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Abstract

JUSTIN H. KIRKLAND: The Relational Nature of Legislating.
(Under the direction of Thomas Carsey.)

Since the economic revolution of the 1970’s legislative scholars have produced impor-

tant works examining the relationships between policy preferences and individual choices

in a legislature. This focus on understanding individual preferences versus outcomes has

led scholars to ignore potential inter-legislator influences on choices. In other words, in

the study of relationships between a bill and a legislator scholarship has overlooked the

importance of the relationship between one legislator and another legislator. These stud-

ies represent an effort to push our theoretical understanding of inter-legislator dynamics

forward and build a more comprehensive understanding of how legislators influence, col-

laborate with, and cooperate with one another. Taken together they provide a unified

picture of influence diffusion across a chamber by examining both how relationships be-

tween legislators affect outcomes and how institutions affect the formation of legislative

relationships. Building on seminal sociological work on the importance of tie strength

towards achieving an exogenous goal, I generate a novel theory of influence in a legis-

lature. It will turn out that only the weakest ties between legislators actually produce

changes in the probability a legislator will experience success. This is because weak ties

between legislators are attempts to generate novel cooperation and support. Strongly

tied legislators are strongly tied because of implicit support, thus the observation of the

relational tie tells us nothing about their behaviors we could not have learned before

a legislative session ever began. Strong ties do not indicate cooperation, they indicate

similarity. Weak ties, however, occur between legislators fundamentally different most of
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the time, but who cooperate on some legislation in order to improve its odds of survival.

It will also turn out that the formation of these cooperative ties is fundamentally effected

by the behavioral constraints of a chamber. In particular, the nature of an electoral

district and the size of a legislative chamber will play key roles in the development of

cooperative relationships between legislators.
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Chapter 1

Introduction

At Senator Edward Kennedy’s memorial service, a number of his fellow senators spoke

in his honor. They all noted a lifetime of legislative accomplishments that resulted in

many regarding Kennedy as the most successful senator of his generation. Interestingly,

the majority of those praising Kennedy’s life of public service attributed his success

to his ability to collaborate with his fellow legislators. Many observed that Kennedy

was never reluctant to seek out bipartisan support for legislation about which he cared

strongly, and looked for allies wherever he could find them. While Kennedy remained a

staunch liberal and cornerstone of the Democratic Party, his partnerships on landmark

legislation included Republicans Judd Gregg on student loan forgiveness, John McCain

on immigration reform, and Orrin Hatch on healthcare insurance reforms for children.

These are hardly the partners we would expect a progressive liberal like Kennedy to have.

Kennedy’s penchant for seeking out unorthodox allies, the legislative successes that

produced, and his colleagues’ respect for him that resulted from these efforts serve to

remind legislative scholars that legislating is an inherently relational enterprise. Scholars

have frequently overlooked the complex interdependencies in legislative activities in their

analyses of legislative behaviors. This oversight is both a theoretical and analytical prob-

lem. While Kenendy’s choices of partners might seem odd from a proximity model view,

his (and most other successful senators) legislative careers are marked by a consistent



attempt to engage with those across the aisle during the most important votes. A view

of a legislature as a set of interdependent actors building coalitions, taking cues from one

another, seeking advice, and collaborating on lawmaking while also pursuing individual

legislative goals has the potential to incorporate these type of relationships into what we

already know about legislative behavior.

Scholars should envision this complex web of collaboration, cue taking, and advice

seeking that exists between legislators as an interdependent network of activities. Legis-

lators are actors in a bounded network with a fixed number of possible partners. They

connect to one another through their common efforts, common interests, and time spent

together. The choices of the other members in the chamber condition their choices about

with whom they work. The rules and institutions of the legislature also influence those

choices. For example, the powers granted to committee chairs and speakers almost cer-

tainly influence which other legislators seek out their favor. The development of expertise

in committee will structure the network of advice and cue taking. Thus, legislators influ-

ence one another, and that influence is conditioned by their institutional environment.1

In my dissertation, I adopt this relational perspective as a useful way to think about

legislative behavior. Some of the earliest work on legislative behavior recognized legis-

lators as “specialists in human relationships” (Routt 1938). I intend to demonstrate a)

why relationships are important elements in determining legislative outcomes, and b) how

several types of institutions influence those relationships. To accomplish these examina-

tions, I require data on legislative interactions across institutional contexts. To measure

legislative interactions, I have constructed social networks of legislative cosponsorships

across the 99 state legislative chambers of the United States.

A social network is a system of interactions comprised of V actors and E connections

between those actors. An “edge” e ∈ E exists between two actors if the two actors are

1This is not an overly controversial claim. Game theorists have long recognized that strategic inter-
dependence between actors is a function of the rules of their particular game.
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connected on the relationship of interest. Alternatively, a social network can be thought

of as a square, or adjacency, matrix where rows and columns represent the actors under

study and element ij of the matrix represents the connection between actors i and j.

The cosponsorship networks I have gathered represent connections between legislators i

and j as the number of times legislator i has cosponsored bills introduced by legislator

j. Thus, the cosponsorship network is directional in that a connection points towards

j from i, but not in the reverse direction. The cosponsorship network provides me

with a measure of legislative collaboration (or co-support). Developing cosponsorship

networks across the U.S. state legislatures provides me with institutional variance useful

in demonstrating that the development of legislative relationships is conditional on the

institutional context of the actors.

In chapter 2, I develop and test a general model of the impact of legislative rela-

tionships on legislative outcomes. Building on sociological work by Mark Granovetter

(1973), I construct a model that predicts that the legislative relationships with the great-

est impact on legislative outcomes are the relationships between actors with observable

differences between them. In other words, it is the weak ties between legislators who

harbor fundamental differences from one another that change the legislative process. A

collaborative relationship between Edward Kennedy and John Kerry does little to alter

either’s level of legislative success. A collaborative relationship between Edward Kennedy

and Orrin Hatch can fundamentally alter each actor’s level of support in the chamber.

Pairing cosponsorship networks from eight state legislatures and 15 years of U.S. House

activity with data on bill outcomes in committee and on the floor, empirical analysis

largely corroborates my expectations. Weak ties between legislators both increase leg-

islative success and occur between legislators who are different from one another. Strong

ties exist between legislators who are similar to each other and have no effect on mea-

surable legislative outcomes.
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Having demonstrated that legislative relationships are important, chapter 3 begins

my investigation into the institutional influence of legislative relationships. In 2002, the

Supreme Court of North Carolina mandated that legislators change the 17 state legisla-

tive districts that currently elected multiple members to the state’s lower chamber from

multi-member districts to single member districts. This exogenously imposed change

in electoral context provides an ideal natural experiment in which the behavior of the

treatment group (legislators from multi-member districts) can be compared to a control

group prior to receiving treatment (the legislators from single member districts prior to

2002) and to themselves before and after treatment. Existing literature on free-rider

problems among legislators whose constituencies overlap indicates that legislators from

shared districts ought to be unlikely to work together on legislation. Contrary to this

expectation, I find that legislators from multi-member districts are much more likely to

collaborate (even controlling for political party) than their single member colleagues are,

and that once these legislators no longer share a district their collaboration ceases. Thus,

the empirical evidence strongly implies that multi-member districts were generating, not

inhibiting, collaboration.

In chapter 4, I discuss the nature of group interactions in legislatures and how fre-

quent interactions might alter the network of legislative collaboration. I construct a

mathematical model in which legislators build connections to those most similar to them

ideologically, but, through their interactions with one another, they can learn about un-

expected similarities to other legislators. The most frequent and useful interactions for

this kind of learning occur in committees where legislators develop expertise and discuss

legislation amongst a small group of fellow experts. As a result, the model predicts that

a) as the size of legislatures grow, the chambers will exhibit more partisan relational

networks, and b) controlling for chamber size, larger committees will limit the degree of
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partisanship in the collaborative network. I then introduce the network summary statis-

tic modularity to measure the degree of partisanship in a cosponsorship network. My

results bear out the expectations of my model, indicating that large chambers are more

partisan than smaller chambers and large committees limit that partisanship.

In my final empirical chapter, I focus on a methodological problem in social network

analysis. Summary statistics are useful ways for scholars of social networks to examine

and compare networks of interest. Unfortunately, due to the complexity of social network

data and a lack of understanding regarding the distribution of network phenomenon,

reference distributions for summary network statistics are poorly understood.2 In this

chapter, I use nonparametric permutation tests to generate reference distributions for

the network summary statistic modularity. Modularity is a popular tool for assessing

the degree of separation in a network along a trait of interest (i.e. party-based clustering

in cosponsorship), and permutation tests can tell us when a modularity score of interest

is greater than a random separation of the network would generate. This chapter also

provides an analysis of the properties of the reference distribution, which are a function

of the attributes of the networks themselves.3

Together these examinations demonstrate that a relational approach to the study of

legislatures can provide important insights for legislative scholarship. Legislative relation-

ships are critical determinants of legislative outcomes, and the institutional environment

in which they occur influences legislative relationships. While this work does not mean

to imply that the more individual actor-oriented approach of micro-economic studies

of legislative behavior is without merit, it does demonstrate that more system-level or

2For example, it is well understood that difference-in-means follow a T-distribution with n degrees
of freedom, making the T-distribution the appropriate reference against which one would compare a
difference-in-mean statistic. No such reference exists for network density or the network clustering
coefficient or any other network summary.

3The network density, size of groups in the network, and “true” level of modularity in the network
all influence the size and location of the reference distribution.
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relationship-level studies of U.S. legislatures are productive avenues for novel theoretical

and empirical insights. In particular, proximity models of legislative politics imply that

a legislator’s position within the ideological distribution is the critical component in his

or her legislative success, while my relational approach indicates that a legislator’s po-

sition within a relational environment is also a key element in accomplishing legislative

goals. Bridging large distances in that relational environment is key to passing legisla-

tive proposals, while bridging ideological distance is of no real importance in a proximity

model.
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Chapter 2

The Relational Determinants of
Legislative Outcomes

Legislators are strategic, goal-oriented actors motivated by three main goals: 1) in-

creased institutional prestige, 2) re-election, and 3) good public policy (Fenno 1973).

Legislators are also social beings pursuing those goals in a social construction (a legis-

lature) comprised of interdependent relationships (Patterson 1959, Clark, Caldeira and

Patterson 1993, Peoples 2008, Fowler 2006a, Fowler 2006b). These two empirical facts

beg the question how might a strategic, goal-oriented legislator make use of the relational

environment he or she operates within to pursue his or her goals? What good are collab-

orative relationships to actors motivated by Fenno’s trinity of legislative goals, and, by

extension how do relationships influence legislative outcomes? Research on relationships

in legislatures has uncovered that a link exists between legislative relationships and leg-

islative outcomes (Peoples 2008, Arnold, Deen and Patterson 2000, Tam Cho and Fowler

2010), but the path from relationship to outcome remains hazy at best. My research

provides a theoretical framework, based on seminal sociological research (Granovetter

1973, 1983) for understanding how relationships and positions within a relational net-

work influence legislators’ goals and thus, legislative outcomes.

I develop a theory of influence diffusion across a legislative network that predicts that

weak ties between legislators increase the probability of legislative success while strong



ties between them do not. I test the theory using cosponsorship data from the U.S.

House of Representatives as well as the lower chambers in eight state legislatures. Using

cosponsorship of legislation to measure relationships between legislators has some prece-

dent (Fowler 2006a, Fowler 2006b), and, while cosponsorship may be a noisy indicator

of legislative relationships, there is ample evidence that legislators expend a great deal

of effort seeking cosponsors for their bills, and that they carefully weight their own deci-

sions regarding whether to cosponsor the bills introduced by others (Kessler and Krehbiel

1996). Multilevel logit models provide strong support for my theory, indicating that weak

ties between legislators are the ones that yield increases in legislative success.

Most early work on relationships between legislators has focused on studying one leg-

islature at a time. In a series of articles taking advantage of a unique elite level survey of

the Iowa legislature from 1965, Patterson and Caldeira (1987), Caldeira and Patterson

(1988), and Clark, Caldeira, and Patterson (1993) note that friendships between Iowa

legislators are driven by party, geographic proximity, convergent attitudes, and campaign

activism. Conversely, education and legislative experience predict respect between leg-

islators (with no apparent conditioning effects from attitude divergence). Using 1993

elite level interviews with the Ohio State House of Representatives, Arnold, Deen, and

Patterson (2000) find that friendship between two legislators strongly predicts the like-

lihood of a similar vote at roll call, even when controlling for ideological and partisan

similarities. Using the same Ohio data, but with several methodological improvements,

Peoples (2008) continues to find that the social relationships between legislators have

strong influences on their subsequent behavior at roll call.

A noticeable limitation with all of these studies is their lack of generalizability. Study-

ing elite level surveys in one state prevents researchers from testing a general theory of

relational legislating. In order to increase generalizability, some scholars have moved to
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studying cosponsorship in a legislature as an observable indicator of legislative relation-

ships. Fowler (2006a, 2006b) provides one of the earliest examinations of cosponsorship

in a legislature as a social network. By using cosponsorship, Fowler is able to examine

several years of the U.S. House. His work on the U.S. House of Representatives indicates

that a legislator’s centrality to the social network measured via cosponsorship positively

impacts the success of both bills the legislator sponsored and amendments to bills the

legislator offered. Gross and Shalizi (2009) also examine the cosponsorship network in the

U.S. Senate and find that social predictors like being from the same state, same region,

shared religious denomination and gender predict senators’ decisions to cosponsor one

another. In other recent work, Bratton and Rouse (2009) study cosponsorship in nine

state legislatures and find that gender and ethnicity predict state legislators’ decisions

about cosponsorship.

While generalizability remains problematic, the more important limitation in the

studies of relationships between legislators has been their weak theoretical basis. None

of these studies have developed general theoretical accounts of how and why strategic,

goal-oriented political actors form relationships and how those same strategic actors

might make use of relationships to achieve their own ends. I address this shortcoming by

offering a theory of influence diffusion animated by goal-oriented actors who make use

of relationships to achieve legislative success and influence. Additionally, I will overcome

problems of generalizability by studying several state legislatures and the US Congress

simultaneously.
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2.1 Ties Between Legislators and the Diffusion of In-

fluence

To focus on paths through a legislative social network for increasing legislative success,

I draw heavily on social networking theory developed by Granovetter (1973, 1983). Gra-

novetter argues that when observing information transmission across a social network,

the strength of relational ties is an important consideration. Consider, first the individ-

uals strongly tied in a social network. These actors are generally strongly tied1 in the

network because of their similarities. In a friendship network for example, strong ties

are a result of common interests, activities, and outlooks on life. Those who are weakly

tied in the network are tied together as a result of some interactions that lead to an

association but they retain important differences on the dimensions that generate strong

ties. Thus, weak ties typically occur between individuals with important fundamental

differences.

Granovetter’s initial work focused on job change, uncovering that amongst those

individuals who changed jobs, the information about new employment opportunities came

from acquaintances rather than close friends. The close friends of job changers (strong

ties) share important similarities that prevent them from having novel information to

exchange. They provide no information to the potential job changer that is not already

easily accessible. Acquaintances however, interact rarely and retain differences that grant

them access to information the potential job changer does not already possess. Thus,

those weakly tied to the job changer provide novel information that strong ties simply

cannot provide because of the nature of strong tie development. Subsequent work on

the “weak ties” hypothesis has focused both on the value of these bridging or weak ties

1For Granovetter tie strength is a function of the frequency of interactions. Strong ties are then
defined as people who see each other often. Weak ties are acquaintances who rarely interact.
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to information transmission across the entire network and the value of non-redudant

information provided by weak ties to individual performance. Levin and Cross (2004),

Cross and Cummings (2004), Morrison (2002), and Constant et al. (1996) all demonstrate

the value of bridging ties in individual learning. By building weak ties, individuals in a

network accrue information they could not gather through their network of strong ties.2

Now consider a similar argument within a legislature. Legislators develop their work-

ing relationships in an effort to effect certain goals, one of which is legislative success

(Anderson et al. 2003). A legislator’s desire for success (defined as bills sponsored by the

legislator surviving veto points in a chamber) is a natural extension of the trinity of leg-

islative goals originally developed by Fenno (1973): re-election, good public policy, and

influence within the chamber. Bills a legislator sponsors are more often than not bills the

legislator believes to be good public policy and by passing more legislation an individual

legislator has a greater influence on what a chamber produces. So, understanding how a

legislator’s relational network influences his/her legislative success provides insight into

how a strategic legislator makes use of relationships to achieve the most basic goals of

legislators.

Within this relational network, strong ties (meaning frequent collaboration) form as a

result of similarities between legislators on factors like ideology, party, and demographics.

