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ABSTRACT 

MATTHEW P. TORRES:  Regulation of the anaphase-promoting complex by 
phosphorylation 

 
(Under the direction of Dr. Christoph H. Borchers) 

 Regulation of the eukaryotic cell cycle is accomplished in large part by well-timed and 

targeted destruction of proteins that inhibit or activate passage through cell cycle transitions.  

Ubiquitin-mediated proteolysis is well established as the primary mechanism through which 

this occurs, and the anaphase-promoting complex (APC), an E3 ubiquitin ligase, is a vital 

regulatory component of this system.  The APC is a multi-subunit complex required for cell 

cycle transitions that include progression through anaphase, exit from mitosis, as well as 

many events throughout meiosis.  Two APC subunits, Apc2 and Apc11, are necessary for 

catalytic transfer of ubiquitin to target substrates, while the remaining subunits participate in 

a variety of regulatory mechanisms that coordinate APC activity with other cell cycle events.  

The primary mechanisms of APC regulation include co-activator protein association and 

phosphorylation of specific subunits in the complex.  In budding yeast, two proteins, Mnd2 

and Swm1, were identified by mass spectrometry after co-purification with the APC subunit, 

Cdc27.  Here, I show that the APC co-purifies with epitope-tagged Mnd2 or Swm1 and that 

both proteins are present on the APC at stoichiometric levels throughout the mitotic cell 

cycle.  Mnd2 that co-purifies with the APC is phosphorylated in a cell cycle dependent 

manner.  Using a variety of mass spectrometry techniques, I found that phosphorylation 

occurs on a least 8 serine or threonine residues within the Mnd2 primary structure.  Yeast
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strains that harbor alanine phosphorylation site mutations in Mnd2 progress normally through 

pre-meiotic S phase, but are unable to progress efficiently through the first nuclear division 

of meiosis.  In contrast, yeast harboring aspartic acid phosphorylation site mutations display 

a partial recovery of the wild type meiosis phenotype.  Alanine phosphorylation site mutants 

also displayed low levels of the APCAma1 meiotic substrate, Clb5.  Taken together, these 

results demonstrate that Mnd2 is a stoichiometric component of the APC during mitosis and 

that Mnd2 phosphorylation is necessary for APC-mediated progression beyond the first 

meiotic nuclear division.     
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Cell cycle regulation, cyclin-dependent kinases, and ubiquitin-mediated proteolysis 

 The eukaryotic cell cycle is a highly coordinated sequence of molecular events in which 

one cell duplicates and divides its genetic content to produce two identical cells.  Mis-

regulating the molecular mechanisms responsible for cell cycle progression can lead to cell 

death, uncontrolled cell growth, or other forms of irreparable damage (McDonald and El-

Deiry, 2001; Michalides et al., 2002; Pray et al., 2002; Yam et al., 2002).  Consequently, 

eukaryotic cell survival depends on numerous molecular events that are precisely timed and 

tightly coordinated at the transitions between each cell cycle stage.  Naturally, research that 

elucidates how these mechanisms work is fundamental to our understanding of disease 

biology, and most notably, cancer. 

 The eukaryotic cell cycle is divided into two major phases:  S phase, during which the cell 

duplicates its genome by DNA synthesis; and mitosis or M phase, during which the 

duplicated genome is equivalently divided into two progeny cells.  These two major events in 

the cell cycle are separated by two gap or growth stages/phases known as G1 and G2.  M 

phase is further divided into sub-phases that involve the organization of replicated 

chromosomes (during Prophase and Metaphase) and their equivalent distribution into two 

progeny cells (during Anaphase and Telophase/Cytokinesis).  Timely progression of the cell 

cycle is governed by regulating passage between cell cycle phases or sub-phases, and 

requires the coordination of molecular events that must occur before the cell can pass through 

each transition (Figure 1.1 A).   
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Figure 1.1.  The cell cycle and major transition regulators.  (A) Schematic diagram of the 
eukaryotic cell cycle and major regulators of cell cycle transitions including:  B-type (Clb) 
and G1 (Cln) cyclins, the polo-like kinase (Cdc5), the CDK inhibitor (Sic1), and the 
anaphase inhibitor (Pds1).  (B) CDKs are regulated by controlling the association of different 
cyclins, which activate the CDK and provide substrate specificity. 
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 Reversible protein phosphorylation is a predominant post-translational modification 

(PTM) necessary for cell cycle progression.  Proteins modified by phosphorylation may be 

affected in various ways such as allosteric activation, interaction specificity, binding affinity, 

or enzymatic activity (Johnson et al., 1987).  Altering these fundamental characteristics of 

protein biochemistry often results in significant changes to protein function.  Depending on 

the protein or protein complex involved, phosphorylation dependent changes may be 

manifested through alterations in sub-cellular localization, protein-protein interactions, or in 

the reactant/product ratios of a catalytic event.  Thus, investigating phosphorylation-specific 

function for any given protein requires careful consideration of these possibilities. 

 Cyclin-dependent kinases (CDK) are two-component enzymes that drive the cell cycle by 

phosphorylating specific proteins at precise times (Mendenhall et al., 1987; Wittenberg and 

Reed, 1988) (Figure 1.1 B).  In budding yeast, there is a single CDK, Cdc28, to which bind at 

least nine distinct cyclins during different times in the cell cycle (Murray, 2004).  Binding of 

the cyclin activates the kinase and also confers kinase specificity.  Regulating specific CDKs 

is accomplished by controlling the availability of cyclins through expression, degradation, 

localization, and through direct inhibition by CDK inhibitor proteins.  Originally named for 

their cyclical appearance and disappearance in growing cells, the abundance of cyclins 

oscillates in harmony with the cell cycle (Evans et al., 1983).  In budding yeast, the transition 

from G1 phase to S phase depends on G1 cyclins, Cln1 and Cln2, which bind and activate 

Cdc28 that in turn phosphorylates substrates necessary for S phase entry.  An increase in 

Cln/Cdk activity throughout G1 phase results in increased phosphorylation and subsequent 

removal of the S phase Clb5/Cdk inhibitor, Sic1 (Dirick et al., 1995; Feldman et al., 1997; 

Mendenhall, 1993; Mendenhall et al., 1995; Schwob et al., 1994; Tyers, 1996).  Once 
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released from inhibition, Clb5/Cdk can phosphorylate additional substrates that promote the 

initiation of chromosomal replication (Kuntzel et al., 1996; Schwob and Nasmyth, 1993).  

Similar to S phase entry, the transitions into and during M phase also require CDK.  In this 

case B-type cyclins Clb1 and Clb2 activate Cdc28, and phosphorylate substrates necessary to 

promote M phase entry and progression through anaphase (Amon et al., 1993; Harper et al., 

2002; Peters, 2002).  Finally, transition from M phase back into G1 phase requires the 

removal of Clb2, which otherwise inhibits mitotic exit by phosphorylating proteins that 

maintain the mitotic state (Chang et al., 2004; Ghislain et al., 1993; Murray, 1989; Murray 

and Kirschner, 1989; Murray et al., 1989; Seufert et al., 1995). 

 While multiple CDKs are responsible for promoting cell cycle progression, passage 

through the transitions between cell cycle phases is regulated in large part by the destruction 

of proteins that inhibit cell cycle progression from one stage to the next.  For example, the 

well-timed destruction of Pds1 (called securin in humans), which binds and inhibits the 

anaphase activator protein Esp1 (called separase in humans), is the initial trigger for 

chromosome segregation during anaphase (Ciosk et al., 1998; Cohen-Fix and Koshland, 

1997; Cohen-Fix et al., 1996).  Similarly, the well timed destruction of the CDK inhibitor, 

Sic1, at the end of G1 phase, allows cells to enter S phase (Marshall et al., 1998; Schwob et 

al., 1994). 

 

Polyubiquitin-mediated proteolysis 

 The most common way in which cells degrade proteins in a time-resolved fashion is 

through polyubiquitin-mediated proteolysis (Figure 1.2).  Polyubiquitin-mediated proteolysis 

is a 4-step enzymatic process ending in covalent modification of a target protein with 
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Figure 1.2.  Polyubiquitin-mediated proteolysis.  Note that the E3 in this case is of the RING 
family, and indirectly catalyzes the transfer of ubiquitin from the E2 to the substrate, which is 
different from the HECT E3 ligases that form a covalent intermediate with ubiquitin before 
transfer.  The polyubiquitinated protein is recognized by specialized cap proteins in the 26s 
proteosome and deubiquitinated before degradation.  The ubiquitin has a long half life and is 
recycled for additional round of ubiquitin ligation. 
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polymeric ubiquitin chains and subsequent degradation of the protein by the 26s proteosome 

(Pickart, 2001).  In the first step, a ubiquitin-activating enzyme (E1) begins by hydrolyzing 

ATP to form a high energy thio-ester bond with the C-terminal glycine of ubiquitin, a small 8 

kDa protein found in all eukaryotes.  Second, the E1 transfers the ubiquitin to a cysteine 

residue on one of many possible ubiquitin-conjugating enzymes (E2).  Third, the E2 enzyme 

associates with an ubiquitin ligase enzyme (E3), which catalyzes transfer of ubiquitin from 

the E2 to the ε-amino groups of lysine residues on the target substrate.  Fourth, additional 

rounds of ubiquitination target Lys-48 within the previous ubiquitin itself, resulting in the 

formation of polyubiquitin chains that are recognized by the 26s proteosome (Chau et al., 

1989; Harper et al., 2002; Henry et al., 1989; Scheffner et al., 1995; Thrower et al., 2000).  

The polyubiquitinated protein is selectively bound by the 19s caps that exist at either end of 

the proteosome, and then unfolded and thread through the 20s cylindrical structure in an 

ATP-dependent process.  The protein is then cleaved into small peptide fragments by the 

proteolytic active sites lining the inner surface of the 20s sub-complex (Baumeister et al., 

1998).  The peptide remnants of the protein are released from the opposite end of the 

proteosome, and recycled by the cell.  Ubiquitin is unconjugated from the protein by 

deubiquitinating enzymes before entering the 20s structure (Swaminathan et al., 1999; Zhu et 

al., 2005), and can be reused in the ubiquitination process.   

 

Monoubiquitin-mediated proteolysis 

 Whereas polyubiquitination serves as a signal for proteosomal degradation of intracellular 

proteins, monoubiquitination has been found to serve as a signal for the internalization and 

trafficking of transmembrane proteins to the lysosome for degradation (Haglund et al., 2003; 
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Hicke, 2001a; Hicke, 2001b; Ho et al., 2002; Katzmann et al., 2002; Lucero et al., 2000; 

Raiborg et al., 2003; Sigismund et al., 2004; Terrell et al., 1998).  Monoubiquitinated 

proteins are not efficiently targeted by the 26S proteosome (Beal et al., 1996).  Rather, they 

are recognized by a series of receptors that contain specific monubiquitin-binding domains 

(Swanson et al., 2006) that trigger internalization of the transmembrane protein.  Upon 

internalization, monoubiquitin serves as a signal for sorting proteins into multivesicular 

bodies (MVB), which in turn fuse with the lysosome (Haigler et al., 1979).  Inside the 

lysosome, the small internal vesicles of the MVB, consisting of internalized transmembrane 

proteins, are degraded by proteases and lipases (Hurley and Emr, 2006; Katzmann and 

Wendland, 2005). 

 

HECT and RING E3 ubiquitin ligases 

 The E3 ligase is of particular scientific interest because it is responsible for the specificity 

and timing of polyubiquitin-mediated proteolysis, and therefore a primary target for 

regulatory control by the cell.  Two protein families constitute most known E3 ubiquitin 

ligases:  HECT domain (homologous to E6-AP carboxy terminus) ligases or RING (really 

interesting new gene) ligases; and the two families differ in their mechanism of substrate 

ubiquitination (Scheffner et al., 1993; Scheffner et al., 1995).  Whereas HECT domain 

ligases form a covalent thioester intermediate with ubiquitin before transfer to the substrate 

(Huibregtse et al., 1995), RING ligases catalyze the transfer of ubiquitin directly from the E2 

to the substrate and without the formation of a covalent intermediate.  HECT domain E3 

ligases consist of a ~350-residue region that contains a strictly conserved cysteine residue 

positioned approximately 35 residues upstream from the C-terminus of the protein 
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(Huibregtse et al., 1995; Scheffner et al., 1993).  The thiol side chain of this cysteine forms 

the thioester intermediate with ubiquitin.  Substrate specificity of HECT domain ligases is 

provided by the unique N-terminus of each ligase, while the C-terminal HECT domain 

mediates E2 binding and ubiquitination (Huibregtse et al., 1993; Huibregtse et al., 1997; 

Olsen et al., 2006).   

 RING ligases belong to the RING finger family of proteins that contain zinc finger tertiary 

structures in which a series of histidine and cysteine residues are spaced in close proximity so 

as to allow coordination of two zinc ions (Borden and Freemont, 1996).  Although the zinc 

finger itself is catalytically inert, it functions in concert with non-zinc finger regions (or 

proteins) to bind activated E2 enzyme and facilitate the conjugation of ubiquitin to the 

substrate.  The crystal structure of the c-Cbl RING finger protein complexed with the E2 

protein, UbcH7, shows that the active site thiol of UbcH7 (to which ubiquitin would be 

conjugated) is directed away from the RING finger structure (Zheng et al., 2003), and 

supports a model in which RING finger proteins facilitate ubiquitin transfer by serving as 

molecular scaffolds (Borden, 2000) that properly position the activated E2 enzyme in close 

proximity to the substrate.  RING ligases often exist in multi-protein complexes that contain 

non-RING finger subunits utilized for substrate binding and specificity; however, single-

subunit RING ligases also exist and utilize non-RING finger domains within their structure 

to bind substrates with high specificity (Hochstrasser, 1996; Loo et al., 2005; Reggiori and 

Pelham, 2002).   

 

RING E3 ligases regulate cell cycle transitions 

 Two major RING E3 ligases regulate cell cycle transitions in eukaryotes (Peters, 1998):  
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the Skp1/Cul1/F-Box (SCF) complex, which regulates progression through the G1/S 

transition (Feldman et al., 1997; Schwob et al., 1994); and the anaphase-promoting complex 

(APC), which regulates progression through anaphase (Agarwal and Cohen-Fix, 2002; Ciosk 

et al., 1998) and exit from mitosis (Harper et al., 2002; Morgan, 1999; Tyers and Jorgensen, 

2000).  Both the SCF and APC are multi-subunit RING E3 ligases whose catalytic cores 

consist of a cullin or cullin-like subunit in close association with a RING finger protein.  In 

addition, both SCF and APC contain subunits that function as substrate targeting factors 

(specificity factors or co-activators), which are critical for regulating substrate specificity.  

The SCF targets phosphorylated substrates that are recognized by one of many possible F-

box proteins.  The F-box protein can simultaneously bind to the Cul1 adapter protein, Skp1, 

and in so doing, positions the target substrate in close proximity to the activated E2 enzyme 

that associates with the Cullin/RING finger protein complex (Maniatis, 1999).  Various 

combinations of Skp1-like adapters and different F-box proteins are utilized at different times 

during the cell cycle to regulate the timing and substrate specificity of the SCF.  In addition, 

Cul1 can be differentially modified by the ubiquitin-like molecule, NEDD8, which inhibits 

the association of the SCF inhibitor, CAND1 (Liu et al., 2002).   

 APC substrates do not require phosphorylation to be targeted for polyubiquitination.  

Rather, the targeted substrate is recruited by one of two different co-activator proteins 

through association with specific degradation motifs on the substrate (Glotzer et al., 1991; 

Pfleger et al., 2001).  The co-activator can simultaneously bind the substrate and adapter 

proteins on the APC (Fang et al., 1998b; Schwab et al., 1997; Visintin et al., 1997), thereby 

bringing the substrate into close proximity to the activated E2 enzyme bound to the cullin-

like Apc2 subunit and the RING finger protein, Apc11.  Regulating substrate-specific APC 
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activity is accomplished by phosphorylation of APC subunits and co-activators at different 

times during the cell cycle (Golan et al., 2002; Kramer et al., 2000; Rudner et al., 2000; 

Rudner and Murray, 2000).  APC co-activators are also subject to regulation through binding 

with inhibitory proteins (Fang et al., 1998a; Reimann et al., 2001a; Reimann et al., 2001b; 

Song et al., 2004; Sudakin et al., 2001).      

 

The APC ubiquitin ligase 

General structure and enzymatic mechanism   

 The APC is the largest known RING E3 ubiquitin ligase, consisting of 11 different 

subunits (Zachariae et al., 1998b; Zachariae et al., 1996), and at least 2 different co-activators 

(3 in budding yeast) (Cooper et al., 2000; Visintin et al., 1997), giving the entire yeast 

complex a total mass of approximately 1700 kDa (Passmore et al., 2005) (Table 1.1).  

Although the function and regulation of the co-activators has been researched extensively, 

the function of many individual subunits had not been assigned at the onset of my research 

(Harper et al., 2002; Peters, 2002).  The subunit composition of the complex appears to 

remain constant during the mitotic cell cycle (Bonenfant et al., 2003).  However, one report 

has suggested the existence of multiple APC isoforms that localize to different regions within 

cells from Drosophila (Oda et al., 1999), although no other reports have tested this 

hypothesis.   

 APC-mediated ubiquitination is accomplished through the simultaneous and proximal 

association of activated E2 enzyme and substrate protein.  The E2 enzyme is recruited by two 

subunits in the complex, Apc2 and Apc11 (Gmachl et al., 2000; Shahgholi et al., 2001), 

while association of substrates is facilitated by co-activator proteins that bind to the APC and 
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position substrates in close proximity to the activated E2 enzyme (Eytan et al., 2006; Visintin 

et al., 1997; Zachariae, 2004).  The APC may contribute more than just scaffolding for the 

co-activator/substrate and E2/ubiquitin since cryo-electron microscopic (cryo-EM) analysis 

shows a large conformational change in the human APC upon binding of the co-activator, 

Cdh1 (Dube et al., 2005).  Furthermore, multimerization of the APC may also contribute to 

ubiquitination activity.  Studies with budding yeast APC support this hypothesis, showing 

that monomer and dimer forms can be purified from cell extracts, with the dimer exhibiting 

greatly enhanced ubiquitination processivity (Passmore et al., 2005).      

 

Subunits and co-activators of the APC   

 Apc2 and Apc11.  Apc2 and Apc11 constitute the catalytic core of the APC, and are 

responsible for recruiting activated E2 enzyme to the complex (Gmachl et al., 2000; 

Shahgholi et al., 2001).  Apc2 contains a cullin-homology domain similar to the cullin 

proteins found in all SCF complexes (Loo et al., 1992).  Apc11, which is homologous with 

ROC1 of the SCF (Ohta et al., 1999), tightly associates with the cullin-homology domain of 

Apc2, and contains the RING finger domain that is necessary for recruitment of the E2 

enzyme.  Apc2 and Apc11 have been shown to be the minimal subunit requirement for 

ubiquitination in vitro, although this activity does not display substrate specificity (Leverson 

et al., 2000).  In vitro, Apc11 alone can bind to the E2, Ubc4, and promote ubiquitination of 

substrates, while binding to another E2, Ubch10, requires both Apc11 and the C-terminal 

cullin-homology domain of Apc2 (Shahgholi et al., 2001).   

 Tetratricopeptide repeat containing proteins: Cdc16, Cdc27, and Cdc23.   Three yeast APC 

subunits, (Cdc16, Cdc27, and Cdc23) contain tetratricopeptide repeat (TPR) motifs that are 
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critical for the function of the APC (Dube et al., 2005; Thornton et al., 2006; Vodermaier et 

al., 2003).  The TPR is a degenerate 34 amino acid sequence found in tandem arrays of 3 – 

16 motifs that often provides scaffolding for protein-protein interactions (Das et al., 1998).  

Assembly of human APC sub-complexes lacking TPR subunits can assemble poly-ubiquitin 

chains, but are incapable of binding to the co-activator protein Cdh1.  In comparison, 

assembly of a sub-complex lacking only Apc2 and Apc11 can bind Cdh1, but does not 

exhibit ubiquitin ligase activity (Vodermaier et al., 2003).   

 Although the TPR subunits have been clearly shown to mediate co-activator binding, the 

specific functional roles of each TPR subunit is currently unclear.  Recent studies have 

shown that TPR subunits act as docking sites for APC co-activator proteins.  In particular, 

Cdc27 has been implicated as the primary docking site for the co-activator Cdh1 (Kraft et al., 

2005; Vodermaier et al., 2003), and also possibly Cdc20 (Kraft et al., 2005).  However, APC 

purified from cdc27∆ cells retains some level of ubiquitin ligase activity, while APC lacking 

cdc16 is completely inactive (Thornton et al., 2006), suggesting that co-activators can bind 

subunits other than Cdc27 in a productive fashion.  In addition, each TPR subunit is 

phosphorylated in a manner that affects co-activator association (Rudner et al., 2000; Rudner 

and Murray, 2000) (discussed below).   

 Apc10/Doc1.  Apc10 is a 26 kDa subunit containing a ‘DOC’ domain that is also found in 

cullins and HECT domain proteins (Grossberger et al., 1999).  Although deletion of Apc10 

does not destabilize APC structure (Grossberger et al., 1999), the processivity of 

ubiquitination is significantly reduced in its absence, which may be due to slower rates of 

substrate dissociation (Carroll and Morgan, 2002).  Apc10 may also be required for some 

degree of substrate recognition since the association of APC substrates, Clb2 and Hsl1, with 
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APC/co-activator complexes is lost when Apc10 is absent from the complex (Passmore et al., 

2003).  Interestingly, Apc10, like the APC co-activators, contains a C-terminal IR-tail (ILR 

in budding yeast) and binds to Cdc27 (Wendt et al., 2001) as well as Apc11 (Shahgholi et al., 

2001).  Therefore, it has been proposed that Apc10 may be involved in stabilizing sub-

complexes of the APC in a conformational change during co-activator/substrate association 

(Castro et al., 2005; Thornton and Toczyski, 2006) (discussed below).   

 Apc1, Apc4, and Apc5.  Apc1 is the largest of all the APC subunits, and at 196 kDa, is 

nearly twice the size of the next largest subunit.  The function of Apc1 appears to be largely 

structural, acting as a scaffold upon which APC sub-complexes are arranged (Thornton et al., 

2006).  Interestingly, Apc1 shares a structural motif with the Rpn1 and Rpn2 subunits found 

in the 19s cap of the proteosome (Lupas et al., 1997), and is capable of binding to multi-

ubiquitin-binding proteins (Seeger et al., 2003), although the functional significance is 

unclear.  In addition to the TPR subunits, Apc1 is the only other yeast subunit known to be 

phosphorylated in vivo (Peters et al., 1996). 

 Apc4 and Apc5 may strictly be required to maintain the structural integrity of the APC as 

there have been no indications that either protein is directly involved in ubiquitination or 

APC regulation.  However, both proteins are required for enzymatic activity, possibly 

through maintaining the link between Apc1 and the sub-complex containing the TPR 

subunits (Thornton et al., 2006; Vodermaier et al., 2003). 

 Apc9 and Cdc26.  Both Apc9 and Cdc26 have been found in sub-complexes with the TPR 

subunits and Apc1, and are required for maintenance of APC structure (Thornton et al., 

2006).  Mutations to Apc9 exhibit only minor defects in substrate degradation in α-factor 

arrested cells, and delayed Clb2 (but not Pds1 or Clb5) degradation in cycling cells, which 
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suggests that it may be involved in substrate selectivity specifically mediated through Cdh1 

during G1 phase of the cell cycle (Page et al., 2005).  Cdc26 is the smallest APC subunit and 

has been described for both yeast (Zachariae et al., 1998b) and vertebrates (Gmachl et al., 

2000).  Cdc26 associates directly with Cdc16 (Thornton et al., 2006), and loss of Cdc26 

results in loss of Cdc27 and Cdc16 that is potentially mediated through Apc9 (Schwickart et 

al., 2004).     

 Co-activator proteins Cdh1, Cdc20, and Ama1.  In addition to the subunits that constitute 

the APC, there are three distinct co-activator proteins (Cdh1, Cdc20, and Ama1) that 

associate temporarily with the complex to facilitate APC substrate specificity and 

recruitment.  The first indication of the existence of APC co-activators was found in 

Drosophila, when mutations to the gene encoding Cdc20 (known as Fizzy) blocked mitotic 

degradation of cyclins A, B, and B3 (Sigrist et al., 1995).  Later studies in Drosophila 

discovered the existence of an additional co-activator with high homology to Fizzy, called 

Fizzy-related, which was required for G1 cyclin removal and is now known as Cdh1 (Sigrist 

and Lehner, 1997).  Similar functions were ascribed for Cdc20 and Cdh1 in the budding 

yeast (Schwab et al., 1997; Visintin et al., 1997).  Finally, a third co-activator with high 

homology to Cdc20, called Ama1, was found to be expressed only during meiosis in yeast by 

microarray analysis (Janek et al., 2001).  Later, the AMA1 gene was found to contain an 

intron that required meiosis-specific splicing factors for proper protein expression (Cooper et 

al., 2000).  At the onset of this report, Ama1 had been shown to be responsible for 

degradation of the meiosis-promoting cyclin Clb1 (Cooper et al., 2000).   

 APC co-activators belong to a conserved family of WD40 proteins, members of which 

contain a WD40 propeller domain that has been described for numerous proteins including 
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the Gβ subunits of trimeric G proteins (Henry et al., 1989), as well as F-box proteins of the 

SCF complex (Wu et al., 2003).  The WD40 propeller domain consists of 4-8 blades, where 

each blade is constructed of a 4-stranded anti-parallel β-sheet that provides a platform for 

stable or reversible protein binding (Orlicky et al., 2003).  In F-box proteins, the WD40 

domain mediates substrate binding for the SCF ubiquitin ligase (Patton et al., 1998).  Recent 

evidence in yeast suggests that APC co-activators also use the WD40 domain as a substrate 

receptor.  Using photochemical crosslinking in combination with mutational analysis, an 

evolutionarily conserved region of the WD40 propeller structure of Cdh1 and Cdc20 was 

found to interact specifically with the APC substrates cyclin B and securin (Kraft et al., 

2005).  In addition, Cdh1 binding to cyclin A was found to be dependent on a short cyclin-

binding motif (RVL) found in the WD40 domain and conserved across all co-activators (Ho 

et al., 2002).  

  While it appears that APC co-activators utilize the WD40 domain for substrate binding, 

association of the co-activator with the APC is dependent on two motifs found in the N- and 

C-terminus of the protein.  Association of the co-activator with the APC is mediated through 

the TPR subunits, most notably Cdc27 and Cdc16 (Kraft et al., 2005; Thornton et al., 2006; 

Vodermaier et al., 2003), and depends on the presence of a C-terminal isoleucine-arginine 

dipeptide (IR-tail), as well as a short, seven amino acid N-terminal motif known as the C-box 

(DR(F/Y)IPxR) (Schwab et al., 2001; Vodermaier et al., 2003), which is conserved across all 

APC co-activators from yeast to vertebrates.  Mutation of the C-box results in a complete 

loss of ligase activity, while mutation of the IR-tail results in reduced, but not eliminated 

activity (Vodermaier et al., 2003).  Consistent with this data, others have shown that the IR-

tail is dispensable for yeast viability and that the C-box is the primary functional interaction 
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site between Cdh1 and the APC (Thornton and Toczyski, 2006).  The association of the co-

activators with substrate and with the APC is heavily regulated by phosphorylation and by 

direct protein-protein interactions (discussed further below).    

