructed from the top-downward (Kavanagh et 

al., 2006; Menand, 2008).  Thus chemical heterogeneities within individual plutons (e.g. 

Rio Hondo granite and Rio Hondo granodiorite) may record multiple magma pulses 

derived from a slight variance of the source material. 

I propose that data and observation are converging on the interpretation that 

eruption of the Amalia Tuff resulted in nearly complete evacuation of the ignimbrite 

magma chamber, now preserved only as small sheets of peralkaline rocks.  This proposal 

is consistent with modeling experiments that suggest total magma chamber evacuation 

can occur during eruptions (Roche and Druitt, 2001; Geyer et al., 2006).  Theoretical 

calculations demonstrate that in some calderas (e.g. Pinatubo, Vesuvius) nearly 90% of 

the magma chamber must have erupted to trigger roof collapse.  The percentage of 

magma chamber withdrawal is dependant on roof aspect ratio, collapse style, and magma 

chamber depth, and is highly variable with values as low as 10% (Fig. 5 from Roche and 

Druitt, 2001).  However these are the minimum values needed to trigger eruption, so a 

greater percentage of the chambers could evacuate during eruption. 

41



6. CONCLUSIONS 

New zircon U/Pb geochronology, combined with existing 40Ar/39Ar geo- and 

thermochronology (Zimmerer, 2008), establish the history of plutonism and volcanism 

within the Latir volcanic field.  Zircon U/Pb geochronology demonstrates that the 

peralkaline phase of the Cañada Pinabete potentially formed synchronously with the 

Amalia Tuff, whereas the metaluminous phase of the Cañada Pinabete, the Cabresto Lake 

and Rio Hondo plutons formed during the post-caldera, waning phase of magmatism.  

However, direct correlation of plutonic/volcanic rock pairs is limited by the precision of 

decay constants, though advances in the accuracy and precision of decay constants (e.g. 

Min et al., 2000) and standards (e.g. Kuiper et al., 2008) provide some cautious 

optimism. 

Pluton filling rates for the Rio Hondo and other examples from the literature with 

well-established pluton-building timescales are significantly slower than modeled pluton 

filling rates presented by Petford et al. (2000).  We suggest that pluton filling rates will be 

overestimated if episodic assembly is overlooked.  Incremental assembly of the Rio 

Hondo pluton also resulted in a protracted cooling history not evident in the smaller 

plutons investigated here. 

The Canada Pinabete and Rio Hondo plutons appear to be examples of top-down 

pluton construction.  Within the Rio Hondo pluton, the structurally highest granite yields 

a zircon U/Pb age 500 K.y. older than the youngest and structurally lower granodiorite 

sample.  The span of zircon ages, slow filling rates, and protracted cooling rates are 



consistent with top-down incremental pluton construction, and directly contradict 

fractional crystallization as the process that creates the compositional variations found 

within the pluton. 

Examination of fractionation models for differentiation of the plutonic and 

volcanic rocks reveals significant problems.  Although complicated models for 

fractionation can be made to fit the data, geochronologic data contradict the most basic 

assumptions of the models – derivative liquids in the Rio Hondo pluton are demonstrably 

older than the inferred parent.  Consideration of available geochemical data for all the 

plutonic and volcanic rocks within the Latir and throughout the Cenozoic rocks of New 

Mexico and Colorado show no systematic differences that might be expected if the rocks 

represent residue and liquid derived from “big tank” magma chambers. 

The non-pluton-building model appears to best depict the Questa caldera.  

Although it is possible that big crystal cumulates underlie the exposed plutons, the 

important observations that 1) there is a small exposed pluton phase similar in age and 

chemistry to the Amalia Tuff, and 2) there is no systematic difference in the chemistry of 

plutonic and volcanic rocks across the entire field, lead me to conclude that there is no 

compelling reason to favor the pluton-building model.  Instead, existing data all support a 

non-pluton-building model, so it should not be discarded, and may apply to other caldera 

system.
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