Because of these similarities, strongly tied legislators have the same preferences for good

public policy (one of the three major legislative goals) and commonly support the same

pieces of legislation as a result even if they did not a have strong tie between them.3 Weak

ties (meaning infrequent collaboration) alternatively, form between legislators who choose

2Other studies (Burt 2004, Perry-Smith and Shalley 2003, Tiegland and Wasko 2000) have found that
as the number of weak ties an individual has increases, creativity and performance in the work place
increase. Bridging ties provide access to alternative points of view that, in turn, increase creativity and
help in the diffusion of good ideas once they have been developed.

3Bratton and Rouse (2009), who only examine strong ties, demonstrate that ideology, party, gender
and race all play important roles in strong tie formation.
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to work together on occasion, but because of some critical difference do not support one

another all the time. These ties are critical for legislative success precisely because they

form between legislators who do not share many other similarities. Weak ties represent

cooperation that is non-redundant to similarity. Establishing relationships with those

less similar to themselves allows legislators to expand their potential sphere of influence

beyond those who are already predisposed to support them because of some set of shared

characteristics. By building weak ties, legislators expand their influence beyond their

similarity-based network of support.

To further elucidate this argument, consider Figure 1. In the first panel of Figure 1,

legislator “d” operates within a clique of strong connections to three other legislators.

These strong ties indicate the base of support the legislator would have received on the

first day of session simply because of similarities to other legislators. Had legislator

“d” never formed these ties, the support of legislators “a”, “b”, and “c” would have

still existed because of similar traits like policy preferences, gender, party, etc. Thus,

if legislator “d” wishes to expand his or her influence beyond similarity based support,

he or she must consider forming a new (or weaker) tie to one of the legislators in the

opposing triangle. By building this bridging tie, seen in the second panel of Figure 1,

“d” has gained access to legislators whose support was not pre-existent.

As a more concrete example, we might think of legislator “d” as former Senator

Edward Kennedy and “d”s strong ties as the other Democrats in the Senate. These

other Democrats would have supported Kennedy’s legislation whether he had ever built

relational connections to them or not because of their shared policy preferences. Instead,

we can consider legislator “e” as Orrin Hatch. Kennedy’s relationship with Hatch has

generated something novel in the network by expanding Kennedy’s potential support

beyond those most similar to him.4

4Sulkin and Bernhard (2010) have provided evidence that cosponsorship decisions are highly reciprocal
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(a) No Weak Ties between Legislators

(b) Legislator “d” forms a Weak Tie

Figure 2.1: Legislator “d” builds a Bridging Tie to a new cluster of Legislators
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While not explicitly discussed in Granovetter’s original work, this weak ties argument

implies that not all weak ties are equal. The value of weak ties is a result of their novelty

of information or influence. By providing access to new resources, weak ties provide

something strong ties cannot. The better the resources that weak tie provides the more

useful the weak tie becomes. For example, gaining the support of a legislator who has

little influence on other legislators adds only one legislator’s support. However, generating

a weak tie to a colleague who is him or herself strongly tied to several other legislators5

can provide a large increase in the likelihood of legislative success. By creating a tie to

one legislator who is connected to many others, a legislator can probabilistically increase

the chances of entire cliques6 of legislators becoming new support clusters.

Returning to the real world example, when Kennedy elects to form a weak tie in the

legislature he can choose his cooperative partner. For example, he might choose between

building a connection to Orrin Hatch (the second most well-connected Senator across the

108th Congress) or Elizabeth Dole (the second least-connected Republican in the 108th

Senate (Fowler 2006b)). By choosing to work along side Hatch rather than Dole, Kennedy

can convince many of Hatch’s colleagues to consider his legislation as potentially useful.

This is of course a probabilistic influence. Many Republicans are more likely to carefully

consider legislation if Hatch and Kennedy are working together than if legislation has

been supported by Kennedy alone, or if legislation has been supported by Kennedy and

(though not perfectly) indicating that collaborative choices between legislators carry weight in decision-
making even after the immediately cosponsored bill has completed the legislative process. They also
present evidence that violations of the norm of reciprocity are often punished. This means that the
immediate cosponsorship relationship continues to affect legislative behavior in the future.

5That secondary connection must also be of the strong type. Gaining the support of a legislator
who is strongly connected to many others, implicitly gathers the support of these others. Gaining the
support of a legislator who is weakly connected to many others means the new legislative base provides
limited implicit support through the new weak connection.

6Bratton and Rouse (2009) also find a high degree of clique like behavior amongst legislators in several
chambers that is even more fine grained than party. Legislators seem to separate themselves into small
groups of people working together regularly.

14



an unpopular Republican like Dole, but are not deterministically certain to support the

Hatch-Kennedy legislation. Thus, Kennedy’s choice of partners is influenced by how well-

connected his potential partner is within a network of new supporters, or the number of

secondary connections the connection to Hatch provides.

From this basic argument about the paths of influence across a legislative network, I

generate four hypotheses. First, the effects of weak ties and secondary ties that stem from

them will provide increases in the probability of legislative success. While the coefficients

on each variable are important in and of themselves, the argument specifies that success

is a result of building bridging ties to novel support clusters. Accordingly, I am more

interested in the combined effects of both weak and secondary ties, than either variable

alone. Second, the combined effects of strong ties and secondary ties that stem from them

will provide no statistically distinguishable increase in the probability of legislative success.

This would indicate that strong ties play little role in shaping legislative influence because

those to whom a legislator is strongly tied already support that legislator regularly.

Third, legislators who build weak ties to a legislator with many strong connections are

the most successful in passing legislation. Thus, a conditional relationship emerges in

which weak ties to highly central legislators are the most important paths to legislative

success. Finally, pre-existing similarities like race, gender, and party will contribute to

the formation of strong ties more than the formation of weak ties. Weak ties create

success through the expansion of influence beyond the support for a legislator generated

through similarities. These similarities, then, should not drive weak tie formation. If

weak ties occur between very similar legislators, it is not their novelty that produces

their influence.

In order to fully test these predictions, empirical models of legislative success will need

to control for potential alternative explanations of bill survival and passage in a chamber.

Bill sponsors may have a host of advantages that improve their likelihood of success when
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proposing legislation. Particularly, committee chairmanship is likely to play a critical role

in legislative success (Evans 1991). In many chambers, committee chairs hold power over

the sequence of proposals within their committees, are important party fundraising and

policy players, and direct the activities of their committees through conference commit-

tee activities and subcommittee appointments. Thus, they wield significant advantages

in determining which pieces of legislation survive veto points. Additionally, the major-

ity party status of the sponsor is likely to play a critical role in bill success (Cox and

McCubbins 1993, Rohde 1991). Membership in the majority party affords a legislator

enough partisan support to pass legislation on the floor, as well as ensuring that the chair

of potential committees of deliberation will share the party identification of the sponsor.

Finally, seniority affords bill sponsors strategic experience in knowing when to propose

legislation in order to improve its likelihood of success. Spending time as a legislator

brings with it knowledge and experiences (as demonstrated by the term limits literature,

see Kousser (2005)), that improve an individual’s understanding of when it is best to

propose legislation in order to improve the odds of success.

Finally, most of these alternative explanations for bill passage are legislator-specific

constructs. The weak ties theory of influence diffusion is itself centered on the legislator

as the important unit of change in the network. This is in contrast to previous treatments

of cosponsorship (the measurement of tie strength I will use), which focus on bill-specific

reasons for cosponsorship without a real consideration of the intedependence in these

choices (Wilson and Young 1997, Kessler and Krehbiel 1996). In order to control for bill-

specific reasons for veto point survival, I include a measure of the number of cosponsors

on each piece of legislation. Accounting for this bill-specific alternative hypothesis means

the relational variables in my models will capture only legislator-specific traits, controlling

for bill-specific popularity. Previous work on legislative success (Anderson et al. 2003,

Volden and Wiseman 2009, Ellickson 1992, Frantzich 1979, Moore and Thomas 1991,
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Bratton and Haynie 1999) has measured success as the number of bills or proportion

of bills a legislator successfully shepherds through the legislative process. By keeping

the dependent variable in these analyses at the legislator level, this work has risked

confounding legislator- and bill-specific reasons for bills to be successful. By keeping my

unit of analysis at the bill and including legislator specific covariates, I can avoid this

potential problem.

2.2 Design and Data

I make use of cosponsorships between state legislators in order to measure tie strength.

I have measured cosponsorship networks for eight state legislatures in 20077: North Car-

olina, Alabama, Minnesota, Mississippi, Alaska, Hawaii, Indiana, and Delaware.8 While

there are certainly limitations to the use of cosponsorship as an indicator of the strength

of a relationship between two legislators, this approach has some precedent (Fowler 2006a,

Fowler 2006b, Bratton and Rouse 2010, Gross and Shalizi 2009). Cosponsorship behav-

ior has been demonstrated to be interdependent (Desmarais et al. 2009), thus justifying

its treatment as a network, and a number of studies (Koger 2003, Campbell 1982) have

demonstrated that decisions about who and what to cosponsor represent decisions about

cooperation and collaboration. Whether one regards cosponsorship as position taking

(Mayhew 1974) or as intra-legislative signaling (Kessler and Krehbiel 1996), theoretical

treatments of cosponsorship all recognize that the behavior is driven by similarity to

7In order to gather cosponsorship data across many states in a timely fashion, I have developed a
web-scraping routine that allows for the extraction of the instances of cosponsorship from legislative
websites. This web-scraper is based on the package RCurl (Lang 2007) in the statistical package R.
Example code for this routine can be made available upon request.

8These eight states were selected for reasons of data availability. They were the only states in
which I could gather all the requisite parts of my model in a reasonable time frame. Though these
states represent a convenience sample, they also represent a reasonable distribution of chamber party
polarization, professionalism and geographic region.
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other actors and the strategic calculation of the costs of cooperation.

In order to account for this between-legislator variance in the rate of sponsorship, I

have divided the network observations of the instances of cosponsorship by the number of

bills each legislator has sponsored. Thus, the observation of tie strength is a proportion of

cosponsorship between legislator i and legislator j in the cosponsorship matrix. In order

to differentiate between strong and weak ties, the networks of proportions must be subset

into weak tie and strong tie networks. To subset the network I classify any connection

between two legislators stronger than the mean plus one standard deviation connection

strength for that particular state as a strong tie. Any connection below this threshold

but greater than zero is a weak tie. A connection of zero is considered no tie. In North

Carolina, if the average tie strength is 0.2 and the standard deviation of tie strength is 0.1,

any connection between legislators that is greater than or equal to 0.3 is considered strong.

Any connection between 0 and 0.3 is considered weak. This threshold is to some degree

arbitrary, but the appendix to this article provides an alternative operationalization of

these concepts in an effort to overcome concerns about the designated threshold I choose.

Censoring the networks in this way yields two network matrices, a strong and weak ties

matrix, in which strong ties are particularly frequent interactions and weak ties are less

frequent interactions. The out-degree of legislator i in any social network A is the number

of ties directed away from legislator i in that network. Thus, the out-degree of legislator

i in the strong ties network is the number of strong connections legislator i has created

to other legislators.9 I use out-degree measures for each legislator in both the strong

and weak ties networks to develop the legislator-specific measures of strong and weak

relationships.

To measure secondary connections I make use of a network statistic called “alter

degree”. Alter degree for legislator i measures the number of connections of every other

9Recall that the strong and weak ties networks are made up of only ones and zeros, so counting the
degree of actor i is equivalent to counting the number of strong ties of actor i
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legislator to whom i is connected. Alter degree then, adds up the “friends of a friend”

or “friends of an acquaintance” in the cosponsorship network depending on whether the

initial tie is strong or weak. Figure 2 illustrates this relationship more clearly.

In Figure 2, Panel (a), legislator A has an out-degree of 2, meaning legislator A

has two connections. Legislator A also has an alter degree of 5, meaning those two

legislators A is connected to have 5 connections themselves. In Panel B, legislator A

has increased his or her connections to other legislators but has not increased secondary

connections, meaning legislator A’s alter degree will not change. In panel 3, we see

legislator A increase secondary connections without increasing his or her own connections.

By choosing different connection sets, legislator A can increase support for legislation.10

Using out-degree and alter degree statistics, I can measure strong, weak, and sec-

ondary connections in order to test my assertions about the nature of tie strength and

legislative success. This produces four measures, strong ties, weak ties, secondary connec-

tions from weak ties, and secondary connections from strong ties. These sets of statistics

will be highly collinear (one can only have secondary connections by having direct connec-

tions first), but I will provide several model specifications to demonstrate the robustness

of my results to this collinearity.

I measure legislative success as whether or not a bill sponsored by a legislator has sur-

vived potential veto points in the chamber. Thus, a bill surviving committee deliberation

has some success over a bill that does not. A bill that passes from the chamber has more

success than a bill that survives committee deliberation but does not pass. I make use

of two dichotomous variables, committee survival (coded 1 if a bill survives committee

deliberation, 0 if not) and bill passage (coded 1 if a bill passes from a chamber, 0 if

10When measuring alter degree, I make use of only secondary connections of the strong type. If
legislator i is weakly connected to legislator j, then legislator i has built a bridging connection to
all those legislators who inherently agree with and support legislator j, those to whom j is strongly
connected. Legislator j’s weak ties are those who regularly do not support j and, thus, will not support
i simply because j does.
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(a) Legislator “a” with alter degree 5

(b) Legislator “a” with alter degree 5, but increas-
ing direct ties

(c) Legislator “a” with alter degree 6, without in-
creasing direct ties

Figure 2.2: Legislator A changes direct and indirect connections
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not). Using these two veto points provides identifiable opportunities for legislation to die

across all eight chambers that I study. This data gathering results in 12,900 bills across

668 legislators, with 4,301 surviving committee deliberation and 2,644 passing out of the

chamber.11

To control for potential alternative explanations, I also measure the seniority of the

sponsor of a bill, the majority party status of the sponsor of a bill, the institutional

advantages of the sponsor of a bill (dummy variable coded 1 if the sponsor is a committee

chair or speaker of the chamber, 0 if not) and the number of cosponsors on an individual

bill. Recall that the network statistics I use are summaries of the entire legislative session,

thus any incidental covariance in the network measures I use that results from the number

of cosponsors on a specific piece of legislation should be controlled for by accounting for

the number of cosponsors on a specific bill as a control. I make use of a multi-level logit

model (Gelman and Hill 2005) with varying state-level intercepts to test whether network

connections have unique impacts on the probability of a bill surviving important veto

points. The form of the committee stage model is:

Pr(Y = 1|X) = αj +Xiβ (2.1)

αj ∼ N(µstate, σ
2) (2.2)

where Xiβ includes the covariates of the model. By varying the intercept at the state-

level, I can account for the fact the there is variance by state in the probability that bills

will survive veto points. The covariates in the model include: Weak Ties, Strong Ties,

11Because I use every bill in each lower chamber in my analysis, there may be some concerns that
the weak ties I observe are all on inconsequential bills or all from a particular policy realm. As such, I
calculate the average number of weak ties per bill for each committee in each state. The distribution of
means in each state was a peaked distribution. This indicates that the average number of weak ties per
bill was similar across each committee in a state. Taken further, this means for example that bills sent
to local government committees had the same number of weak ties connected to their sponsors as bills
sent to the appropriation committees in each state.
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Secondary Ties from Weak Ties, Secondary Ties from Strong Ties, an interaction of Ties

and Secondary Ties for both Weak and Strong classifications, Institutional Advantages

of the Sponsor, Tenure of the Sponsor, Majority Party Status of the Sponsor, and the

number of cosponsors on a specific bill. Thus, this model accounts for variance in the

dependent variable at the state-, sponsor-, and bill-specific levels12.

2.3 Results

I begin my analysis by creating a multi-level logit model in which the dependent variable

is coded 1 if a bill survives committee deliberation and 0 otherwise across eight state

legislative lower chambers in 2007.13 Expectations are that in each model, the effects of

weak ties (either direct or secondary ties stemming from weak ties) will produce positive

effects on success. The fully specified interactive models should also have a positive

interaction term for the interaction between weak ties and secondary ties stemming from

weak ties. Because the interpretation of conditional or interactive arguments is best

presented graphically, I focus on using plots to demonstrate the results of my modeling

efforts. The tables containing the results of these models are present in Appendix A. In

all of the multi-level models I present, the network connection variables are normalized

by subtracting out the state mean and dividing by the state standard deviation.

Figure 2.3 presents the (a) varying marginal effect of strong ties, (b) varying marginal

effect of weak ties, and (c) the difference in the marginal effect of strong and weak ties

12A common concern in the social networking literature is serial correlation or interdependence in
models. This is only a concern in empirical models if the dependent variable is interdependent. Interde-
pendence in the measurement of independent variables poses no real issues for estimation.