 APC subunits are organized into sub-complexes.  The ability to delete entire genes in yeast 

has led a few groups to look at APC structure in terms of sub-complex organization.  Using a 

yeast strain in which the APC is rendered non-essential (pds1∆, clb5∆, SIC110x) (Thornton et 

al., 2004; Thornton and Toczyski, 2003), Thornton et al. purified Apc1 via a C-terminal TAP 

(tandem affinity purification) epitope tag in the absence of individual APC subunits (apc2∆, 

apc11∆, cdc27∆, cdc16∆ cdc23∆, apc4∆, apc5∆).  Analysis of the resulting sub-complexes 

reveals a model of APC in which two main sub-complexes exist:  one containing the TPR 

subunits (Cdc27, Cdc16, and Cdc23), as well as Apc9, Cdc26, Apc4, and Apc5; and the 

other, containing Apc2, Apc11, and Apc10.  The two sub-complexes are bridged by the 

largest subunit, Apc1 (Figure 1.3).  This recent model of APC subunit topology is supported 

by previous independent analyses (Schwickart et al., 2004; Vodermaier et al., 2003; 

Zachariae et al., 1998b).  The model is particularly intriguing because it provides testable 

hypotheses that could explain the role of Apc10 as a potential mediator of APC 

conformational changes that have been observed at low resolution by cryo-EM (Dube et al., 

2005).       

 

Regulation of the APC 

Regulation by co-activator proteins 

 Co-activator substrate specificity.  The APC directs time-resolved ubiquitin-mediated 

proteolysis of a growing list of at least 15 known distinct substrates involved in anaphase 
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Figure 1.3.  The APC ubiquitin ligase.  Current model of the multisubunit APC E3 ligase 
showing two distinct sub-complexes connected by an Apc1 scaffold.  The subcomplex shown 
in blue consists of the TPR proteins (outlined in red), which associate with the co-activator 
proteins to recruit substrates.  The subcomplex shown in green and red consists of the 
catalytic subunits, Apc2 and Apc11, as well as the processivity factor, Apc10.  
Ubiquitination of substrates is accomplished through a mechanism in which the activated E2 
enzyme is positioned in close proximity to the co-activator-bound substrate.  (Figure adapted 
from Thornton et al., 2004). 
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inhibition, exit from mitosis, and other cell cycle events (Harper et al., 2002; Peters, 1999; 

Peters, 2002; Reed, 2003).  Recruitment of substrates to the APC is accomplished through 

the temporary association of one of three different co-activator proteins, Cdc20, Cdh1, or 

Ama1, each of which display distinct substrate specificities (Pfleger et al., 2001; Sigrist et al., 

1995; Sigrist and Lehner, 1997).  Whereas the APC substrates, Pds1 and Clb5, can be 

recruited by Cdc20, they cannot be recruited by Cdh1 (Hilioti et al., 2001; Shirayama et al., 

1999; Visintin et al., 1997).  Conversely, the APC substrates Clb3 and Cdc5 appear to require 

Cdh1 for degradation (Schwab et al., 2001).   

 The substrate selectivity of different co-activators is due in-part to transposable 

degradation signals found in the primary sequence of the substrates.  The first such 

degradation signal was found in cyclin B/Clb2 and called a destruction or ‘Dbox’, consisting 

of the 9 amino acid degenerate sequence that includes the consensus RxxL (Glotzer et al., 

1991), and necessary for all Cdc20-dependent degradation (Eytan et al., 2006).  A second 

degradation signal, called the KENbox is necessary for Cdh1-mediated degradation of Cdc20 

(Pfleger and Kirschner, 2000), and was later found to exist in other substrates such as Aurora 

A, and Hsl1, which contain the KENbox in addition to a Dbox (Burton and Solomon, 2001; 

Castro et al., 2002a; Littlepage and Ruderman, 2002).  While the Dbox is required for Cdc20 

degradation, Cdh1 can target both Dbox and KENbox containing proteins (Pfleger and 

Kirschner, 2000; Zur and Brandeis, 2002).  Mutation of the Dbox or KENbox can stabilize 

the associated protein (Pfleger and Kirschner, 2000).  Furthermore, both boxes are 

transposable, such that addition of either box stimulates the degradation of any protein into 

which it is inserted (Pfleger and Kirschner, 2000; Zur and Brandeis, 2002).  The co-activators 

are capable of binding to their substrates in the absence of the APC (Pfleger et al., 2001), and 
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binding of a substrate’s Dbox or KENbox appears to enhance binding of the co-activator with 

the APC (Burton et al., 2005).  In addition to the Dbox and KENbox, some proteins also 

contain a Dbox-activating-domain known as the Abox (Castro et al., 2002b; Littlepage and 

Ruderman, 2002), which has been found to regulate Dbox-dependent protein degradation in a 

phosphorylation-dependent fashion.   

 Inhibition of APC co-activators.  APC co-activators are regulated through a variety of 

inhibition mechanisms that prevent substrate recruitment and APC activation.  Co-activator 

inhibition is necessarily coordinated in a timely fashion with other cellular processes, such as 

cyclin accumulation and formation of the mitotic spindle assembly, to promote proper cell 

cycle progression.  For instance, accumulation of the mitosis promoting factor cyclin B, 

which begins in S phase and increases through M phase, requires that the APC is maintained 

in an inactive state.  Inactivating the APC from S through M phase is accomplished through 

direct inhibition of the Cdc20 co-activator, which is itself upregulated at the same time 

(Spellman et al., 1998).  Cdc20 is inhibited by a sequence of multiple inhibitor proteins that 

are themselves regulated to promote cell cycle progression (Figure 1.4).  During S and G2 

phase, Cdc20 is inhibited by the F-box protein, Emi1 (early mitotic inhibitor 1), which is 

upregulated during S phase and then promptly degraded by ubiquitin-mediated proteolysis 

during mitosis (Reimann et al., 2001a).  Emi1 can bind to Cdc20 and inhibit cyclin 

ubiquitination in vitro; and immunodepletion of Emi1 from Xenopus extracts creates a delay 

in cyclin B accumulation and the onset of mitosis (Reimann et al., 2001a).  Recent evidence 

suggests that Emi1 acts as a pseudosubstrate inhibitor.  Reimann et al. show that Emi1 can 

bind and inhibit Cdh1 from activating the APC (Reimann et al., 2001b) by acting as a 

pseudosubstrate that competes with true substrates for binding to the Dbox receptor sites of 
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Figure 1.4.  APC regulation by co-activators and phosphorylation.  Schematic diagram of the 
APC during the mitotic cell cycle, showing the major regulatory events including 
phosphorylation and direct inhibition by co-activator binding proteins.  APC is increasingly 
phosphorylated by Clb2/Cdc28 CDK (and throughout S phase, G2 phase, and maximal 
during M phase.  Phosphorylation of the APC is required for association of the co-activator, 
Cdc20, while phosphorylation of the co-activator, Cdh1, inhibits its association with the 
APC.  Inhibition of Cdh1 allows accumulation of Cdc20 through G2/M phase, but the APC 
remains inactive by Cdc20 inhibition through association with Emi1, RASSF1A, and the 
spindle assembly checkpoint proteins, Mad2, BubR1, and Bub3.  Cdc20 is inhibited by a 
“wait anaphase” signal that is generated by the spindle assembly checkpoint and is tightly 
linked with tension sensing mechanisms that communicate the status of 
chromosome/microtubule attachment.  The “wait anaphase” signal is maintained until sister 
chromatids are properly aligned and attached to opposite spindle poles.  Once released from 
inhibition, Cdc20 is free to activate the APC towards the anaphase inhibitor, Pds1 (also 
called securin), which is degraded by the ubiquitin machinery.  Degradation of Pds1 frees the 
anaphase activator, Esp1 (also called separase), which proteolyses the cohesin subunit Scc1, 
thereby breaking cohesion between sister chromatids and resulting in anaphase. During 
telophase/cytokinesis, Cdh1 becomes dephosphorylated by the Cdc14 phosphatase that is 
released as part of a mitotic exit network mechanism.  Dephosphorylated Cdh1 again 
activates the APC towards Cdc20 and Clb2, leading to exit from mitosis and completion of 
the cell cycle.  The APC is also dephosphorylated at this time, possibly by multiple 
phosphatases including protein phosphatase 2A and Cdc14.  Note that Emi1 and RASSF1A 
are human proteins with no known orthologues in yeast. 
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APCCdh1 complexes (Craig et al., 1994).  Moreover, they show that Emi1 contains a zinc-

binding region that antagonizes APC E3 ligase activity (Craig et al., 1994).  Once cells have 

progressed to prometaphase of mitosis, Emi1 is degraded and replaced by the inhibitor 

RASSF1A (Song et al., 2004), a tumor suppressor gene that is silenced in lung cancers and 

other sporadic tumors (Burbee et al., 2001; Dammann et al., 2000; Dreijerink et al., 2001; 

Shivakumar et al., 2002).  Inhibition of APCCdc20 by RASSF1A occurs through direct binding 

with Cdc20 and prevents premature degradation of cyclin B during prometaphase (Song and 

Lim, 2004).  In addition, silencing of RASSF1A results in elevated levels of 

polyubiquitinated cyclin B and premature anaphase progression.  Unlike Emi1, RASSF1A is 

strictly an APCCdc20 inhibitor, and does not bind to Cdh1 or block cyclin ubiquitination by 

APCCdh1 in vitro (Song et al., 2004).  Neither Emi1 nor RASSF1A have a known orthologue 

in yeast. 

 As cells progress through prometaphase, Cdc20 becomes the target of the spindle 

assembly checkpoint mechanism, which inhibits the onset of anaphase until the kinetochores 

of sister chromatids are attached in a bi-oriented fashion to opposite spindle poles 

(Musacchio and Hardwick, 2002).  Inhibition of Cdc20 by the spindle checkpoint is 

accomplished through formation of a mitotic checkpoint complex (MCC) consisting of the 

proteins Mad2, BubR1, Bub3, and Cdc20 (Fang et al., 1998a; Sudakin et al., 2001).  Mad2, 

BubR1, and Bub3 localize to kinetochores during prometaphase, where they receive a “wait 

anaphase” signal that promotes formation of the MCC (including Cdc20) when there is either 

a lack of kinetochore/microtubule attachment or a lack of tension that exists when sister 

chromatids are improperly attached to opposite spindle poles (Stern and Murray, 2001).  

Although each component of the MCC can individually bind and inhibit Cdc20, the complex 
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is formed through cooperative binding that enhances the potency of Cdc20 inhibition (Fang, 

2002).   Coordinating Cdc20 inhibition with spindle assembly is critical to preserve Pds1, 

which binds and inhibits Esp1, a protease that eliminates sister chromatid cohesion by 

degrading the cohesin subunit Scc1 (Ciosk et al., 1998; McGrew et al., 1992; Tinker-Kulberg 

and Morgan, 1999; Uhlmann et al., 1999).  Upon proper spindle attachment of each sister 

chromatid, Cdc20 is freed from the MCC, and recruits Pds1 to the APC where it is 

polyubiquitinated and subsequently degraded by the 26s proteosome (Ciosk et al., 1998; 

Tinker-Kulberg and Morgan, 1999).  The removal of cohesion between sister chromatids, 

combined with the pulling force exerted on each chromatid by the spindle assembly, results 

in rapid separation of sister chromatids to opposite poles of the cell during anaphase 

(Musacchio and Hardwick, 2002).  The mitotic spindle assembly checkpoint mechanism and 

the MCC exist and function similarly in budding yeast. 

 After anaphase, Cdc20 itself becomes a substrate of the APC, and is recruited by the Cdh1 

co-activator (Shirayama et al., 1998).  However, Cdh1 also targets other mitosis-promoting 

proteins such as the kinases Cdc5 and Clb2 (Kramer et al., 2000; Shirayama et al., 1998), and 

therefore, must be inhibited from premature APC activation in early mitosis.  Cdh1 is 

inhibited by CDK phosphorylation that acts to block association with the APC (Blanco et al., 

2000; Kramer et al., 2000; Zachariae et al., 1998a).  Cdh1 phosphorylation occurs at the 

onset of S phase, mediated by Clb5/Cdk, Cln/Cdks, and Cdc5 (Amon et al., 1994; Hall et al., 

2004; Oda et al., 1999; Yeong et al., 2001), and continues through M phase (Kramer et al., 

2000) until late telophase when it becomes dephosphorylated by the phosphatase Cdc14 

(Jaspersen et al., 1999; Visintin et al., 1998), which is sequestered in the nucleolus until then 

(Shou and Naidong, 2005; Visintin et al., 1999).  After cells exit mitosis and undergo 
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cytokinesis, Cdh1 remains active during G1 phase and maintains low levels of B-type 

cyclins, thereby inhibiting premature S phase entry (Irniger and Nasmyth, 1997).      

 

Regulation by Phosphorylation 

 A mechanism in which phosphorylation co-regulates APC activity in conjunction with the 

co-activator proteins has been suggested (Harper et al., 2002; Kotani et al., 1999; Page and 

Hieter, 1999; Peters, 2002; Zachariae and Nasmyth, 1999).  Early experiments in Xenopus 

and clam revealed that interphase (G1) APC activity was stimulated by mitotic CDK (Felix et 

al., 1990; Hershko et al., 1994; Lahav-Baratz et al., 1995; Shteinberg et al., 1999).  More 

thorough analyses with human APC exposed both activating and deactivating forms of 

phosphorylation by CDK, polo-like kinase (PLK, Cdc5 in budding yeast), and cAMP-

dependent protein kinase A (PKA) in vivo (Kotani et al., 1998).  Overexpressing PLK in 

human cells resulted in phosphorylation of Cdc16, Cdc27, and Apc1 and correlated with 

elevated APC activity, while constitutive activation of PKA by cyclic AMP resulted in 

phosphorylation of Apc1 and correlated with reduced APC activity in vivo.  The same 

subunits were phosphorylated in the presence of both kinases but APC activity was 

suppressed (Kotani et al., 1998).  In addition, alanine mutations of putative cyclin-dependant 

kinase (CDK) sites in the budding yeast APC subunits Cdc16, Cdc27, and Cdc23, resulted in 

compromised APCCdc20 activity towards Clb2 and Pds1 in-vivo, as well as a delay in the 

onset of anaphase (Rudner et al., 2000; Rudner and Murray, 2000).  CDK consensus 

sequences within Cdc16, Cdc27, and Cdc23 could also be phosphorylated in vitro by Cdc28 

(Rudner et al., 2000; Rudner and Murray, 2000).  However, mutation at these sites did not 

abrogate phosphorylation by PLK in vitro, and cells harboring mutated PLK displayed 
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reduced phosphorylation in vivo, indicating that additional non-CDK phosphorylation 

regulates APC activity.  Later, mass spectrometric characterization of APC purified from 

HeLa cells revealed numerous phosphorylation sites on these same TPR subunits as well as 

Apc1, Apc4, Apc5, and Apc7, although only half could be recapitulated by Cdk1 or Plk1 in 

vitro, suggesting the involvement of additional kinases (Kraft et al., 2003).  The most notable 

experimentally determined biophysical effect of APC phosphorylation is on the association 

of the Cdc20 co-activator during mitosis.  Using APC purified from either interphase or M 

phase Xenopus oocytes or human cells, Kramer et al. demonstrated that only M phase APC 

could be activated by Cdc20 in vitro (Kramer et al., 2000).  Moreover, phosphatase treatment 

of the M phase APC eliminated Cdc20 co-immunoprecipitation with Cdc27 and resulted in 

significantly lower ubiquitin ligase activity in vitro.  In contrast, Cdh1 binding and activation 

of the APC was unaltered (Kramer et al., 2000).      

 

The APC in meiosis 

 The bulk of current evidence on APC-mediated cell cycle regulation comes from research 

on mitotic cells.  Comparatively, our understanding of pathways governing the passage 

through meiotic cell cycle transitions is just beginning.  In this section, I describe the meiotic 

cell cycle as it pertains to budding yeast, and go further to describe what is known about the 

involvement of the APC in this process. 

 

Meiosis in Saccharomyces cerevisiae   

 Meiosis is a specialized gametogenic cell cycle in which diploid cells (cells containing two 

copies of each chromosome; called homologous chromosomes with 2n DNA content) 
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undergo one round of DNA replication followed by two successive nuclear divisions that 

result in the formation of four haploid progeny (each containing a single copy of each 

chromosome or 1n DNA content).  Meiosis is divided into two distinct nuclear divisions, 

meiosis I (MI) and meiosis II (MII), each of which consists of prophase (prophase I or II), 

metaphase (metaphase I or II), and anaphase (anaphase I or II).   

 Yeast undergo meiosis as a “protective” response to sub-optimal environmental levels of 

nitrogen and a fermentable carbon source (e.g. glucose) in a process called sporulation.  

Sporulation consists of two overlapping processes, meiotic nuclear division and spore 

morphogenesis, the completion of which results in the formation of four haploid spores 

(Clancy, 1998; Janek et al., 2001).  The biological mechanisms involved in controlling the 

transitions through meiotic nuclear division are well conserved throughout eukaryotes, 

making yeast a very useful model organism for studying meiosis.     

 Meiosis I.  The first nuclear division, MI, is commonly referred to as the meiotic division, 

and is fundamentally different from mitosis because homologous chromosomes, but not sister 

chromatids, are segregated to opposite spindle poles.  This requires that microtubule 

attachment to the kinetochores of each homologous chromosome is mono-oriented (as 

opposed to bi-oriented), resulting in the segregation of sister chromatids to the same pole.  

This type of spindle attachment is only possible during MI, since mono-orientation of sister 

chromatids during mitosis would fail to generate the tension necessary to escape the spindle 

checkpoint mechanism.  Even so, tension is also used as a signal for proper spindle assembly 

during MI, but is generated through two physical connections:  cohesion between sister 

chromatids provided by a meiotic cohesin protein complex and chiasmata, which provide a 

DNA bridge between chromatids of neighboring homologous chromosomes (Petronczki et 
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al., 2003).  During pre-meiotic S phase in budding yeast, as chromosomes are being 

replicated, a cohesin complex in which the mitosis-specific subunit Scc1 is replaced by the 

meiosis-specific subunit Rec8, links sister chromatids together along the entire length of their 

chromosome arms (Klein et al., 1999; Watanabe and Nurse, 1999).  Induction of the meiotic 

program after mitotic DNA replication results in failed cohesion between homologous 

chromosomes during MI (Watanabe et al., 2001).  Thus, the signal for cells to enter the 

meiotic program must occur before DNA replication so that the meiosis-specific rather than 

the mitosis specific cohesin complex is loaded onto chromosomes.  After pre-meiotic S 

phase, cells undergo an elongated prophase (prophase I), during which homologous 

chromosomes are aligned adjacent to one another through formation of the synaptonemal 

complex:  a repetitive series of protein complexes that join homologous chromosomes along 

the entire axis of a chromatid pair, thereby allowing genetic recombination in the event 

known as crossover.  During crossover, genetic material from the chromatids of neighboring 

homologous chromosomes is exchanged in a process involving DNA double strand break 

repair through the formation of double Holliday junctions (Holliday, 1964; Schwacha and 

Kleckner, 1995).  Resolution of the double Holliday junction by a yet to be discovered 

resolvase enzyme results in chiasmata.  The completion of crossover recombination is 

monitored by the pachytene checkpoint, which inhibits exit from prophase I until all double-

strand breaks are repaired (Borchers et al., 2004).  Formation of chiasmata effectively links 

the cohesion between sister chromatids of one homologous chromosome pair to that of the 

other, and thereby links the homologous pair in what is called a bivalent.  After dissolution of 

the synaptonemal complex that occurs near the end of prophase I, chiasmata and cohesin 

distal to the chiasmata provide the only physical link between homologous chromosomes.  
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Indeed, failure to form chiasmata results in random segregation of homologous chromosomes 

in MI that leads to aneuploidy and inviable progeny (Baudat et al., 2000; Romanienko and 

Camerini-Otero, 2000).   

 Once cells reach the metaphase/anaphase transition of MI, Rec8 is proteolyzed by Esp1 

(Kitajima et al., 2003), which until that time is inhibited by Pds1 (Salah and Nasmyth, 2000).  

However, only the Rec8 along chromosome arms is degraded (Ho et al., 2002), while the 

Rec8 and consequential cohesion around centromeres is preserved until MII (Klein et al., 

1999; Toth et al., 2000; Watanabe and Nurse, 1999).  The elimination of arm cohesion and 

preservation of centromeric cohesion allows the segregation of homologous chromosomes, 

but not sister chromatids, to opposite spindle poles in MI.  During anaphase I, centromeric 

Rec8 is protected from Esp1 proteolysis by associating with the conserved kinetochore 

protein, shugoshin (Sgo1) (Katis et al., 2004; Kitajima et al., 2004; Marston et al., 2004; 

Rabitsch et al., 2004).  

 Meiosis II.  After MI, cells do not undergo a second S phase and so the second nuclear 

division is very similar to a mitotic nuclear division.  In this case, sister chromatids are 

attached via their kinetochores, in a bi-oriented fashion, to opposing spindle poles 

(Petronczki et al., 2003).  Similar to MI, MII requires the destruction Rec8 by Esp1 (Kitajima 

et al., 2003) during anaphase II, however, Sgo1 must be degraded before this can happen.  

How this happens is not clear, although the APC has been suggested as a potential mediator 

of timely Sgo1 destruction (Penkner et al., 2005).   

 

The role of APC in yeast meiosis 

 The APC is necessary for both nuclear divisions during meiosis in yeast (Petronczki et al., 
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2003; Salah and Nasmyth, 2000) (Figure 1.5), as well as spore morphogenesis (Blanco et al., 

2001; Cooper et al., 2000).  At the onset of anaphase I, the APC is activated by Cdc20, which 

recruits Pds1 for ubiquitination (Salah and Nasmyth, 2000), resulting in the release of Esp1 

and degradation of chromosomal arm Rec8 (Kitajima et al., 2003) that is the trigger for 

anaphase I and the resolution of chiasmata (Kudo et al., 2006).  APCCdc20 is also necessary to 

trigger Pds1 at the metaphase/anaphase transition of MII that results in a second round of 

Esp1-mediated Rec8 degradation (Salah and Nasmyth, 2000).  A role for Cdh1 co-activator 

in meiosis is unclear, although it has been shown that the meiosis-specific kinase, Ime2, 

when expressed in mitotic cells can negatively regulate APC activity by phosphorylating and 

inhibiting Cdh1 (Bolte et al., 2002).  In budding yeast the APC is regulated in part by the 

meiosis-specific, Cdc20-like co-activator, Ama1 (Cooper et al., 2000).  The AMA1 gene is 

expressed and spliced in prophase I, and shares similar but not completely overlapping 

functions with the mitotic co-activators Cdc20 and Cdh1 (Cooper et al., 2000).  At the 

inception of this thesis, only one report described Ama1 function (Cooper et al., 2000), and 

showed that Ama1 could bind the APC in vivo and was necessary for degradation of the B-

type cyclin Clb1 after the second nuclear division.  The study further showed that deletion of 

ama1 resulted in meiotic arrest before metaphase I, and that Ama1 protein is also required for 

late meiotic gene expression and spore formation (Cooper et al., 2000; McDonald et al., 

2005). 

 

Thesis summary 

 At the inception of my thesis (2003), our understanding of APC structure and regulation 

was just beginning to emerge.  At that time, it was clear that the APC was an enormous  
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Figure 1.5.  The APC is required for meiotic cell cycle transitions.  During meiosis, one 
round of DNA synthesis is followed by two successive rounds of nuclear division.  Prior to 
nuclear division, meiotic nuclei undergo an elongated prophase I, during which chromatids 
from homologous chromosomes must recombine by crossover recombination.  The first 
meiotic nuclear division is specific to meiosis because homologous chromosomes, rather than 
sister chromatids (see inset figure), are aligned and separated in anaphase I.  Therefore, only 
non-centromeric cohesion is destroyed by Esp1, which targets the meiosis specific cohesin 
subunit, Rec8, which has been substituted for Scc1 during DNA synthesis.  In the second 
nuclear division, which is the mitosis-like division, centromeric cohesin is deprotected 
(possibly through an APC-dependent pathway), and Pds1 is again targeted for ubiquitin 
mediated proteolysis, leading to separation of sister chromatids into four haploid progeny 
cells.  
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ubiquitin ligase with many different subunits, some of which were modified post-

translationally by phosphorylation.  However, our knowledge of the function of individual 

subunits and the importance of specific phosphorylation sites was poorly understood.  

Furthermore, nothing was known about the role of APC phosphorylation during the meiotic 

cell cycle and very little was known about APC-mediated ubiquitination in this process.  At 

the same time, protein mass spectrometry (MS) was beginning to flourish as a powerful tool 

for characterizing protein sequence and modification; and the laboratory of Dr. Christoph 

Borchers was well equipped to apply these tools for analysis of the APC in budding yeast.  In 

this thesis, I have used protein mass spectrometry to investigate the subunit composition and 

phosphorylation modifications of the APC for the purpose of improving our understanding of 

APC-mediated cell cycle regulation.  The results have led to the discovery of two previously 

unknown subunits and also the first demonstration that APC phosphorylation is necessary for 

meiotic cell cycle transitions. 

 The remainder of this thesis is divided into four chapters.  In Chapter II:  “Protein 

characterization by mass spectrometry”, I describe the fundamentals, instrumentation, and 

classical approaches used in the mass spectrometric analysis of proteins.  I also describe a 

novel technique that I developed for the MS analysis of phosphorylated proteins, aspects of 

which I later used to study APC phosphorylation.  In Chapter III:  “Mnd2 and Swm1 are 

stoichiometric components of the Saccharomyces cerevisiae anaphase-promoting complex”, 

I describe how I and others in Dr. Borchers lab used mass spectrometry to identify two new 

APC subunits in budding yeast.  I demonstrate that each subunit is present on the complex 

throughout the cell cycle at stoichiometric levels, and that neither subunit is required for 

mitotic viability but critical for meiotic viability.  In Chapter IV:  “Phosphorylation of the 
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APC inhibitory subunit, Mnd2, is necessary for efficient progression through meiosis I”, I 

used mass spectrometry to identify specific phosphorylation sites on the subunit, Mnd2, 

which are critical for meiotic progression in budding yeast.  Finally, in Chapter V:  

“Conclusions and general discussion”, I draw overall conclusions from my research, discuss 

the implications of my results, and propose new hypotheses that could provide an avenue for 

future research.     

 



CHAPTER II 

PROTEIN CHARACTERIZATION BY MASS SPECTROMETRY 
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Summary 

 In recent years, the application of mass spectrometry for protein characterization has made 

significant advancements and is now established as the most effective tool for the analysis of 

protein with regards to protein sequencing, protein-protein interactions, protein post-

translational modification (PTM), and protein quantitation.  The advantage of using mass 

spectrometry (MS) as a bio-analytical tool is that it allows one to measure the mass of any 

given bio-molecule with a high degree of accuracy, resolution, sensitivity, speed, and 

reproducibility.  Accurate mass determination of peptides or proteins by MS can provide 

valuable information about protein sequence and therefore protein identity, as well as protein 

modification and quantity.  Comparatively, traditional methods of protein sequence analysis 

(e.g. Edman degradation), require greater sample and reagent quantities as well as longer 

analysis times relative to routine MS strategies (Biemann and Scoble, 1987; Wilm et al., 

1996).  Moreover, the ability to perform accurate mass determination on full length proteins 

using MS is unsurpassed by any other methodology.  In this chapter, I describe the 

fundamentals of mass spectrometry and their application to the analysis of proteins in what 

are commonly referred to as the bottom-up and top-down MS strategies.  I further present a 

novel bottom-up MS method that I developed for the detection of multiply-phosphorylated 

peptides, called phosphatase-directed phosphorylation site determination (PPD), in which I 

use a cell cycle regulated protein to demonstrate proof-of-principle.  Aspects of this method 

were later applied to the analysis of APC subunit phosphorylation that is described in chapter 

IV.     
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Fundamentals and instrumentation 

 Mass spectrometry is an analytical method of measuring the mass of ionized molecules in 

the gas phase.  The method relies entirely upon instrumentation, the mass spectrometer, 

which consists of three fundamental components:  the ion source, which generates gas phase 

molecular ions; the mass analyzer, which separates the molecular ions based on their mass-

to-charge (m/z) ratio; and the detector, which registers the number of molecular ions at each 

m/z value.  Following are general descriptions of ion sources and mass analyzers and their 

relevance to protein MS experiments.  For more detailed information on any one particular 

subject, please see the references contained therein and (Gross, 2004). 