13In the appendices, I provide several alternative specifications to this full model in an effort to deal
with the collinearity present in the network independent variables. Weak ties has a variance inflation
factor of 12.9 and secondary weak ties has a variance inflation factor of 6.4 in the full model indicating
that concerns about multicollinearity are warranted (Gujarati 2003 p. 363).
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across the range of secondary ties along with 95% confidence intervals around these esti-

mates. The plots show that the effect of strong ties is never statistically distinguishable

from zero regardless of the number of secondary ties those strong ties produce. Alterna-

tively, as the number of secondary ties increases the marginal effect of weak ties move

from statistical insignificance to a positive and significant relationship demonstrating

the hypothesized conditional relationship. Additionally, rather than just comparing the

marginal effects to zero the third plot indicates that the marginal effects of weak ties

are also greater than the marginal effect of strong ties at a statistically distinguishable

level.14

Figure 2.4 plots the predicted probability of bill survival at the committee stage as

a function of both strong and weak ties and their interaction terms as reported in Table

A1, model 4. In the surface plots, strong ties appear in the darker gray with grid lines

and weak ties appear as the light gray with grid lines. The plots are three dimensional,

allowing both direct and indirect ties to vary across their respective ranges simultaneously

and allowing the marginal effects to also vary as the opposing variable changes values as

required by the conditional interactive model. The plots demonstrate that increases in

weak ties lead to increases in legislative success. While the coefficient on secondary ties

stemming from weak ties is negative, the positive interaction term actually generates a

positive change in bill success as secondary ties increase.

The plane created by the marginal effects of strong ties from a fully-specified, interac-

tive model is much flatter, indicating that strong ties (and the secondary ties from them)

produce little net effect on bill survival. In fact, moving from the minimum on both

weak ties and secondary ties from weak ties to the maximum on both of these variables

14This difference is created by generating a random multivariate distribution of the coefficients using
the variance-covariance matrix from the model. This multivariate approach takes advantage of the
variance and covariance between strong, weak, and secondary ties, rather than just the variance in one
parameter as reported by standard errors.
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produces a change in the probability of bill survival from 0.35 to 0.66 (a statistically sig-

nificant shift). The same jump from minimum to maximum on strong ties and secondary

ties produces a decrease in the probability of bill survival from 0.51 to 0.49.

This result is reinforced by the contour plots which allow weak ties, strong ties, and

secondary ties to vary. The third dimension (the probability of bill survival) is captured

using color with darker colors representing higher predicted probabilities. The contour

plot for strong ties and their resultant secondary connections is uniform in color indicating

there is very little change in the probability of bill survival as strong ties and secondary

connections vary. The contour plot for weak ties shows more dramatic shifts in color with

the darkest shades appearing in the upper right corner. This indicates that the highest

probability of bill survival occurs when both weak ties and their secondary connections

from weak ties are maximized.

Next, I move to an analysis of the effects of strong and weak ties on bill passage from

state lower chambers. Unfortunately, there is a significant sample selection problem that

must be confronted. Bills that pass on the floor face a selection bias from survival at the

committee stage. No bills across all eight legislatures that I study manage to pass from

the chamber without being reported out by a committee (the U.S. House has procedural

shortcuts that allow for passage from the chamber without a committee report). I control

for this potential sample selection bias using the one-stage extension of Heckman (1979).

Table 2.1 reports the results of a single-stage sample selection model in which the

selection equation predicts bill survival at the committee stage and the outcome equa-

tion predicts bill passage from state legislatures. Column 1 reports the selection results

while column 2 reports the outcome results of purely additive models. The single-stage

Maximum Likelihood approach to sample selection is more efficient than the two stage

approach initially devised by Heckman (1979). Thus, rather than calculating the inverse

Mill’s ratio and executing a two-stage multi-level sample selection model, I simply use
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Table 2.1: Heckman Probit Model Predicting Bill Passage in State Legislatures

Variable Column 1 Column 2

Sponsor Institutionally Advantaged 0.175 * -0.087
(0.029) (0.048)

Sponsor Tenure 0.001 0.010 *
(0.002) (0.003)

Sponsor Majority Party 0.234 * 0.078
(0.029) (0.069)

Number of Cosponsors on Specific Bill 0.018 * -0.009 *
(0.002) (0.002)

Weak Ties 0.090 * -0.022
(0.041) (0.064)

Strong Ties 0.007 0.001
(0.018) (0.028)

Secondary Connections from Weak Ties 0.001 -0.039
(0.028) (0.044)

Secondary Connections from Strong Ties -0.029 -0.046
(0.019) (0.031)

Intercept -1.034 * 1.503 *
(0.070) (0.194)

N 12900
LogLik -9799.72
ρ -0.819

Note: Columns (1) and (2) report the results of a Heckman sample selection model. Col-
umn (1) reports the selection equation and column (2) reports the outcome equation. The
dependent variable of the outcome equation is a dichotomous measure of bill passage from
lower state legislative chambers. Models have standard errors in parentheses. Maximum
Likelihood is the method used to estimate the model. State level dummy variables are
estimated but not reported for space considerations. * p < 0.05.

the single-stage sample selection model with state dummy variables. The selection model

results appear to be in keeping with the models produce in Table A1. The outcome model

has far fewer significant results indicating that the independent variables do most of their

work at the committee stage rather than on the floor of legislatures. Differences include

the coefficient on the number of cosponsors on a particular bill changing signs and tenure

becoming statistically significant.

Despite the fact that analysis of bill passage presents less support for the theory of
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weak ties, the expectation that weak ties and their subsequent secondary connections

produce increased legislative success receives support at the committee stage and strong

ties provide no increase in success at the committee stage or at the passage stage. This

is strong support for the weak ties theory as I have outlined it. State legislators wishing

to increase their own influence over the legislation their chamber produces receive con-

siderable increases in success by building bridging connections to legislators that they do

not regularly work along side. Legislators who attempt to increase their own legislative

success by reinforcing the clusters they have always operated within do themselves little

good.

2.3.1 Weak Ties and the US House of Representatives

As an alternative test, both to ensure generality and to cross-check my results with inde-

pendently gathered data, I test the weak ties theory over time on the U.S. House of Rep-

resentatives. Cosponsorship network data has been gathered and maintained by James

Fowler (2006a, 2006b). I merged this with data from the Congressional Bills Project

(Adler and Wilkinson 1991-2008). These two independently collected data sources pro-

vide all of the requisite variables needed to test the theory of weak ties in the U.S. House.

Additionally, analysis of the U.S. House also allows me to include estimates of legislator

ideology through the inclusion of DW NOMINATE scores, an option not readily available

at the state legislative level.15

The construction of network measures for the U.S. House works exactly as it did for

state legislatures. I examine the 102nd through 108th U.S. Houses (1991-2004), providing

me with two sessions of the House before the Republican take over of the mid 1990’s.

15There is considerable danger in equating NOMINATE scores to ideology or preferences. My own
analysis has shown that examining floor voting alone overlooks much of the strategic interplay within a
legislature. Nevertheless, NOMINATE provides a reasonable estimate, widely used across the field with
high face validity.

28



This includes a sample of 37,056 bills, of which 3,925 eventually passed and 3,650 were

reported out by a committee. The unique procedures of the U.S. House do allow for some

bills to pass from the chamber without ever having been reported out by committee, thus

sample selection at the bill passage stage is less of a concern. The results from a logit

model predicting bill survival at the committee stage in the U.S. House are presented in

the Appendix, in Table A2. The analysis in this table mirrors the analysis of bill survival

in state legislatures, except in this model I am able to include NOMINATE scores for

legislators.

Once again, because the interpretation of conditional models is best done graphically

I focus the presentation of the model’s results in plots. Figure 2.5 plots the estimated

probability of bill survival in the U.S. House as both direct and secondary ties increase

simultaneously from the coefficients in Table A2, Column 2 (located in the Appendix).

The marginal impact of the variables is also allowed to vary according to the coefficients

on the interaction terms in the model.16 We see a similar pattern in Congress to what we

saw in the states. There is a positive change in probability of survival over the increasing

values of weak ties and secondary ties from them. The plane representing increases in

strong ties actually indicates a significant decrease in the probability of survival as strong

ties and secondary ties from them increase. This indicates that weak ties produce success

at the committee stage in both state legislatures and in the U.S. House. A move from

the minimum number of weak ties and the minimum number of secondary ties stemming

from them to the maximum on both values changes the probability of bill survival from

0.46 to 0.54. The corresponding shift in number of strong ties produces a decrease in the

probability of bill survival from 0.84 to 0.14. The interactive effect is once again positive

indicating that weak ties become increasingly important as they lead to more and more

secondary ties.

16Because the interaction term is itself statistically significant, we do not require a marginal effects
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Because bills in the US House can pass from the chamber without having been re-

ported out by committee, sample selection is less of a concern here. Of the 37,056 bills

in the data set 1,163 passed without ever having been reported out by committee (out

of the 3,925 bills that passed in total). Sample selection estimators are not designed to

capture selection effects from imperfectly censored data. Thus, I report two multi-level

models with varying intercepts by Congress, but without a control for sample selection

bias in Appendix A, Table A3. These models are identical to the models presented in

Table A2, except the dependent variable is a dichotomous variable coded 1 if a bill passes

from the US House and 0 otherwise17. Figure 2.6 presents the predicted probability of

bill passage as strong and weak ties vary, and their marginal effects vary, as reported

in Table A3. The continued consistent pattern emerges. The predicted probability of

bill passage increases dramatically as the combination of weak ties and secondary ties

from them increases. The reverse is true for strong ties. Utilizing the same jump from

the minimum on both ties and secondary ties stemming from them, weak ties produce

a positive change in the predicted probability of bill passage from 0.44 to 0.57. Strong

ties, alternatively produce a decrease in the probability of bill passage from 0.68 to 0.30.

2.3.2 Predicting the Formation of Ties

The analysis of legislative success in these eight state legislatures and the U.S. House pro-

vides clear empirical support for the notion that weak ties generate increases in legislative

success and, thus, are the most useful paths to achieving legislative goals. However, this

argument about the best paths of influence rests on expectations about the nature of tie

plot to observe that the relationships are conditional

17Because sample selection remains a concern on some level, I have also specified a model for bill
passage that includes bill survival at the committee decision stage as an independent variable. The
results from this specification indicate that bill survival in committee is a significant positive predictor
of bill passage, but its inclusion does not alter the substantive results of my models. All the significant
variables remain significant and in the same direction and the interpretation of the three dimensional
plots remains the same.
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formation and tie strength itself. Weak ties are the best paths for increasing influence

across a social network because weak ties occur between individuals who are dissimilar

on important dimensions. Strong ties are very nearly incidental, resulting from similarity

between actors that existed before the actors ever met one another.

To test the notion that strong ties form between similar legislators and weak ties

do not, I make use of the social network summary statistic modularity (Newman 2006,

Waugh et al. 2010). Modularity measures how well a division separates a network by

creating a measure of the number of ties within a division versus the number of ties across

a division. For example, if a researcher believed a legislature was extremely polarized

along party lines then the expectation would be that a network had a high modularity

score for partisan divisions. This would indicate that there are many connections within

a party and very few connections across party lines. Thus, modularity can measure the

degree to which connections in a network are based on or correlated with similarities

between actors in the network.

Table 2.2 provides a comparison of modularity statistics between the strong and

weak networks in my eight state legislatures along three dimensions: party, race, and

gender. All three of these dimensions have been the subject of social network analysis for

legislatures (Desmarais, Cranmer and Fowler 2010, Bratton and Rouse 2010) and are also

similarities which should drive the creation of collaborative relationships. I expect that

modularity statistics for the strong ties network will be higher in each state than along the

weak ties network for each dimension. This would indicate that strong ties commonly

form amongst legislators of the same race, gender, and party while weak ties do not

commonly form along these dimensions. I operationalize race as a partition between

African American and non-African American legislators. Because Alaska and Hawaii

have no African American state representatives and Minnesota had only one African

American state representative (2008 Directory of African American State Legislators),

33



no modularity estimates exist for these three states along this dimension.

Along each similarity dimension in every state lower chamber, similarities divide the

strong ties network better than the weak ties network.18 This means that in each state

similarities are driving the creation of strong ties more than the creation of weak ties.

Taken together with the empirical results predicting legislative success, this implies that

weak ties are important because they represent the generation of non-redundant support

for legislators.

2.4 Discussion

Network studies of legislative behavior have taken the important step of acknowledging

and accounting for interdependence in behavior amongst legislators. This research has

taken the next step in this enterprise by developing a theory for how and why that

interdependence is used by strategic legislators and influences legislative outcomes. The

strong connections we observe between legislators are a result of their latent similarities

on dimensions that drive their preferences for policy. Legislators of the same party, the

same gender and the same race will often form strong relationships that are essentially

incidental. The support these legislators have for one another would have existed whether

the tie between the two was ever actually formed, because their latent similarities generate

similar policy goals. The weak ties we observe between legislators are strategic attempts

by legislators to alter their base level of support and increase their legislative success.

Empirical evidence from a wide range of legislative networks provides support for

this perspective. My results demonstrate that consistent with theory, weak ties occur

between legislators quite different on important pre-existing dimensions, where strong

18Because modularity is essentially a complex proportion, the measure itself provides no sense of
uncertainty. To deal with this, I have taken a bootstrap style approach to assessing unceratinty which
is presented in the Appendix.
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ties are defined by these similarities. Additionally, the strong ties between these sim-

ilar legislators contribute nothing to a legislator’s level of success when controlling for

partisanship, seniority and institutional position. Instead it is the weak ties (which are in-

tentional attempts to generate support) that increase the likelihood of legislative success.

By generating ties to legislators with dissimilar qualities, new avenues of influence and

support can be created. This suggests that legislative scholars taking a social networks

based approach carefully consider which types of ties they wish to study. If scholarship is

interested in what causes certain kinds of connections then pre-existing similarities like

race, party, and gender are important elements, but if scholarship is interested in how

individual connections influence legislative outcomes then understanding that legislators

form different kinds of connections as a result of different circumstances is particularly

important.

This research paints an interesting normative picture also. Legislators interested in

increasing their chances of achieving their own agendas best accomplish this through

cooperation with legislators unlike themselves. Highly clustered or polarized chambers

provide little opportunity for the bridging ties necessary for legislative success. Thus,

there seems to be a genuine empirical reason for legislators to seek increased cooperation

and decreased polarization within their own chamber. Cooperation across similarities

(which would drive up the number of weak ties a legislator has) would seem to be a reli-

able way to reduce uncertainty about policy outcomes in ways similar to those described

by Krehbiel (1991) in the information theory of legislative organization. By demonstrat-

ing diverse support for his or her bills, a legislator may be able to assuage chamber-level

concerns about the anticipated outcomes of legislative decisions. Additionally, while

scholars have rightly bemoaned the increasing polarization in legislative chambers it is

possible that a broad, polarized distribution of ideal policy points can be overcome and

legislation can move forward if legislators are willing to cooperate with those dissimilar
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from themselves. A legislature with more bridging ties should be able to be more respon-

sive to changes in the political world than a more balkanized chamber, even in the face

of polarized ideal points.
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Chapter 3

Multi-Member Districts’ Effect on
Legislative Collaboration

American legislatures are more than a collection of individual agents calculating the

costs and benefits of legislation once implemented. They are social constructions inhab-

ited by social beings that have complicated influences on one another. In other words, a

legislature is a social network of rational actors making decisions in an interdependent sys-

tem of relationships. Legislators influence and are influenced by their relationships with

one another. Party (Sarbaugh-Thompson, et al. 2006), geographic distance (Caldeira

and Patterson 1987, Caldeira and Patterson 1988, Clark, Caldeira, and Patterson 1993),

and gender (Bratton and Rouse 2009, Desmarais et al. 2009) all influence these rela-

tionships, and these relationships in turn influence legislative outcomes (Fowler 2006a,

Peoples 2008, Arnold, et al. 2000, Kirkland 2011). Qualitative interview evidence pro-

vides strong support for the notion that legislators take cues and signals from one another

about which legislation to support (Kingdon 1973, 1989, Ray 1982, Songer, et al. 1986,

Sullivan, et al. 1996).

The evidence that relationships play an important role in legislating is strong. What is

missing from this literature is an understanding of how the institutions of a legislature in-

fluence the formation and maintenance of legislative relationships. The structure induced

equilibrium school of thought (Shepsle 1979, Shepsle and Weingast 1994) tells us that



institutional arrangements help a chamber avoid sub-optimal outcomes by constraining

behaviors. However, most of the work in this tradition has focused on how institutions

influence choices over bill outcomes and committee behavior. If institutions in a legis-

lature can influence choices by legislators, then these institutions can also affect choices

over collaborative relationships. For example, multi-member districts force legislators to

share geographic constituencies, which should alter their incentives for collaboration and

provide natural allies for use in the securing of policy benefits.

In this research, I take advantage of a unique opportunity to study institutional

change in a legislature. Using cosponsorship data as an indicator of a collaborative rela-

tionship between two legislators, I study the transition in the North Carolina legislature

from a multi-member district system to a single-member system in 2002. I couple this

with cross-sectional analyses of cosponsorship networks in the four states that use some

combination of single-member and multi-member districts (Maryland, New Hampshire,

Vermont, and West Virginia). Results support my theory indicating that multi-member

systems generate or strengthen relationships between actors with shared constituencies.

3.1 Institutional Incentives for Collaborative Rela-

tionships

To understand how multi-member districts might shape legislative behaviors, I begin

by assuming that legislative policy preferences are multidimensional and are driven by

a desire to satisfy constituents’ preferences for government action (Crespin and Rohde

2010, Talbert and Potoski 2002, Hixon and Marshall 2006). That is, legislators prefer to

sponsor, promote, and pass legislation that assists them in maintaining their positions

as elected representatives. I also assume that some issues have clear partisan definitions,
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while other issues are less easy to define along a partisan continuum.1 For example, some

legislative issues like abortion fall cleanly along partisan lines. However, legislators from

multi-member districts or similar geographic regions may have very similar preferences

over distributive legislation even if they are of different parties. In single-member districts

that use partisan primaries, this implies that legislators must balance their legislative

behaviors (and thus, revealed legislative preferences) between the preferences of their

partisan constituency and the preferences of their general election constituency.

In multi-member districts, the connection between constituency preferences and leg-

islative preferences/behaviors is less clear. Legislators can obtain elected positions even

when they finish in second (or even third) place in an election, meaning the threshold

for a successful election is no longer 50% of the district plus one. This provides legisla-

tive candidates with more freedom to position themselves away from median voters in

ideological space. So long as a legislator can obtain a plurality of voters large enough to

ensure a second place vote, the ideological location of that plurality is no longer critical

(Cox 1984). This also means that incumbent legislators have some freedom of movement

in their own legislative behavior. The ability to create a winning coalition that does not

include the median voter, and may not have to include a majority of their own party

provides legislators with increased freedom in their legislative and electoral positions.

Nonetheless, even though the need for a pure majority is no longer present, incumbent

legislators in multi-member districts would still like to maximize their incumbency ad-

vantages.2 That is to say, while legislators from multi-member district no longer require

1Cox and McCubbins (2005) suggest that parties use the political process to kill legislation that
divides the party. The very fact that the party is divided on some issues suggests that some dimensions
are not defined by party preferences.

2Legislators from multi-member districts are confronted with weaker incumbency advantages. Thus,
the need to maximize the ones they possess is extremely strong (Berry, Berkman, and Schneiderman
2000, Carey, Niemi, and Powell 2000).
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a district majority to retain office, they would still like to avoid challenges from cred-

ible candidates. Maximizing an incumbency advantage means taking advantage of the

opportunities incumbents have that challengers do not, one of which is actually passing

legislation that benefits a district. However, given the lack of awareness about legislative

behavior that most voters possess, it is unlikely that voters will be able to distinguish

which of their legislators to reward for policy that benefits a multi-member district. This

is the source of the free-riding problem often associated with multi-member district leg-

islators (Snyder and Ueda 2007). As such, a legislator from a multi-member district may

have an incentive to capitalize on his or her district-alter’s legislative accomplishments

and claim credit without providing any effort (Mayhew 1974).

Alternatively, a legislator from multi-member districts who seeks to maximize his or

her advantages should recognize that maximizing advantages means maximizing policy

benefits returned to his or her district. That same legislator should also recognize that the

natural partnership formed by membership in a multi-member district provides unique

coalitional advantages.3 Through collaboration with his or her district-alter, a legislator

can increase the odds that both individual’s legislation passes.4 Thus, each member of

a multi-member district has an incentive to assist the other legislators from the district

in passing legislation. This will provide all the incumbents from the district with more

opportunities for credit claiming, and thus, help ward off electoral competition. Because

partisan pressures still exist for these legislators, the collaborative patterns from legisla-

tors in multi-member districts should still exhibit a strong partisan component. However,

3Squire and Moncrief (2010 p. 27) summarize the results of research on the differences between
multi-member district and single-member district legislators, which includes the fact that legislators
from multi-member districts obtain more funding for their home districts. Thus, the natural coalition
of the multi-member district wields larger influence than single-member districts.

4Kessler and Krehbiel (1996) and Kirkland (2011) demonstrate that patterns of cosponsorship have
important influences on the odds that a bill will survive certain veto points in a legislature.
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the multi-dimensional nature of legislating means that legislators from multi-member dis-

tricts can work together even across party lines on bills that do not have a clear partisan

definition.

The desire to maximize policy benefits to a district and to collaborate with a district-

alter I describe would create the increased levels of dimensionality in the legislative

behavior of legislators from multi-member districts observed by Bertelli and Richardson

(2004). Legislators from these districts are under pressures from both their legislative

party and their re-election constituency (which may not be strongly partisan) that can be

competing, which in turn generate solutions to voting patterns that scaling procedures

cannot simplify to a single partisan dimension. These competing pressures also would

create the increased party diversity and factionalism in legislatures using multi-member

districts observed by Adams (1999). Natural partnerships besides the political party

exist in legislators using multi-member districts. Thus, partisans have coalitions besides

the political party they wish to respect.5

This geographically based inducement of collaboration is somewhat at odds with early

comparative work on the effects of mixed member and multi-member systems. Loewen-

berg and Patterson (1975) hypothesize that legislators from multi-member districts are

more likely to toe the party line than their single-member colleagues. Because the single-

member district legislators have clear geographic constituencies, they will occasionally

have incentives to deviate from party preferences. Multi-member district representatives

lack a clear signal about which geographic constituencies they represent, thus these leg-

islators have less incentive to deviate from party positions. Stratman and Baur (2002)

provide evidence supporting this notion when they uncover that single-member district

5Because U.S. senators also share constituents, there is reason to believe that this same pattern of
collaboration should exist in the Senate. Gross and Shalizi (2009) observe the expected patterns amongst
senators. The authors observe strong state effects on cosponsorship between senators after controlling
partisanship. This result is in keeping with constituency overlap as a reason for collaboration between
legislators.
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representatives tend to serve on committees where they can serve their constituents while

multi-member district representatives tend to serve on committees that serve the party.

However, Haspel et al. (1998) and Herron (2002) find no difference in the party cohesion

of multi-member versus single-member elected representatives. While multi-member dis-

trict legislators may not know precisely who in their district has elected them relative

to single-member district representatives, the notion that multi-member legislators do

not wish to enhance their electoral chances through service and funding for their district

seems untenable. While in most international mixed member systems candidates are a

part of a party list submitted for an election, in U.S. elections candidates arrive on the

ballot via primary voting share providing them with a clearer image of their geographic

constituencies.

This notion of constituency induced collaboration particularly across party lines, is

also at odds with some of the existing literature on the influences of shared constituency

in American legislatures. In particular, Richardson, Russell, and Cooper (2004) note

that the Arizona House, which uses multi-member districts is more ideologically polar-

ized than the Arizona Senate, which uses single-member districts. Additionally, Schiller

(2000) notes that U.S. Senators from the same state generally act as rivals rather than

partners. In an effort to differentiate themselves, Senators from the same state craft very

different agendas focusing on different issues and different constituencies in their legisla-

tive behavior. Snyder and Ueda (2007) note that legislators from multi-member districts

have incentives to free ride on the effort of the other legislators from their districts, and

thus, are less likely to collaborate to pursue legislation. Given that constituents rarely

know precisely who to credit for outcomes, legislators from the same district have limited

incentives to work together to achieve goals.

Snyder and Ueda also point out, however, that several forces at work within multi-

member districts may discourage free riding. One of these forces is the potential for
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increased effectiveness through coordinated behavior. By acting as a team, legislators

from a multi-member district can wield larger power within the chamber than they could

by acting as rivals. Coupled with the result that legislators from multi-member districts

face decreased incumbency advantages (Carey, Niemi, and Powell 2000) and an increased

need to maximize the advantages they do possess, this would indicate that multi-member

district legislators have an incentive to be productive and work together in the legislature

to ward off challengers. This need for productivity, however, must be balanced with the

need to satisfy partisan constituencies and party leadership.

Thus, multi-member districts generate collaboration between legislators from multi-

member districts particularly on issue dimensions not clearly defined by party. The

natural partnership created by multi-member districts provide coalitional advantages

that grant legislators from these districts increased opportunities for credit-claiming and

make better use of their incumbency advantages. From this characterization of the

impact of multi-member districts on legislative behaviors, I generate several hypotheses.

First, shared party identification will drive tie formation. Even legislators from multi-

member districts feel partisan pressures because of the procedural advantages controlled

by parties. Second, a shared constituency encourages the formation of ties between

legislators as legislators try to maximize the benefits provided to them by shared district

coalitions. Third, the influence of a shared constituency is not conditional on party.

Both cross party and co-partisan legislators from the same district have opportunities

to collaborate on legislation not well defined by party. Finally, legislators from multi-

member districts will be closer on second and third dimensions of behavior than their

single-member counterparts. This implies that once an analysis controls for party, these

legislators behaviors will appear more similar to one another than their single-member

counterparts’ behaviors.
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3.2 Design and Data

In order to test my hypotheses about multi-member districts and their influence on

collaborative tie formation between legislators, I require an observable indicator of a

legislative collaboration. I make use of the instances of cosponsorship of bills between

legislators in order to measure tie formation and strength.6 This approach has a large

precedent (Fowler 2006a, Fowler 2006b, Bratton and Rouse 2009, Gross and Shalizi 2009).

Additionally, there is ample anecdotal evidence that cosponsorship matters to legislators

(Tam Cho and Fowler 2010) and is a useful indicator of a collaborative relationship

between representatives (Koger 2003). Regardless of whether cosponsorship represents a

signal to constituents (Mayhew 1974) or a signal to other members (Kessler and Krehbiel

1996), legislators take the act of cosponsorship as a serious signal of support for other

legislators and their legislation (Campbell 1982).

Additionally, my expectations about similarity between legislators are based on a

multidimensional conception of behavior. The social network of cosponsorships between

legislators is a multidimensional phenomenon (Talbert and Potoski 2002, Zhang et al.,

2008, but see Aleman et al., 2009), making it an ideal legislative behavior for exami-

nation.7 Aggregate roll call voting patterns (a potential alternative operationalization)

have been noted on many occasions to be one-dimensional (Poole and Rosenthal 1997,

6One might imagine an alternative measurement of collaboration as co-voting on roll calls. I believe
cosponsorship to be the better measure because cosponsorship requires a decision to send a signal by
both the potential cosponsor and potential sponsor. Sponsors can turn down cosponsors and cosponsors
can refuse to sign onto bills. It is much less likely that a bill’s sponsor will turn down a vote than it is
that a bill’s sponsor will turn down a cosponsor. Thus, cosponsorship represents a type of coordinated
behavior that co-voting is unlikely to tap.

7Each of the studies cited here observe higher dimensionality in cosponsorship than in roll call voting.
Disagreement between the studies about the appropriate number of dimensions largely stems from dis-
agreements about how to treat decisions not to cosponsor a bill. Talbert and Potoski use NOMINATE,
which treats decisions not to cosponsor as “Nays.” Aleman et al. use a principal components analysis
that focuses on the agreement matrix, and thus, has many fewer zeros about which to worry. The debate
about which method is appropriate is largely irrelevent to the point I make, which is that cosponsorship
has higher dimensionality than roll call voting. Both papers agree on this point.
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Shor, McCarty, and Berry 2010, Wright and Schaffner 2002, but see Crespin and Rohde

2010). This single dimensional may emerge from a variety of sources (Crespin and Rohde

2010, Koford 1989, Heckman and Snyder 1997), but regardless of cause makes roll calls

an inappropriate test for my theory.

Using a web-scraping routine, I have developed cosponsorship networks 8 based on

the instances of cosponsorship on every lower chamber bill for the North Carolina House

of Representatives in 1997, 1999, 2001, 2003, 2005 and 2007.9 During the 2000-2002

redistricting cycle, North Carolina’s lower legislative chamber switched from a system

that had 17 multi-member districts electing 30 of the 120 legislators to a system that

exclusively used single-member districts in legislative elections. This institutional change

provides the opportunity to isolate the influence of multi-member districts and accurately

test my hypotheses concerning the influence of multi-member districts on individual

legislators.10 Because legislative turnover is low, I can examine the legislators who were

members of multi-member districts and study their behavior relative to single-member

legislators contemporaneously and relative to their own behavior after the institutional

change. Any change in their behavior is then directly attributable to the change in

the nature of their electoral district. North Carolina also makes an ideal test case for

this theory because the change from multi-member districts to single-member districts

was mandated by the State Supreme Court (Stephenson vs. Bartlett 2002), meaning

the treatment effect I examine is exogenous to the actors I study. I also reproduce my

8A social network is an adjacency/square matrix where Aij represents the number of time legislator
i has cosponsored legislator j.

9Supplemental Appendix A to this article contain descriptive statistics for the data used in the
analysis.

10It is possible that these 17 multi-member districts represent a non-random sample of the districts in
North Carolina, meaning the treatment of institutional change is not being applied at random. However,
whatever non-random characteristics might have been the impetus for the creation of the multi-member
districts did not change in 2002. This means that any observed change in behavior at this time point
cannot be a function of the static characterstics that generated the non-random selection of multi-member
district creation.
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models of the North Carolina cosponsorship network in four other states that use some

combination of single-member and multi-member districts (NH, VT, MD, WV).11

Testing hypotheses about relational, interdependent outcomes like cosponsorship poses

some unique methodological problems (Cranmer and Desmarais 2011, Erikson, et al.

2009). Primarily, standard regression techniques will produce biased and inefficient co-

efficients because of the violation of the standard regression assumption of conditionally

independent outcome variables. Social network scholars have developed a number of

techniques for analyzing relational data. I employ the latent space approach to social

networks12 (Hoff et al. 2002) which models the probability of some Yij given some X,Z, θ,

where X is a matrix of observed characteristics, θ is a vector of parameter values, and Z

is a vector of positions in latent Euclidean social space of the actors in the model.13 The

latent social space refers to a space of unobserved latent characteristics that represent

11In the 2001-2002 session, the Democrats controlled a majority of the lower chamber seats with a
62-58 advantage. Following the 2002 election, the Republicans retained a slight 61-59 advantage. This
change in majority party control could potentially threaten inferences regarding the contemporaneous
institutional change. One could imagine that the incentives for collaboration may be quite different in the
Republican and Democratic controlled chambers. However, this is not quite as dire a threat to inference
as it may seem. In fact, just before the opening of the 2003-2004 session Michael P. Decker (a generally
conservative legislator) switched allegiance from Republican to Democrat. This abrupt change means
that the Democrats and Republicans were tied for chamber control at 60-60. This also means that the
Democrats retained substantial procedural power over almost the entire sample I observe (the exception
being 1997), electing co-Speakers of the House in the 2003-2004 session and splitting committee chair
positions with the Republicans. Investigations would later reveal that Decker accepted a $50,000 bribe
from Democrat Jim Black in order to switch parties. There is no reason to expect that a tied chamber
would prove less collaborative and thus be collinear with the change I predict in 2003. In fact, Fenno
(1973) might lead us to expect more collaboration in a tied chamber.

12An alternative to the latent space approach is the Exponential Random Graph Model (ERGM).
The ERGM has not been extended to cases with non-binary edges making it an inappropriate modeling
choice for this data. Thus, to use an ERGM I would have to censor a great deal of information out
of the dataset and collapse counts of cosponsorship between two actors to dichotomous observations.
Additionally, cosponsorship networks are commonly dense graphs (meaning they have many connections)
and ERGMs are commonly nonconvergent in dense social networks.

13Accordingly, the unit of analysis in my models will be the dyadic observation of tie strength between
two legislators. Yij in these models will represent the number of times legislator i cosponsored legislator
j
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patterns of connections in network relations. In other words, the latent social space rep-

resents unmodeled similarities between actors that are implied by their relationships with

one another. A probability measure over these unmeasured but distinguishable charac-

teristics fits a model in which the presence of a tie between two individuals is dependent

on the presence of other ties. For example, a tie between i and j and i and k suggests

that j and k are not very far apart in the latent space. The distance between j and k

is dependent on the observations of both the connection between i and k and i and j.

Thus, based on their patterns of connections between other actors in the network, the

latent space model allows for the assessment of distance between two unconnected actors

while simultaneously controlling for the interdependence inherent in network data. This

interdependence in latent space positions allows the model to control for common net-

work effects like reciprocity or transitivity that would ordinarily bias results. Given these

estimated positions, the ties in the network can be assumed conditionally independent

and can be modeled as some function of positions and actor or pair specific characteris-

tics using standard glm models like a Poisson. Scholars have successfully used the latent

space model to study the impact of race and gender on cosponsorship in Congress (Des-

marais et al. 2009), conflict between Asian states (Hoff and Ward 2004a), and affinity

between monks (Hoff et al. 2002).