 

The ion source 

 The two most common ion sources used to generate gas phase molecular ions (especially 

of biological molecules) are matrix-assisted laser desorption ionization (MALDI) and 

electrospray ionization (ESI) (Figure 2.1).  MALDI is a derivative of an older ionization 

technique called laser desorption ionization (LDI), in which pure analytes are ionized directly 

by bombardment with pulsed laser energy.  At that time, LDI was functional for analyzing 

small molecules (1 – 2 kDa) that were easily ionized and vaporized by direct laser energy, 

but was insufficiently capable of desorption/ionization of larger molecules such as proteins or 

peptides (Dreisewerd, 2003).  A significant improvement in LDI was achieved by embedding 

the sample analyte within a crystalline matrix that was conducive to generating gas phase 

ions of large molecules (e.g. peptides and proteins) upon excitation with an ultraviolet or 

infrared laser beam (Karas and Hillenkamp, 1988).  In the MALDI technique, excitation and 

rapid heating of the chemical matrix induced by short laser pulses results in proton transfer 
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from the matrix to the analyte and spontaneous sublimation of the ionized molecule into the 

gas phase (Dreisewerd, 2003; Hillenkamp and Karas, 1990) (Figure 2.1).  Many different 

methods for MALDI sample preparation exist; however, the most common is the dried 

droplet method in which an equivalent volume of sample analyte and concentrated matrix 

solution is crystallized on the surface of a steel target plate (Karas and Hillenkamp, 1988).  

Different chemical matrices can be used, each of which exhibits characteristics optimal for 

different sample analytes (Bornsen, 2000; Gonnet et al., 2003; Laugesen and Roepstorff, 

2003; Schiller et al., 2006; Shahgholi et al., 2001).  In addition to its simplicity and ease of 

use, MALDI MS exhibits two main advantages.  First, a single dried droplet has a long ‘shelf 

life’ and can be repetitively analyzed many times over, which is particularly useful when 

working with complex sample mixtures.  Second, in general, MALDI generates mostly single 

(as opposed to multiple) charge state ions, which can reduce mass spectrum complexity and 

improve ion assignment.  The concentration of ion signals within a single charge state can 

theoretically increase spectrum intensity and provide more favorable ion statistics (due to 

higher ion count) for any given ion.  The major disadvantage of MALDI is that it requires 

samples to be dehydrated before analysis, and is therefore incompatible with on-line 

chromatographic separation techniques.   

 The advent of ESI MS for the analysis of large biomolecules occurred at around the same 

time as MALDI MS, when Fenn et al. discovered that ESI was able to form multiply charged 

molecular ions (Fenn et al., 1989; Whitehouse and Cleland, 1985) that consequently 

expanded the range of a mass analyzer from a few kilodaltons to almost 1 million daltons 

(Rostom and Robinson, 1999).  In contrast to MALDI, ESI MS is conducted with samples in 

the liquid phase.  In this case, sample analyte is loaded into a metal or metal-coated capillary 
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needle which is electrically charged with respect to a cylindrical electrode at the entrance 

chamber of a mass analyzer.  The potential difference between the needle and the chamber 

generates an electric field at the needle’s tip that charges the surface of the emerging liquid 

and disperses it into a mist of charged droplets, some of which contain the sample analyte.  

As the charged droplets migrate along the electric field toward the entrance to the mass 

analyzer, the solvent rapidly evaporates until the charge density reaches a threshold that 

causes the sample analyte to desorb into the gas phase as a molecular ion (Fenn et al., 1989; 

Whitehouse and Cleland, 1985) (Figure 2.1).  In comparison to MALDI, ESI MS is 

considered a “softer” ionization technique that may preserve the sample analyte without 

causing fragmentation of covalent and even non-covalent bonds.  Indeed, ESI MS can be 

used to determine the mass of protein-small molecule (Bligh et al., 2003; Borchers et al., 

2004) as well as protein-protein non-covalent complexes (Loo et al., 2005; Veenstra, 2006).  

There are two major advantages to using ESI MS for protein analysis.  First, ESI MS is easily 

coupled with liquid phase chromatography (LC) techniques such as reverse phase HPLC or 

reverse-phase HPLC coupled with strong ion exchange chromatography (Han et al., 2001; 

Link et al., 1999; Washburn et al., 2001; Wolters et al., 2001; Yates et al., 1999).  Indeed, 

separation of sample mixtures by liquid chromatography prior to MS analysis dramatically 

expands the number of different molecular ions observed in a single sample by reducing ion 

suppression effects commonly observed in MS analyses of complex mixtures.  Second, the 

mass accuracy of ESI MS on proteins larger than ~4 kDa is much greater than what can be 

achieved using MALDI MS.  By generating multiple charge states for a single protein of 

given mass, the mass measurement is based on an average of many ion signals across the m/z 

scale.  In addition, the m/z scale for mass spectra generated by ESI MS is generally 
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maintained below m/z 3000, at which the accuracy of the mass analyzer is optimal.  The 

major disadvantage of ESI MS is that the generation of multiple charge states for each 

analyte can significantly increase spectrum complexity.  In addition, the ionization efficiency 

of any given analyte can vary widely due to solvent characteristics, the presence of 

impurities, and the analyte itself (Garcia, 2005; Garcia et al., 2002; Shou and Naidong, 

2005).   

 The characteristic differences between MALDI MS and ESI MS make the two ionization 

mechanisms complementary.  For instance, when using both techniques for the detection of 

complex peptide mixtures the number of different peptides detected within a single sample is 

generally greater than the number detected by either technique alone (Stapels and Barofsky, 

2004; Stapels et al., 2004).  In addition, two less common ion sources have become popular 

for applications not well suited for MALDI or ESI MS:  atmospheric pressure chemical 

ionization (APCI) (Byrdwell, 2001), and atmospheric pressure photoionization (APPI) 

(Raffaelli and Saba, 2003).    

 

The mass analyzer 

 The mass analyzer combined with the detector is the measuring component, and therefore 

the ‘heart’ of a mass spectrometer.  There are five types of mass analyzer:  time-of-flight 

(TOF), quadrupole (Q), ion trap (Trap), Fourier transform ion cyclotron resonance (FTICR) 

(reviewed in Aebersold, 2003), and Orbitrap (Hu et al., 2005).  In this section I describe each 

mass analyzer, although most of the data generated for this thesis was conducted on TOF and 

quadrupole mass spectrometers (Figure 2.1).      

 In a TOF mass analyzer, ion masses are determined by measuring the time-of-flight for an 
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Figure 2.1.  Schematic diagrams of MALDI-TOF and ESI-QqTOF MS instrumentation.  (A) 
MALDI-TOF instrument diagram.  Sample analytes are co-crystallized with an acid matrix 
on a steel target plate.  Firing a pulsed laser at the crystal matrix induces rapid sublimation 
and ionization of the sample into the gas phase as an ion packet.  After normalizing the 
kinetic energy of an ion packet, the ions are separated in a time-of-flight tube as they drift 
from the entrance to the exit.  Ions with higher m/z will travel slower than ions with lower 
m/z.  The ions are then detected in a linear or reflectron path by the respective detectors.  The 
resolution of the ions separated in the drift tube is drastically improved in the reflectron 
mode, in which case ions “reflect” off of an ion mirror that functions to normalize the kinetic 
energy of like ions before they reach the detector.  (B) ESI-QqTOF hybrid instrument 
diagram.  Sample analytes are emitted as an electrospray from an electrified needle, resulting 
in droplets that carry multiple proton charges.  Solvent rapidly evaporates until a threshold of 
surface charge density is reached in a “coloumbic explosion” that forms the quasi-molecular 
sample ion (Fenn et al., 1989).  The ions are focused in Q0 and then filtered by a quadrupole 
mass analyzer (Q1), which uses ratio of dc and rf voltages to selectively filter ions of a 
specific m/z.  Non-selected ions display an unstable trajectory that leads them to crash into 
the rods of the quadrupole (zoomed figure).  Ions that pass through Q1 enter q2, which can 
be used as a collision cell in tandem MS experiments.  In the QqTOF instrument, the filtered 
ions pass through a time-of-flight analyzer before reaching the detector.  (Figure adapted 
from instrument diagram for the Applied Biosystems Sciex Q-Star Pulsar instrument). 
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ion traveling from the ion source, through a drift or TOF tube, and to the detector (Stults, 

1995).  In order to distinguish between ions generated at different times by the source, ions 

are measured in ‘packets’ that are generated through pulsed ion extraction by the ion source.  

Ions within a packet are focused into a beam, and accelerated in a voltage gradient that serves 

to normalize the kinetic energy of each ion before it enters the TOF analyzer.  Once the ion 

packet is released into the TOF tube, each ion drifts in parallel towards the end of the tube 

without the input of additional energy.  The rate of drift is directly proportional to an ion’s 

mass-to-charge ratio (m/z), where ions of higher mass or less net charge travel slower than 

ions of lower mass or greater net charge.  Once ions within a packet contact the detector, the 

signal is sent to a digitizer that calculates the drift time with respect to the ion pulse 

frequency and TOF tube length, and displays the summed data for multiple ion packets as a 

mass spectrum.  TOF analyzers are often combined with MALDI ion sources, in which ion 

extraction can be controlled by the laser pulse frequency.  TOF analyzers exhibit the highest 

mass range of any analyzer and also a high degree of ion transmission, which improves 

detection sensitivity.  However, TOF analyzers are not very good at ion selectability, and are 

therefore poor mass filters. 

 Quadrupole mass analyzers work by generating an electric field between four axial metal 

rods through which ions pass en route to the detector.  The voltages applied to the four rods 

consist of both direct current (dc) as well as radio frequency (rf) potentials that combine to 

create a quadrupolar field, which can be altered to permit transmission of only ions within a 

given m/z range.  Ions outside the m/z range set by the quadrupolar field display unstable 

trajectories that result in their collision with the quadrupole rods and failure to reach the 

detector (Figure 2.1).  To generate a mass spectrum, the quadrupole is used to scan across a 
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range of m/z values by altering the dc and rf potentials of each rod.  Quadrupole mass 

analyzers are multi-functional, acting as mass filters or collision cells (March et al., 1989), 

making them ideal for tandem mass spectrometric experiments (Jonscher and Yates, 1997; 

Yost and Boyd, 1990).     

 In an ion trap mass analyzer, ions are stored or ‘trapped’ before they are selectively 

released to the detector by scanning the dc and rf potentials of the trap across a desired m/z 

range (Brancia, 2006; Jonscher and Yates, 1997; McLuckey et al., 1994).  Using an ion trap, 

one can trap and release ions with a specific m/z, and also excite the ions by altering the rf 

potentials of the trap.  Ion trap configurations are typically either three-dimensional or two-

dimensional (also called linear ion traps).  In a three-dimensional ion trap, ions are stored in a 

point in space at the center of the trap.  Three-dimensional ion traps exhibit relatively low 

mass resolution due to space charge effects that occur as the trap reaches its maximum ion 

capacity.  However, linear ion traps have reduced this problem by utilizing a quadrupole as a 

cylindrical trap, thereby increasing the ion capacity and reducing the space charge effect.  

Linear ion traps (LIT) exhibit better sensitivity, mass resolution, and mass accuracy 

compared to traditional three-dimensional ion traps (Aebersold and Mann, 2003).  In 

comparison with other mass analyzers, ion traps are typically more sensitive and they also 

allow multi-stage MS experiments (discussed below).  However, their susceptibility to space 

charge effects can compromise their mass resolution and accuracy.   

 The FTICR mass analyzer is an ion trap that provides the greatest mass resolution 

available of any mass spectrometer.  Mass determination by FTICR MS relies on the 

principle that ions move in a circular orbit in a magnetic field, and the frequency of cycling 

or cyclotron frequency is proportional to the m/z of the ion.  In FTICR MS, incoming ions are 
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trapped in this circular path by superconducting magnets.  As ions enter the magnetic field, 

they are energized with an excitation pulse that sweeps across a frequency range.  When the 

cyclotron frequency of an ion is in resonance with the excitation frequency, the ion absorbs 

the energy, which subsequently increases the ion’s circular orbit.  The ions whose orbits 

becomes expanded (i.e. ions of the same m/z value) are detected as an image current by a 

‘receiver plate’ inside the trap.  The image current is proportional to the number of ions and 

their distance from the receiver plate.  The mass spectrum is generated by applying a Fourier 

transform to the digitized image current (Bogdanov and Smith, 2005; Marshall et al., 1998).  

Similar to traditional ion traps, ions with a particular m/z can be trapped, released, or excited, 

in the ICR cell.  In addition, multi-stage MS can also be performed.  However, FTICR MS 

allows far greater mass accuracy and resolution than what can be achieved by three-

dimensional or linear ion traps.  The performance of FTICR MS, most notably the resolving 

power, increases with increasing magnetic field (Marshall et al., 1998). 

 The fifth and most recent type of mass analyzer, called an orbitrap, provides mass 

resolution close to FTICR, but without the need for large superconducting magnets (Hu et al., 

2005; Scigelova and Makarov, 2006).  Similar to FTICR, molecular ions are trapped non-

destructively in circular orbits that can be selectively expanded to create image currents that 

are detected and converted to mass spectra via Fourier transformation.  However, in the 

orbitrap, ions are trapped about a central spindle electrode that is co-axial with an outer 

barrel-like electrode.  The mass-to-charge of an ion is proportional to, and measured from the 

frequency of its harmonic oscillations controlled by the electric field of the orbitrap.  Like the 

FTICR, the orbitrap is used in hybrid mass spectrometers that also contain quadrupole and 

linear ion trap mass analyzers.    
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Tandem mass spectrometry   

 The manipulation of molecular ions using multiple mass analyzers arranged in sequence is 

called tandem mass spectrometry (MS/MS).  MS/MS was first described as a method for 

detecting and analyzing trace elements out of complex mixtures (McLafferty, 1981a; 

McLafferty, 1981b), and was later shown to be useful for determining the amino acid 

sequences of proteins (Hunt et al., 1981; Hunt et al., 1986).  In the experiments by Hunt et. 

al, proteins were cleaved by enzyme proteolysis to produce peptides that were analyzed using 

a mass spectrometer in which three quadrupole mass analyzers were joined in tandem.  In 

this triple quadrupole (QqQ) mass spectrometer the first and third quadrupoles (Q1 and Q3) 

were used as mass filters, while the second quadrupole (q2) was employed as a collision cell.  

Q1 was used to select a narrow m/z range that allowed transmission of only one peptide 

species to q2.  In q2, the peptide collides with a neutral gas (N2 or Ar) and becomes 

fragmented in a process termed collision-induced dissociation (CID) (sometimes called 

collision-activated dissociation, CAD).  The fragments generated by CID in q2 were then 

separated in Q3 before reaching the detector to create the tandem mass spectrum.  CID often 

results in fragmentation at the peptide bond between amino acid residues (Hunt et al., 1986).  

In the simplest case, one fragmentation event creates two possible peptide ions:  an N-

terminal ion, or b-ion; and a C-terminal ion, or y-ion (Johnson et al., 1987; Roepstorff and 

Fohlman, 1984).  During CID, fragmentation commonly occurs at multiple peptide bonds 

within the peptide, resulting in the formation of multiple b and y fragment ions whose masses 

differ by the mass of one or more of the 20 known amino acids.  Since the amino acid mass 

differences produced by CID are known (Hunt et al., 1986), the tandem mass spectrum can 

be used to determine the amino acid sequence of the entire peptide (Figure 2.2).   
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 In variations of the triple quadrupole instrument, such as the QqLIT, the Q3 quadrupole 

has been replaced by a linear ion trap.  The incorporation of an ion trap allows one to 

perform multi-stage mass spectrometric experiments (called MSn), the most common of 

which is the MS3 experiment.  In a typical QqLIT MS3 experiment, Q1 allows transmission of 

a selected ion, which is then fragmented by CID in q2 (MS/MS).  The fragments from q2 can 

be stored in the LIT followed by ion ejection of all but one specific fragment ion.  The 

remaining fragment ion can be activated by altering the rf potentials of the LIT, which 

induces fragmentation or MS/MS/MS.  The resulting fragment ions can then be selectively 

scanned to the detector as an MS3 spectrum.  Similar experiments have also been 

demonstrated with mass spectrometers lacking an ion trapping mass analyzer such as the Qq-

TOF, whereby samples undergo in-source fragmentation (MS/MS) followed by ion selection 

in Q1, secondary fragmentation in q2, and fragment analysis in the TOF tube (Konishi and 

Tominaga, 2006) (Figure 2.1).  The MS3 experiment has been shown to be very useful for 

analysis of peptide PTMs, like phosphorylation, which can be lost or difficult to sequence in 

typical MS/MS experiments (Chang et al., 2004).     
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Figure 2.2.  Tandem mass spectrometry of peptides.  Using a hybrid mass spectrometer such 
as the QqTOF (described in Figure 2.1), a collection of peptides, generated by tryptic 
digestion of a sample protein, are first analyzed by MS, in which case the mass spectrum 
displays the m/z for each peptide in the mixture.  The ion of interested is then selected for 
tandem MS (MS/MS) sequencing (for example, by quadrupole mass analyzer).  The selected 
ion passes through a collision cell containing neutral gas molecules that collide with the 
peptide, thereby inducing dissociation of the peptide into fragments.  Collision induced 
dissociation occurs predominantly at the peptide bond between amino acid residues.  The 
resulting fragments are analyzed by a second mass analyzer (for example, by time-of-flight), 
which separates the fragment ions by m/z before they reach the detector.  Since the mass of 
every amino acid is known, the resulting MS/MS spectrum can be used to determine the 
sequence of the parent peptide. 
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Mass spectrometry of proteins:  bottom-up and top-down approaches 

 Mass spectrometry has become the most effective tool for characterizing proteins since the 

inventions of the MALDI and ESI ionization techniques, which drastically improved the 

sensitivity of mass spectrometers for large molecular ions.  MS is now commonly used to 

analyze proteins that are expressed endogenously at biologically relevant levels.  However, 

before the existence of MALDI and ESI, most MS techniques were limited to the analysis of 

small molecules or short peptides capable of being ionized by ionization sources available at 

the time. Thus, proteins were digested enzymatically or otherwise hydrolyzed chemically 

prior to MS analysis (Herlihy et al., 1980; Nau and Riordan, 1975), which resulted in much 

smaller MS-compatible peptide fragments.  Once the masses were determined for each 

peptide fragment, they could be compared to the theoretical peptide masses predicted for a 

particular protein based on the translated DNA gene sequence.  Using this technique, amino 

acids prone to chemical modification (e.g. enzyme active sites, or surface exposed residues) 

could be determined by comparing peptide masses before and after protein modification and 

looking for which peptide fragments underwent mass shifts corresponding to the addition of 

the chemical modifier (Nau and Riordan, 1975).  This type of mass-matching analysis was 

further improved by using tandem MS to provide amino acid sequence information on 

individual peptides (Hunt et al., 1981; Hunt et al., 1986).  The concept of breaking down a 

protein into smaller peptides that can be analyzed individually by MS and/or tandem MS has 

come to be known as the bottom-up approach (Figure 2.3 A).  

 Concomitant with the advent of bottom-up mass spectrometry was the creation of whole 

genome sequence databases that could be used in combination with bottom-up mass spectra 

as a tool for identifying unknown proteins in a method called peptide mass fingerprinting.  In 
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the simplest form of this method, a protein is digested (usually with trypsin protease) and the 

peptides are subsequently detected by MS.  Tryptic digestion of a protein occurs exclusively 

C-terminal to arginine or lysine residues (Olsen et al., 2004), which results in a particular 

combination of peptides, each with a distinct mass that, as a whole, can serve as a unique 

identifier for the digested protein, also called a peptide mass fingerprint.  Using mass 

matching computer algorithms, the peptide mass fingerprint is used to query a genome-wide 

peptide mass database of translated sequences that have been theoretically digested (in silico) 

with the same enzyme.  Successful identification of a protein is achieved when a statistically 

significant number of masses from the peptide mass fingerprint accurately match the 

theoretical mass fingerprint for a particular protein in the database (Aebersold and Mann, 

2003; Phizicky et al., 2003; Tyers and Mann, 2003; Zhu et al., 2003).  Whole genome 

sequence databases can also be searched with peptide sequence, in which case the fragment 

ions from an MS/MS experiment are used.  This generally improves the statistical confidence 

of protein identification and also reduces the total number of matching peptides needed for 

success.  Importantly, database searching algorithms can also be used to evaluate the 

presence of PTMs (e.g. phosphorylation, acetylation, methylation, oxidation, etc.) that alter 

the mass of an unmodified peptide by discrete values, although MS/MS is often required to 

confirm the result.  The bottom-up approach to MS protein characterization is now the 

primary tool used in proteomics research, which seeks to quantify the expression, post-

translational modification, and protein-protein interactions of every protein in a living cell 

(Aebersold and Mann, 2003; Phizicky et al., 2003; Tyers and Mann, 2003; Zhu et al., 2003). 

 Bottom-up proteomics relies heavily on protein and peptide chromatography, since the ion 

detection capacity of mass spectrometers is limited, particularly for complex peptide or 
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Figure 2.3.  Bottom-up and top-down protein mass spectrometry.  (A) The bottom-up 
approach.  Full-length proteins are first broken down into peptides by enzymatic digestion, 
and the peptides are analyzed by MS and MS/MS.  (B) The top-down approach.  Full-length 
proteins are analyzed by MS and MS/MS without enzymatic digestion.  Here, top-down 
FTICR-MS analysis of cytidine deaminase from E. coli is shown.  MS analysis reveals the 
accurate molecular weight of the protein (the deconvoluted ESI mass spectrum of cytidine 
deaminase is shown, in which each peak represents a different isotope number).  Subsequent 
MS/MS analysis by collision induced dissociation results in fragment ions that can be used to 
determine the sequence of the full-length protein. 
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protein mixtures (Annesley, 2003).  The type of chromatographic separation used prior to 

MS analysis depends on the goals unique to a particular experiment but often includes one or 

more of the following techniques:  1D or 2D SDS-PAGE, reverse-phase liquid 

chromatography, strong cation/anion exchange, and capillary or free-flow electrophoresis.  

Proteomics experiments have been widely used to identify protein-protein interactions 

(Blagoev et al., 2003; Gavin and Superti-Furga, 2003; Ho et al., 2002; Ranish et al., 2003), 

protein post-translational modifications (Ficarro et al., 2002; Gruhler et al., 2005; Nousiainen 

et al., 2006; Olsen et al., 2006), and to quantitate cellular protein levels (Gygi et al., 1999; 

Mann et al., 2002; Oda et al., 1999; Ong et al., 2003; Sechi and Chait, 1998).  

 Although bottom-up proteomics is a powerful technology for protein identification and 

characterization, the method does have limitations.  First, in many cases, not all of the 

peptides generated by proteolytic digestion of the whole protein are detected, due to a variety 

of factors such as ion suppression (Annesley, 2003).  Second, peptide ionization/detection 

efficiency can be drastically lowered by the presence of PTMs, such as phosphorylation, 

which increases the electronegativity of the peptide (Craig et al., 1994; Janek et al., 2001; 

Steen et al., 2006).  Third, the stoichiometry of PTMs cannot be easily quantified without the 

use of peptide standards, due to differences in ionization/detection efficiency of the modified 

and unmodified peptides (Bonenfant et al., 2003; Ibarrola et al., 2003; Steen et al., 2005).   

 The top-down approach to protein mass spectrometry, in which protein sequence 

information is obtained from analysis of the intact protein as opposed to peptides, is an 

alternative technique that circumvents some limitations of the bottom-up approach.  Top-

down mass spectrometry was originally conceived in the late 80’s and early 90’s, when it 

was discovered that tandem mass spectrometry could be used to interrogate the multiply-
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charged ions found in ESI mass spectra of large proteins (Henry et al., 1989; Loo et al., 1990; 

Loo et al., 1992).  In this case, the accurate molecular weight of an intact protein is 

determined by ESI MS, which produces a distribution of multiply-charged ions that are 

detected and then displayed in the MS spectrum (Figure 2.3 B).  The determined mass can 

then be compared to the predicted amino acid sequence of the whole protein.  Deviations in 

the calculated and measured mass provide an immediate indication that the protein is altered 

in some way by changes in amino acid composition or post-translational modification.  Next, 

any one of the multiply-charged states (e.g. the 15+ charge state) detectable in the MS 

spectrum can be interrogated by MS/MS, yielding fragment ions that provide sequence and 

PTM information for the protein.  Thus, in the top-down approach, proteins are fragmented 

within the mass spectrometer as opposed to the bottom-up approach, in which a protein is 

reduced to peptide fragments by enzymatic proteolysis.   

 The MS analysis of proteins exhibits several advantages over the analysis of peptides.  

First, determining the mass of the intact protein provides comprehensive information on the 

global protein state.  Second, the ionization/detection efficiency of intact proteins is generally 

not as affected by the presence of PTMs such as phosphorylation.  Third, differences in the 

ionization/detection efficiencies of post-translationally modified and unmodified protein 

isoforms is often minimal, so semi-quantitative information on isoform stoichiometry can be 

obtained by comparison of the peak areas in the MS spectrum.  Fourth, top-down MS 

analyses do not depend on enzymatic cleavage, so proteins that lack sufficient enzyme 

cleavage sites can be interrogated.  The main disadvantages of the top-down approach 

include:  one, MS analyses of proteins are generally less sensitive than MS analyses of 

peptides; two, successful protein ionization (particularly by ESI) can often depend heavily on 
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the amino acid sequence and is therefore different for each protein; three, protein ionization 

depends heavily on the properties of the solvent and may differ from protein to protein.  

Since the strengths and limitations of the bottom-up and top-down approach are 

complementary, many have used both methods to achieve complete characterization of a 

protein (Borchers et al., 2006; Chait, 2006; Chalmers et al., 2005; Millea et al., 2006; 

Nemeth-Cawley et al., 2003; Strader et al., 2004).   

 

Mass spectrometry of phosphoproteins:  challenges and novel solutions 

 This section includes modified portions from:  Torres, M.P., Thapar, R., Marzluff, W.M., 

Borchers, C.H., (2005) J. Prot. Res. 4(5): 1628-35. 

 

Summary 

 Mass spectrometry is currently the method of choice for characterizing protein 

phosphorylation because of its high sensitivity, accuracy, and sequencing capability.  

However, protein phosphorylation often exists in low stoichiometry and can drastically 

hinder the MS ionization/detection efficiency of peptides and sometimes proteins (Mann et 

al., 2002).  Here a combination of top-down and bottom-up MS approaches were used to 

characterize the cell cycle regulated protein, Drosophila stem loop binding protein (dSLBP).  

Accurate molecular weight determination of dSLBP by FTICR MS and FTICR MS/MS top-

down experiments showed that there was removal of the initiator methionine, acetylation of 

the N-terminus, and five occupied phosphorylation sites (Borchers et al., 2006).  The location 

of four of the five phosphorylation sites could not be determined by top-down MS, nor could 

they be located by traditional bottom-up MS methods.  To address this problem, I developed 
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a technique called phosphatase-directed phosphorylation site determination (PPD), which 

combines on-target phosphatase reactions, MALDI MS/MS of IMAC beads on target, and 

hypothesis-driven MS (HD-MS).  PPD was used successfully to localize the remaining four 

phosphorylation sites within the last four serine residues of dSLBP.  Aspects of this method 

were later applied to the analysis of APC phosphorylation (Chapter IV). 

 

Introduction 

 Reversible phosphorylation is one of the most common post-translational protein 

modifications used to regulate protein activity in all multicellular organisms (Johnson et al., 

1987; Mann et al., 2002).  Thus, mapping phosphorylation sites within phosphoproteins is an 

essential step towards understanding the effects of phosphorylation on protein biochemistry.  