While latent space models of social networks allow for traditional hypothesis testing

on relational variables, they are also useful as dimensional placement tools. Because these

models place actors in a multi-dimensional social space based on their connections with

one another across many bills, they provide me with the opportunity to observe whether

multi-member legislators are closer on nonpartisan dimensions of behavior to one another

than their single-member colleagues are. Using the 2002 change in North Carolina can

provide a clear examination of whether multi-member legislators are closer than their col-

leagues on these dimensions when they share a constituency, and whether that similarity
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on alternative dimensions diminishes once shared constituencies are eliminated.

3.3 Individual Behavior and Multi-Member Districts

In testing my hypotheses about the formation of ties between individuals who share a con-

stituency in North Carolina before and after the elimination of multi-member districts,

I estimate a Poisson latent space model.14 The latent space generated by this approach

accounts for the interdependence between actors allowing for the estimation of exoge-

nous pair-specific characteristics like shared party identification and shared constituency.

Thus, the coefficient values reported are standard Poisson coefficients controlling for in-

terdependence between actors. In these models, the dependent variable is the dyadic

observation of the number of cosponsorship between two legislators in the network of

cosponsorship counts. As independent variables, I include a dummy variable if two ac-

tors are in the same party, if two actors share a constituency,15 an interaction of these

two variables, and two latent space dimensions. The coefficient on same party is expected

to be positive and significant, the coefficient on shared constituency is expected to be

positive and significant, and the interaction is expected to be insignificantly different

from zero.16

Rather than present a series of six tables of coefficients, I place the tables in an

14Recall that the network of cosponsorships I model is a count network of the instances of cosponsorship
between two people across all the bills of a legislative session.

15I define shared constituency as any pair of legislators who at one point in time shared a district
together. Two legislators in 2003 from single-member districts who had been from multi-member districts
are coded one for shared constituency. For example, Cary Allred (R) and E. Nelson Cole (D) were elected
from the multi-member 25th district in 2001. They were elected from separate districts in 2003, but
are coded as having a shared constituency because in the past they came from a multi-member district.
This allows me to observe whether collaboration between members from these kinds of districts persists
into the future in spite of the change in the nature of their district.

16While including a term expected to take on an insignificant coefficient is unusual, this allows me
to demonstrate that the effects of multi-member districts are the same within and across parties. An
additive term alone would fail to make such a distinction.
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appendix and present the results graphically. In Figure 3.1, I present the coefficient

estimates for the shared constituency variable from the Poisson regressions from 1997-

2007 along with their 95% credible intervals.17 The right hand panel of Figure 3.1 also

plots the coefficients for the interaction of same party and shared constituency. Before

the elimination of multi-member districts, shared constituency was a strong predictor of

tie formation between actors. This indicates that legislators from multi-member districts

cosponsored one another at a higher rate than legislators from single-member districts.

However, after the elimination of multi-member districts, those same individuals who

once shared a multi-member district (and who once had connections with one another in

a cosponsorship network) no longer work together at a rate higher than other members

do.18 The interaction term in the right hand panel is only significantly different from

zero in 2005 and 2007 well after the change in electoral systems. This indicates that

multi-member districts’ effect on cosponsorship is not significantly different for same

party versus cross-party pairs of multi-member legislators. Because I draw this inference

only from legislators who at one point shared a constituency and this inference is based

on individuals who are present throughout the time series, I can be reasonably certain

that the only change occurring is their loss of a shared district. It is unlikely that their

policy preferences are changing, given the stability in ideology of political elites (Poole

and Rosenthal 1997) and their party identifications have not changed.19

There is the potential, however, that the change in collaboration is a result of a

17The table that produces this plot is located in Appendix C as Table 7.8.

18In Supplemental Appendices D and E to this article, I present several other operationalizations of
this test. I include an analysis of specific kinds of legislation rather than the universe of bills and an
analysis of roll call voting rather than cosponsorships.

19While the models I present are simple specifications, Appendix C presents a series of graphs indi-
cating the quality of predictions from each model. The models accurately predict 89% of ties across all
six North Carolina models. This suggests that even though the model specification contains only three
variables there is vary little variance left to explain.
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dramatic change in constituency from the multi-member district system to the single-

member district system. For example, a Republican and a Democrat from a multi-

member district may cooperate because they have an overall moderate constituency.

During redistricting this moderate multi-member constituency may be broken up into

more extreme single-member districts, which in turn may cause the drop in collaboration.

In this scenario, similarity in constituency causes collaboration not the institution of

multi-member districts. If, however, the constituencies in the single-member district are

very much like the original multi-member district, then the same representatives work

together when they share a district and stop after the division of their district, even

though their districts remain similar. This would strongly imply that it is the institution

of shared constituency and not similarity in constituency that is causing collaboration.

Figure 3.2 shows the change in the proportion of registered Democrats and the change

in per capita income in the resulting single-member district from the originating multi-

member districts. For example, if a single-member district’s proportion of Democrats

is very different from its original multi-member district’s proportion of Democrats, then

the lines from zero in the left panel will be quite long.20 Additionally, the dotted lines

in the figure provide a sense of the magnitude of these changes by plotting the aver-

age incumbent advantages held in both vote totals and fundraising. Only one of the

multi-member districts has a shift in partisanship such that it might affect an average

electoral outcome. None of the districts have a shift in income that would influence the

fundraising advantage held by incumbents. The figure indicates that in terms of both par-

tisan make-up and income distribution, the resultant single-member districts look very

much like their originating multi-member districts. This provides evidence that what

is driving multi-member based collaboration is the institution of a shared constituency,

20As an example, the multi-member district 4 for North Carolina’s House was 53% Democrat before
redistricting. The redistricting effort created the single-member districts 13 and 14 from the 4th district.
These two districts were both roughly 55% Democrats, creating a change of roughly +2%.
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not a similar constituency. Once this active sharing of constituents vanishes, members

who once worked together cease working together even though their districts look quite

similar. There are large, observable changes in legislative behavior when there are only

small changes in the make up of legislators constituencies. Thus, it seems unlikely that

the election of ideologically similar legislators for the 2001 session created the collabora-

tion between legislators observed under multi-member districts. If these legislators were

ideologically similar in 2001, they would have no reason to cease collaborating in 2003.21

Because legislative turnover is low, a reasonable number of the former members of

multi-member districts from 2001 remain in the dataset in 2003. However, over time

elections eliminate these members from the data set. This means that by the end of the

series of regressions I present, there are very few members left in the dataset who were

once members of a multi-member district. As an alternative specification for shared con-

stituency after the elimination of multi-member districts, I create a variable coded one

if two legislators represent a district that was ever part of a multi-member district and

zero otherwise. In this measure, legislators who never themselves shared a constituency

may be coded as joint members of a formerly multi-member district because these legisla-

tors replaced individuals who did share a constituency.22 While the inference from these

individuals is less precise in determining the effects of multi-member districts on col-

laboration between individuals, specifying shared constituency in this way increases the

sample of legislators from formerly joined districts. Additionally, it is unlikely that the

21Rather than simply graphing the data, I have also included the ideological makeup of a legisla-
tor’s district as a covariate in latent space models of the cosponsorship networks for 2001 and 2003.
This covariate adds a term to the network model that measures the absolute difference in the North
Carolina House Democractic vote share in two legislators districts. When this difference is high then
legislators have very different proportions of Democrats voting for them. This covariate takes on the
expected negative and statistically significant sign, but does not effect the sign or significance of the
other covariates.

22To create this variable, I generate a centroid (a point in the geographic center) in each of the 2003
legislative districts. I then overlay the 2001 district maps on top of these centroids. If two centroids
from 2003 districts are in the same 2001 district then these 2003 districts are coded to have once been
a part of the same constituency.
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individuals who have taken over what was once a multi-member district came to politics

in a vacuum. They were likely active in politics or attentive to politics when the district

was multi-member, thus they may have some awareness of the norm of collaboration with

representatives of other constituents.

Once again, I present the results of this alternative specification graphically in Fig-

ure 3.3.23 The same consistent image emerges. Before the elimination of multi-member

districts, legislators from the same multi-member district collaborate regularly. Follow-

ing the elimination of multi-member districts, legislators from formerly multi-member

districts no longer work together at a noticeably higher rate.

Figure 3.4 presents coefficient densities on same party from the models in Table

7.8. Being members of the same party strongly predicts tie formation between two

legislators both before and after the elimination of multi-member districts. Because the

party coefficients from both the models analyzing legislators who were once members of

a multi-member district and legislators who represent what was once a multi-member

district are virtually indistinguishable, I present only the coefficient densities from the

model associated with Figure 3.1.

Finally, the latent space model produces estimates of positions for actors in a latent

social space (Hoff et al. 2002). These positions are defined by the patterns of connec-

tions observed in the dependent variable while controlling for the specified covariates.24

Therefore, these positions represent actor positions in a social space on unmeasured di-

mensions. Figure 3.5 plots these network positions for North Carolina legislators in 2001

and 2003. My theory specifies that multi-member legislators will be closer to one another

on non-partisan dimensions than single-member legislators will. Accordingly, I construct

a simple latent space model with a covariate for same party and two latent dimensions.

23The table of results appears in Appendix C as Table 7.9

24For example, transitivity or reciprocity in network connections provide information about the dis-
tance between actors in the social space.
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Figure 3.4: Party Coefficient Estimates and Credible Intervals (1997-2007)
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These latent dimensions are the first and second observable dimensions of legislative

behavior after party.

When looking at actual differences in positions between legislators, I make use of rank

order comparisons and the Wilcoxon rank sum test. The Wilcoxon test is a location shift

test that will determine the probability of a location shift in the distribution of ranks for

two different samples. It provides a useful way to differentiate whether the distribution of

position differences in the legislative network systematically ranks legislators from multi-

member districts lower than other pairs of colleagues. The Wilcoxon test is useful here

because it does not require any assumptions about the distribution of differences. Multi-

member district legislators are closer to one another on the first dimension controlling

for party than the average two legislators not sharing a district in both 2001 (p-value

of 0.001) and 2003 (p-value 0.007). On the second dimension however, multi-member

legislators are closer than the average pair of legislators not sharing a district in 2001

(p-value of 0.003) but no longer closer than expected in 2003 (p-value of 0.36), precisely

as predicted.

Comparing the distances on dimensions of behavior between legislators who share a

district and all other legislators is a relatively weak null comparison. A more strenuous

comparison of multi-member similarities relative to other legislators is to compare leg-

islators who share a district to pairs of single-member legislators who are of the same

party (rather than all single-member legislators). The differences on the first dimension

of cosponsorship behavior controlling for party between legislators who share a district

are also significantly smaller than differences between pairs of single-member legislators

who are in the same party in 2001 (p-value of 0.044). Yet, this difference is no longer

statistically significant in 2003 (p-value of 0.15). The difference between legislators who

share a district and pairs of same party single-member legislators is insignificant on the

second extra-party dimension in both 2001 and 2003. Once again, empirical evidence
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indicates that in 2001, multi-member legislators were more similar to one another than

their single-member colleagues were, but following the exogenously imposed change in

electoral districts in 2003, these same multi-member legislators are no longer statistically

significantly different from their single-member colleagues. If the common cosponsorship

between legislators I observe were just a function of multi-member districts electing two

similar legislators, then there would be no reason for movement following the elimination

of multi-member districts, particularly given the fact that their districts changed very

little before and after the switch.25

3.3.1 Mixed Member Systems in Other States

While the inferences drawn from my analysis of North Carolina are clean thanks to

the observable change in institutions, a more general examination can be crafted using

states that use combinations of multi-member and single-member districts in legislative

elections. There are four such states in the country: New Hampshire, Vermont, West

Virginia, and Maryland.26 Within these states, I can make the similar comparisons as

in North Carolina to determine whether shared constituency encourages collaboration

across other state legislatures.

Figure 3.6 replicates the analysis from Figure 3.1 in each of the 4 states I mention, but

only in 2007. The plot presents point estimates from a Poisson Latent Space model with

two latent dimensions. The points in the plot represent the actual point estimates and the

lines coming off the points represent 95% credible intervals. Grey points represent model

25Analysis of roll call votes also indicates that legislators from multi-member districts change their
voting behavior following the change to single-member districts. Because these analyses involve the
exact same individuals, this means that the voting behavior and cosponsorship behavior of individual
legislators is changing following their change to single-member districts. The roll call analysis is presented
in Appendix E to this article.

26New Hampshire elects 96% of its 400 legislators from multi-member districts. Vermont elects 57%
of its 151 legislators from multi-member districts. West Virginia elects 63% of its 100 legislators from
multi-member districts, and Maryland elects 79% of its 141 legislators from multi-member districts.
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Coefficient Plot for Party and Shared Constituency in Four States
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Figure 3.6: Multi-Member District Coefficient Estimates and Credible Intervals in NH,
WV, VT, MD

estimates for party’s effect on cosponsorship behavior and black points represent the

effect of shared constituency on cosponsorship behavior for members of opposite parties.

The interaction term demonstrating the effect of shared constituency for members of the

same party is not presented in the plot, but is reported in Table 7.10 in the appendix.

This interaction is never statistically different from zero. The consistently positive effect

in each of these states mirrors the results in North Carolina, indicating that shared

constituency is a driver of cooperative behavior in these states as well.
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Once again, I make use of the Wilcoxon rank test in order to examine whether dif-

ferences on first and second dimensions after controlling for party are smaller for multi-

member legislators than pairs of single-member legislators. The hypothesis here is that

the distribution of differences between legislators will systematically rank pairs of legisla-

tors who share a district lower than pairs of single-member legislators. This indicates that

their differences are on average smaller than differences between single-member district

legislators. There is a statistically significant shift downward in the rankings of differ-

ence between legislators who share a district in Maryland (p-value of 0.0001) and West

Virginia (p-value of 0.000). Vermont misses the 0.05 cut off, but there is a significant

shift downward at the 0.10 level (p-value of 0.061). There is no statistically significant

difference between legislators who share a district and their single-member colleagues in

New Hampshire (p-value on downward shift of 0.489). The same pattern appears when

comparing legislators who share a district to pairs of single-member legislators of the

same party. Maryland and West Virginia have significant shifts downward (p-values of

0.001 and 0.000, respectively), and Vermont has a significant shift downward at the 0.10

level of significance (0.080). New Hampshire has no significant shift. New Hampshire’s

insignificant findings are likely a result of the limited number of single-member legislators

elected in that state (only 4% of 400).

While these comparisons are taking advantage of only within legislature variance and

not temporal or between legislatures variance, these results do indicate that cosponsorship

is more common among legislators from a shared constituency in each of these four states.

Furthermore, in three of the four states, legislators from multi-member districts are more

cohesive than single-member legislators from the same party. Thus, in both a natural

experiment and a cross-sectional comparison of legislatures, the hypotheses about the

influences of multi-member districts on cosponsorship behavior receive support.
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3.4 Discussion

This research has demonstrated how the electoral institution of a shared constituency in-

fluences the subsequent collaborative behavior of state legislators. By granting legislators

freedom to position themselves away from median voters in ideological space and granting

them a natural coalitional partner, multi-member districts increase the probability that

two legislators will collaborate over the course of a bill’s life. When those two legisla-

tors are from the same party, multi-member districts increase their rate of collaboration.

When those two legislators are of different parties, multi-member districts actually create

collaboration. Using a natural experiment from North Carolina’s state legislature, empir-

ical evidence indicates that multi-member district legislators are more likely to cosponsor

together and that multi-member legislators are closer together on unobserved dimensions

driving behavior when controlling for party. In the absence of multi-member districts,

these characteristics fade away, and legislators formerly from multi-member districts be-

gin to look exactly like their single-member counterparts. Cross-sectional evidence from

Vermont, Maryland, and West Virginia provide additional evidence supporting these

hypotheses.

Most early work on multi-member districts in state legislatures focuses on under-

standing the effects of these institutions on questions of representation, like how these

institutions influenced the minority, gender and partisan makeup of a chamber (Gerber

et al. 1998, Niemi et al. 1985, Niemi et al. 1991, Grofman et al. 1986, Welch and Stud-

lar 1990). Prior work on the post-electoral behavior of legislators from multi-member

districts indicated that these districts amplified polarization, created rivals rather than

partners, and created incentives to free-ride on the efforts of other legislators from the

shared district. I find that multi-member districts actually generate collaboration when

controlling for partisanship. This collaboration stems from efforts by legislators in multi-

member districts to maxmize their limited incumbency advantages and ward off potential
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challengers. Additionally, this work provides clear evidence that institutional arrange-

ments in a legislature can and do influence the collaborative behavior of legislators. By

altering the incentives for shared credit claiming, rules and constraints can engender or

eliminate cooperation between members. It is possible then that other legislative insti-

tutions beyond multi-member districts can condition the collaborative behavior between

representatives.