Mass spectrometry is currently the method of choice for identifying phosphorylation sites 

because of its high sensitivity, accuracy and sequencing capability.  However, suppression 

effects and low sensitivity for phosphopeptides in the MS mode are still challenges to MS-

based phosphorylation site mapping (Kratzer et al., 1998; Liu et al., 2003).  In addition, the 

fragmentation spectra of phosphopeptides in the MS/MS mode are often less interpretable 

and informative than those of the unphosphorylated peptide (Ho et al., 2002).  In many cases 

the MS/MS spectra of phosphopeptides show fewer sequence specific fragmentation ions 

while the loss of phosphate (H3PO4, 98 Da) is the most abundant ion signal.  This makes 

identification of the phosphopeptide difficult if not impossible without a priori protein 

sequence information. 

 Reducing the complexity of peptide mixtures by separating peptides and enriching 

phosphopeptides can overcome the suppression effect.  Coupling liquid chromatography 
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directly to mass spectrometers (LC-MS) employed in electrospray mode (ESI) is one 

common method to separate and analyze peptides (Edwards and thomas-Oates, 2005).  

Another common method is to employ MALDI instead of ESI as the ionization mode in LC-

MS, in which case the chromatography is uncoupled from the mass spectrometer but allows 

the re-analysis of peptides after interpretation of the MS spectra (Bodnar et al., 2003; Zheng 

et al., 2003).  The advantage of using LC-MALDI-MS is that it permits the analysis of 

peptides, like phosphopeptides, which exhibit lower ion abundances that are typically not 

selected for sequencing in data-dependent online LC-MS/MS experiments.  Immobilized 

metal affinity chromatography (IMAC) is another commonly used method to specifically 

enrich phosphopeptides from complex peptide mixtures (Andersson and Porath, 1986; 

Posewitz and Tempst, 1999; Raska et al., 2002; Stensballe et al., 2001; Xhou et al., 2000).  A 

particularly elegant derivation of this approach is the direct MALDI-MS and MALDI-

MS/MS analysis of phosphopeptides bound to IMAC beads that are spotted directly on a 

MALDI target plate (Raska et al., 2002).  In this approach, elution with buffers incompatible 

with MS is avoided and therefore clean-up steps that can lead to sample loss are not required.  

However, the inherent low sensitivity of phosphopeptides in the MS mode is still a problem, 

even after IMAC enrichment. 

 Several methods have been developed to address the low detection sensitivity for 

phosphopeptides in the MS mode, which make use of prior knowledge regarding the peptide 

to be analyzed and employ MS/MS experiments in absence of a detectable peptide in the MS 

mode.  One of these methods is called hypothesis-driven multiple-stage mass spectrometry 

(HMS-MS) as described by Chang, et al. (Chang et al., 2004).  This technique relies on the 

high sensitivity of the mass spectrometer to ions generated by the neutral loss of phosphate 
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from phosphopeptides in the MS/MS mode.  In this case, one postulates that any or all 

potential phosphorylation sites within a given protein may be phosphorylated and constructs 

a list of m/z values corresponding to the singly-charged phosphopeptide ions that could be 

produced by the enzyme used for digestion.  Each potential molecular ion is then tested by 

MS/MS, and those that show a neutral loss of phosphate are further analyzed by MS3 of the 

(M+H-98)+ peak to confirm or reject the hypothesis that the expected phosphopeptide is 

present.  In the case where the protein has numerous potential phosphorylation sites, this 

method can not only be time-consuming but also sample consuming, which may limit its 

application.  Furthermore, this method requires knowledge about the proteins to be studied, 

and therefore, is not applicable for general proteomic experiments. 

 Another method of overcoming the low detection sensitivity for phosphopeptides in the 

MS mode is to treat a fraction of the sample with phosphatase, which enzymatically removes 

phosphoryl groups and thereby improves the ionization efficiency of the peptide in the 

positive ion mode (Hirschberg et al., 2004; Liu et al., 2003; Reimann et al., 2001a; Stensballe 

et al., 2001; Xhou et al., 2000).  In this case, dephosphorylated peptides (original MWs – (n x 

80 Da) appear as new and/or more abundant peaks in the MS spectrum, compared to the 

spectrum of the untreated sample.  Furthermore, in general, the MS/MS analysis of the 

dephosphorylated peptide compared to the phosphorylated peptide shows improved sequence 

coverage resulting in unambiguous identification.  Recently, Ficarro et al. (Ficarro et al., 

2002) demonstrated the value of using phosphatase treatment for improved detection of 

phosphopeptides which were enriched by IMAC and analyzed by LC-ESI-MS.  In that study, 

more then 28% of all phosphopeptides discovered in a phosphoproteome screen of 

Saccharomyces cerevisiae were detected only after dephosphorylation with alkaline 
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phosphatase.  With MALDI-MS, the phosphatase treatment can be performed directly on the 

MALDI-target (Loughrey Chen et al., 2002), which is advantageous since fewer steps are 

involved that increase the potential for sample loss.  Furthermore, in comparison to HD-MS, 

phosphatase treatment followed by MS analysis does not require any information about the 

proteins to be studied a priori.  The major disadvantage of using phosphatase treatment, 

however, is that the resulting MS/MS spectra lack information on the specific sites of 

phosphorylation within the peptide.  

 In this study, we investigated phosphorylation on the cell cycle regulated Drosophila stem 

loop binding protein (dSLBP) using a combination of top-down and bottom-up mass 

spectrometry.  SLBP is a phosphoprotein, and phosphorylation is required for its degradation 

at the end of S-phase in mammalian cells (Zheng et al., 2003).  Phosphorylation within the C-

terminal RNA processing domain (RPD) is necessary for efficient histone pre-mRNA 

processing (Dominski et al., 2002), and plays a role in stabilizing the structure of dSLBP 

(Thapar et al., 2004).  Top-down FTICR-MS analysis revealed the presence of four occupied 

phosphorylation sites within the last 19 amino acids of the dSLBP-RPD C-terminus, which 

contains 6 phosphorylatable residues.  Using traditional bottom-up MS strategies to identify 

the occupied sites failed, and the location of the four phosphorylation sites remained a 

mystery.  To solve this problem, we developed and applied a new method that combines the 

advantages of IMAC, on-target phosphatase reactions, and hypothesis-driven MS (HD-MS). 

Here, directed MS/MS experiments are used for every possible phosphorylated state of each 

peptide initially observed by MALDI-MS analysis of the IMAC bound peptides after 

dephosphorylation.  Through a combination of these individual techniques, this method, 

which we call “Phosphatase-directed Phosphorylation-site Determination” (PPD), overcomes 
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the problem of low sensitivity for phosphopeptides in the MS mode.  In addition, the method 

employs a strategy that minimizes off-line chromatographic steps, thereby reducing the 

potential for sample loss.  Finally, the method eliminates the need for a priori information on 

the protein, making it suitable for unbiased proteomic studies.  In this study, we demonstrate 

the feasibility of PPD for the detection of phosphopeptides in proteolytic digests, and show 

that the technique is particularly useful for the detection of phosphopeptides that exhibit low 

ionization efficiency such as the multiply-phosphorylated dSLBP-RPD C-terminal peptide.   

 

Experimental procedures 

 Phosphopeptides and proteins.  Synthetic phosphopeptides KDIR4 (TRDIYETDYpYRK, 

m = 1702.7 Da) and PKA-I (GRTGRRNpSIHDIL, m = 1574.7 Da) were purchased from 

Anaspec (San Jose, CA) and dissolved in HPLC-grade water to give a 4µM solution.  Beta-

casein (Sigma Aldrich Co., St. Louis, MO) was dissolved in 25mM ammonium bicarbonate 

(ABC) to give a 10µM solution, and was digested with 1µg sequencing-grade trypsin 

(Promega, Madison, WI) at 37°C overnight.  Approximately 10 pmoles of the digested β-

casein was acidified with 100mM acetic acid for use in the PPD assay.  

 The His-tagged C-terminal half of histone mRNA Stem-Loop Binding Protein from 

Drosophila melanogaster (dSLBP) was expressed in a baculovirus expression system 

(Dominski et al., 2002), purified over a Ni-nitrilotriacetic acid (NTA) resin column (Qiagen, 

Chatsworth, CA), and eluted with a solution containing 20mM Tris-HCl, pH 8.5, 100mM 

KCl, 100mM imidazole, 10mM 2-mercaptoethanol, and 10% glycerol.  The final 

concentration was 1µg/µL.  A 10µL aliquot of the protein was purified on a C4 Zip-Tip 

(Millipore), and eluted with 20µL 80% acetonitrile, 0.1% trifluoroacetic acid.  A 7µL aliquot 
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of the eluate was then digested with either porcine trypsin (Promega) or lysyl-endopeptidase 

(Lys-C) (Wako Chemicals USA, Richmond, VA) at a 1:20 and 1:7 enzyme-to-substrate ratio 

(respectively) in 100µL 50mM ABC at 37°C for 16 hours.  Digests were purified over a C18 

Zip-Tip (Millipore, Billerica, MA), and eluted with 10µL 50% acetonitrile, 0.1% 

trifluoroacetic acid.  A 5µL aliquot (~100 pmoles) of the eluate was used in the PPD assay. 

 Immobilized Metal Affinity Chromatography.  The general IMAC method used was based 

on that of Posewitz and Tempst (Dominski et al., 2002; Posewitz and Tempst, 1999).  

Briefly, 0.5µL - 2.5µL metal-free NTA beaded agarose (Sigma) (~425 beads/µL) was 

dispensed into compact reaction columns (CRCs) with 35 µm frits (USB Corp., Cleveland, 

OH), and washed with 30µL HPLC water.  The beads were then charged by washing with 3 x 

30µL of 50mM Fe(NO3)3 dissolved in 12mM HCl.  The charged beads were rinsed with 

30µL of HPLC-grade water, and then 30µL of 0.1% acetic acid.  Peptide samples were 

prepared for IMAC by diluting to 40µL and 50mM acetic acid, after which the entire volume 

was added to the IMAC-containing CRCs and incubated at 25°C overnight with shaking at 

600 rpm.  The IMAC beads were washed with 30µL 0.1% acetic acid, 30µL 30% 

acetonitrile/0.1% trifluoroacetic acid, and 30µL 0.1% acetic acid.  The final volume was 

reduced to 5-10µL, and between 0.25 – 0.4µL of settled bead-slurry (corresponding to 

between 20 – 70 individual beads or 5% – 10% of total bead slurry) was used for MALDI-

TOF MS analysis.   

 On-target dephosphorylation assay.  On-target dephosphorylation was accomplished by 

spotting 0.25 – 0.4µL of a peptide solution, or peptides bound to IMAC beads, on a MALDI 

target plate immediately followed by the same volume of alkaline phosphatase (PPase) (New 

England Biolabs, Beverly, MA) diluted to various concentrations in 100mM ABC.  The 
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phosphatase reaction was allowed to progress at room temperature for various time periods, 

after which 0.5 – 0.8µL saturated α-cyano-4-hydroxycinnamic acid (CHCA) (in 50% 

acetonitrile/0.1% TFA) was added to the phosphatase-containing spot, and the solution was 

allowed to crystallize at room temperature.  Alternatively, CHCA in 50% acetonitrile/ 0.1 - 

1% phosphoric acid was used as the matrix solution. 

 Mass Spectrometry.  Phosphatase optimization experiments were conducted using a 

Reflex III MALDI-TOF mass spectrometer (Bruker Daltonics) with pulsed ion extraction, 

using an AnchorChip target plate (Bruker Daltonics, Billerica, MA).  All other MS 

experiments were performed on an ABI 4700 MALDI-TOF/TOF mass spectrometer 

(Applied Biosystems, Foster City, CA), using a standard 4700 target plate.   

 

Results 

 Analytical scheme for PPD.  The analytical strategy for PPD is shown (Figure 2.4).  In 

brief, proteolyzed proteins are incubated in batch mode with IMAC beads in a compact 

reaction column (Figure 2.4 A).  Unbound peptides are removed by washing, and a fraction 

of the phosphopeptide-containing beads are spotted directly on the MALDI target surface 

(Figure 2.4 B).  IMAC-bound peptides are dephosphorylated by on-target addition of alkaline 

phosphatase to the beads (Figure 2.4 C).  CHCA matrix is added to the de-phosphorylated 

beads, which are then analyzed by MALDI-TOF MS (Figure 2.4 D).  The peptides detected 

in the MS mode are analyzed by MS/MS, which reveals the peptide sequence and the total 

number of Ser, Thr, and Tyr residues (i = Σ(S, T, Y)) that could potentially be 

phosphorylated (Figure 2.4 E).  Finally, HD-MS/MS experiments are conducted at m/z values 

corresponding to each potential phosphorylation state (e.g. m/z  + 1 HPO3, + 2 HPO3….i 
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HPO3) of the given peptide on a separate aliquot of the IMAC beads that have been spotted 

but not dephosphorylated (Figure 2.4 F).  

 Optimizing on-target dephosphorylation.  Current methods of peptide dephosphorylation 

call for enzyme incubations from 0.75 – 1 hour at 37°C with 1 unit of alkaline phosphatase, 

after which the dephosphorylated peptides are purified over POROS R3 reverse-phase 

chromatographic resin, followed by MS analysis (Stensballe et al., 2001; Xhou et al., 2000). 

We were interested in developing a similar phosphatase assay that would be amenable to 

direct analysis on MALDI target plates.  For on-target analysis, the on-target reaction times 

would need to be reduced (because of sample evaporation), the enzyme quantities would 

need to be reduced (because of suppression effects), and the purification steps would also 

have to be eliminated to avoid sample loss.  

 Different dilutions of PPase (1:10, 1:100, and 1:500 in ABC) were prepared, and each 

solution was mixed on-target with an equal volume of the model phosphopeptide, PKA-I.  

The PPase was allowed to react at room temperature for 5 minutes, after which MALDI 

matrix solution was added and allowed to crystallize.  The addition of matrix stops the 

phosphatase reaction, which was confirmed by adding the phosphatase after adding the 

matrix, in which case the dephosphorylated peptide was not observed in the MS spectrum 

(data not shown).  The images taken from the MALDI-spots corresponding to different 

phosphatase dilutions demonstrate the effect of the phosphatase storage buffer on spot 

integrity (Figure 2.5 A, right).  While incubation with PPase diluted 1:10 leads to 

heterogeneous crystallization typical of high salt solutions, the reaction with 1:100 PPase had 

a negligible effect on the crystallization process.  Each spot was subsequently analyzed on a 

Reflex III MALDI-TOF mass spectrometer using identical conditions (Figure 2.5 A, left).   
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Figure 2.4.  Analytical approach for phosphatase-directed phosphorylation site determination 
(PPD).  Phosphopeptides from a protein digest are bound to IMAC beads and washed to 
eliminate non-binding peptides (A).  The beads are split and dispensed directly onto a 
MALDI target plate (B) where they are immediately crystallized with matrix or reacted with 
alkaline phosphatase (C).  Peaks that appear in the MALDI-MS spectrum of the phosphatase-
treated sample (D) are sequenced by MALDI-MS/MS (E).  Based on the mass of the 
dephosphorylated peptide (Xm/z), and the sequence (which provides the number of potential 
phosphorylation sites [i]), a series of hypothesis-driven MS/MS experiments are conducted 
on the untreated IMAC sample at m/z values corresponding to the predicted phosphorylated 
forms of the peptide [Xm/z + (n • 80)], where (n = 1, 2, 3….i) (F). 
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Apparent complete dephosphorylation was achieved at PPase dilutions 1:10 and 1:100, which 

are equivalent to 0.25 and 0.025 units of enzyme on the target, respectively.  However, ion 

signals from the 1:10 dilution spot were much weaker than those observed for the 1:100 

dilution spot, likely due to the presence various salts in the 10% phosphatase storage buffer.  

The PPase reaction was incomplete in spots treated with phosphatase diluted 1:500 indicating 

that the level of PPase activity was below that which is necessary for complete 

dephosphorylation within 5 minutes.   Based on these results, the optimal PPase 

concentration for on-target peptide dephosphorylation and crystallization efficiency was 

found at a 1:100 dilution of the original PPase solution and was therefore used for all 

following experiments. 

 When conducting on-target enzyme reactions, careful considerations must be made to 

ensure that the reaction is complete before the spot droplet (~0.6µL) has evaporated, which 

typically occurs within 5 to 6 minutes.  Thus, in order to minimize the time required for on-

target dephosphorylation, the kinetics of the on-target PPase assay were measured using 

PKA-I.  An aliquot of phosphatase (0.25µl of 1:100 dilution) was spotted on top of PKA-I 

solution (0.25µl), and allowed to incubate for various times at room temperature.   Mass 

spectra generated from each spot are displayed in Figure 2.5 B (left).  The percent 

dephosphorylation was estimated from the ratio of phosphorylated and dephosphorylated 

monoisotopic peak intensities in each spectrum and plotted versus time (Figure 2.5 B right).  

Approximately 90% of PKA-I was dephosphorylated within 2 minutes of phosphatase 

addition, and apparent complete dephosphorylation was achieved in 5 minutes.  Based on 

these data, the rate of on-target peptide dephosphorylation was calculated to be 

approximately 500 fmoles min-1, which is more than adequate for typical phosphopeptide 
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concentrations in MS experiments.  Furthermore, these data show that the PPase reaction can 

be completed within a time frame such that the spotted sample does not evaporate at room 

temperature, and thus, does not require the use of a humidified reaction chamber. 

 Next, the on-target dephosphorylation assay was evaluated with phosphopeptides (KDIR-

4) affinity-bound through their phosphate moieties to the immobilized Fe(III) on the IMAC 

beads.  As a control for the specificity of the phosphate/metal interaction, we ran a parallel 

experiment in which KDIR-4 was incubated with un-charged IMAC beads (i.e., lacking the 

immobilized metal).  After incubation and washing, an aliquot of both charged and un-

charged beads (between 20 to 70 beads per spot) were subjected to on-target 

dephosphorylation and analyzed by MALDI-MS.  KDIR-4 phosphopeptide was detected 

only on the charged IMAC beads, and was completely dephosphorylated after treatment with 

phosphatase (Figure 2.5 C).  These results indicate that phosphopeptides bound to IMAC 

beads in a metal-dependent fashion can be dephosphorylated directly on the MALDI target 

plate within 5 minutes at room temperature, without adverse effects on subsequent MS 

analysis.  

 When analyzing the phosphorylated KDIR-4 sample, ion signals were evident only when 

the laser was aimed directly at the beads.  This is in contrast to our previous experiments 

using a MALDI-QTOF instrument that showed that the matrix leads directly to elution of 

affinity-bound phosphopeptides (Raska et al., 2002).  However, in the previous studies, DHB 

instead of CHCA was used as the MALDI matrix because we found that DHB was the 

optimal matrix for our MALDI-QTOF experiments in contrast to our MALDI-TOF/TOF 

used in this study.  When analyzing the de-phosphorylated sample, the ion signals were 

strongest when aiming the laser at the edges around the clusters of beads, suggesting that
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Figure 2.5.  Optimizing on-MALDI-target dephosphorylation of phosphopeptides.  (A) MS 
spectra of 1 pmole PKA-I phosphopeptide after alkaline phosphatase treatment on MALDI 
target plates.  The dilution of phosphatase in 100mM ABC and the corresponding total units 
(U) of enzyme are indicated above each respective spectrum (left).  All spectra were 
collected under identical conditions and are in the same intensity scale.  Images to the right 
of each spectrum demonstrate the MALDI spot integrity at each dilution.  (B) On-target 
dephosphorylation kinetics.  MS spectra of 1 pmole PKA-I phosphopeptide exposed to 
alkaline phosphatase on a MALDI target for the indicated time duration at room temperature 
(left).  Scatter plot of percent dephosphorylation versus time (right).  (C) On-target 
dephosphorylation of KDIR-4 phosphopeptide specifically bound to Fe(III)-charged IMAC 
beads.  MS spectra from uncharged (Top) or Fe(III)-charged IMAC beads after incubation 
with KDIR-4 phosphopeptide followed with (Bottom) or without (Middle) on-target 
phosphatase treatment (left).  Photograph of phosphopeptide-bound IMAC beads (>50 count) 
after treatment with alkaline phosphatase (right).  The beads, (yellowish in color) tend to 
cluster into groups on the MALDI target plate as indicated by white arrows. 
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either the phosphatase reaction or the ABC buffer was eluting the peptide from the Fe(III)-

chelated NTA groups on the IMAC beads.  To evaluate the ability of ABC buffer to elute 

phosphopeptides from the Fe(III)-charged IMAC beads, we conducted a series of elution 

experiments using IMAC beads that were incubated with KDIR-4 phosphopeptide as 

described for Figure 2.5.  In each experiment an aliquot of the beads was spotted onto the 

target plate with CHCA matrix (in 50% MeCN / 0.1%TFA) and analyzed by MALDI-MS.  

MALDI-MS analysis of the beads without any additional treatment revealed the KDIR-4 

phosphopeptide at m/z 1702.7 (Figure 2.6 A).  The ion signal was no longer detected after 

sequentially spotting the beads followed by ABC without phosphatase (Figure 2.6 B).  

However, when the ABC buffer contained the phosphatase, the dephosphorylated form of 

KDIR-4 was detected (Figure 2.6 C).  Next, the remaining IMAC beads left in the compact 

reaction column were washed with ABC buffer.  The wash solution was devoid of peptide as 

determined by collecting and desalting the solution with a C18 Zip-tip followed by MALDI-

MS analysis (Figure 2.6 D).  Importantly, we confirmed that KDIR-4 phosphopeptide could 

be purified using the C18 Zip-Tip by purifying a test sample diluted in the same ABC buffer 

(data not shown).  No ion signals could be detected directly from the IMAC beads after the 

ABC wash, or after re-equilibration of the IMAC beads with 0.1% acetic acid (Figure 2.6 E 

and F).  Taken together, this suggests that ABC treatment of phosphopeptides bound to 

Fe(III)-charged IMAC beads results in the strong immobilization of the phosphopeptide in 

such a way that 1) is irreversible by re-equilibration with acetic acid, 2) that precludes 

ionization directly from the beads, and 3) which can be overcome if phosphatase actively 

removes the phosphoryl group from the peptide.  These data also suggested to us that the 

phosphatase must be reacting directly with the bound form of the phosphopeptide while the 
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phosphoryl group is still attached to the immobilized Fe(III) atom.  This possibility is not 

altogether unlikely considering that crystallized alkaline phosphatase enzymes display a 

notably shallow binding pocket, which is believed to play a part in their enzymatic non-

specificity (Hollfelder and Herschlag, 1995; Kim and Wyckoff, 1991; O'Brien and 

Herschlag, 1999), and which could potentially allow access to a phosphate moiety that is 

immobilized by the Fe(III)-chelated NTA molecule at the surface of an agarose bead.  

 Evaluation of PPD for Analyzing the Phosphorylation sites of β-casein.  Bovine β-casein 

has been extensively used as a model phosphoprotein for MS assay development because it is 

easy to purify and contains five residues that are stoichiometrically phosphorylated 

(Greenberg et al., 1984).  PPD was used to analyze tryptic digests of bovine β-casein, which 

contains 2 major phosphopeptides:  a monophosphopeptide (containing phosphoserine 50) 

and a tetraphosphopeptide (containing phosphoserines 30, 32, 33, 34).  A 10 pmole aliquot of 

a β-casein tryptic digest was incubated overnight with Fe(III)-charged IMAC beads and 

approximately forty-five beads (5-6% of the total bead count corresponding to less than 500 

fmol β-casein) were spotted onto two separate spots on the target and analyzed by PPD.  In 

this experiment, all MS and MS/MS data were generated on an ABI 4700 TOF/TOF mass 

spectrometer.  A single abundant peak was detected in the PPase-untreated sample at m/z 

2061.8, corresponding to the monophosphorylated β-casein phosphopeptide pβ(48−63) 

(Figure 2.7 A).  In the PPase-treated sample, we detected 5 peaks corresponding to the 

dephosphorylated forms of both β-casein phosphopeptides:  the dephosphorylated form of 

the monophosphopeptide, β(48−63) (m/z 1981.8), and 4 different peaks corresponding to 

non-tryptic forms (β(23−40) m/z 1918.9, and β(22−40) m/z 2033.0), and tryptic forms 

(β(17−40) m/z 2646.3, and β(16−40) m/z 2802.4) of the β1 phosphopeptide (Figure 2.7 B).   
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Figure 2.6.  Effect of ammonium bicarbonate on the on-target dephosphorylation and MS 
detection of KDIR4 phosphopeptide.  One pmole of KDIR-4 phosphopeptide was bound to 
Fe(III)-charged IMAC beads and analyzed by MALDI-TOF MS as indicated by the flow 
chart on the left.  The resulting MS spectra from each experiment is indicated on the right.  A 
fraction of the phosphopeptide-bound IMAC beads (3% – 5 % of the total bead count used in 
the binding reaction) were analyzed directly (A), after on-target treatment with 50mM ABC 
(B), or after on-target treatment with 50mM ABC containing 0.025U alkaline phosphatase 
(C).  The remaining beads (~85% of the total original bead count used in the binding 
reaction) were washed with an excess volume of 50mM ABC.  A fraction of the ABC-
washed beads (3% - 5%) were analyzed directly (D), and the entire ABC wash solution was 
also analyzed after C18 Zip-Tip purification (E).  Finally, the remaining beads were re-
equilibrated with an excess volume of 0.1% acetic acid and a fraction of the beads was 
analyzed directly (F). 
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An MS/MS spectrum from the β(16−40) ion at m/z 2802.4 is shown (Figure 2.7 C).  We also 

detected 3 peaks which did not match β-casein phosphopeptides (m/z 2299.0, 2427.1, and 

2688.1), and were later assigned to different tryptic regions from α-S2 casein after MS/MS 

sequencing (α(16−35), α(16−36), and α(61−85), which are known to be 

phosphorylated.(Chang et al., 2004) Alpha-S2 casein is a phosphoprotein commonly found at 

low levels in β-casein preparations (Stewart et al., 1987). 

 HD-MS/MS was performed on the m/z value corresponding to the β-casein 

tetraphosphopeptide (β(16−40) at m/z 3122.4 (= 2802.4 Da + (4 x 80 Da)), even though no 

ion at this mass was detectable in the MS spectrum for the phosphorylated sample.  It would 

be preferable to conduct all HD-MS/MS experiments directly on the IMAC beads without 

prior elution, thereby simplifying the assay and reducing chances for sample loss.  However, 

when the HD-MS/MS experiment on the phosphorylated beads was attempted, no fragment 

ions from the β-casein tetraphosphopeptide were detected.  Since phosphoric acid has 

recently been reported to improve phosphopeptide ion signals in MALDI and ESI-MS, 

(Stensballe and Jensen, 2004) we tried spotting 12% – 17% of the phosphorylated IMAC 

beads with CHCA dissolved in 50% MeCN and 1%, 0.5%, or 0.1% H3PO4.  In this case, HD-

MS/MS of m/z 3122.4 revealed multiple fragment ions from the β-casein 

tetraphosphopeptide, including neutral loss fragments (M+H – H3PO4)+, y ions, and b ions 

(Figure 2.7 D).  Although the same general fragmentation pattern was observed when using 

any of the three phosphoric acid solutions, the 0.5% H3PO4 solution gave the best ion signal.  

Thus, we conclude that PPD can be conducted on IMAC beads that are deposited onto 

MALDI target plates, that the method is useful for detecting phosphopeptides that exhibit 

low ionization efficiency (e.g., multiply-phosphorylated peptides), and that substitution of 
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Figure 2.7.  PPD of β-casein phosphopeptides immobilized on IMAC beads.  (A) MS 
spectrum from Fe(III)-charged IMAC beads after incubation with a β-casein tryptic digest.  
(B) Same as in (A), but treated with alkaline phosphatase.  Peptides are annotated as follows:  
β-casein, (β); αS2 casein, (α); each peptide’s position within the primary sequence of the 
protein are given in parentheses.  (C)  MS/MS spectrum from the β(16−40) peak at m/z 
2802.4, seen in (B).  (D) HD-MS/MS spectrum from the β−casein tetraphosphopeptide at m/z 
3122.4 directly bound to IMAC beads.  
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0.5% phosphoric acid for 0.1% TFA in the matrix buffer improves HD-MS/MS on the 

phosphorylated IMAC beads. 

 Application of PPD for analyzing dSLBP in vivo phosphorylation.  In order to demonstrate 

the practical value of PPD in analyzing biological samples, this technique was used to 

analyze phosphorylation sites within the C-terminus of the metazoan histone mRNA 

regulator, dSLBP.  Accurate molecular weight determinations and “top-down” MS/MS 

experiments conducted on Drosophila SLBP (dSLBP) by FTICR-MS revealed the existence 

of four phosphorylation sites near the C-terminus of the protein (Borchers et al., 2006). 

However, multiple attempts to map the phosphorylation sites within the C-terminus using 

“bottom-up” strategies – including LC-MS and traditional IMAC methods, in which peptides 

were pre-enriched on and eluted from IMAC beads with sodium phosphate or ammoniated 

water were not successful.  Thus, the exact phosphorylation sites near the C-terminus of 

dSLBP remained unknown.   

 The PPD method was applied to phosphorylation site mapping of the dSLBP C-terminus 

because it does not rely on the detection of phosphopeptides in the MS mode and also does 

not require elution from the IMAC beads.  A Lys-C digest composed of approximately 100 

pmoles dSLBP was enriched in phosphopeptides using IMAC, and ~10% of the beads were 

analyzed (10% per spot) directly without elution.  No peptides were detected in the MS 

spectrum from the phosphorylated sample (Figure 2.8 A).  However, after on-target treatment 

of the beads with PPase, a single peak at m/z 2735.2 was evident (Figure 2.8 B).  MS/MS 

sequencing of peak 2735.2 revealed a 25-residue peptide, L8-9, 

(K)SLHIYDPPTQARDTAKDSNSDSDSD(-), which contained a single missed cleavage and 

included 8 potential phosphorylation sites within the C-terminus of dSLBP (Figure 2.8 C).   
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 To determine the degree and location of phosphorylation within the L8-9 peptide, HD-

MS/MS was conducted at m/z values corresponding to every potential phosphorylation state 

of the peptide in the IMAC sample not treated with PPase.  The most intense HD-MS/MS 

signal was observed for the quadruply-phosphorylated state of L8-9 at m/z 3055.1 (Figure 2.8 

D).  The HD-MS/MS spectrum from m/z 3055.1 showed four distinct neutral loss ions, 

corresponding to a loss of one, two, three, or four phosphates (-98, H3PO4) from the 

tetraphosphorylated peptide.  Sufficient number of sequence-specific fragment ions were also 

evident, which allowed us to positively confirm the peptide as dSLBP L8-9.  Most 

importantly, the appearance of the b17 ion indicates that only the last 4 serine residues are 

phosphorylated.  An HD-MS/MS spectrum was also obtained for a triply-phosphorylated 

form of L8-9 (m/z 2975.1), although at much lower intensity than that of the 

tetraphosphopeptide.  A   sufficient number of fragment ions confirmed the identity of the 

peptide as L8-9, and the presence of the b17 fragment ion indicates that the 3 

phosphorylation sites are localized within the last 4 serine residues.   However, the exact 

location of the 3 phosphorylation sites could not be determined from the HD-MS/MS 

spectrum, which is likely due to the negative charge on the smaller y-ions of this peptide.  

The relative intensities of the quadruply- and triply-phosphorylated HD-MS/MS spectra were 

consistent with data obtained from mass measurements of the intact full-length protein by 

nano electrospray ionization mass spectrometry, FT-ICR MS (data not shown), and 

previously reported results (Dominski et al., 2002). The phosphorylated form of Lys-C 

peptide L9 could not be detected by HD-MS/MS.  This peptide might not be present in the 

enzymatic digest or may not be detectable since this peptide is even more negatively charged 

than L8-9.  In conclusion, while previous bottom-up and top-down proteomic methods failed 
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Figure 2.8.  PPD analysis of dSLBP after in vivo phosphorylation.  (A) MS spectrum of 
IMAC beads after incubation with dSLBP Lys-C peptides.  (B) Same as in (A) but treated 
with alkaline phosphatase.  (A and B insets) Expanded region of the MS spectra for 
comparison between (A) and (B). (C) MS/MS spectrum of the ion at m/z 2735.2 from the 
phosphatase treated spectrum, identified as the C-terminal dSLBP peptide L8-9.  (D) HD-
MS/MS spectra at m/z values corresponding to each of 8 potential phosphorylation states of 
the L8-9 dSLBP peptide acquired directly from the PPase-untreated IMAC beads.  Neutral 
loss ions (-98 Da, H3PO4) are indicated by an asterisk.  Phosphorylation sites that have been 
positively localized by HD-MS/MS are indicated with a lower case “p” next to the 
phosphorylated residue (e.g. pS).  Phosphorylation sites implicated but not positively 
localized by HD-MS/MS are underlined. 
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to determine the exact location of the C-terminal phosphorylation sites in dSLBP, the PPD 

experiments successfully identified the phosphorylation sites as S269, S271, S273, and S275.  

 

Discussion 

 The method described here, called PPD, combines IMAC phosphopeptide enrichment, on-

target phosphatase treatment of IMAC-bound peptides, and hypothesis-driven MALDI-

MS/MS of IMAC-bound peptides.  Here, we have demonstrated proof-of-principle 

experiments that show feasibility of PPD by detecting and sequencing a tetra-phosphopeptide 

from β-casein, as well as phosphopeptides in α-S2 casein that occur as low abundance 

impurities in β-casein preparations.    We have further shown the competence of this method 

for analysis of in-vivo phosphorylated protein.  In this particular case, PPD identified, for the 

first time, four C-terminal in-vivo phosphorylation sites in dSLBP, which were not detectable 

by top-down or traditional bottom-up approaches.   

 A current limitation of the PPD method is in the ability to manually handle small volumes 

with a minimal number of IMAC beads, which necessarily affects the sample requirements, 

and sensitivity of the approach.  Efforts to improve sensitivity by using fewer beads per 

binding reaction, thereby increasing the number of bound phosphopeptides per bead, have 

made little improvement in the sample requirements as it becomes even more difficult to 

maintain a high percentage of the total bead count used in the binding reaction in these cases.  

Despite these limitations, robotic liquid handling systems have been used successfully to 

improve similar limitations for direct MALDI-MS of individual antibody beads, and are 

currently being improved (C. Borchers, personal communication).   

 In some respects, the PPD and HMS-MS methods may be considered complementary. 
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Whereas the PPD method requires that the phosphopeptides within the sample are 

successfully isolated by the IMAC procedure, the HMS-MS method requires prior 

knowledge of the sample’s protein content and sequence.  However, depending on the size 

and number of different proteins to be analyzed within a sample, the use of PPD may offer a 

distinct advantage over the HMS-MS method.  To demonstrate this concept, the number of 

MS/MS analyses that would be theoretically required to map the four C-terminal 

phosphorylation sites in dSLBP using HMS-MS or PPD was compared.  A total of 15 

independent HMS-MS analyses would be required to cover all potential phosphopeptides in 

the sample if there were no missed cleavages.  As many as 44, 78, or 82 independent HMS-

MS analyses would be required if one assumed the existence of phosphopeptides with up to 

1, 2, or 3 missed cleavages, respectively.  In contrast, PPD analysis revealed the existence of 

a single C-terminal peptide containing 8 potential phosphorylation sites.  Therefore, when 

using PPD, only 8 HD-MS/MS experiments were required to localize the 4 C-terminal 

phosphorylation sites.  Thus, PPD can significantly reduce instrument time and MALDI spot 

consumption compared to HMS-MS, an advantage that increases with the complexity of the 

sample and the size of the proteins to be analyzed.  Moreover, using the PPD method over 

HMS-MS would be preferable when analyzing samples where the protein content and 

sequence is not known a priori, such as in complex protein mixtures. 

 By utilizing a combination of IMAC, on-target dephosphorylation, and MALDI-MS, PPD 

permits the analysis of phosphopeptides, which exhibit lower ion abundances and thus are 

typically not selected for sequencing in data-dependent online LC-MS/MS experiments.  The 

use of on-target reactions can minimize losses due to unnecessary sample handling.  

Furthermore, using MALDI-MS rather than online LC-MS also allows multiple repetitive 
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MS and MS/MS analyses, which can increase the amount of information acquired from a 

single sample.  

 PPD can be used to map phosphorylation sites in mixtures of unknown proteins because 

the strategy employs IMAC for unbiased enrichment of phosphopeptides. Thus, it extends the 

range of the HMS-MS method because PPD does not rely on a priori knowledge of the 

sample protein or the particular phosphorylated peptide, and phosphopeptides containing 

missed cleavages can be easily detected.  Furthermore, using PPD, the number of MS/MS 

analyses required to screen potential phosphopeptides is greatly reduced.   

 The PPD method is also designed to overcome two major obstacles to MS detection of 

phosphopeptides:  the suppression of phosphopeptide ions in complex sample mixtures and 

the inherent low sensitivity of phosphopeptide detection in the MS mode.  The combined 

approach inherent in PPD has proven to be a useful technique for identifying peptides that 

are phosphorylated at multiple sites, and has been successful for determining phosphorylation 

sites in multiply-phosphorylated peptides where other approaches have failed.   



CHAPTER III 

MND2 AND SWM1 ARE STOICHIOMETRIC COMPONENTS OF THE 
SACCHAROMYCES CEREVISIAE ANAPHASE PROMOTING 

COMPLEX 

(Including modified portions from:  Hall, M.C., Torres, M.P., Schroeder, G.K., Borchers, 
C.H., (2003) J. Biol. Chem. 278 (19), 16698-16705.) 
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Summary 

 Eleven subunits have been previously identified in the APC from budding yeast.  In this 

study, two additional subunits, Mnd2 and Swm1, have been identified by mass spectrometry.  

Both Mnd2 and Swm1 were found specifically associated with a highly purified preparation 

of the APC from haploid yeast whole cell extract.  Moreover, the APC co-purified with 

epitope- tagged Mnd2 and Swm1.  Both proteins were present in APC preparations from 

haploid cells arrested in G1, S, and M phases, indicating that they are constitutive 

components of the complex throughout the yeast cell cycle.  The stoichiometry of Mnd2 and 

Swm1 relative to other APC subunits was similar as determined by reverse-phase HPLC and 

UV detection as well as 35S-labelling in vivo and SDS-PAGE.  Previous studies described 

meiotic defects for mutations in MND2 and SWM1.  Here, it is shown that mnd2∆ and swm1∆ 

haploid strains exhibit accumulation of G2/M cells comparable with that seen in apc9∆ or 

apc10∆ strains and consistent with an APC defect.  Taken together, these results demonstrate 

that Swm1 and Mnd2 are functional components of the yeast APC. 
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Introduction 

 The eukaryotic cell division cycle involves the replication of chromosomal DNA and its 

equal distribution to daughter cells in a highly regulated series of events.  As one of the 

essential regulatory components of chromosome segregation in eukaryotes the APC targets 

numerous substrate proteins involved in mitosis, meiosis, and other cellular processes for 

degradation by the proteosome by catalyzing their polyubiquitination, and is regulated by 

checkpoint signaling pathways that monitor DNA and chromosome integrity (Musacchio and 

Hardwick, 2002) (reviewed in chapter I).   

 Eleven constitutive core subunits of the APC have been identified in the budding yeast, 

Saccharomyces cerevisiae (Hwang and Murray, 1997; Zachariae et al., 1998b; Zachariae et 

al., 1996), and in vertebrates (Gmachl et al., 2000; Grossberger et al., 1999; Peters et al., 

1996).  Homologs of most of the subunits have been found in other model systems as well, 

including Schizosaccharomyces pombe, Caenorhabditis elegans, and Drosophila 

melanogaster (Harper et al., 2002).  Ten of the 11 known APC subunits of budding yeast 

have human homologs, with yeast Apc9 being the only exception.  The extensive homology 

between APCs of organisms as diverse as humans and yeasts points to an ancient 

evolutionary origin and reflects the importance of the APC in controlling some of the most 

fundamental cell cycle events in eukaryotes.   

 The presence of so many subunits makes the APC and unusual E3 enzyme in terms of its 

size and complexity.  The actual catalytic reaction involving transfer of ubiquitin from an E2 

enzyme to a substrate proteins is intrinsic to a single small RING finger subunit, Apc11 

(Gmachl et al., 2000; Leverson et al., 2000) (reviewed in chapter I).  Another subunit, Apc2, 

containing a highly conserved cullin domain present in other E3 ubiquitin ligases interacts 
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with Apc11, and is important for catalyzing ubiquitin transfer.  The specific functions of the 

remaining subunits are diverse and complex, and may involve substrate recruitment and 

specificity, cellular localization, or interaction with and response to regulatory proteins such 

as cyclin-dependent kinases and spindle assembly checkpoint proteins.  Some subunits 

function in a purely structural manner by forming a scaffold that allows proper complex 

assembly (reviewed in chapter I).      

 While purifying the APC from budding yeast extracts, two previously unidentified 

proteins were consistently observed under high salt conditions with the core complex.  In this 

chapter, I provide evidence that these two proteins, Mnd2 and Swm1, are in fact constitutive 

components of the core APC.  Both proteins exist in stoichiometric amounts relative to other 

APC subunits and both are found associated with the complex during G1, S, and M phases.  

Swm1 is believed to be identical to Apc13, a small protein observed previously in APC 

preparations that was never identified (Zachariae et al., 1998b).  In addition, yeast strains 

lacking either protein display some accumulation in G2/M phase, consistent with an APC 

defect.  The importance of these identifications is discussed with regard to what is now 

known about the meiotic phenotypes of each protein.  

 

Experimental procedures 

Yeast methods and strain construction 

 Yeast strains expressing Cdc27, Swm1, and Mnd2 (Table 3.1) containing carboxyl-

terminal 3xFLAG epitopes were constructed by integration of PCR products amplified from 

the template p3FLAG-KanMX (gift from Dr. Toshio Tsukiyama; Fred Hutchinson Cancer 

Center) at the desired location as described (Gelbart et al., 2001).  Integrants were selected on 
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Table 3.1 
 S. cerevisiae strains used in this study 

 

aDerived from W1588-4c, which is a derivative of W303 in which the weak rad5 mutation 
has been repaired (Hall et al., 2003). 
bSGDP, Saccharomyces Genome Deletion Project.   
cDerived from BY474, and the values correspond to the SGDP record number. 

Strain Relevant Genotype Source 
W1588-4ca MATa ade2-1 can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1 R. Rothstein 
YKA151a CDC27-3FLAG:KanMX4 M.T. 
YKA152a MND2-3FLAG:KanMX4 M.T. 
YKA153a SWM1-3FLAG:KanMX4 M.T. 
YKA155a CDC27-3FLAG:KanMX4 bar1∆::URA3 Hall MC 
BY4741 MATaHis3D1 leu2D0 met15D0 ura3D0 SGDPb 
2713c apc9∆::KanMX4 SGDPb 
4607c apc10∆::KanMX4 SGDPb 
5960c mnd2∆::KanMX4 SGDPb 
3619c swm1∆::KanMX4 SGDPb 
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YPD agar containing 500 µg/mL G418, and correct integration of the cassette was confirmed 

by PCR and DNA sequencing.  Deletion of the BAR1 gene from W1588-4c was achieved by 

integration of a URA3 cassette amplified by PCR from pRS406 at the BAR1 locus.  

Replacement of BAR1 with URA3 was confirmed by PCR.  Strains from which the APC9, 

APC10, SWM1, or MND2 genes had been deleted (Table 3.1) as well as their parent strain, 

BY4741, were from the Saccharomyces Genome Deletion Project, available through 

ResGen.  The presence of the correct deletion was confirmed in each of these strains by PCR 

using primers flanking the appropriate open reading frame.   

 Cell cycle arrests were performed in mid-log phase cultures of strain YKA155 as follows.  

For G1 arrest, α-factor peptide (University of North Carolina peptide synthesis facility) was 

added from a 5 mg/mL stock in ethanol to a final concentration of 50 µg/L.  For S phase 

arrest, hydroxyurea (Sigma) powder was added directly to cultures at a final concentration of 

10 mg/mL.  For M arrest, nocodazole (Sigma) was added from a 1.5 mg/mL stock in 

dimethyl sulfoxide to a final concentration of 15 µg/mL.  Cell cycle arrests were monitored 

by phase-contrast micrsocopy until >90% of the cells had achieved the desired morphology 

(unbudded for G1 and large budded for S and M).   

 

Purification of the APC 

 Approximately 1011 cells from late log phase cultures were washed with water and 

resuspended in 200 mL of cold (4°C) APC buffer (25 mM HEPES-NaOH, pH 7.5, 400 mM 

NaCl, 10% glycerol, 0.1% Triton X-100, 0.5 mM dithiothreitol, 25 mM NaF, 25 mM β-

glycerophosphate, and 1 mM activated sodium orthovanadate) containing freshly added 

complete protease inhibitor tablets (Roche Applied Science) and 0.5 mM 
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phenylmethylsulfonyl fluoride.  All subsequent steps were performed at 4°C or on ice.  Cells 

were disrupted six times for 1.5 min with 0.5-mm glass beads in a bead beater (Biospec 

Products), allowing 5 min between pulses for cooling.  Extract (~200 mL) was pre-cleared by 

centrifugation for 30 min at 35,000 x g and cleared a second time for 1 hour at 92,000 x g.  

The soluble extract (5 – 15 mg/mL protein) was incubated with 100 µL of pre-equilibrated 

EZview anti-FLAG M2 antibody-coupled agarose resin (Sigma) for 2 hours.  The affinity 

resin was collected by centrifugation, washed four times for 10 min with 25 mL of APC 

buffer, transferred to a microcentrifuge tube, and washed an additional three times with 1 mL 

of APC buffer.  APC was eluted by two sequential 30 min incubations at 30°C with 200 µL 

of APC buffer containing 500 µg/mL 3xFLAG peptide (Sigma).  Elutions were pooled, and 

APC was precipitated with 6 volumes of cold acetone.  For the peptide block control, an 

extract from YKA151 was split into two equal volumes.  From one half, APC was purified as 

described above.  From the other half, APC was purified by using an identical volume of 

anti-FLAG resin that had been pre-blocked with 3xFLAG peptide (as used in the elution) in 

APC buffer for 1 hour before addition to the extract.  Otherwise, the two preparations were 

performed identically.   

 

Identification of SDS-PAGE gel bands by mass spectrometry 

 Proteins eluted from the anti-FLAG affinity resin were separated by SDS-PAGE on 4-12% 

Bis-Tris NuPAGE gels (Invitrogen) and stained with Coomassie Brilliant Blue R-250 (Bio-

Rad).  Individual gel bands were carefully excised with a razor and subjected to trypsin 

proteolysis using a ProGest automated digester (Genomic Solutions).  Extracted tryptic 

peptides were analyzed on a Reflex III MALDI-TOF mass spectrometer (Bruker Daltonics).  



 85

Data were internally calibrated with trypsin autoproteolysis peaks and submitted to the 

MASCOT database search engine (Matrix Science) for protein identification by peptide mass 

fingerprinting.  All identifications in this study represent statistically significant matches 

from the database of S. cerevisiae proteins.  When a statistically significant match was not 

obtained by peptide mass fingerprinting, individual peptides from the spectrum were 

subjected to nano-electrospray tandem MS on a QStar QqTOF mass spectrometer (Applied 

Biosystems) to confirm the protein identity. 

 

Determination of APC subunit Stoichiometry 

 Estimating APC subunit stoichiometry by reverse-phase HPLC and UV detection was 

accomplished by washing the APC affinity preparation before FLAG peptide elution with 4 x 

25 mL volumes of 25 mM NaPO4 wash buffer (pH 7.5) containing 400 mM NaCl and 10% 

glycerol.  The APC was then eluted with 3xFLAG peptide as described above; however, 25 

mM NaPO4 buffer was used in place of APC buffer to eliminate the presence of detergent.  

The entire eluate was loaded onto an Agilent 1100 series HPLC coupled to a C4 Mass Spec 

reverse phase column (Vydac), and an 1100 series UV spectrophotometer (Agilent), and a 

Foxy 200 fraction collector (ISCO Inc).  Conditions for HPLC separation were as follows:  

buffer A, 5% acetonitrile (ACN)/0.1% trifluoroacetic acid (TFA); buffer B, 95% ACN/0.09% 

TFA; gradient, 5% B for 5 minutes, 5% to 65% B in 65 minutes, 65% to 95% B in 10 

minutes.  Fractions were collected every minute, frozen at –80°C, and lyophilized.  The 

protein identity of each peak in the HPLC chromatogram was determined by digestion with 

porcine trypsin in 50 mM ammonium bicarbonate (1:20 enzyme-to-substrate ratio) followed 

by LC-MS/MS analysis of each digest using a Qq-TOF instrument (Waters-Micromass) 
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connected to a capillary HPLC coupled with a C18 reverse phase column (LC Packings).  

Identifications were determined using the Mascot search engine using both MS and MS/MS 

data.  The C4 chromatographic peak areas at A210 were normalized by the number of amino 

acids in the corresponding subunit identified by LC-MS/MS.  Stoichiometries are reported 

relative to the catalytic RING subunit, Apc11. 

 To estimate the stoichiometries of Apc1 and Apc5, the APC was labeled metabolically 

with 35S-cysteine and 35S-methionine.  Briefly, a saturated 5 mL culture was diluted to OD600 

= 0.2 in 50 mL YPD and allowed to grow to OD600 = 0.7.  Cells were harvested by 

centrifugation, washed once with sterile water, and resuspended in 35 mL synthetic complete 

media lacking cysteine and methionine and containing 1 mCi each of L-35S-cysteine and L-

35S-methionine (ICN Inc.).  After labeling for 1 hour at 30°C, cells were collected by 

centrifugation, washed once with water, transferred to a 2 mL screwcap tube, and frozen at –

80°C.  Radioactive APC was purified, eluted, and precipitated as described above except 

lysis was achieved by vortexing in a microfuge tube containing glass beads.  The purified 

APC was separated by SDS-PAGE as described above, and the gel was dried and vacuum-

pressed onto Whatman filter paper (Millipore).  The dried gel was exposed to a storage 

phosphor screen and scanned using a STORM phosphorimager (Molecular Dynamics).  

Image densitometry was conducted using Scion Image software and band intensity values 

were normalized by total cysteine/methionine content for each subunit (Scion Corp.). 

 

Flow cytometry 

 For flow cytometry, cells from 0.5 mL of culture were washed with 1 mL of water and 

fixed overnight in 1 mL of 70% ethanol at 4°C.  Cells were rinsed twice with 1 mL of 50 mM 



 87

Tris-HCl, pH 8.0, and incubated for 2-3 hours at 50°C with 2 µg/mL RNase A and 1 mg/mL 

proteinase K in 50 mM Tris-HCl.  After washing with 1 mL of FC buffer (200 mM Tris-HCl, 

pH 8.0, 200 mM NaCl, 78 mM MgCl), cells were resuspended in 500 µL of FC buffer 

containing 5 µM Sytox Green (Molecular Probes, Inc.).  DNA content was measured on a 

FACScan instrument.  Percentages of G1, S, and G2/M cells were calculated using ModFit 

LT software (Verity Software House, Inc.). 

 

Results 

 The majority of the results contained within this chapter have been generated by me.  

However, Figures 1A, and Table 3 were generated by Schroeder GK and Hall MC, 

respectively.  Additional data describing Mnd2 and Swm1 as core APC subunits is described 

in a paper for which I am the second author (Hall, M.C., Torres, M.P., Schroeder, G.K., 

Borchers, C.H., 2003). 

 

Identification of Mnd2 and Swm1 in APC purifications 

 I constructed a yeast strain, YKA151, which produces the Cdc27 protein with a C-terminal 

3xFLAG epitope tag from its natural chromosomal locus for immunoaffinity purification of 

the APC.  In preparations of APC from YKA151, each of the 11 known subunits as well as 

two other bands that had not been previously described as APC subunits was positively 

identified by MS analysis (Figure 3.1 A, third lane).  It should be noted that the conditions 

used for the affinity purification of APC include a high salt concentration (425 mM Na+) at 

all steps, demonstrating the high salt stability of the APC.  A control purification in which the 

anti-FLAG affinity beads were pre-blocked with the antigenic 3xFLAG peptide was 
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Figure 3.1.  Mnd2 and Swm1 co-purify with yeast APC.  Immunoaffinity purifications of the 
APC from yeast whole cell extracts were separated by SDS-PAGE as described under 
“Experimental Procedures” and stained with Coomassie Blue.  Each lane represents the 
material obtained from ~1011 cells.  Individual bands were excised and digested with trypsin, 
and the proteins were identified by mass spectrometry.  All labeled proteins represent 
statistically significant scores obtained by the MASCOT search engine.  (A) (produced by G. 
Schroeder) APC was prepared from strain YKA151, which produces 3xFLAG epitope-
tagged Cdc27.  The samples in both lanes were treated identically except that the anti-FLAG 
beads in the first sample were pre-blocked with 3xFLAG peptide before incubation with the 
cell extract.  (B) APC was purified from strain YKA152, which produces 3xFLAG epitope-
tagged Mnd2, and strain YKA153, which produces epitope-tagged Swm1.  Bands labeled 
with an asterisk in each preparation were identified as mouse IgG.  Most of the visible but 
faint unlabeled bands on these gels were identified as proteolytic fragments of APC subunits. 
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conducted to determine whether these proteins were specifically associated with APC as 

opposed to non-specifically associated with the affinity resin (Figure 3.1 A, second lane).  

Both protein were effectively competed away by the blocking peptide, suggesting that their 

presence was due to direct interaction with the APC.  The two proteins, Mnd2 and Swm1, 

have both been implicated in meiosis, but at different stages (Rabitsch et al., 2001; Ufano et 

al., 1999).  Little else was known about these two proteins at the time of publication. 

 

Known APC subunits co-purify with FLAG epitope-tagged Mnd2 and Swm1 

 To provide more convincing evidence that Mnd2 and Swm1 are true subunits of the APC, 

I constructed yeast strains producing 3xFLAG-tagged versions of Mnd2 and Swm1 

(YKA152 and YKA153, respectively).  Next, I subjected whole cell extracts from these 

strains to the same stringent immunoaffinity purification protocol used with YKA151.  

Proteins in these preparations were identified from Coomassie-stained SDS-PAGE gels by 

peptide mass fingerprinting.  In both cases, I identified 9 of the 11 known APC subunits co-

purifying with the epitope-tagged protein (Figure 3.1 B).  Apc11 and Cdc26 were not 

identified; however, these two small subunits generally required tandem MS for 

identifications due to the low number of tryptic peptides generated.  Regardless, these results 

conclusively demonstrate that Mnd2 and Swm1 are stably associated with the core APC in 

haploid yeast cells. 

 

Mnd2 and Swm1 are constitutive components of the APC during the cell cycle 

 Although its activity fluctuates, the APC is a stable complex that is present throughout the 

cell cycle (Peters JM 1996, Grossberer R 1999).  To determine if Mnd2 and Swm1 are also 
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associated with the APC during different cell cycle stages, the APC was affinity-purified 

from cell cultures arrested in G1, S, and M phases (Figure 3.2 A-C).  Mnd2 and Swm1 were 

identified by mass spectrometry and were present in approximately equivalent abundance at 

all three cell cycle stages with respect to the other APC subunits, as judged by the intensity of 

the Coomassie-stained SDS-PAGE gel.   