As Snyder and Ueda (2007) point out, this coordinated behavior by legislators from

multi-member districts should alter their legislative productivity and their district’s share

of legislative benefits. Kirkland (2011) has noted that both a large and diverse coalition

of support helps legislators pass bills. Thus, multi-member districts provide legislators

with natural allies that should help them swing legislative outcomes in favor of their home

district. Legislators from single-member districts lack allies expressly interested in helping

them benefit their home districts. Additionally, by creating an electoral environment

where legislators are free to position themselves away from the party or district median,

multi-member districts should limit the party cohesion within a legislature (a result

supported by Adams 1996) and create more ideologically diverse political parties.

Finally, this work points to the importance of studying cosponsorship if scholars

are interested in the multi-dimensionality of legislative behaviors. Roll call analysis

consistently produces one-dimensional solutions of ideal point placements for legislators.

Cosponsorship can allow scholars to examine the multi-dimensional elements of legislative

choice by providing a window into decision-making earlier in the legislative process.
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Chapter 4

Chamber Size Effects on the
Cooperative Structure of

Legislatures

In order to achieve some of their legislative goals, legislators are often forced to col-

laborate with one another and build reliable relationships in a complex network of in-

teractions. These collaborative choices and the resultant network of relationships are

subject to many of the typical factors generating social networks (Newman and Park

2003, McPherson et al. 2001, Desmarais et al. 2009, Bratton and Rouse 2009, Louch

2000). For example, legislators are more likely to cosponsor other legislators to whom

they are similar, a network phenomenon called homophily. However, unlike most social

networks built around instances of friendship or affect, collaborative choices between leg-

islators occur in a strategic environment among actors pursuing goals like re-election,

influence, and different incarnations of public policy (Fenno 1973). Legislators must bal-

ance their choices about whom to trust and with whom to collaborate with the potential

costs of those relational decisions. Because of these potential costs from association, the

development of legislative relationships in this strategic context will be subject to the

constraints imposed by the institutional environment that shape legislative choices.

Research noting the complexity of legislative decisions or collective decision-making

more generally extends back as far as Arrow (1963). Legislatures, however, provide



structures that help limit the complexity of these choices in a multi-dimensional space.1

These structures or institutions induce equilibria by eliminating choices or providing

information about key players in the legislative process that allow legislators to focus

their selections on a constrained set (Shepsle 1979, 1994). While the majority of the

work on structure induced equilibrium has focused on voting behavior, relational choices

are subject to similar complexities and can be similarly affected by institutions that

increase or decrease the costs associated with navigating that complexity.

Two of the most basic, yet most fundamental, institutional characteristics of a leg-

islative body are the size of the chamber and the size of the committees in the chamber.

Legislators must learn about one another to develop collaborative and cooperative part-

nerships. While a large chamber provides more potential partners, it also provides more

individuals about whom a legislator must learn. Larger chambers also produce many

more combinations of potential collaborative networks an individual might develop mak-

ing the choice of an optimal collaborative network more difficult. Committees, alterna-

tively, provide an opportunity for legislators to interact with one another in a setting of

fewer actors. Committees afford legislators time to learn specific information about one

another and the chance to gain insights about potentially valuable partnerships. Larger

committees help legislators develop a more optimal collaborative network by providing

them chances to learn about a greater number of potential partners.

In this research, I develop a theory of informational costs associated with relational

choices in a legislature. Specifically, I argue that chamber size and committee size al-

ter the ease/difficulty of selecting collaborative partners in a legislature by providing or

obscuring information about legislative preferences on multiple dimensions. Large cham-

bers make it relatively more difficult to learn about the preferences of all the potential

1While a great deal of work has pointed to the endogeneity of internal institutions in the U.S. Congress
(Gilligan and Krehbiel 1989), almost all U.S. state legislatures have exogenously structured institutions
through their state constitutions. Even the U.S. Congress is subject to some exogenous institutions like
elections and term lengths.
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relational partners in a chamber. When there are many partners to learn about, leg-

islators will rely on simple cues to determine their relational selections. Committees,

alternatively, reveal individual preferences on substantive dimensions through commit-

tee interactions. Similar to the floor’s use of committees to learn about bill outcomes

(Gilligan and Krehbiel 1989), individuals use committees to learn about one another.

By revealing otherwise hard to learn information, committees facilitate the formation

of connections between legislators that would not exist in a purely partisan legislature.

Thus, these institutions shape the organization of the aggregate collaborative network of

a legislature in systematic ways. I use a computational model to more rigorously evaluate

my theory and generate some testable hypotheses.

I test the predictions from my computational model using data on legislative cospon-

sorship networks from 96 state legislative chambers in 2007. I use summary statistics for

these social networks to assess how the size of a legislative chamber shapes the collabo-

rative network of legislatures. Results indicate that as chambers grow in size, networks

become more partisan and the distance across a collaborative network grows. Alterna-

tively, as committee sizes grow, distance across the collaborative network shrinks.

4.1 Relationships and Legislative Choices

The majority of the work on legislative relationships has focused either on how individ-

ual factors influence relational formation (Bratton and Rouse 2010, Gross and Shalizi

2009, Desmarais et al. 2009) or on how the patterns and positions of relationships in the

legislative network influence outcomes (Fowler 2006, Tam Cho and Fowler 2010). These

works have consistently shown that 1) relationships between legislators form in struc-

tured, predictable ways and 2) that the network of relationships between legislators has

important implications for legislating. For example, Tam Cho and Fowler (2010) have

shown that the “small world” properties (Watts and Strogatz 1998) of the cosponsorship
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network, intended to capture the balance of clustering and distance in the cosponsorship

network for the U.S. House, is a powerful predictor of the number of important pieces of

legislation that the House produces.

We know from institutional literature, however, that legislative choices are subject

to constraints imposed by legislative structures (Shepsle 1979, 1981). These structures

induce equilibria by constraining choices and eliminating potential outcomes from the

choice space of legislators (Shepsle and Weingast 1987). Relational choices are also likely

to be subject to institutional constraints. Political party affiliations, for example, are

useful heuristics for individual legislators in determing whom to trust. Given a large

number of potential informants, party provides legislators with a simple cue about who

is and is not similar to one another and thus likely to provide valuable information

(Kingdon 1981). Rules that influence the familiarity of legislators with one another are

also likely to influence collaboration. Without sufficient time to explore the relational

environment, legislators are likely to develop relationships along obvious lines. Sarbaugh-

Thompson, et al. (2006) provide support for this notion by demonstrating that there are

fewer bipartisan relationships in the Michigan House following the implementation of

term limits.

One of the institutions commonly found to play a pivotal role in structuring legislative

choices is the committee system for a chamber. Committees help reduce a complex

environment of legislative choices down to a more manageable set of alternatives by

providing information from policy experts (Gilligan and Krehbiel 1989) and a focused set

of critical veto players (Shepsle and Weingast 1987, Cox and McCubbins 2005). Francis

(1982), in some of the early work comparing committee systems across state legislatures,

shows that the optimal committee system for efficient deliberation is a function of the size

of the legislative chamber. Francis and Riddlesperger (1982) also show that committees in

state legislatures have become the focal point of agenda control, meaning that legislators
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view committee memberships as useful pieces of information regarding which actors in

the chamber hold critical veto power.

In addition to the committee system of a legislature designating key veto players

in the deliberation process, it is also a tool for developing and disseminating expertise.

Aldrich and Rohde (2004) point out that much of the work done in committees is not

nearly as divisive as we might believe and that much committee activity is extremely

accordant. Indeed, Hamm, Hedlund, and Post (2011) point out that most state legislative

committee systems are formed to fill the knowledge and expertise needs of the floor,

while Battista (2009) observes that larger, less polarized legislatures tend to focus their

committee systems on building informative committees and Richman (2008) indicates

that committees are more likely to be populated by ideological outliers when the floor is

increasingly uncertain.

The size of a legislative chamber and of the committees within that chamber have

important influences over the complexity of choices faced by the membership. Analysis on

the “yoke” of a deliberative body (the set of alternatives which cannot be beaten by other

legislative proposals) indicates that as the size of a deliberative body increases the size of

the yoke decreases. Thus, as chambers get larger the set of optimal proposals decreases

and choices become much more unstable. (Karotkin and Paroush 2003, Koehler 1989,

Feld, Grofman, and Miller 1988, Miller, Grofman, and Feld 1989). Several comparative

studies at both national and sub-national levels support this idea, indicating that as

legislative chambers increase in size government spending also increases (Bradbury and

Crain 2001, Bradbury and Stephenson 2003, Chen and Malhotra 2007, Gilligan and

Matsusaka 1995, Gilligan and Matsusaka 2001, Weingast et al. 1981). As the number of

legislators in a chamber increases, the demands placed on the chamber for pork projects

increase even if the population the legislature represents does not. This indicates that

the decision space over distributive outcomes becomes more complex as the number of
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legislators in the chamber increases.

4.2 Informational Problems and Collaborative Deci-

sions

I begin with an assumption that the decision to cosponsor a piece of legislation is a

decision on two dimensions. Legislators either a) cosponsor a bill in support of the

legislation itself or b) cosponsor a bill in support of the legislator who sponsors the bill.

Thus, the decision to cosponsor a piece of legislation either is an expression of a policy

preference for some bill over the status quo or is an expression of support for an individual.

This second dimension of support would stipulate that if a legislator faced two bills that

produced the same policy outcomes he or she would be more likely to cosponsor legislation

from the bill sponsored by the individual he or she prefers to support.2 These choices

along a personal/legislator-specific dimension give rise to the interdependence observed in

a cosponsorship network, creating a legislative choice that cannot be modeled exclusively

as a function of policy preferences (Cranmer and Desmarais 2011).

I also assume that cosponsorship represents a credible commitment to support legis-

lation (Bernhard and Sulkin 2010). That is, when a legislator elects to cosponsor a bill,

that confirms to both the sponsor and the chamber at large that the bill will proceed

with the support of that cosponsor. Prior work adopting this perspective has indicated

that cosponsorship commitments that are violated are met with punishment both from

the sponsor of the bill, and from the chamber at large (Bernhard and Sulkin 2010). Indi-

vidual legislators who cosponsor a bill and then renege on that cosponsorship, themselves

2Kirkland (2011) shows that both legislator and legislation specific characteristics are important de-
terminants of bill outcomes. Additionally, Koger (2003) shows that legislators often make cosponsorship
choices without carefully considering the content of the bill. Instead, they make their choices based on
who has made the cosponsorship request.
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experience less legislative successes (defined as bills passing in the chamber) and smaller

cosponsorship coalitions in the future. The other legislators in a chamber notice this

violation of commitment and take this violation seriously. This immediately implies that

the decision to cosponsor a bill is costly for legislators. Choosing the wrong partners/bills

can lead to reprecussions into the future of a legislative session.3

Thus, legislators deciding whether to cosponsor legislation are confronted with infor-

mational problems. A decision to cosponsor a bill brings with it a commitment to support

legislation that may turn out to be less than desirable, at which point a legislator needs

to either provide sustained support for a bill he or she does not like or suffer the conse-

quences of a violated commitment. A decision to never cosponsor bills, however, means

that many preferable pieces of legislation may not develop sufficient support to emerge

from the chamber. This means that the potential costs of a cosponsorship choice are a

function of the uncertainty surrounding bill outcomes, whether that uncertainty arises

through uncertainty about implementation (Gilligan and Krehbiel 1989) or uncertainty

about a sponsor’s preferences.4 Institutional structures that alter the level of informa-

tion in a chamber regarding bill outcomes or alter the cost of gathering that information

about bill outcomes will affect cosponsorship choices. Specifically, legislative institutions

can shape the patterns of interdependence in the cosponsorship network of a chamber by

generating greater or lesser knowledge about individuals’ preferences, which in turn alters

the observed relationships between legislators. Said more simply, individual legislators

can be more confident in their commitments to support legislation if they have greater

3The fact that violations of the cosponsorship commitment are punished implies that successful
executions of the commitment may be rewarded. Consistently fulfilling cosponsorship commitments by
both cosponsoring and voting for bills should lead to increased levels of trust between the partners.

4Knowledge of the sponsor’s/introducer’s preferences for a bill outcome are a necessary beginning
point for any model of legislative outcomes. Whether the sponsor is acting strategically or sincerely, a
legislator must know the preferences of a bill’s sponsor in order to gauge the outcome associated with
that bill. They may have assistance from outside sources in learning a sponsor’s preferences, but the
case remains that there remain informational costs associated with committing to support someone else’s
proposals.
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knowledge about potential relational partner’s preferences.

The difficulty in choosing whom to support in a legislature then is a function of the po-

tential variance in each legislator’s preferences across dimensions. To select a relational

partner (in other words, to select whom to support), a legislator requires information

about the preferred outcomes of a potential partner on many dimensions. The more

potential partners there are in a chamber, the more difficult gathering this information

becomes. Thus, faced with an increasing need for collaborative partners and a more com-

plex environment from which to choose them, legislators from very large chambers will

rely heavily on simple cues in the choice of whom in the chamber to support. In an envi-

ronment where decisions are potentially costly and increasingly uncertain, risk-aversion

should prevent legislators from engaging in commitments to cross-partisan legislation.

Additionally, because information on multiple dimensions is harder to gather in a

large chamber, the cosponsorship/commitment network becomes less efficient than might

otherwise be the case. An inefficiently organized network is one in which information in-

troduced at any single point in the network must make many transfers between actors

to reach all other actors in the network (Latora and Marchiori 2001). Thus, a network

with n actors in it is considered inefficient as the maximum distance across the network

approaches n − 1. As bridging ties form, shortcuts across the network develop and the

maximum distance across the network shortens, meaning information introduced at one

point in the network takes less effort to disperse across the entire network.5 Because

individual legislators rely on overly simply cues, they overlook opportunities to form

bridging relationships across divisions like party. This lack of bridging ties in a large

5This definition of efficiency is based on the optimal distribution of relationships in an organization.
A more efficient distribution of relationships in an organization provides a number of benefits includ-
ing improved communication and diffusion of information, faster accomplishment of group tasks, and
increased individual learning and creativity (Levin and Cross 2004, Burt 2004, Perry-Smith and Shalley
2003, Tiegland and Wasko 2000). Other definitions of efficiency for a legislature might include faster de-
cision making on bills or less time spent passing the budget. These measures, however, generally involve
activity by actors outside the organization (governors and legislators from the alternative chamber),
which might effect the measure even if the organization is internally efficient.
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chamber produces an inefficient network in which information or influence is difficult to

move from one point on the network to other points in the network (Granovetter 1973,

1983). Without bridging ties that result from interactions across pre-existing differences

(Kirkland 2011), social networks become inefficient distributors of information or influ-

ence. As result of this failure to bridge, both the aggregate adaptability of a network and

individual performances in a network suffer (Burt 2004, Levin and Cross 2004, Morrison

2002, Perry-Smith and Shalley 2003).

While large legislative chambers make it difficult to gather information on many

dimensions about other legislators, the committee system in a chamber can provide

information to individual legislators both about potential bill outcomes (Gilligan and

Krehbiel 1989, Krehbiel 1993) and about the preferences of individual legislators on

certain issue dimensions. When a committee approves, amends, or kills legislation in a

chamber, it provides a signal about the preferences of the actors on that committee on

their substantive dimension of expertise. In other words, through committee decisions

legislators get to view additional voting behavior on bills that may never reach the floor.

Additionally, through common committee assignments, two legislators who might not

otherwise engage with one another are given the opportunity to interact, bargain, and

learn about one another.6 Committee deliberation provides each with an opportunity to

learn about one another for issue dimensions on which they both have expertise. Thus, by

generating more information about legislative preferences across dimensions, committees

can help reveal opportunities for bridging ties across divisions that will improve the

organization and efficiency of the cosponsorship network.

6Indeed, the lifelong frienship of Ted Kennedy and Orrin Hatch (the most famous bipartisan rela-
tionship of the modern Senate) began through their participation on the Labor and Human Resources
Committee in 1981. Hatch’s need for Kennedy’s cooperation in the small group was much more pro-
nounced than it would have been in a larger environment. Through their committee work, the two were
able to learn more about one another and opportunities for cross-party ties were quickly formed. Hatch
and Kennedy developed a better understanding of one another’s preferences that facilitated commitment
to support one another on some dimensions.
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4.3 A Spatial Simulation of Revealed Similarities

In this section, I analyze a computational model of the process of network formation

outlined earlier. I develop the model as an effort to add precision and consistency to the

process described in the previous section. In other words, the model adds rigor to the

transition between the speculated learning process and the tested hypotheses. At the

heart of this model is the simple notion that committee interactions provide legislators

with chances to learn about their colleagues.7 This knowledge will affect their choices

about network connections, which in turn influence network topology and structure.