 

Mnd2 and Swm1 are stoichiometric components of the APC 

 To estimate the stoichiometry of Mnd2 and Swm1 relative to other APC subunits, I used 

reverse-phase HPLC (RP-HPLC) coupled with UV detection.  RP-HPLC resulted in near-

baseline separation of most APC subunits, which were analyzed by LC-MS/MS and 

subsequently identified with statistical significance by searching the Mascot database of S. 

cerevisiae proteins (Figure 3.3 A).  Apc1 and Apc5 were not identified by RP-HPLC analysis 

even though they were detected in the input material by SDS-PAGE and Coomassie staining 

(data not shown).  Apc1 and Apc5 are the two most hydrophobic proteins in the APC, and 

may not efficiently elute from the reverse-phase column.  The area underneath the A210 peaks 

for each subunit was normalized by the number of amino acids in the appropriate subunit.  

To estimate stoichiometry, the resulting values were compared to the value obtained for the 

peak containing the catalytic RING subunit, Apc11.  This experiment was repeated five 

different times with five different APC preparations, and the data were averaged to provide 

the final stoichiometry estimate (Table 3.2).  The stoichiometry of Mnd2 relative to Apc11 

appears to be 1-to-1, which was similar to the stoichiometries determined for most other APC 

subunits.  The stoichiometry of Swm1 relative to Apc11 was found to be 2-to-1.  Thus, Mnd2 

and Swm1 are stoichiometric components of the APC. 
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Figure 3.2.  Mnd2 and Swm1 are constitutive components of yeast APC.  APC was 
immunoaffinity purified as described under “Experimental Procedures” from haploid yeast 
cell cultures arrested in G1 phase with α-factor peptide (A), S phase with hydroxyurea (B), 
or M phase with nocodazole (C).  The purified APC in each case was separated by SDS-
PAGE, and proteins were visualized by staining with Coomassie Blue.  The presence of 
Mnd2 and Swm1 in each of the three preparations was confirmed by mass spectrometry.  A 
small sample of cells from each of the haploid cultures was analyzed by flow cytometry to 
confirm the cell cycle arrest (data not shown). 
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 To evaluate the stoichiometry of Apc1 and Apc5, I purified APC from yeast grown in the 

presence of 35S-cysteine and 35S-methionine (Figure 3.2 B).  In order to relate the 

stoichiometric ratios between the gel and RP-HPLC, I compared both subunits to the band 

corresponding to Cdc16, which was well resolved from all other bands.  Using this method, 

the stoichiometry of Apc1 relative to Cdc16 was found to be 1-to-2, while the stoichiometry 

of Apc5 relative to Cdc16 was found to be 1-to-1 (Table 3.2).  Like Cdc16 and Apc5, the 

stoichiometry of other APC subunits relative to Apc1 also appeared to be greater than 1-to-1.  

I was unable to reliably quantify the stoichiometry of any subunit below Cdc23 by 35S-

labeling due to excessive background.  Based on the stoichiometries determined by both 

SDS-PAGE and HPLC methods, the total mass of the APC is estimated to be ~1.65 

megadaltons (Table 3.3).  This value was found to correspond well with other experimental 

estimates of APC mass, between 1.64 and 1.71 megadaltons (Passmore et al., 2005).   

 

Deletion of MND2 or SWM1 results in accumulation of G2/M cells 

 Defects in APC function generally result in a cell cycle arrest at metaphase or a delay in 

progression of the cell cycle through mitosis.  To determine if cells lacking MND2 or SWM1 

exhibit a moderate cell cycle arrest associated with an APC defect, the DNA content of 

mnd2∆ and swm1∆ haploid cells growing at 37°C in log phase cell culture was determined by 

flow cytometry.  For controls, the results from the same experiment with wild-type, apc9∆, 

and apc10∆ were compared.  The apc9∆ strain exhibited a slight but noticeable and 

statistically significant accumulation of G2/M cells compared with the wild-type strain 

(Table 3.4), consistent with the delayed anaphase entry reported previously for apc9∆ 

(Zachariae et al., 1998b).  The mnd2∆ strain exhibited an accumulation of G2/M cells that 
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Figure 3.3.  Determination of APC subunit stoichiometries.  (A) APC was immunoaffinity 
purified and separated by reverse-phase HPLC as described under “Experimental 
Procedures” from haploid yeast cell cultures.  The subunit identity of each chromatographic 
peak was determined to be statistically significant by LC-MS/MS protein identification. The 
peak area at A210 was compared to the amino acid length of the respective subunit to 
determine stoichiometries.  The chromatograph shown is representative of the five individual 
experiments used to determine stoichiometry.  (B) To determine the stoichiometries of Apc1 
and Apc5, APC was immunoaffinity purified as described under “Experimental Procedures” 
from haploid yeast cell cultures grown in the presence of 35S-cysteine and 35S-methionine.  
The labeled bands shown were determined by alignment with other APC preparations that 
were stained with Coomassie Blue (not shown here).  Stoichiometries are shown in Table 
3.2. 
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Table 3.2 
APC subunit stoichiometries 

 
 APC subunit stoichiometries were determined by 5 independent reverse-phase HPLC 
analyses and one 35S-labeling experiment.  For HPLC analysis, the peak area at A210 was 
ratioed to the number of amino acids in each subunit and then compared to the catalytic 
RING subunit, Apc11.  HPLC data represents an average of all 5 independent experiments.  
The stoichiometries of Apc1 and Apc5 were determined by 35S-labelling, in which case the 
band intensity was determined by image densitometry.  The band intensity was ratioed to the 
total number of cysteine and methione residues in the protein, and then compared to Apc1.  
Cdc16 was included to allow comparison between the two methods. 
 

 
a Stoichiometries determined by dividing the HPLC peak area at A210 by the number of  
  amino acids in the protein and comparing this to Apc11. 
b Since Apc2 and Cdc23 co-elute, the peak area was divided by the sum total amino acid  
  content of both proteins, which necessitates the assumption of equivalent stoichiometry. 
c I’ve found that Cdc27-3xFLAG is prone to rapid degradation after affinity purification,  
  making it difficult to determine its stoichiometry very accurately. 
d Stoichiometries determined by dividing the 35S signal by the total number of cysteine and  
  methionine residues in the protein and comparing the value to the value obtained for Apc1. 
 

 HPLC Replicatea   
 A B C D E Avg. SD Stoichiometry

Apc1         
Apc2 1.58 1.10 0.79 0.91 0.57 0.99 0.38 1 
Cdc16 1.71 1.54 0.34 0.82 0.61 1.01 0.6 1b 
Cdc27 0.62 1.01 0.36 0.57  0.51 0.37  1c 
Apc5         
Apc4 1.95 1.26 0.72 0.52 0.93 1.08 0.56 1 
Cdc23 1.58 1.1 0.79 0.91 0.57 0.99 0.38 1b 
Mnd2 0.31 1.06 0.81 0.69 0.88 0.75 0.28 1 
Apc10 1.66 2.30 1.16 1.62 1.24 1.59 0.45 2 
Apc9 0.77 1.22 0.8 0.85 1.10 0.95 0.2 1 
Swm1 3.00 2.41 1.99 2.32 1.77 2.30 0.47 2 
Apc11 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1 
Cdc26   1.94   1.94  2 
 
Stoichiometry of Apc1 and Apc5 based on 35S-labeling and comparison to Cdc16d 

 No. 
Cys + 
Met 

35S 
Signal Ratio 

Rel. 
To 

Apc1 

   Stoichiometry
Relative to 

Apc1 
Apc1 55 781 14.2 1.00    1 
Cdc16 38 1277 33.6 2.37    2 
Apc5 30 739 24.6 1.73    2 
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Table 3.3 
Determination of total APC mass 

 
 Stoichiometries of each yeast APC subunit based on reverse-phase HPLC and 35S-labeling 
experiments.  The mass of each APC subunit is multiplied by the stoichiometry value to give 
a total mass for each subunit.  The total masses of all subunits are summed to give the total 
mass of the APC based on these stoichiometries. 
 
 

 

 

 

 

 

 

 

 

 

 M.W. 
(Da) Stoichiometry

Total 
Mass 
(Da) 

Apc1 196,144 1 196,144 
Apc2 99,978 2 199,956 

Cdc16 94,992 2 189,984 
Cdc27 85,437 2 170,873 
Apc5 79,275 2 158,550 
Apc4 75,256 2 150,512 

Cdc23 73,114 2 146,228 
Mnd2 42,826 2 85,651 
Apc10 28,776 4 115,104 
Apc9 30,856 2 61,713 
Swm1 19,356 4 77,424 
Apc11 18,865 2 37,730 
Cdc26 14,081 4 56,323 

TOTAL   1,646,192 
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was comparable in magnitude with the apc9∆ strain, suggesting that it too has a similar delay 

in mitotic progression.  The accumulation of G2/M cell in the apc10∆ strain was more 

pronounced than that of apc9∆ or mnd2∆, although perhaps not as much as would be 

expected given its severely retarded growth (data not shown).  Finally, the swm1∆ strain 

exhibited a dramatic increase in the percentage of G2/M cells compared with the wild-type 

parent strain (63% versus 29%; Table 3.4).  Considering the convincing evidence that Swm1 

is a component of the APC, it is reasonable to conclude that swm1∆ cells have a substantial 

delay in progression through mitosis resulting from an APC defect that is reflected in their 

dramatic accumulation of G2/M cells.  Although it cannot be ruled out that Mnd2 and/or 

Swm1 have APC-independent cellular functions that affect progression through G2 and M 

phase, our results are consistent with the conclusion that Mnd2 and Swm1 are constitutive 

components of the yeast APC that contribute to normal APC activity during mitosis. 

 

Discussion 

 In this report, strong evidence is provided that Mnd2 and Swm1 are constitutive core 

subunits of the budding yeast APC during the mitotic cell cycle.  Both subunits were also 

found associated with the APC purified from meiotic cells (Bonenfant et al., 2003).  Swm1 is 

likely equivalent to a 19 kDa protein labeled Apc13 that was previously observed in an APC 

affinity purification (Zachariae et al., 1998b), but not identified at the time.  These findings 

bring the total number of confirmed subunits in budding yeast to 13.  The ability to identify 

two previously unidentified subunits of the APC emphasizes the power of mass spectrometry 

as a sensitive and accurate analytical tool for biological research and the utility of the 

3xFLAG epitope for immunoaffinity purification of protein complexes.  Another group 
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Table 3.4 
Quantitative analysis of G2/M content from wild-type and deletion strains 

 
All strains are isogenic with the exception of the noted gene deletions.  Percentages represent 
averages and S.D. values from three cultures grown at 37°C that are depicted in Fig. 4,B and 
C.  Data values were generated by ModFit LT flow cytometry analysis software.  (This data 
was generated by Mark C. Hall for inclusion in the paper Hall MC, Torres MP, et al., 2003).  

 
 

 

 

 

 

Strain G2/M 
% 

Wild-type 29.2 + 0.7 
apc9∆ 40.0 + 0.6 

apc10∆ 46.2 + 3.4 
mnd2∆ 36.2 + 0.9 
swm1∆ 63.0 + 0.8 
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recently achieved the same identification of Mnd2 and Swm1 by coupling mass spectrometry 

and the tandem affinity purification (TAP) method (Yoon et al., 2002).   

 As would be expected for a core component of the APC, the association of Mnd2 and 

Swm1 appears to be stoichiometric with other APC subunits as determined by RP-HPLC.  

Interestingly, Swm1 appears to exist at 2-to-1 relative to other APC subunits, similar to what 

was found for Apc10.  Apc10 has been shown to be necessary for APC processivity, which 

may explain the need for multiple copies in the complex that could facilitate rapid exchange 

of substrates subsequent to each polyubiquitination reaction.  The need for multiple copies of 

Swm1, which is not required for vegetative growth, was not originally clear at the time these 

data were collected.  However, Swm1 has since been found to be critical for structural 

integrity of the APC by stabilizing association of Cdc16 and Cdc27 (Schwickart et al., 2004); 

and, when missing, negatively affects APC substrate turnover during mitosis (when Cdc20 is 

the co-activator) and G1 phase (when Cdh1 is the co-activator) (Page et al., 2005).   

 I also determined the stoichiometry of Apc1 and Apc5, which could not be determined by 

RP-HPLC.  While Apc5 exists at a similar stoichiometry to the other APC subunits, Apc1 is 

1-to-2 relative to most other subunits.  Since it is unlikely that Apc1 is sub-stoichiometric in 

the APC, there must be multiple copies of each other subunit in the complex.  Indeed, recent 

evidence has shown that Apc1 could exist as a scaffold upon which multiple subcomplexes 

assemble (Thornton et al., 2006).  Moreover, later studies on the stoichiometry of budding 

yeast APC subunits have shown similar results, and go further to suggest the existence of 

multiple active sites in the complex (Passmore et al., 2005).   

 The report by Passmore et. al (2005), which used radioactive labeling to quantify subunit 

stoichiometry did not provide data for Swm1, Cdc26, or Apc11.  Thus, my observation that 
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Swm1 exists in multiple copies may hint at a unique biophysical role for Swm1 that is 

specific to the meiotic APC.  Indeed, Swm1 has been shown to be necessary for spore wall 

assembly near the end of the meiotic cell cycle (Ufano et al., 1999).  The role of Swm1 in 

these meiotic events may be mediated through its function as an APC subunit.   

 The role of Mnd2 in APC function during mitosis appears to be minimal, since cells 

lacking MND2 can grow normally (Bonenfant et al., 2003), and display very little 

accumulation of G2/M cells even at elevated temperature.  Similar results were reported by 

an independent laboratory, and also showed that co-deletion of MND2 with other subunits 

did not have a significant effect on vegetative growth (Page et al., 2005).  However, mnd2∆ 

cells are completely incapable of progressing beyond the first nuclear division of meiosis, 

arresting in prophase I with uncondensed chromatin (Rabitsch et al., 2001).  Since we 

reported it as a core component of the APC (Bonenfant et al., 2003), a meiosis-specific 

function for Mnd2 has been described (Oelschlaegel et al., 2005; Penkner et al., 2005).  

Specifically, both groups showed that Mnd2 acts as an inhibitor of the meiotic APC co-

activator, Ama1, in prophase I of meiosis.  In cells lacking MND2, Ama1 activates the APC 

early in prophase I, and promotes polyubiquitination and subsequent degradation of the 

anaphase-inhibitor, Pds1, which results in premature separation of sister chromatids and 

meiotic arrest.  

 A specific function for Mnd2 and Swm1 during meiosis raises a question about the nature 

of their nonessential role in mitosis.  The E3 ligase activity of budding yeast APC has clearly 

evolved with Swm1 functioning to stabilize the structure of the complex (Schwickart et al., 

2004; Thornton et al., 2006).  However, Mnd2 is not required in the same way as Swm1, and 

therefore, must be needed during the vegetative cell cycle for another purpose.  One 
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possibility is that MND2 must be expressed in vegetative cells before the initiation of meiosis 

to ensure that it is present and able to inhibit premature sister chromatid separation well 

before Ama1 is expressed, which appears to begin as soon as cells “decide” to enter meiosis 

before pre-meiotic S phase (Oelschlaegel et al., 2005).  This possibility seems likely in yeast, 

since the environmental signal to enter meiosis (low carbon and nitrogen availability) is 

mediated through protein signaling cascades that alter gene transcription (Schneper et al., 

2004).  Perhaps waiting to express MND2 such that it appears at the same time as Ama1 

would not be sufficient to inhibit the APC in time.  To date, no experiments have been 

conducted to explain why Mnd2 exists during vegetative growth in yeast. 

 At the time this work was originally reported, no obvious mammalian homologs of Mnd2 

or Swm1 had been described (Ufano et al., 1999).  This is still true for Mnd2, however, 

recent evidence suggests that Swm1 has distant homologs in many other organisms including 

humans (Schwickart et al., 2004).  Indeed, the authors show that the human homolog of 

Swm1 is capable of complementing a SWM1 deletion in budding yeast.  The involvement of 

APC subunits in meiosis-specific functions that may be shared in humans is no doubt an 

exciting new avenue of APC research that could have important implications in the 

biochemical understanding of mammalian gametogenesis. 



CHAPTER IV 

PHOSPHORYLATION OF THE APC INHIBITORY SUBUNIT, MND2, 
IS NECESSARY FOR EFFICIENT PROGRESSION THROUGH 

MEIOSIS I 

(Including modified portions from:  Torres, M.P. and Borchers, C.H., (submitted to J. Biol. 
Chem.) 
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Summary 

 The yeast APC subunit, Mnd2, is necessary for maintaining sister chromatid cohesion in 

prophase I by inhibiting premature ubiquitination and subsequent degradation of substrates 

by the APCAma1 ubiquitin ligase.  In late meiosis Mnd2 is de-activated to allow APCAma1 

activity that is necessary later in the meiotic program.  The mechanism of regulating Mnd2 

function during meiosis is unknown, but has been suggested to be phosphorylation 

dependent.  In a proteomics screen for post-translational modifications on the APC, we 

discovered that Mnd2 is phosphorylated during mitosis in a cell cycle dependent manner.  

We have identified the sites of mitotic phosphorylation and characterized their abundance 

during the cell cycle.  Collective mutation of the phosphorylation sites to either alanine or 

aspartic acid has no effect on vegetative growth rates.  However, the ability of the alanine 

mutant to progress through meiosis is severely compromised, resulting in sporulation levels 

that are approximately 10% - 15% of the wild type strain.  In contrast, sporulation of the 

aspartic acid mutant is partially recovered to approximately 50% of the wild type strain.  

Similar to the MND2 deletion strain, alanine or aspartic acid mutants that did not form spores 

arrested after pre-meiotic S-phase with a single undivided nucleus.  In comparison to the wild 

type and aspartic acid mutant strains, the alanine mutant displayed low levels of the APCAma1 

meiotic substrate, Clb5.  Taken together, these data suggest that Mnd2 phosphorylation is 

necessary for APC-mediated progression beyond the first meiotic nuclear division.   
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Introduction 

 Proper progression through the eukaryotic cell cycle is achieved in large part through 

coordinated regulation of protein degradation mediated by E3 ubiquitin ligases (reviewed in 

(Hershko, 2005; King et al., 1996; Peters, 1998; Tyers and Jorgensen, 2000)).  During 

mitosis and meiosis, targeted protein degradation is tightly associated with the organization 

of chromosomes and their equivalent distribution into two separate progeny cells during 

anaphase, and is controlled by a multi-subunit ubiquitin ligase called the anaphase-promoting 

complex (APC) (Harper et al., 2002; Murray, 2004; Peters, 2006).  As an E3 ligase, the APC 

transfers ubiquitin onto lysine residues of substrate proteins in an iterative manner that forms 

poly-ubiquitin chains on the surface of a substrate protein (King et al., 1995; Sudakin et al., 

1995).  The poly-ubiquitinated substrate is then recognized by the 26S-proteosome and 

degraded, while the ubiquitin is recycled.  The APC is itself regulated, which ensures that the 

timing of substrate degradation is tied to the completion of other cellular processes.  Indeed, 

mis-regulation of the APC can lead to disastrous results including cell cycle arrest or 

improper chromosome segregation and cell death (Bashir and Pagano, 2003; Schiller et al., 

2006; Yamasaki and Pagano, 2004).   

 Regulation of the APC during mitosis is accomplished by several mechanisms, including 

the association of co-activator proteins and through phosphorylation of individual subunits 

within the complex.  Two co-activator proteins, Cdc20 and Cdh1, facilitate the association of 

substrate proteins with the APC at different stages of the mitotic cell cycle (Pfleger et al., 

2001; Reimann et al., 2001a; Song and Lim, 2004; Song et al., 2004; Visintin et al., 1997).  

Each co-activator is regulated through mechanisms involving both phosphorylation and 

protein-protein interactions (Reimann et al., 2001a; Song and Lim, 2004; Song et al., 2004) 
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(Loo et al., 1992; Sudakin et al., 2001) (Han et al., 2001; Zachariae et al., 1998a).  

Additionally, specific subunits of the APC are phosphorylated in a cell cycle dependent 

manner, which has been shown to enhance binding and activation by Cdc20 (Kramer et al., 

2000; Lahav-Baratz et al., 1995; Shteinberg et al., 1999).  APC subunit phosphorylation is 

controlled in large part by mitotic cyclin-dependent kinase (CDK) activated by the Clb2 

cyclin which is later targeted for destruction by the APC upon exit from mitosis (Rudner et 

al., 2000; Rudner and Murray, 2000).  As a result, the APC exists in a hyper-phosphorylated 

state during mitosis and a hypo-phosphorylated state during G1 phase.  Mutation of the CDK 

consensus sites in the APC subunits Cdc16, Cdc27, and Cdc23, results in reduced APCCdc20 

activity towards Clb2 in-vivo, as well as a delay in the onset of anaphase (Rudner et al., 2000; 

Rudner and Murray, 2000).  Currently, there is no evidence to suggest whether or not 

mutation of known mitotic APC phosphorylation sites will have detrimental effects on 

meiotic cell cycle transitions. 

 In budding yeast the APC is regulated during meiosis not only by Cdc20 and Cdh1 co-

activators, but also by a meiosis-specific co-activator called Ama1 (Blanco et al., 2001; Janek 

et al., 2001), which is necessary for spore wall assembly and expression of late meiotic genes 

(Cooper et al., 2000).  AMA1 gene transcription and splicing occurs only in meiotic cells 

(Cooper et al., 2000), and begins during pre-meiotic S phase (Oelschlaegel et al., 2005).  

However, the co-activator is selectively inhibited early in meiosis by the APC subunit Mnd2 

(Oelschlaegel et al., 2005; Penkner et al., 2005).   

 Mnd2 is found in complex with the APC during both the mitotic and meiotic cell cycles 

(Bonenfant et al., 2003; Passmore et al., 2003; Yoon et al., 2002).  Yeast lacking Mnd2 

proceed normally through the mitotic cell cycle but are unable to complete sporulation, 
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arresting before the first meiotic nuclear division with uncondensed chromatin (Rabitsch et 

al., 2001).  Recent evidence has shown that Mnd2 specifically inhibits APC activation by 

Ama1 during prophase I.  In cells lacking Mnd2, uninhibited APCAma1 prematurely targets 

securin (Pds1) for degradation, which results in the premature separation of sister chromatids 

due to unrestrained separase (Esp1) activity (Oelschlaegel et al., 2005), followed by cell 

cycle arrest.  Uninhibited APCAma1 was also found to control the degradation of Clb5 during 

meiosis.  Although inhibited early in meiosis, APCAma1 becomes active during anaphase I 

despite the presence of Mnd2, suggesting that the inhibitory function of Mnd2 is regulated 

post-translationally during meiosis.  It has been further suggested that regulation of Mnd2 

might be linked to its phosphorylation status (Oelschlaegel et al., 2005).   

 In a screen for cell cycle-dependent post-translational modifications that occur on the APC 

during mitosis, we discovered that Mnd2 is one of 5 major phosphorylated subunits in the 

complex.  Here we show the identity of Mnd2 phosphorylation sites and their relative 

changes during the cell cycle using mass spectrometry.  To determine the functional 

significance of Mnd2 phosphorylation, we used site-directed mutagenesis to generate yeast 

strains harboring Mnd2 phosphorylation site mutants and then tested these mutants for their 

ability to progress through mitosis or meiosis.  Vegetative growth of mnd2 phosphorylation 

site mutants is unperturbed.  However, sporulation of a mnd2-(S/T-A) strain is severely 

compromised, while reciprocal mutation to aspartic acid partially recovers sporulation 

efficiency.  The defects in sporulation of the alanine mutant are consistent with those of the 

deletion strain, including arrest before the first meiotic nuclear division and reduced ability to 

accumulate Clb5.  Taken together, these data support a role for phosphorylation in the 

regulation of Mnd2 as an APCAma1 inhibitor in early meiosis.   
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Experimental procedures 

Plasmid and strain construction  

 Standard methods for the growth, maintenance, and transformation of yeast and bacteria 

and for the manipulation of DNA were used.  All constructed plasmids were verified by 

DNA sequencing.  Yeast strains used in this study are listed in Table 4.1.  Strain, W1588-4c 

is a derivative of W303 in which the weak rad5 mutation has been repaired (Zhao et al., 

1998).  Strains expressing Cdc27 and Mnd2 with C-terminal 3xFLAG epitopes were 

constructed by integrating PCR amplicons amplified from p3FLAG-KanMX plasmid (a gift 

from Dr. Toshio Ysukiyama; Fred Hutchinson Cancer Center) into the yeast genome as 

previously described (Gelbart et al., 2001).  The Apc1-TAP strain was generated by 

integration of PCR amplicons from pBS1539 as previously described (Puig et al., 2001).  

Construction of phosphorylation site mutations in MND2 was accomplished using the 

QuikChange multi-site-directed mutagenesis kit (Stratagene) according to the manufacturer’s 

specifications (oligonucleotide sequences available upon request).  Mutations were made and 

sequenced in pIVEX-FLAG-MND2, in which the MND2 ORF was originally cloned into the 

NotI/SalI sites (Bonenfant et al., 2003).  After mutagenesis, the XhoI fragment from pIVEX-

FLAG-MND2 or pIVEX-FLAG-mnd2 phosphorylation site mutant (containing all 14 

mutations within the last 702 base pairs of the ORF) was subcloned into the XhoI site of 

pMT004, a pRS404 vector containing the first 405 base pairs of the MND2 ORF (up to the 

naturally existing XhoI site) and 500 base pairs of the upstream promoter region.  The 

resulting wild type, S/T-A mutant, and S/T-D mutant plasmids were linearized with HindIII 

and integrated into the trp locus of YKA311, in which the open reading frame for MND2 in 

the high efficiency sporulating yeast strain, RSY333, was replaced with KanMX4 by PCR-
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Table 4.1 
 S. cerevisiae strains used in this study 

 

aDerived from W1588-4c, which is a derivative of W303 in which the weak rad5 mutation 
has been repaired (Hall et al., 2003). 
bDerived from DLY3033.   
cDerived from RSY333. 

Strain Relevant Genotype Source 
W1588-4ca MATa ade2-1 can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1 R. Rothstein 
DLY3033 MATa cdc15-2 bar1∆::URA3 J. Pringle 
RSY333 MATa cyh2 ho::LYS2 leu2::hisG lys2 trp1::hisG ura3-1 R. Strich 
RSY335 MATa/a cyh2 ho::LYS2 leu2::hisG lys2 trp1::hisG ura3-1 R. Strich 
YKA152a MND2-3FLAG:KanMX4 M.T. 
YKA155a CDC27-3FLAG:KanMX4 bar1∆::URA3 Hall MC 
YKA156b CDC27-3FLAG:KanMX4 M.T. 
YKA181a APC1-TAP:URA3 CDC27-3FLAG:KanMX4 M.T. 
YKA191a APC2-TAP:URA3 CDC27-3FLAG:KanMX4 M.T. 
YKA311c mnd2∆::KanMX4  M.T. 
YKA312c mnd2∆::KanMX4 trp1::pRS404-mnd2(S/T-A)-TRP1 M.T. 
YKA313c mnd2∆::KanMX4 trp1::pRS404-MND2-TRP1 M.T. 
YKA314c mnd2∆::KanMX4 trp1::pRS404-mnd2(S/T-D)-TRP1 M.T. 
YKA315c mnd2∆::KanMX4 Ycp50::HO M.T. 
YKA316c mnd2∆::KanMX4 trp1::pRS404-mnd2(S/T-A)-TRP1 Ycp50::HO M.T. 
YKA317c mnd2∆::KanMX4 trp1::pRS404-MND2-TRP1 Ycp50::HO M.T. 
YKA318c mnd2∆::KanMX4 trp1::pRS404-mnd2(S/T-D)-TRP1 Ycp50::HO M.T. 
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mediated transformation (Cooper et al., 2000).  Diploid strains were created by 

transformation with YCp50::HO expressing wild type HO endonuclease, and selecting for 

transformants on SD-URA.  Successful conversion to diploid was confirmed by flow 

cytometry. 