The model I propose begins with some fixed set of actors representing legislators with

preferences or attributes arrayed in a multidimensional Euclidean social space. The

decision by any two actors to form a connection in the network is a function of their

distances in this social Euclidean space. The closer two actors are (or the more similar

two actors are) the more likely a connection is to form between them.8

The results I present here begin with a chamber of 80 actors. I provide each actor

with a random party assignment (Democrat or Republican with probability of 0.5). Each

actor is then assigned an attribute or preference from a bimodal distribution in which

the two modes are centered on 0.5 and -0.5, respectively based on the actor’s party as-

signment. Each mode has a standard deviation of 0.25.9 This first bimodal dimension

of choice represents the dominant liberal/conservative dimension of American politics.

Next, I randomly assign each actor preferences/attributes on nine additional “committee”

7Computational models have been commonly used in the simulation of networks, where equilibrium
analysis is often intractable. See for example Guimera et al. (2005) and Macy and Skvoretz (1998)

8This spatial approach to network formation is at the heart of the data generating process hypothe-
sized in the distance-based latent space approach to social network analysis (Hoff, Raferty, and Handcock
2002).

9The bimodal distribution is actually a mixture of two normals with the same variance, but different
means. Actors are assigned their “preferences” by receiving a position on one of these two normals.
Thus, it is possible to get conservative Democrats and liberal Republicans, but unlikely.

74



dimensions of preference. I draw these preferences from a normal distribution centered

on zero with a standard deviation of 0.5. Because each actor’s “committee” preferences

are drawn from a new distribution, these extra dimensions of preference are uncorrelated

with the primary dimension of preference.10 Thus, to tie new dimensions of behavior to

the dominant partisan dimension, I replace the new dimensional position with a weighted

average of the new position and the dominant first dimension. An actors first “commit-

tee” preference, then, is some combination of their party preferences and an alternative

preference.

This weighted average designed to generate correlated preferences across dimensions

has an added bonus. The weight of the partisan dimension in the new “committee”

preference for an actor is similar to the power of party to structure committee assignments

to the party’s benefit (Rundquist and Carsey 2002). When the weight on the partisan

dimension in the calculation of an individual’s committee preferences is high, then this

is akin to political parties being capable of populating committees with people more

similar to the party median than the chamber median. Figure 4.1 provides a plot of the

simulated actors’ preferences on the first “partisan” dimension, the second uncorrelated

“committee” dimension, and the averaged “committee” dimension when the weight on the

partisan dimension is 0.75.11 The averaged dimension pulls the two parties closer together

and provides some places of overlap, but is not nearly as random of the unaveraged

dimension. As the weight on the partisan dimension increases in the creation of committee

preferences, committees become increasingly similar to the initial partisan distribution

of preferences in the chamber.

10The notion that committee preferences ought to come from a normal distribution centered around
zero is based in Gilligan and Krehbiel (1989) who assert that committees preferences should mirror the
floor median.

11The 0.75 weight implies that an actor’s preferences on the committee dimension are 75% parti-
san preferences and 25% committee preferences. I vary this combination in the simulation allowing
partisanship to determine committee preferences more or less.
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At this point every actor has 10 dimensions of preferences, one for his or her party

preference and nine others representing committee preferences. I then randomly assign

actors into committees until each of the nine committees in the chamber reaches some

pre-determined size. After I assign the actors to their committees, they generate their

connections to one another. Each actor perceives the other actors’ preferences on the first

partisan dimension. If two actors do not overlap in a committee assignment, then these

two actors perceive their alter’s preferences on the second through ninth dimensions to

be equal to their alter’s preference the first dominant dimension. If two actors share a

committee assignment, then they “learn” each other’s committee preferences and update

their perception of distance using these revealed preferences rather than their party

preferences.

Figure 4.2 presents an illustrative version of this process for three legislators in two

committees. Legislators A, B, and C all possess three dimensions of preference indicated

by the numbers in parantheses. The second and third dimensions of preference are related

to each’s first dimension of preference. Each assumes the other’s preferences are consistent

across all dimensions with the first dimension of preference. Through co-assignment to the

same committee, Legislators A and B learn one another’s second dimension of preference

(a legislator can only learn one additional dimension of preference for each common

committee assignment). Because Legislators A and C are not co-assigned they assume

the distance between them on all dimensions is consistent with the distance between

them on the first dimension. Had the two been co-assigned and learned an additional

dimension of preference, they would have perceived that a shorter ideological distance

separates them (5 instead of 6). In the model, this process is repeated until committees

reach some pre-determined size then legislators evaluate the perceived differences between

themselves and other actors across all 10 dimensions of preference.

These ten distances between any dyad of legislators i and j are summed together. This
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sum is subtracted from a baseline rate of connection to form a rate parameter, λ, for a

Poisson distribution.12 Thus, every actor in the network has some rate of connection to

every other actor in the network. As the perceived distance between two actors grows, the

rate parameter between the two actors decreases. When the perceived distance between

two actors is small, the rate parameter is larger. I then draw a single observation from a

Poisson distribution for the dyad using the rate parameter based on the distance between

actors in the dyad. This draw from a Poisson distribution makes the realization of the

network probabilitstic rather than deterministic. Thus, two actors who are similar to each

other are more likely, but not guarenteed to have stronger connections to one another.13

I do this for every dyad in the chamber to generate a network of counts. Finally, I assess

the average path length across this simulated network and the partisan modularity14 for

this simulated network using the random party assignments. The entire process from

preference generation to network formation represents one iteration of the model.

I run the model and record the path length and modularity for the simulated network

250 times for one fixed committee size. I then increase the size of committees by one,

run the simulation for another 250 iterations, and continue this process over a sequence

of potential committee sizes. I consider committee sizes from two members up to 50

12I utilize a Poisson distribution because cosponsorship networks used for my empirical analysis are
aggregated count networks. Draws from the Poisson will provide a count of interactions between the
hypothetical actors in the network.

13Said slightly more formally, Yi→j = Poisson(exp(θij)), where θij = α − (
∑k
g=1 |ig − jg|) for all k

dimensions of choice. α reflects the baseline density of connections between all the actors in the network.
|ig − jg| represents the perceived distance between actors i and j on dimension g. In the case where two
actors share no committee assignments, g = 1 for all k dimensions. In the case where actors do share
a committee assignment, g = 1 for all the committees they do not have in common, and |ig − jg| for
the common committee dimension is updated to contain the actors “true” differences on this dimension.
The more committee assignments actors have in common, the more often g 6= 1 and the more often
actors perceive the “true” distances between themselves.

14Party modularity is a measure of how partisan a legislative network is. Higher values represent
increased partisanship. I discuss the details on modularity scores in the next section.
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members. Because I have fixed the chamber size in this simulation at 80 actors, chang-

ing committee size is functionally equivalent to changing the ratio of committee size to

chamber size. Because the only moving value in the model is the size of committees, I

can isolate the theoretical impact of changing committee sizes controlling for chamber

size on the formation and topology of legislative networks.

To summarize, each actor in a network has 10 correlated dimensions of preference.

Actors in the model form connections with other actors based on their perceptions of

the distance between themselves on these dimensions of preference. An actor assumes

that a potential partner’s ten dimensions of preference are the same as that potential

partner’s first dimension of preference. If the two actors share a committee assignment,

they learn new information about one another’s committee preferences and this commit-

tee preference replaces their beliefs on one of the dimensions of preference. The more

committee assignments two actors have in common, the more actors update their beliefs

about one another’s preferences to include new information. This new information has

the potential to shorten (or lengthen) the distance between two actors in the social space

and make connections more (or less) likely, capturing the intuition that legislators learn

about opportunities for collaboration through common committee assignments. Finally,

I measure common topological statistics for the networks that result from increasingly

larger committees.

Figure 4.3 presents the change in simulated path length as committee size increases

for simulations with weight on the partisan dimensions of 0.65, 0.75, 0.8, and 0.9. The

grey dots in the plot represent the path length of simulated networks and the bold line

represents the line of best fit from a model in which the committee size is regressed against

the average path length of the simulated network. For each of the partisan dimension

weights a statistically significant negative relationship is present. Consistently across the

simulations even when the attributes of the actors do not change in meaningful ways,
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increases in committee size decrease the path length of a legislative network. Thus, even if

the characteristics of legislators do not change, the level of interaction between legislators

on a committee can alter the pattern of collaboration within the chamber.

The learning process that takes place through committee interactions is unlikely to

influence bipartisanship as measured through network modularity. Modularity measures

the number of ties between actors of the same party versus the number of ties between

actors of different parties. Given that committees provide legislators with an opportunity

to learn about both members of the other party and their copartisans, they should have

little effect on the balance of within versus across party ties regardless of how large

committees become. However, the total chamber size should still have an influence on

the balance of copartisan versus bipartisan ties. Given some fixed size of committees,

increasing chamber size gives legislators more other individuals about which they have

to learn. This larger pool of potential partners weakens the learning effect of committees

and makes partisanship a more powerful component in tie development.

Using the same spatial model that generates the results from Figure 4.3, I fix the size of

committees in the simulated legislature at 15 members and the number of committees at

9. I then calculate the party modularity score for legislatures of 50, 60, 70 80, 90, and 100

members. I also run the simulations for each value of party weighting in the calculation

of committee preferences. Thus, chamber size varies independently of committee size in

four simulations. I present these results in Figure 4.4. Once again, the grey dots represent

the party modularity scores for each simulated network and the bold line represents the

regression line from a model predicting party modularity as a function of chamber size.

The legend of the plot reports the coefficient estimate from the regression.

Regardless of the weights placed on partisan preferences in the development of com-

mittee preferences, increases in chamber size increase the party modularity for simulated

networks. As chambers grow larger, their networks become increasingly partisan. Each
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simulation demonstrates positive and statistically significant coefficients for the bivariate

relationship, and because nothing else in the model is allowed to vary in systematic ways

I can be confident that the results of the simulations are a function of only chamber size

and not some other unanticipated influence. As chambers get larger and larger, actors are

relying more and more on their first dimension preferences in determining their network

connections which in turn increases the level of partisan division in the collaborative

network.

From this spatial model of network formation, a few hypotheses emerge. First, as

legislative chambers increase in size partisan modularity scores for legislative chambers’

collaborative network will increase controlling for committee size. Second, as committees

within a legislature grow in size the average path length in the collaborative network will

decrease controlling for chamber size.

4.4 Data and Methods

In order to test my theory regarding the size of legislative chambers and its influence on

the collaborative network amongst legislators, I use cosponsorship networks from 49 states

in 2007 resulting in 96 legislative chambers.15 To gather these networks, I made use of

the RCurl package (Lang 2007) in the R statistical program (R Core Development Team

2008) to scrape bill status/history data from state legislative websites. A few states record

cosponsorship information in unorthodox ways, making scraping of the websites difficult.

In these states, cosponsorship networks were hand-coded from bill histories. In gathering

these data, I focused only on chamber bills. There are no cosponsorships included from

chamber or joint resolutions. In states that allow cross-chamber cosponsorship, I recorded

15The Idaho House and Senate and Washington State Senate cosponsorship networks are not included.
Idaho did not record legislative cosponsorships in 2007 and the Washington State Senate is a fully
connected network, meaning every potential connection in the network is realized.
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only lower chamber member-to-member cosponsorships for bills originating in the lower

chamber and only upper chamber member-to-member cosponsorships for bills originating

in the upper house.

The instances of cosponsorship in a chamber are recorded in an adjacency matrix

where element ij represents the number of times actor i has cosponsored actor j. The

diagonal elements of this matrix are always zero (meaning no legislator can cosponsor him

or herself). To test my theory, I use two key summary measures from these cosponsorship

networks: the average path length of the cosponsorship networks (Watts and Strogatz

1998, Albert and Barabasi 2002) and the party modularity of the cosponsorship networks

(Waugh et al. 2010, Zhang et al. 2008, Girvan and Newman 2002). These measures will

represent the dependent variables in my state-to-state comparisons.

The average path length of a network measures the amount of ties or links it takes

the average actor in the network to reach any other actor in a network. As the number

of bridging ties in a network increases, the distance from any point in the network to any

other point in the network decreases. A lower average path length reflects this decrease

in distance, thus average path length can summarize the degree to which a network is

shortened by bridging connections (Watts and Strogatz 1998). It is also a useful summary

of how easily negotiable travel across a network is. Low path length indicates a network

that is traversed easily and, thus, is efficiently organized, while high path length indicates

that a network is inefficient and difficult to travel across (Latora 2002, Jackson 2008 p.

57).

The average path length of the cosponsorship network is an effective way to capture

how efficiently legislators have organized their collaborative efforts and whether collabo-

ration can move information or influence across the chamber quickly or disjointedly. The

New Hampshire lower chamber has the largest average path length (332), not altogether

surprising given that the New Hampshire lower chamber is the largest state legislative
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chamber in the country. Louisiana’s upper chamber has the second largest path length

(111). Iowa’s Senate, alternatively, has the lowest path length (1.03) indicating that it

is very nearly a fully connected network. Figure 4.5 presents a plot of lower state leg-

islative chambers and their average path length scores. There is substantial variation

in the measure of network organization, but the distribution is skewed towards one (a

well-connected network).

The second summary measure of interest is the partisan modularity of a legislative

network. Modularity is a network summary statistic that quantifies the effectiveness of

a partition for a particular network. In other words, modularity measures how many ties

in a network cross over a division versus how many ties remain within a division. For

example, if there were many ties in the cosponsorship network within the same political

party and very few ties across or between political parties, then the partisan modularity

for that network would be high. If there were many ties across party lines and few within

a party, then partisan modularity would be low. Thus, modularity provides an important

measure of bipartisanship in state legislatures. In states where party modularity is low,

collaborative ties across party lines are common. In Figure 4.6, the modularity score

based on the shape of the nodes in the hypothetical social network on the left would be

extremely high, where as the modularity score based on shape for the social network on

the right would be extremely low.

The most bipartisan state legislative chamber in the country is the Indiana upper

chamber with a party modularity score of -0.051. The New York Senate is the most

partisan chamber in the nation with a party modularity score of 0.4.16 Figure 4.7 plots

the party modularity scores across all legislative chambers in the dataset. Virtually all

16To give these figures some context, the cosponsorship network for the 102nd-108th U.S. House
of Representatives had an average party modularity score of 0.17. This figure is different from the
calculation provided by Waugh et al. (2009), because in their article, the authors focus on uncovering
the maximum modularity in the congressional cosponsorship network as a measure of polarization for
the chamber rather than measuring the partisan modularity.
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of the observations have positive party modularity indicating that in nearly every state,

party structures collaboration to some degree.17 The median modularity score is 0.12,

slightly below the average for the 102nd-108th U.S. House of 0.17.

Taken together, these summary statistics characterize the organization of collabora-

tion in a legislature and the degree to which that collaboration is segregated. To analyze

the influence of legislative chamber size on the organization of collaboration in a cham-

ber, I measure the number of legislators in a chamber, the number of committees in a

chamber, and the average size of committees in a chamber. Legislatures often assign legis-

lators to more than one committee, meaning simply measuring the number of legislators

and the number of committees is insufficient for capturing the amount of interactions

legislators might have in committees. Through differing levels of multiple assignments,

two chambers with 50 legislators and 5 committees might have very different levels of

interaction. One chamber may have five committees of 10 legislators and the other may

have five committees of 20 legislators with every legislator serving on two committees.18

4.4.1 Alternative Explanations and Control Variables

My computational model and the theory on which it is based focus on chamber size

and committee size as key elements in legislators learning about one another. Other

institutional or environmental conditions might generate the patterns realized in the

legislative network. For example, the amount of turnover in a state legislature should

17No party modularity score is calculated for the Nebraska unicameral because it is a non-partisan
chamber. Also, note that the extremes of the state legislative lower chamber modularity scores are not
Vermont and New York. The most partisan lower chamber is the Iowa House and the least partisan
lower chamber is the North Carolina House.

18These measurements are not scale free network summaries when measured on dichotomous networks.
The cosponsorship networks I use here are counts of cosponsorships. This means that any theoretical
connection between the number of actors in the network and average path length or modularity of a
network should not pose a problem for inference. In a binary network, path length should obviously go
up as the number of actors in the network increases, but in a count network this is no longer the case.
I provide more discussion of this in Supplemental Appendix B.
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also have an influence on the ability of legislators to learn about one another. As new

members arrive with more frequency, legislators are forced to re-learn information about

freshmen legislators who replaced colleagues with whom a legislator may already have

been familiar. In order to control for this possibility, my statistical models include a

dummy variable coded 1 if a state legislature has term limits for its members along

with a variable indicating the percentage of turnover in the chamber during the previous

legislative election. Additionally, the pattern of cross-party ties in a chamber (which

affect both partisan modularity and path length in a network) may be a result of the

importance of the party label in elections. In elections where the parties are evenly

matched and thus are more likely to be moderate, it should be easier for legislators

to maintain cross-party relationships without damaging their electoral opportunities. I

include the Holbrook and Van Dunk measure of legislative competition (Holbrook and

Van Dunk 1993) to account for this possibility with the expectation that higher levels of

the index predict higher path length and more modularity.