 

Cell cycle arrests  

 To arrest cells in G1 phase, cultures were first grown for two generations in YPD media as 

measured by optical density 600 nm (corresponding to growth from OD600 = 0.2 to 0.8), 

followed by addition of synthetic alpha-factor peptide (University of North Carolina peptide 

synthesis facility) to a final concentration of 50 µg/L.  For M phase arrests in the temperature 

sensitive strain YKA156, cells were grown for two generations at the permissive temperature 

(27°C) and arrested by shifting the temperature to 37°C, which results in late M phase arrest 

(Bardin et al., 2003; Jaspersen et al., 1998; Jaspersen and Morgan, 2000).  The degree of cell 

cycle arrest was monitored by phase contrast microscopy and cells were harvested by 

centrifugation after >90% of the culture reached the desired morphology (un-budded for G1 

arrest and equivalently budded for M arrest).  Harvested cells were washed once with 

deionized water, centrifuged once more, and frozen at –80°C overnight prior to protein 

purification. 

 

Affinity purifications and phosphatase assays  

 Yeast cells were lysed at 4°C in pre-chilled lysis buffer containing 25 mM HEPES-NaOH 

pH 7.5 (Fisher), 400 mM NaCl (Sigma), 10% glycerol (Fisher), 0.5 mM DTT (Sigma), 0.1% 

Triton X-100 (Sigma), 50 mM NaF (Sigma), 1.3 mM activated sodium ortho-vanadate 
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(Sigma), 50mM β-glycerophosphate (Spectrum), 0.5 mM phenylmethylsulfonyl fluoride 

(Roche), and complete protease inhibitor tablets (Roche) as described in Chapter III (Hall 

2003).   

 Phosphatase assays on full-length protein were conducted on the APC directly bound to 

the affinity matrix after washing with detergent free sodium phosphate buffer.  The affinity 

matrix was first conditioned 4 x 7 minutes with 1 mL phosphatase buffer containing 50 mM 

Tris-HCl pH 7.5, 0.1 mM EDTA, 2 mM MnCl.  Next, the matrix was split, and one half 

treated with 1000 units λ-phosphatase dissolved in 1 bead equivalent volume phosphatase 

buffer at 30°C for 30 minutes.  Both halves were then washed 2 x 7 minutes with 1 mL 

detergent free sodium phosphate buffer and the APC was eluted as previously described.  

MALDI target phosphatase assays were conducted as previously described in Chapter II 

(Borchers et al., 2006).  

 

GST fusion protein  

 MND2 wild type, S/T-A, or S/T-D genes were subcloned into pGEX-4T1 by PCR from 

the pRS404 vectors harboring each gene isoform.  The resulting N-terminal GST-fusion 

constructs were over-expressed in BL21 pLysS cells according to the manufacturer’s 

protocol (Stratagene).  Cells were lysed by sonication in 1x PBS and cleared by 

centrifugation.  GST fusion proteins were purified from the cell lysate by batch incubation 

with glutathione sepharose™ 4B (Amersham Biosciences).  Each GST fusion protein was 

digested with trypsin to verify the amino acid sequence by MALDI-TOF MS. 
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Chromatography  

 Full-length APC subunits eluted from the affinity matrix were fractionated by reverse-

phase HPLC as described in Chapter III.  In-gel digestion with porcine trypsin was conducted 

as previously described (Borchers et al., 2004).  Separation of tryptic peptides was 

accomplished by capillary HPLC using an Agilent 1100 series capillary-LC system with 

Pepmap C18 column (LC Packings) connected in-line with a Probot MALDI target micro-

fraction collector (LC Packings).    

 

Mass spectrometry  

 Lyophilized C4 HPLC fractions containing full-length Mnd2 were reconstituted in 5uL 

85% ACN, 0.1% TFA and one-tenth of the sample was prepared for MALDI-TOF MS by the 

dried droplet method with a saturated solution of sinapic acid (Fluka) in 50% ACN/0.1% 

TFA. The reconstituted sample was then analyzed directly on a Reflex III matrix-assisted 

laser desorption ionization – time of flight (MALDI-TOF) mass spectrometer (Bruker 

Daltonics Inc.) operating in linear mode.  Linear-mode MALDI-TOF mass spectra were 

obtained immediately after calibrating the mass spectrometer using a mixture of bovine 

serum albumin (Sigma) and cytochrome C (Sigma) that were spotted in close proximity to 

the sample.  

 LC micro-fractions were analyzed on an ABI 4700 MALDI-TOF/TOF mass spectrometer 

(Applied Biosystems Inc.), using a saturated solution of recrystallized α-cyano-4-

hydroxycinnamic acid in 50% ACN/0.1% TFA as the matrix. 
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In vivo 32P-labeling  

 Yeast strains were labeled with monosodium phosphate [32P] in vivo as previously 

described (Rudner and Murray, 2000).  Briefly, saturated overnight 5 mL cultures were 

diluted to OD600 = 0.2 in 50 mL YPD and allowed to grow to OD600 = 0.6 at which time 

DMSO was added to 1%.  At OD600 = 0.8, each culture was arrested in M phase by addition 

of nocodazole to 15 µg/mL.    After arresting for 3 hours, cells were harvested by 

centrifugation, washed once with sterile water, and resuspended in 35 mL synthetic complete 

media lacking phosphate and containing DMSO, nocodazole, and 1 mCi NaH2[32P]O4 (ICN 

Inc.).  After labeling for 1 hour at 30°C, cells were collected by centrifugation, washed once 

with water, transferred to a 2 mL screwcap tube, and frozen at –80°C. 

 Cells were lysed by adding cell-pellet equivalent volumes of lysis buffer and 0.5 mm glass 

beads to the pellet and vortexing 6 x 2 minutes at maximum power with 5 minute rest 

intervals on ice.  All following steps were conducted at 4°C.  The extract was cleared by 

centrifugation in a microcentrifuge at 16,100 x g for 20 minutes and the supernatant was 

transferred to a fresh 2 mL screwcap tube followed by affinity purification as previously 

described.  The APC was eluted as described above and then precipitated to remove excess 

volume and salt by adding 10 volumes cold acetone and incubating at –20°C overnight.  The 

precipitate was collected by centrifugation at 16,100 x g for 20 minutes, air dried at room 

temperature, and then resuspended in 1x LDS loading buffer (Invitrogen Inc.) containing 100 

mM DTT.  The sample was separated on a pre-cast 4-12% Bis-Tris acrylamide gel 

(Invitrogen Inc.), dried, and exposed to a storage phosphor screen for analysis by 

phosphorimager (STORM, Amersham Biosciences Inc.).   

 



 112

Growth curves, sporulation assays, and western blotting  

 To measure relative growth rates of strains harboring mnd2 phosphorylation site mutants 

or complete ORF deletions, saturated overnight cultures grown in YPD media were diluted 

20-fold into 5 mL of fresh YPD media and grown for approximately 1 or 3 hours at 30°C or 

37°C, respectively.  Each culture was then diluted to OD660 = 0.025 (~3E5 cells/mL) in 3 

separate tubes with 5 mL of fresh YPD media and grown at 30°C or 37°C for 8 to 9 hours.  

Growth was monitored every 2 hours by measuring the absorbance at 660nm with a 

SmartSpec 3000 spectrophotometer (Bio-Rad Inc.).   

 To induce sporulation, single colonies picked from YP-glycerol agar plates were spread 

over the entire surface of a fresh YPD agar plate and grown for 24 hours at 30°C, ensuring 

that overnight growth saturated the YPD plate.  All following steps were conducted at 30°C.  

The YPD plates were replica plated to pre-sporulation (PSP) agar plates (1% potassium 

acetate, 1% yeast extract, 2% peptone) until >95% of the cell population were unbudded (23 

– 24 hours) as counted using a hemacytometer, followed by replica plating to sporulation 

media (SPM) agar plates (1% potassium acetate, 0.1% yeast extract, 0.05% dextrose).  The 

percentage of tetrads was monitored by light microscopy using a hemacytometer.  Cells were 

collected by gently scraping a fraction of the cells followed by resuspension in water, 

centrifugation, snap-freezing the pellet in a dry-ice/ethanol bath, and storage at -80°C (for 

western blots).  Additionally, an aliquot of the scraped cells was resuspended in 70% ethanol 

(for FACS or fluorescence microscopy). 

 Protein levels were analyzed by western blotting after breaking cells with glass beads in 

TCA lysis buffer, (10mM Tris-HCl pH 8.0, 25mM ammonium acetate, 1mM Na2EDTA, 

10% trichloroacetic acid).  The TCA precipitated protein pellet was dissolved in resuspension 
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solution (3% SDS, 100mM Tris-HCl pH 11.0), and the total protein concentration of each 

sample was quantified by absorbance at 750 nm using a DC protein assay kit (BioRad).  For 

normalized comparison, 40ug of total protein was loaded in each lane.  Primary antibody to 

Clb5 (Santa Cruz sc-20170; 1:1000) was used in PBS-T (1x phosphate buffered saline, 0.1% 

Tween) with 5% non-fat dried milk.  Detection of bound primary antibody was accomplished 

with an ECL-Plus chemiluminescent detection kit (Amersham) and horseradish peroxidase-

conjugated goat-anti-rabbit secondary antibody (Chemicon International).  Mnd2 was 

detected in western blots using a custom made and purified rabbit polyclonal antibody to the 

N-terminus of the protein (Sigma Genosys Inc.). 

 

Fluorescence Microscopy and Flow Cytometry  

 Cells fixed in 70% ethanol were harvested by centrifugation, washed twice, and 

resuspended in 1x PBS at 25°C.  Approximately 10 µL of the cell suspension was adsorbed 

onto a poly-L-lysine glass microscope slide for 5 minutes after which the excess suspension 

was removed and replaced with 10 µL of DAPI solution (2 µg/mL) for 5 minutes.  After 

removal of the excess DAPI solution, each sample was washed twice for 2 minutes with 30 

µL 1x PBS and allowed to dry at room temperature.  Finally, 10 µL of mounting solution 

(90% glycerol, 1 mg/mL p-phenylenediamine, 20 ng/mL DAPI) was added to the top of each 

sample, covered with a coverslip, and compressed with weight for at least 1 hour.  Cells were 

imaged by differential interference contrast (DIC) or by fluorescence detection of DAPI-

stained nuclei.  Measurements of cellular DNA content were collected on a FACScan flow 

cytometer as previously described (Bonenfant et al., 2003). 
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Results 

Molecular weight determination of APC subunits by mass spectrometry 

 Recent mass spectrometric (MS) analyses have shown that at least 5 of 11 different human 

APC subunits are phosphorylated on a total of 43 different Ser or Thr residues, many of 

which are differentially phosphorylated in a cell cycle dependent manner (Kraft et al., 2003).  

In comparison, only 3 of 13 APC subunits in yeast have been shown to be phosphorylated in 

vivo (Rudner et al., 2000; Rudner and Murray, 2000), and although specific sites have been 

inferred from canonical CDK consensus sequences, there has not been a focused proteomics-

scale analysis of APC subunits thus far.  Therefore, to reveal the presence of previously 

unknown post-translational modifications on the APC (including phosphorylation), we 

measured the full-length molecular weights of individual APC subunits by MALDI-TOF MS 

and compared these measurements to the calculated masses of each subunit based on 

sequence information found in the Saccharomyces Genome Database 

(http://www.yeastgenome.org/).  The analytical approach is described in (Figure 4.1).  Since 

APC activation has been shown to be dependent on subunit phosphorylation that is maximal 

in M phase and minimal in G1 phase, we specifically compared the subunit molecular 

weights between these two phases.  To prioritize downstream biochemical analyses, we 

categorized subunits into one of three groups in reference to their modification state between 

M and G1 phases:  unmodified, constantly modified, and differentially modified.  We were 

particularly interested in subunits that were differentially modified, because they fit the 

current model of APC activation and could potentially be involved in APC regulation.  

 RP-HPLC separation of the APC resulted in near-baseline resolution of each subunit 

except for Apc1 and Apc5 as previously described in Chapter III.  MALDI-TOF MS 
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Figure 4.1.  Analytical scheme for analyzing cell cycle regulated APC post-translational 
modifications.  (A) Growth and arrest of yeast cell cultures.  (B) APC immunoaffinity 
purification.  (C) Reverse-phase HPLC separation of individual subunits.  (D) MALDI-TOF 
MS analysis of individual subunits compared between phase 1 (G1), phase 2 (M), and the 
calculated molecular weight as determined by the primary structure of each subunit.  Based 
on this analysis, each subunit was categorized into one of three groups depending on the 
results of the comparison:  unmodified, constantly modified, or differentially modified. 
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molecular weight determinations for the remaining APC subunits are shown (Table 4.2).  

Eight out of the eleven RP-HPLC-separated subunits could be determined by this method.  

Two subunits, Apc9 and Apc10/Doc1, were unmodified in both M and G1 phase.  Three 

subunits, Apc11, Cdc26 and Swm1, were constantly modified.  Two subunits, Mnd2 and 

Cdc23, were the only subunits to display differential modification.  Apc2 was the largest 

subunit for which we were able to determine a molecular weight, and appeared to be slightly 

degraded in M phase since we observed a molecular weight that was lower than that which 

was calculated based on genome sequencing.  The difference in the measured and calculated 

masses of Cdc26 could be due to phosphorylation, since a recent report has identified a single 

mitotic phosphorylation site in the fission yeast homolog, Hcn1 (Yoon et al., 2006).  The 

difference in the measured and calculated masses of Swm1 corresponds with the removal of 

the N-terminal methionine and acetylation of serine, which was confirmed by high-accuracy 

ESI-MS (data not shown).  The differential modification of Cdc23 was also assumed to be 

due to phosphorylation, since it too has been shown to be differentially phosphorylated in 

metabolic labeling experiments with budding yeast (Rudner and Murray, 2000).  We could 

not determine reasonable molecular weights for Apc4, Cdc16, and Cdc27-3xFLAG due to 

difficulties with MALDI of Apc4 and Cdc16, and due to significant protein degradation of 

Cdc27-3xFLAG.  

 The most interesting mass difference that we observed in our MS screen of molecular 

weights occurred in the subunit Mnd2, which we previously identified as a stoichiometric 

component of the APC whose deletion exhibits a strong meiotic phenotype (Rabitsch et al., 

2001), but no mitotic phenotype (Chapter III).  MALDI-TOF MS analysis of Mnd2 in M 

phase revealed a 392 Da positive shift (m/z 43,217) in its apex mass with respect to the 
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calculated molecular weight (munmodified = 42,825 Da), suggesting that Mnd2 was post-

translationally modified in M phase.  We repeated this experiment with cells arrested in G1 

phase and found only a modest positive mass shift of 94 Da (m/z 42,919) relative to the 

calculated molecular weight (Fig. 4.2 A).  The mass deviation of Mnd2 between G1 and M 

phases (m/zG1 – m/zM = 298 Da) was the largest of any subunit we measured (data not 

shown), and suggested that the modification was cell cycle dependent.   

 

Mnd2 is hyper-phosphorylated in vivo during mitosis. 

 Suspecting that Mnd2 may be phosphorylated, we determined if Mnd2 could be 

metabolically labeled with NaH2[32P]O4 in yeast arrested with nocodazole.  A comparison of 

FLAG affinity purifications from metabolically labeled yeast with or without a C-terminal 

3xFLAG tag on the APC subunit, Cdc27, is shown (Figure 4.2 B, left lanes).  We observed 6 

distinct bands unique to the tagged strain that did not appear in the purification from a strain 

lacking a 3xFLAG tag.  Alignment of the phosphorimage with a Coomassie-stained large-

scale purification of the APC from nocodazole-arrested cells revealed the identity of the 

known phosphorylated subunits, Cdc16, Cdc27, and Cdc23.  In addition, we observed 

phosphoproteins that aligned with Apc1, Apc2, and Mnd2 (Figure 4.2 B, right lane).  In order 

to verify the identity of these 3 phosphoproteins, we introduced epitope tags onto the C-

termini of Apc1, Apc2 (Apc1/2-TAP in Cdc27-3xFLAG background), and Mnd2 (3xFLAG), 

which would create a gel mobility shift in the 32P-labeled phosphoprotein band in question if 

the identity was assigned correctly.  Each tagged strain was metabolically labeled in the 

presence of nocodazole and the resulting FLAG affinity purification compared to the original 

Cdc27-3xFLAG 32P-labeled purification (Figure 4.2 C).  We observed a shift in gel mobility 
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for the phosphoproteins assigned to Apc1 and Mnd2.  However, no shift was observed for the 

band assigned to Apc2, suggesting that this phosphoprotein is not Apc2, but rather, another 

phosphoprotein that co-immunoprecipitates (co-IP) with the APC or possibly a fragment of 

phosphorylated Apc1. 

 In order to determine if the apex mass shift observed between the Mnd2 MALDI spectra 

was completely or partially due to phosphorylation and to estimate the number of 

phosphorylation sites involved, we compared the full-length molecular weights of Mnd2 in 

M phase by MALDI-TOF MS before and after treatment with lambda phosphatase.  

Nocodazole induces a mitotic checkpoint arrest by inhibiting microtubule polymerization, 

which may induce phosphorylation of proteins that would not normally be phosphorylated 

during an unperturbed mitotic progression.  Therefore, in this experiment, we opted to use a 

strain that harbors a temperature sensitive mutation in the mitotic exit network kinase, 

Cdc15.  We have used this strain successfully in the past to characterize phosphorylation of 

the APC co-activator Cdh1 (Hall et al., 2004).  APC purifications from yeast arrested in G1 

or M phase cells were split, and half of each purification was treated with lambda 

phosphatase.  The apex mass of Mnd2 from M phase cells was 43,221 Da before phosphatase 

treatment, and shifted to a mass of 42,837 Da after phosphatase treatment, which is within 12 

Da of the calculated mass of the unmodified protein and indicated that the entire mass shift 

observed in M phase is due to phosphorylation (Figure 4.2 D).  In comparison, the apex mass 

of Mnd2 from G1 phase cells was 42,926 Da before phosphatase treatment, and was shifted 

to 42,825 Da after phosphatase treatment, indicating that Mnd2 is less phosphorylated during 

G1 phase.  Dividing the average mass difference between the measurements made before and 

after phosphatase treatment (∆m = mp - mdp) by the mass of a single phosphorylation 
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Figure 4.2.  Mnd2 is a differentially phosphorylated component of the APC in mitotic cells.  
(A) Overlaid MALDI-TOF mass spectra of Mnd2 in G1 and M phases of the mitotic cell 
cycle. Mnd2 was co-purified with the APC from yeast harboring epitope-tagged Cdc27 and 
arrested in G1 phase with α-factor or M phase with nocodazole followed by HPLC 
separation and linear-mode MS analysis.  (B) SDS-PAGE separation of APC purified from 
yeast arrested in M phase with nocodazole and labeled metabolically with 32PO4 in-vivo 
(middle lane) or stained with Coomassie (right lane).  The identity of relevant APC subunits 
in the Coomassie-stained gel is indicated. Cells lacking an epitope tag on Cdc27 were 
compared in parallel to allow discrimination of non-specific radiolabeled protein bands (left 
lane).  (C) SDS-PAGE mobility comparison between three 32P-labeled APC subunits with (+) 
and without (-) C-terminal epitope tags.  In the (-) lane, APC was purified from YKA155, 
harboring a 3xFLAG epitope C-terminal to Cdc27.  In the (+) lane, APC was purified by 
FLAG immunoprecipitation from doubly-tagged strains YKA181 (CDC27-3xFLAG, APC1-
TAP), and YKA191 (CDC27-3xFLAG APC2-TAP); or the singly tagged strain YKA152 
(MND2-3xFLAG). (D) Overlaid MALDI-TOF mass spectrum of Mnd2 in G1 and M phases 
of the mitotic cell cycle before and after treatment with lambda phosphatase (λP).  Mnd2 was 
co-purified with the APC from the temperature-sensitive yeast strain YKA156 (cdc15-2) 
arrested in G1 phase with α-factor or M phase by temperature shift.  While still bound to 
FLAG affinity matrix, the purifications were split, and half of the purification was treated 
with λP followed by HPLC separation and linear-mode MS analysis of both phosphorylated 
and de-phosphorylated proteins. 



 122

modification (HPO3 = 80 Da) indicated that Mnd2 was phosphorylated on at least 4 to 5 

different sites (384 Da ÷ 80 Da) during M phase, and only one site, on average, (101 Da ÷ 80 

Da) during G1 phase.  Furthermore, the 283 Da mass difference observed between the 

modified states of Mnd2 measured in the phosphatase assay corresponded very well with the 

measured mass difference of 298 Da determined with Mnd2 purified from nocodazole 

arrested cells.  Though these data indicate a specific number of phosphate modifications on 

Mnd2, it has been our experience that these values are usually underestimates of the total 

number of phosphorylation sites of a protein possibly due to modification site heterogeneity 

and also due to the resolution of MALDI-TOF MS in the linear mode.  Attempts to measure 

the intact protein mass by electrospray ionization MS were not successful.  We conclude that 

Apc1 and Mnd2 are phosphorylated subunits of the budding yeast APC.  We further 

conclude that Mnd2 phosphorylation is cell cycle-dependent. 

 

Characterization of Mnd2 phosphorylation sites.  

 We used a combination of MS-based approaches to identify the phosphorylation sites in 

Mnd2 from M phase cells.  Mnd2 peptides analyzed by MALDI-TOF/TOF MS surprisingly 

revealed only one ion at m/z 2823.1 that could be assigned to the tryptic Mnd2 

monophosphopeptide, 140AQNAEGNNEEDFRQHDpSREEDPR162, by tandem MS (Figure 

4.3 A).  The tandem mass spectrum contained a number of b and y fragment ions from the 

Mnd2 peptide including some in which there was a distinct neutral loss of phosphate (H3PO4) 

corresponding to a mass shift of 98 Da.  We also assigned a second ion of very low intensity, 

m/z 1807.8, to the Mnd2 monophosphopeptide 258IVPDDLLMRPTSLSR272 (Table 4.3).  

However, the low intensity of the fragment ions did not allow us to determine which of the 
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three possible phosphorylation sites was occupied (data not shown).  Repeating this 

experiment and including a G1-arrested sample for comparison, we found that 

phosphorylation at Ser-156 occurred only during M phase (Figure 4.3 B).  Similarly, no 

phosphorylation was observed during G1 phase for peptide Mnd2258-272 (data not shown).   

 Based on our initial MS analysis, we could assign peptides to 70% of the Mnd2 sequence 

by mass fingerprinting and tandem MS, but found only 2 phosphorylation sites.  The 

remaining 30% of uncovered sequence included two theoretical tryptic peptides: 

170VILPHILQENEEYDTGEGVTGLHSMPNDSMAILANNSANNSQNEEVSEEDEISYD-

YDAEFDHVVDEDDNEEGEVPGEGVEGIEVQR255 (m/z 9525 Da), and 287NPYDIDSD 

NDGEDSK301 (m/z 1683.6) that contained a total of 10 potential serine or threonine 

phosphorylation sites.  We did not detect the peptide Mnd2287-301 (including hypothetically 

post-translationally modified forms) in our initial MS analysis, even though its theoretical 

mass falls between the optimal range of detection for reflectron mode MALDI-TOF MS, 

which is between m/z 800 - 4000.  We made this observation more than once during repeat 

experiments with Mnd2 from M phase cells (data not shown).  We suspected that the 

difficulty in detecting peptides within these regions of Mnd2 could be due to their high D/E 

content, which can affect peptide ionization in the mass spectrometer, as well as 

phosphorylation, which can also affect peptide ionization and inhibit tryptic digestion at 

cleavage sites that neighbor a phosphorylated residue.   

 We used linear mode MALDI-TOF MS, which allows the detection of high mass protein 

species, to search for the large tryptic peptide Mnd2170-255, as well as any miss-cleaved tryptic 

peptides that contained Mnd2287-301.  Using this approach, four major species of interest were 

detected at m/z 6618, m/z 6688, m/z 8393, and m/z 9838, none of which could be assigned to 
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Figure 4.3.  MS identification of Mnd2 phosphopeptides purified from M phase cells.  (A) 
Tandem MS spectrum of m/z 2823.1 corresponding to the mono-phosphopeptide Mnd2140-162.  
(B)  Comparison of phosphorylation at Ser-156 in M phase (cells arrested with temperature 
shift), and G1 phase.  In this experiment, m/z 2823.1 was not found, but rather a shorter form 
(Mnd2153-162) containing only one missed cleavage, which was confirmed by tandem MS.  
(C) Overlaid linear mode MALDI-TOF mass spectra of high molecular weight tryptic Mnd2 
phosphopeptides from M phase arrested cells before (solid line) and after (dashed line) 
treatment with alkaline phosphatase (AP).  The average estimation of occupied 
phosphorylation sites is indicated by the shift after treatment with AP.  Note that the AP-
treated masses are all oxidized.  (D) Same as (C), but from G1 phase arrested cells.  Note that 
the AP-treated peptide Mnd2170-255 contains two rather than one oxidized methionine 
residues, resulting in a slight shift in the mass spectra compared to (C).  
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the unmodified Mnd2 sequence.  Comparison of the spectra with and without phosphatase 

treatment showed that each of the four species was phosphorylated, as indicated by negative 

shifts in the apex mass after phosphatase treatment (Figure 4.3 C).  Using the apex mass of 

the ion species after phosphatase treatment, we were able to assign each peptide to Mnd2 as 

well as calculate the average number of occupied phosphorylation sites within each peptide 

(Table 4.3).  Interestingly, the tryptic peptides assigned to m/z 6618, m/z 6688, and m/z 8393 

each contained multiple missed cleavage sites, and included the tryptic region Mnd2287-301 

with one or two occupied phosphorylation sites.  Since we were able to detect each of the 

tryptic peptides flanking the Mnd2287-301 region in the reflectron mode MS analysis and 

confirm that they were unmodified, we concluded that the occupied phosphorylation sites are 

S293 and S300.  The ion at m/z 9838 was assigned to the largest tryptic peptide Mnd2170-255 and 

contained an average of 4 occupied phosphorylation sites.  The mass accuracy of this 

assignment was within 7 Da of the expected mass, which likely reflects an average of a 

mixture of the unmodified peptide (m/z 9519) and a mono-oxidized peptide (m/z 9535), since 

no other peptides with up to 10 missed cleavages could be closely matched to this ion.  

Calculation of the apex mass shift after phosphatase treatment indicated that Mnd2170-255 

contains an average of 4 occupied phosphorylation sites out of 8 potential serine or threonine 

residues.  A comparison of these phosphopeptides in G1 phase shows that Mnd2 maintains 

partial phosphorylation (Figure 4.3 D).  In summary, we find that Mnd2 is phosphorylated on 

at least 8 different sites during mitosis, and at least 4 sites during G1 phase. 

 

Yeast harboring Mnd2 phosphorylation site mutations grow normally.  

 Cell cycle regulated phosphorylation is an important component of APC-mediated cell 
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Table 4.3.   
Assignment of Mnd2 phosphopeptides. 

 
 Masses of the dephosphorylated peptides were used for assigning Mnd2 sequence to each 
MS ion, with the exception of m/z 1808.8 and m/z 2823.1 that were assigned by tandem MS 
sequencing.  Mass of the phosphorylated peptide (mp) was compared to the mass of the 
dephosphorylated peptide (mdp) to determine the average number of phosphorylation sites 
occupied (Avg. no. HPO3).  The assigned Mnd2 peptide sequence, additional observed 
modifications after phosphatase treatment (Add. Mod), and the expected average mass (m) 
are shown.  The mass accuracy is shown as the difference between the dephosphorylated 
peptides and the expected average mass (mdp – m), with the exception of m/z 1808.8 and m/z 
2823.1 whose error was calculated from the expected phosphorylated mass. 

 

 

Observed 
Masses 

      

mp mdp ∆m 
(= mp – mdp) 

Avg. 
# 

HPO3 
Assigned Mnd2 Peptide 

Sequence 
Add. 
Mod 

Exp. 
Avg. 
Mass 

(m) 

Error 
(mp – m) 

1808.8 -- -- 1 258IVPDDLLMRPTSLSR272 -- 1808.8 0.09 

2823.1 -- -- 1 
140AQNAEGNNEEDFRQHDpSREE
DPR162 -- 2823.1 0.01 

6618 6531 87 1 
287NPYDIDSDNDGEDSKVELDMN
PDFEDDVGREHDYNSEYSQEPT
SYGGITPDLASNWR343 

1 
MeOx 6531 0 

6688 6531 157 2 
287NPYDIDSDNDGEDSKVELDMN
PDFEDDVGREHDYNSEYSQEPT
SYGGITPDLASNWR343 

1 
MeOx 6531 0 

8393 8225 168 2 

273SLQQFVEEAHHLDRNPYDIDSD
NDGEDSKVELDMNPDFEDDVGR
EHDYNSEYSQEPTSYGGITPDLA
SNWR343 

1 
MeOx 8223 2 

9838 9532 306 4 

170VILPHILQENEEYDTGEGVTGL
HSMPNDSMAILANNSANNSQNE
EVSEEDEISYDYDAEFDHVVDED
DNEEGEVPGEGVEGIEVQR255 

0 - 1 
MeOx 9525 7 
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cycle regulation.  Yeast strains harboring altered forms of the APC that cannot be modified 

by phosphorylation display growth defects associated with a delay in mitotic progression 

(Rudner and Murray, 2000).  In order to determine if Mnd2 phosphorylation is critical to the 

progression of mitosis, we compared growth rates of an mnd2∆ strain in which the wild type 

form (WT) or phosphorylation site mutant forms of MND2 (mnd2-(S/T-A) and mnd2-(S/T-

D)), were introduced at the TRP1 locus under control of the MND2 promoter (see 

experimental procedures).  Mnd2 phosphorylation site mutants were created by 

simultaneously mutating all 14 sites found or implicated by our MS analysis to alanine or 

aspartic acid (aspartic acid mutations are meant to mimic the phosphorylated state of Mnd2).  

The mutations to Mnd2 did not have a significant effect on APC binding compared to the 

WT form as determined in an in vitro binding assay (Figure 4.4 A). As a positive control for 

the growth rate of strains harboring an APC defect, we compared the growth rate of yeast 

lacking Apc10, which display a slow growth phenotype due to compromised APC 

processivity (Bonenfant et al., 2003; Passmore et al., 2003).  Growth rates for all but the 

apc10∆ strain were undistinguishable at both 30°C and 37°C (Figure 4.4 B).  This 

observation was not surprising since the mnd2∆ strain displays no significant difference in 

growth rate (Bonenfant et al., 2003; Page et al., 2005).  We conclude that phosphorylation at 

the sites found in our MS analysis do not have a significant function in the proper 

progression of mitosis. 

 

Mnd2 phosphorylation is required for progression through the first meiotic nuclear division. 

 Yeast lacking Mnd2 are incapable of sporulation and arrest after the completion of pre-

meiotic S phase but before the first meiotic nuclear division 
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Figure 4.4.  Yeast harboring Mnd2 phosphorylation site mutations grow normally.  (A) In 
vitro binding assay between GST-Mnd2 WT, mnd2-(S/T-A), mnd2-(S/T-D), and GST.  APC 
was purified from CDC27-3XFLAG mnd2∆ cells harvested from an asynchronous mid-log 
phase culture and incubated in batch with an excess of GST-Mnd2 fusion protein bound to 
GSH sepharose.  Unbound protein was washed away with 100 bead-equivalent volumes of 
buffer and the bound protein was eluted in 1 bead-equivalent volume of SDS-PAGE loading 
buffer.  The input (I), flow through (FT), and elution are shown after western blotting with 
anti-FLAG or ant-GST antibodies.  (*) GST-Mnd2 breakdown product. (B) Logarithmic 
plots of vegetative growth rates relative to the 2 hour time point measured in YPD media for 
WT, mnd2-(S/T-D), mnd2-(S/T-A), mnd2∆, and apc10∆ at 30°C (Left) and 37°C (Right).     
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(Oelschlaegel et al., 2005; Penkner et al., 2005; Rabitsch et al., 2001).  In order to determine 

if Mnd2 phosphorylation was also required for sporulation, we compared the phenotypes 

WT, mnd2∆, mnd2-(S/T-A), and mnd2-(S/T-D) upon induction of sporulation.  When 

comparing the kinetics of tetrad formation for each strain, we found that 85% of WT cells 

formed complete tetrads within 42 hours after plating to sporulation media, which was nearly 

identical to the sporulation percentage for cells harboring MND2 at its natural genetic locus 

(Figure 4.5 A).  In contrast, mnd2∆ strains were unable to form tetrads.  Only 13% of cells 

harboring mnd2-(S/T-A) formed tetrads, while the percentage of tetrads increased to 42% of 

cells harboring mnd2-(S/T-D).  In addition, there was no appreciable accumulation of cells 

containing only two spores (dyads) as observed by light microscopy, which would have 

indicated arrest between the first and second nuclear division.  The differences in tetrad 

formation between the WT and mutant strains was not due to a failure in meiotic entry since 

each strain completed pre-meiotic S phase as measured by flow cytometry (Figure 4.5 B). 

 Quantitation of tetrad formation cannot be used as an indicator for the ability of cells to 

complete meiotic nuclear divisions.  Indeed, meiotic nuclear divisions and spore formation 

are not completely connected pathways, and it is possible to achieve nuclear divisions 

without forming spores, which has been reported for sub-populations of ama1∆ cells (Cooper 

et al., 2000).  Cells that do not undergo the first meiotic nuclear division arrest with a single 

nucleus that can be visualized using fluorescence microscopy of DAPI-stained nuclei.  In 

order to determine if meiotic nuclear divisions were compromised in mnd2 phosphorylation 

mutants, we scored the percentages of non-tetrad forming (residual) cells that contained a 

single undivided nucleus after 48 hours on sporulation media.  In strains harboring mutant or 

wild type Mnd2, the percentage of non-tetrad cells containing a single undivided nucleus was 
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greater than 90% (Figure 4.5 C).  Since tetrads are formed at low levels in strains harboring 

mnd2-(S/T-A), we also quantified the viability of tetrad spores.  A high percentage of spore 

viability indicates that cells are capable of proper nuclear divisions that distribute a complete 

complement of the haploid genome to each spore.  Low spore viability is observed when 

nuclear divisions are compromised such that individual spores are left with an incomplete 

complement of the haploid genome.  Following tetrad dissection, 95% of WT spores were 

viable compared to 89% and 84% spore viability for mnd2-(S/T-D) and mnd2-(S/T-A) cells, 

respectively (Figure 4.5 C).   

 Mnd2 inhibits the ubiquitin ligase activity of APCAma1 towards specific meiotic substrates 

including Pds1, Clb5, and Sgo1 (Oelschlaegel et al., 2005; Penkner et al., 2005).  In 

particular, Pds1 and Clb5 fail to accumulate appreciably in sporulating mnd2∆ cells.  In order 

to ascertain if the phosphorylation status of Mnd2 affects its function as an APCAma1 

inhibitor, we compared the protein stability of Clb5 in cell extracts taken from a sporulation 

time course.  Sporulating cells were collected at 0, 24, and 48 hours and the percentage of 

tetrad forming cells and cells with replicated DNA were quantified to verify synchrony and 

meiotic entry of each strain (Figure 4.5 D top).  Clb5 levels were low to immeasurable in the 

mnd2∆ strain compared to the WT strain (Figure 4.5 D bottom).  Very little accumulation of 

Clb5 was observed for the mnd2-(S/T-A) strain, but was noticeably higher in the mnd2-(S/T-

D) strain.  A similar trend was observed for Pds1 (data not shown).  Taken together, these 

data show that phosphorylation of Mnd2 is critical for efficient progression through the first 

meiotic nuclear division and for normal accumulation of the APCAma1 substrate, Clb5.  We 

conclude that phosphorylation of Mnd2 is involved in regulating the inhibition of APCAma1 in 

early meiosis. 
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Figure 4.5.  Phosphorylation of Mnd2 is necessary for efficient progression through the first 
meiotic nuclear division.  (A) Kinetics of tetrad formation for WT, mnd2-(S/T-D), mnd2-
(S/T-A), and mnd2∆ cells.  Tetrad formation kinetics for a wild type strain in which  MND2 
is expressed from its normal locus is shown (*).  (B) Kinetics of pre-meiotic S phase 
measured by flow cytometry. (C) DIC and fluorescence microscopy of DAPI-stained yeast 
42 hours after plating on SPM.  The percentage of tetrads formed, the percentage of non-
tetrad (residual) cells with a single nucleus, and the percentage of viable spores are indicated 
to the right of each microscopy image. (D) Percentage of tetrad forming cells 24 and 48 
hours after plating on SPM (top, left).  Percentage of cells with replicated DNA at 0, 24, and 
48 hours after plating on SPM (top, right).  Western blot comparison of Clb5 levels in 
extracts prepared and quantified after lysis of cells harvested at 0, 24, and 48 hours after 
plating on SPM.  A non-specific band detected in the western blot is shown as a loading 
control.  Bar graph shows quantitation of Clb5 levels from the western blot.  Normalized 
band intensities were calculated taking the ratio of Clb5 signal to the corresponding loading-
control band for each lane.  The data is shown after subtraction of the deletion strain Clb5 
ratios for each corresponding time point.  
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Phosphorylation may be necessary to stabilize Mnd2 before meiotic entry. 

 Since phosphorylation of Mnd2 is not required for mitotic progression, yet it has a strong 

early meiotic requirement similar to an mnd2 deletion, we asked whether or not the mnd2 

phosphorylation site mutants were differentially destabilized.  We were unable to detect 

Mnd2 in western blots of mitotic whole cell extracts.  Therefore, we conducted western blots 

with anti-Mnd2 antibody on the APC purified from 1L cell cultures via Cdc27-3xFLAG.  

The association of Mnd2 with the APC is extremely stable, even in buffers containing 450 

mM NaCl that we typically use to purify APC (Hall et al., 2003).   

 We found that Mnd2 WT and phosphorylation site mutants were present in APC 

purifications at differential levels that were similar to the differences that we observed for the 

meiotic defect (Figure 4.6).  The mnd2-(S/T-A) mutant was undetectable, although its binding 

was determined to be equivalent in vitro (Figure 4.4 A).  In contrast, mnd2-(S/T-D) and 

Mnd2 WT were detected at levels representative of their differential progression through 

meiosis.  Since each isoform is expressed from the same genetic locus under control of the 

same promoter, we conclude that the difference in Mnd2 abundance is not due to differences 

in protein expression.  Alternatively, the difference in Mnd2 abundance in APC purifications 

could be due to differential sequestration of the different isoforms, however, there is no 

evidence to suggest this is a viable mechanism of Mnd2 regulation.  Therefore, we 

hypothesize that the difference in Mnd2 abundance is due to differential stability of each 

isoform.  Since the alanine mutant is the least stable, and the WT and aspartic acid mutant are 

more stable, we propose that phosphorylation is required to maintain the stability of Mnd2 

during the mitotic cell cycle.          
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Figure 4.6.  Phosphorylation of Mnd2 may be necessary for Mnd2 protein stability in 
mitosis.  APC was purified from whole cell lysate (1L starting cell culture grown to OD600 = 
1.0) through Cdc27-3xFLAG strains containing the indicated Mnd2 mutations.  Purification 
from each strain was verified to be equivalent by anti-FLAG western blotting of Cdc27-
3xFLAG (upper panel).  Detection of co-precipitating Mnd2 isoforms was determined by 
western blotting with custom anti-Mnd2 rabbit polyclonal antibody (lower panel). 
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Discussion 

 We have used a mass spectrometric approach to discover and identify mitotic 

phosphorylation sites on the APC subunit, Mnd2.  The phosphorylation status of Mnd2 

appears to be generally similar to that of other phosphorylated yeast APC subunits (Cdc16, 

Cdc27, and Cdc23), in that it is higher in mitosis compared to G1 phase.  Interestingly, none 

of the phosphopeptides observed contain the canonical cyclin dependent kinase recognition 

sequence, S/T-P, which suggests the involvement of other kinases.  Mutation of Mnd2 

phosphorylation sites has no effect on mitotic cell cycle progression, which is not surprising 

considering that Mnd2 has no required function during vegetative cell growth.  However, 

there is a striking difference in the ability of Mnd2 phosphorylation site mutants to complete 

meiosis.  The similarities in sporulation phenotype for the alanine and deletion mutant strains 

strongly suggest that phosphorylation is critical for Mnd2 function early in the meiotic 

program.  Both strains complete pre-meiotic S phase and, like the deletion strain, the 

majority of alanine mutants fail to undergo the first meiotic nuclear division.   The fact that 

mutation of each phosphorylation site to aspartic acid, which may mimic the phosphorylated 

state of Mnd2, recovers the sporulation phenotype to approximately 50% of the wild type 

strain further supports the conclusion that phosphorylation is necessary for Mnd2 function in 

early meiosis.  In addition to a meiotic sporulation phenotype, we also find that mnd2-(S/T-A) 

mutants have lower levels of the APCAma1 substrate, Clb5, which suggests that Mnd2 

phosphorylation is necessary for some aspect of its inhibitory function rather than an effect 

unrelated to APC activity.  In support of this hypothesis, we find that mnd2-(S/T-A) mutants 

appear to be destabilized during mitosis in vivo, which would explain why they share a 

meiotic phenotype similar to mnd2∆ cells. 
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 We have also shown that the subunit, Apc1, is phosphorylated during mitosis.  Preliminary 

experiments show that Apc1 is phosphorylated on a number of sites that are contained within 

a canonical CDK recognition sequence as well as some sites that are not (our unpublished 

results).  Further work will focus on the characterization of these sites at different cell cycle 

stages and to determine the effects of mutating these sites on mitotic and meiotic progression.    

 Despite similarities to the mnd2∆ strain, some cells harboring mnd2-(S/T-A) are still 

capable of complete sporulation resulting in the formation of viable haploid spores.  Thus, 

the possibility remains that other sites of phosphorylation specific to meiosis may be 

necessary, or the unphosphorylated form retains some low activity.  The high percentage of 

spore viability in the phosphomutant strains also suggests that phosphorylation of Mnd2 at 

these sites is only necessary before the first meiotic nuclear division, since mutant cells that 

do form tetrads must be capable of completing normal meiotic nuclear divisions and spore 

formation.  This observation is consistent with existing data that shows Mnd2 is necessary 

for the completion of recombination before the first meiotic nuclear division (Oelschlaegel et 

al., 2005; Penkner et al., 2005).  In contrast, cells harboring mnd2-(S/T-D) are not capable of 

completely rescuing the sporulation phenotype, which may be due to insufficient mimicry of 

phosphorylation by the side chain of aspartic acid.      

 The kinase[s] that phosphorylates Mnd2 remain unknown.  Indeed, the phosphorylation of 

Mnd2 during mitosis may not be caused by the same kinases responsible for its 

phosphorylation during meiosis.  Therefore, the future goals of this research will address the 

kinase or kinases responsible for phosphorylating Mnd2.  Currently, the primary kinases 

known to be involved in APC phosphorylation are CDK (Cdc28 in yeast) and polo-like 

kinase, Cdc5.  However, none of the Mnd2 phosphopeptides that we observed contained 
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either a canonical CDK recognition sequence (S/T-P) or the polo box domain recognition 

sequence (S-pS/pT-P).  Notably, many of the phosphorylation sites implicated by our MS 

analysis fell within regions of high D/E residue content, which could suggest 

phosphorylation by casein kinase 2 (Glover et al., 1998).   

 The molecular effect that phosphorylation of Mnd2 has on APCAma1 inhibition is 

unknown.  However, our evidence does suggest that phosphorylation or lack thereof does not 

effect Mnd2 binding to the APC since the phosphorylated form of Mnd2 co-purifies with the 

APC both before and after phosphatase treatment, and recombinant forms of the wild type, 

alanine, and aspartic acid phosphorylation site mutants are still capable of binding to the 

APC in vitro.  Taken together, these observations do not support the hypothesis that Mnd2 

phosphorylation controls APCAma1 inhibition simply by altering the binding of the inhibitor 

to the complex.  Rather, we suggest that Mnd2 phosphorylation is necessary to stabilize 

Mnd2 during mitosis.  In this case, lack of phosphorylation would destabilize Mnd2, and 

upon meiotic entry, Ama1 could activate the APC prematurely similar to observations 

described for mnd2∆ cells (Oelschlaegel et al., 2005; Penkner et al., 2005).   

 We have shown that phosphorylation sites occupied differentially during the mitotic cell 

cycle can provide critical regulatory roles for the APC during meiosis.  The fact that 

phosphorylation sites between the two types of nuclear division are shared in this way 

suggests that known phosphorylation sites within other APC subunits will also be important 

for meiosis.  Although APC subunit phosphorylation is important for proper meiotic 

progression, the dynamics of phosphorylation at specific sites and by specific kinases is still 

poorly understood.  Future experiments that characterize the dynamics of APC 

phosphorylation during meiosis will be invaluable to our understanding of APC regulation. 



CHAPTER V 

CONCLUSIONS AND GENERAL DISCUSSION 
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Summary 

 The anaphase-promoting complex (APC) E3 ubiquitin ligase is a key regulatory factor 

necessary for proper progression through mitotic and meiotic cell cycle transitions.  At the 

inception of this work, very little was known about the role of the APC during meiosis.  

Moreover, nothing was known about the role of APC phosphorylation in the regulation of 

APC-mediated meiotic cell cycle transitions.  In this thesis, I have used a variety of mass 

spectrometric methods to characterize APC subunit composition and APC post-translational 

modifications that exist during the cell cycle of Saccharomyces cerevisiae.  I have 

demonstrated the association of two new subunits, Mnd2 and Swm1, which co-precipitate 

with the APC at stoichiometric levels throughout the cell cycle.  Interestingly, both subunits 

are dispensable for mitosis, but required for meiosis in budding yeast.  Furthermore, I show 

that the Mnd2 subunit is differentially phosphorylated during the mitotic cell cycle, while 

Swm1 is constantly modified by removal of methionine and N-terminal serine acetylation.  

Using mass spectrometry, I have identified the specific sites of Mnd2 phosphorylation and 

shown that they are necessary for progression beyond the first meiotic nuclear division.  This 

work represents the first demonstration that APC phosphorylation is necessary for meiotic 

cell cycle transitions in any organism.  However, a mechanism that describes 

phosphorylation in the context of Mnd2 as a meiotic APC inhibitor remains to be established.  

In this chapter, I relate observations that I have detailed in this thesis to existing literature 

data that describes Mnd2 function in early meiosis, with the goal of defining a possible 

mechanism for Mnd2 phosphorylation. 
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The role of Mnd2 as a meiotic APC inhibitor 

 Shortly after the discovery that Mnd2 and Swm1 were constitutive APC subunits during 

mitosis (Bonenfant et al., 2003; Passmore et al., 2003; Yoon et al., 2002) and meiosis 

(Bonenfant et al., 2003), reports on the function of both subunits began to emerge.  

Consistent with our observations (Bonenfant et al., 2003), these reports showed that mutants 

lacking SWM1, but not MND2, displayed growth defects (Page et al., 2005).  They also 

showed that Swm1 was critical for maintaining structural integrity of the APC, such that the 

complex purified in the absence of Swm1 also lacked the TPR subunits Cdc16 and Cdc27 

(Schwickart et al., 2004), and displayed lower catalytic activity (Page et al., 2005; 

Schwickart et al., 2004).  In contrast, the requirement for Mnd2 in stabilizing APC structure 

or catalysis appeared to be negligible (Page et al., 2005).   

 A role for Mnd2 as an APC subunit was reported in early 2005 by two independent 

laboratories (Oelschlaegel et al., 2005; Penkner et al., 2005).  Both laboratories reported that 

in yeast lacking MND2, cells could progress through pre-meiotic S phase, but failed to 

complete the first meiotic nuclear division, due to premature separation of sister chromatids 

in prophase I, caused by early APC activation by the meiosis-specific co-activator, Ama1.  

They went on to show that Mnd2 was necessary for accumulation of the anaphase inhibitor, 

Pds1, as well as Clb5, and the meiotic cohesin subunit, Rec8, during prophase I, consistent 

with a role as an APC inhibitor (Oelschlaegel et al., 2005).  Finally, they showed that Mnd2 

could specifically inhibit ubiquitination of Pds1 by APCAma1 in vitro (Oelschlaegel et al., 

2005).  In this case, inhibition was specific for APCAma1 complexes, but not APCCdc20 or 

APCCdh1.  The general conclusions from these studies are shown as an illustration (Figure 

5.1).  
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Figure 5.1.  The role of Mnd2 as a meiotic APC inhibitor.  (Top) Mechanism in wild type 
(WT) cells.  Mnd2 inhibits premature ubiquitination and degradation of Pds1 until the APC 
can be activated normally by Cdc20.  After the second nuclear division, Mnd2 is removed 
(by degradation through an unknown mechanism), allowing Ama1 to activate the APC in late 
meiosis, which is necessary for spore wall formation.  (Bottom) Mechanism in mnd2∆ cells.  
In cells lacking Mnd2, Ama1 can activate the APC upon meiotic entry, which results in 
premature ubiquitination and degradation of Pds1 and Clb5 in prophase I.  As a result, the 
cells arrest before the first meiotic nuclear division. 
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Mnd2 phosphorylation:  necessary for protein stability? 

 Interestingly, both groups reported that Mnd2 was increasingly expressed and 

phosphorylated through the completion of both nuclear divisions as indicated by the 

appearance of a phosphatase-sensitive western blot band that they did not show (Oelschlaegel 

et al., 2005; Penkner et al., 2005).  Although they did not investigate the role of 

phosphorylation directly, they did show that the band associated with phospho-Mnd2 is 

immediately apparent (at time 0) upon induction of the sporulation program, before pre-

meiotic S phase.  In addition, they found that Mnd2 was degraded sometime after anaphase 

II, although degradation was not required for completion of sporulation, since strains in 

which Mnd2 was constitutively expressed were still capable of complete sporulation.  They 

also found that recombinant His-Mnd2 purified from bacterial cell lysates could effectively 

inhibit APCAma1 in a dose-dependent fashion, suggesting that phosphorylation is not 

necessary for direct inhibition, at least in vitro (Oelschlaegel et al., 2005).  Finally they 

showed that the levels of Ama1 were significantly lower in APC affinity purifications from 

wild type versus mnd2∆ cells, and apparently independent of Mnd2 phosphorylation, 

suggesting that Mnd2 might directly block an association between Ama1 and the APC 

independent of its phosphorylation status (Oelschlaegel et al., 2005).   

 In my research, I have found that Mnd2 phosphorylation is necessary for efficient 

progression beyond the first meiotic nuclear division.  Furthermore, similar to previously 

published results (Oelschlaegel et al., 2005; Penkner et al., 2005), I find that there is no 

significant difference between the binding of phosphorylated or dephosphorylated Mnd2 to 

the APC, in vitro or in vivo (Chapter IV).  Taken in context with the data from Oelschlagel et 

al. (2005), and Penker et al. (2005), these data suggest that phosphorylation of Mnd2 
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functions through an indirect rather than a direct regulatory mechanism that is critical for 

progression beyond the first meiotic nuclear division. 

 One intriguing hypothesis that I put forth now is that phosphorylation is necessary to 

stabilize Mnd2 before prophase I, thereby maintaining the inhibition of APCAma1, which 

allows cells to efficiently progress through the meiotic nuclear divisions.  Indeed, others have 

found that phosphorylation can protect proteins from various forms of degradation including 

direct enzymatic proteolysis (Chen and Stracher, 1989; Litersky and Johnson, 1992), as well 

as ubiquitin-mediated proteolysis (Eckerdt et al., 2005; Hino et al., 2005).  Consistent with 

this hypothesis, I found that Mnd2 levels are low in asynchronous mitotic cultures for the 

S/T-A phosphorylation site mutant, while not as low for the WT and S/T-D mutant in vivo.  

Furthermore the differential levels of the Mnd2 isoforms is proportional to the differences 

observed for sporulation of the corresponding yeast strains that harbor each isoform.  This 

observation provides an explaination for the existence of phosphorylation on Mnd2 during 

mitosis, which until now has remained a mystery.   

 A mechanism for the role of mitotic Mnd2 phosphorylation is shown (Figure 5.2).  I 

propose that Mnd2 phosphorylation is necessary to inhibit degradation of Mnd2 protein by 

some unknown mechanism during mitosis.  Then, upon entry into pre-meiotic S phase, the 

active Mnd2 would be able to inhibit Ama1 from activating APC, and meiotic progression 

would occur normally.  In the case of the alanine mutant, which mimics a constitutively 

dephosphorylated Mnd2 isoform, Mnd2 would be degraded, resulting in an mnd2∆ 

phenotype similar to what I’ve observed.  Likewise, the aspartic acid mutant, which mimics a 

constitutively phosphorylated Mnd2 isoform, would be protected from degradation (as much 

as aspartic acid can mimic a phosphorylated serine or threonine), resulting in normal wild 
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Figure 5.2.  Hypothetical mechanism for Mnd2 phosphorylation in APCAma1 inhibition.  
Mnd2 is phosphorylated during mitosis, G1 phase, and at the initiation of pre-meiotic S 
phase, which inhibits its degradation by an unknown mechanism.  Mnd2 is thus protected and 
able to inhibit APCAma1 complex which forms early in pre-meiotic S phase.  Normal 
progression of meiosis continues, including timely ubiquitin-mediated proteolysis of Pds1 at 
both nuclear divisions, followed by spore formation. 
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type sporulation similar to what I’ve observed. 

 This hypothetical mechanism of Mnd2 regulation is intriguing for multiple reasons.  First, 

it provides a reasonable explaination for why Mnd2 is phosphorylated during mitosis, when it 

clearly has no role in mitotic progression.  Second, it provides a reasonable explaination for 

why Mnd2 is present on the APC during mitosis as opposed to being expressed in early 

meiosis.  The explaination is that Ama1 becomes expressed immediately upon entry into 

meiosis.  Since the decision to enter meiosis is made before pre-meiotic S phase, Mnd2 must 

be present ahead of time to ensure proper inhibition of APCAma1, and protective 

phosphorylation of Mnd2 would enable this to occur.  Third, the hypothesis explains why 

both phosphorylated and dephosphorylated Mnd2 can bind the APC, but only the 

phosphorylated form can inhibit the APC.  Fourth, regulation of Mnd2 by degradation has 

been shown to occur after the second meiotic nuclear division, shortly after the disappearance 

of a western blot band thought to be the phosphorylated form of Mnd2 in vivo (Oelschlaegel 

et al., 2005).  Thus, Mnd2 degradation could be the primary mechanism by which Ama1 is 

allowed to activate the APC in vivo. 

 Should the stability hypothesis be supported by experimental evidence, it would be 

interesting to determine the proteins necessary for Mnd2 degradation.  Recent evidence 

suggests that phosphorylation by PKA can block ubiquitination by the E3 ubiquitin ligase, 

SCFSkp1 (Hino et al., 2005).  Interestingly, some Mnd2 phosphorylation sites discovered in 

my research fall within potential PKA recognition sequences, making this mechanis 

particularly attractive.  In addition, regulation of an APC inhibitory protein, like Mnd2, by an 

SCF-dependent mechanism would be intriguing since the SCF has been shown to target other 

APC inhibitors such as Emi1 (Guardavaccaro et al., 2003; Peters, 2003).  Furthermore, SKP1 
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and CDC53 (Cul1) components of the SCF are active during G1 phase, which would be the 

phase just before pre-meiotic S phase entry.  In addition both SCF components are up-

regulated early in prophase I (Chu S 1998), which would also fit the requirement for the 

observed mnd2-(S/T-A) phenotype.   
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