The size of the majority party may also play a role in determining the pattern of ties

in a chamber. Fenno (1973) speculated that bi-partisanship would be more valuable in

a chamber that was evenly divided and, thus, might be more common. To account for

this possibility, I also include a measure of the partisan balance in the chamber in my

statistical results. Finally, the level of professionalism in a state seems likely to influence

the level of efficiency and cross-party cooperation in a legislature. Legislatures that are

more professional provide both more opportunity for cross-party collaboration (due to

longer periods of interaction from longer sessions) and more information about potential

partners (due to better resources). I include the Squire Legislative Professionalism In-

dex (Squire 2007) with the expectation that increased professionalism is correlated with

decreased partisanship in the cosponsorship network and decrease path length.
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4.5 Results

Table 4.1 presents OLS results predicting the partisan modularity and average path

length of cosponsorship networks for 96 legislative chambers. I begin with OLS results

for party modularity scores across the states reported in Model (1) of Table 4.1. The com-

putational model from the previous section allowed chamber size to vary while holding

constant committee size, network density, party balance, and the number of committees

in a chamber.1920 Also, it is possible that it will be easier to detect partisan behavior

in legislatures where more cosponsorship opportunities exist. The number of bills intro-

duced in a legislative session is included to account for this possibility, but never reaches

statistical significance. Model (2) presents the same analysis, but with the average path

length of a legislative cosponsorship network as the dependent variable.

The models in Table 4.1 indicate that party modularity increases as chamber size

grows just as predicted, even when controlling for party electoral competition and party

balance in the chamber.2122 Recall that modularity is bound between -1 and 1 and that

19I have also included a dummy variable coded 1 if the chamber is a lower legislative chamber and
zero otherwise to capture whether or not there are significant differences between Houses and Senates.
The dummy variable is statistically indistinguishable from zero in predicting party modularity. Upper
chambers have no more or less statistically distinguishable partisan cosponsorship networks than lower
chambers.

20Modularity is continuous and bounded between -1 and 1. While OLS may be acceptable for such a
model, I have also transformed modularity into a variable that is continuous and bounded between zero
and one by adding one to the modularity score and dividing by two. Using this transformed variable,
I have run a generalized linear model with a beta link function (appropriate for dependent variables
that are continuous over the 0 to 1 space). This alternative specification presents the same signs and
significances as the OLS model.

21Both of these variables are statistically insignificant on their own. Additionally, F-tests reveal
a p-value of 0.145 indicating that the joint explanatory power of both variables is also statistically
insignificant.

22The observed modularity value of a count network is not fundamentally tied to the size of the
network (Kirkland 2011). Existing simulation work reveals that large networks with no real community
structure are no more likely to produce high modularity values than smaller networks are. Thus, the
modularity measurement itself is not creating the observed relationship in the data.
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chamber size ranges from 20 to 400. Thus, holding the other variables at their means

and using the coefficients from Model 1, a change from the minimum chamber size to the

maximum chamber size produces a jump in party modularity from 0.10 to 0.203. This

is equivalent to a jump from the 63rd most partisan chamber in the nation to the 20th

most partisan chamber in the country. Figure 4.8 plots the predicted partisan modularity

of a state legislature as chamber size increases from the model reported in Table 4.1.23

As chamber size increases, the modularity of state legislatures passes the typical level of

partisanship observed in the U.S. House. This is strong support for the hypothesis that

increasing complexity in the choices of collaborative partners increases the reliance of

legislators on party as a collaborative heuristic. Of the remaining independent variables,

only the Squire professionalism index has a significant effect on the bipartisanship in the

chamber. The coefficient indicates that, contrary to predictions, increases in profession-

alism predict increases in partisan modularity.

While the coefficient on the average size of committees is positive, it is statistically

indistinguishable from zero. Surprisingly, the Holbrook and Van Dunk competition index

is also statistically indistinguishable from zero, indicating that the level of electoral com-

petition between parties has little observable effect on the bi-partisanship of the parties in

government. Shorter-term measures of electoral competition like membership turnover

also fail to reach traditional levels of significance. Thus, it would seem there is little

connection between the aggregate nature of state legislative elections and the structure

of bipartisanship in a legislature. There may still be individual electoral influences on

collaboration (for example, very marginal legislators may avoid cross-party collabora-

tion), but aggregate levels of competition do not seem to be influencing the cross-party

collaboration of the parties themselves.

23The plot excludes the New Hampshire lower chamber since its size is so drastically different from
other state legislative chambers. Models removing the New Hampshire lower chamber actually show a
stronger relationship between chamber size and modularity indicating that it is a leverage point moving
coefficients estimates closer to 0.
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Moving from the model of partisan modularity to the model using average path length

as the dependent variable, a similar story continues to emerge. In Model (2), the coeffi-

cient on chamber size is positive and statistically significant indicating that as chamber

size increases, the average path length across a legislative cosponsorship network also

increases.24 This is expected given that as chambers become larger there are more actors

across which information must travel. In addition to chamber size, the coefficient on the

average size of committees in a state legislature is negative and statistically significant.

This indicates that controlling for the other covariates in the model as committees get

larger the average path length of the cosponsorship network shrinks.25 In other words,

as committees grow in size the distribution of relationships in the cosponsorship network

becomes more efficient and information and influence require fewer links to travel across

the entire network. The only other statistically significant covariate in the model is net-

work density. The coefficient on network density has a negative sign indicating that as

cosponsorship becomes more frequent and the network becomes denser, the path length

across the network shrinks.26

24Model (2) presents OLS coefficients with the average path length of a cosponsorship network as the
dependent variable. Average path length is a continuous variable bound between 1 and inf. Figure 4.5
also indicates a skewed distribution of this variable across states. Given the skewed and bounded nature
of the variable, OLS may be a less than ideal modeling choice. Thus, I have also run a generalized
linear model with a gamma link function and an OLS model with the logged average path length as the
dependent variable. Both of these models present the same signs and significances as the OLS model I
present.

25As noted, it should be no surprise that larger networks have longer path lengths. The key result from
these analyses is that path length is connected to committee size. Nevertheless, the fact that average
path length is not a scale free measure of network topology may be of some concern. Thus, I have also
run regressions of chamber size and committee size in which the dependent variable is the average path
length of the network divided by the average path length of a randomly generated network with the
same number of actors and the same number of nodes. This dependent variable measures how much
more organized the observed network is than might be expected at random. These regressions again
indicate that committee size increases efficiency by decreasing path length.

26The correlation coefficient for cosponsorship network density and cosponsorship network path length
is -0.443, so while the two concepts are clearly strongly related both retain independent variance. Re-
sults from an OLS regression indicate that chamber size, professionalism, electoral competition, and
term limits are statistically significant predictors of network density. Thus, the results indicating that
committee size predicts path length are not a function of committee size influencing density. The fact
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Figure 4.9 plots the predicted average path length of a state legislative cosponsorship

network as the average committee size increases. Controlling for the other variables

in the model, increasing committee size from a 12 member committee to a 15 member

committee is associated with a decrease in the average path length from 25.686 to 22.527

for a 75 person legislature. Thus, the change in committee size has decreased the number

of transmissions a piece of information must pass through to reach the entire chamber

by three ties. Information or influence at any point in the legislative network can now

move to the rest of that network more efficiently.

Taken together these results indicate that as legislative chambers get larger, parties

become more powerful predictors of network formation and legislative networks become

less efficiently organized as indicated by the increase in path length for large chambers.27

Alternatively, the average path length model indicates that when committees grow in size

legislative networks become more efficient. Committees, however, have no effect on the

overall partisanship of the network. All of these results are in keeping with a model of

network formation where legislators learn new information about their colleagues through

specialized committee interactions.

4.6 Discussion

This study is the first to consider that the collaborative network of a legislature is a

function of the institutions of the chamber. I have argued that the difficulties in partner

that network density is negatively related to chamber size could be taken as further confirmation of the
theory. Commitments to support legislation simply become less common when chambers become larger
because the uncertainty surrounding commitments becomes weaker. I elaborate on these results in the
appendices to this article.

27I have also calculated these models as seemingly unrelated regressions to allow for correlation in
errors of the models that may results from extracting data for each model from the same cosponsorship
network. These seemingly unrelated regression results mirror those from the ordinary OLS models I
present. The correlation of the residuals is a relatively low 0.128.
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selection exert a strong influence over collaboration between legislators and that legisla-

tive institutions can exacerbate or mitigate these difficulties. Changing chamber size

and committee assignments can alter the ways in which legislators interact and work

together. Committee interactions and committee outputs provide legislators with infor-

mation about other legislators’ preferences on multiple dimensions and reveal similarities

that allow for more confidence in commitments to collaboration and support, thus fa-

cilitating bridging ties that create more efficient networks. Large legislative chambers,

alternatively, obscure these preferences and create a reliance on party to structure partner

selection, in turn creating less efficient networks.

Regression results from 96 cosponsorship networks across state legislative chambers

indicate that aggregate patterns of cosponsorship are responsive to legislative institutions

in predictable ways. As expected, large chambers encourage collaborative relationships

defined by political party. Large chambers also lack the bridging relationships neces-

sary to generate the most efficient distribution of the network. Increasing committee

sizes can mitigate this effect and generate a more efficiently distributed network with

shorter distances between legislators. However, the organizational power of committee

interactions is limited. These results seem to indicate that committees are useful ways

of revealing information about potential collaborative partners that legislators might not

otherwise learn. By forcing interactions with other legislators, committees encourage ties

that might not otherwise exist.

These results have important implications for the study of legislative interactions and

the study of polarization in legislatures. Research has consistently demonstrated that

legislative interactions play a critical role in determining when and what legislation passes

the veto points of a chamber (Kirkland 2011, Fowler 2006, Peoples 2008). Also, if we take

the notion of cosponsorship as evidence of a commitment to support legislation that can
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reap both punishment and reward, then the notion of more bipartisanship in this net-

work seems key. Producing bipartisan commitments to support legislation may smooth

legislative deliberation and help limit the possibilities of gridlock. The results I have

presented indicate that the environment in which they occur conditions these relational

interactions and commitments. Even when none of the attributes of individual legislators

or powers of the political parties change, the simple size of the groups legislators inter-

act within plays a key role in determining their subsequent legislative behaviors. Thus,

taken with other efforts, this research suggests that there are relational determinants of

legislative outcomes, institutional determinants of legislative outcomes, and institutional

determinants of legislative relationships.

Additionally, scholars of legislative polarization have failed to appreciate that the size

of a chamber can increase or decrease partisan divisions in observed behaviors. Large

chambers create an informational environment that is difficult for individuals to navi-

gate. This difficulty increases the reliance of individuals on simple heuristics for decision-

making the most prominent of which is likely to be party. Additionally, inherent in most

of the work on polarization is the notion that parties are not just far apart in ideological

space, but that they are also uncollaborative across this divide. This research and the

cosponsorship networks generated for it provide a measure of that collaboration which

includes independent variance from floor voting behavior and can allow researchers to

assess both distance between parties in floor voting and collaboration between parties at

earlier stages.

Finally, the spatial model I have developed is general to many human social networks.

The basic elements of the model dictate that people form connections with others based

on similarities and that specialized group interactions can facilitate learning about others

and the development of social connections that might not otherwise exist. When any

network becomes overly large, the actors in the network will begin to rely on the clearest
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cues available regarding similarity. Networks become more segregated even when the

characteristics of the actors themselves have not changed. Specialized group interactions

can generate connections based on less obvious and more difficult to learn similarities.

Though there are several extensions to my model that can be developed, these size-based

effects are likely to extend to many types of social networks.
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Chapter 5

Hypothesis Testing with Network
Partition Quality Statistics

The quantitative analysis of social networks has experienced a large increase in pop-

ularity over the last 10 to 15 years. As the tools for such analysis have become easier

to access and more efficient to use, more social scientists have adopted a social networks

perspective as a potentially useful lens through which to examine human behavior. With

this advance in a networks perspective have come a number of new tools for analyzing

and measuring constructs of interest in networks. Unfortunately, many of these new

measures lack clear ways to assess the uncertainty inherent in any single sample of a

network. This lack of clear measurements for uncertainty in network summary statistics

is due at least in part to a lack of understanding regarding the distributional properties

of networks and their summaries.

Fortunately, as computational power increases and nonparametric techniques like

bootstrapping and permutation testing become more popular, the need for researchers

to rely on established probability distributions as references for their statistics is dimin-

ishing. This holds particular promise for scholars of social networks who wish to engage

in hypothesis testing on their network summaries. In this article, I demonstrate how a

researcher might use permutation testing to assert whether or not a particularly popular

network summary statistic, network modularity, is different than might be expected at



random. The permutation test proves to be a useful way to assert when modularity is

unusually large given the variance in a single measurement of a social network and when

an observed modularity score might be due to random chance.

After introducing and providing a simulation-based analysis of the permutation test,

I provide a demonstration of that test using real world data on the network of cospon-

sorships in U.S. state legislatures. This practical demonstration provides a quick and

understandable measure of how the major political parties of the United States structure

the collaborative activities of state legislators, and when that structuring is unusually

powerful. I also offer a second demonstration using international trade networks. This

analysis indicates that there is only a very brief window in which international trade is

unusually well defined by regime type. While regime type modularity in the international

trade network varies quite a bit, it is only in the period just prior to World War II where

regime type partitions the trade network better than expected due to random chance.

5.1 Measuring Partition Quality with Network Mod-

ularity

Community detection is the act of partitioning or dividing a social network into distinct

subgroups. Community detection algorithms attempt to partition networks so that there

are dense connections between all the actors in a subgroup (or community) and sparse

connections between actors of different subgroups. A community is then the set of actors

within a single group in an optimal partition of the network with the implied assumption

that something unique about that group of actors caused their within group cohesion

and has set them apart from the other groups. Scholars have developed a variety of

approaches to discover communities in an observed network (Newman 2003, Newman

2004, Newman and Girvan 2004, Pons and Latapy 2005, Newman 2006, Reichardt et
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al. 2006, Raghaven, Albert and Kumara 2007).1 Most, if not all, community detection

routines rely on quality statistics to assert which potential network partition is the best,

and thus, represents the “true” community structure.

To measure the quality of network partitions, scholars of social networks typically

use the popular quality statistic modularity (Newman and Girvan 2004, Newman 2006).2

Modularity is usually defined as the number of ties within a group compared to the

number of ties that might be expected at random.3 With the most common definition

of “at random” in place, this simplifies to a measure of the number of ties within a

group relative to the number of ties between any two other actors in the network. The

mathematical formula for network modularity using the industry standard definition is:

Mod =
1

2m

∑
ij

[Aij −
kikj
2m

] ∗ δ(ci, cj) (5.1)

where m is the total number of connections in the network, Aij is the connection be-

tween actors i and j, ki is the total number of connections actor i has, and δ(ci, cj) is

the Kroneker delta for communities of actors i and j.4 Thus, modularity examines all

the actors in the same community (δ(ci, cj)), adds up their connections with one an-

other (Aij), and subtracts the connections we might expect those actors to have in the

network generally (
kikj
2m

). Finally, the sum of all these components is normalized by the

total number of connections in the network ( 1
2m

). In networks with edge weights, where

1The igraph package for social network analysis has six different algorithms for community detection
(Csardi and Nepusz 2006).

2The initial article debuting modularity by Newman and Girvan (2004) has more than 2100 citations
as of 2011.

3The precise definition of what “at random” means can vary a bit depending on the questions in
which an analyst is interested. It is generally considered to be the number of connections (called edges)
within groups if a network with the same communities had the same number edges placed between dyads
randomly.

4Kroneker’s delta is a mathematical operation which returns a value of 1 if the two numbers within
the operation are equal to one another and zero otherwise.

104



connections between actors take on more than a zero or a one, the calculation is very

similar. In these weighted networks, Aij becomes the connection strength between i and

j, m becomes the sum of all the edge weights in the network, and ki becomes the total

weighted connections of actor i.

Modularity values range between -1 and 1. A value of 1 occurs when no ties cross

community lines and all the ties within a community are realized. A value of -1 occurs

when no ties within a community are realized and all the possible ties across communties

occur. It is possible for modularity to take on a value of precisely zero, which occurs

when all the ties in a network are realized.5 However, as I will demonstrate in the next

section, finite samples and stochastic social behaviors can generate non-zero modularity

values even in networks where no real community structure exists.

5.2 Simulating a Reference Distribution for Com-

parison

While the point estimate of modularity is derived relative to some null model, the modu-

larity score itself communicates nothing about the distribution of modularity under that

null model. In order to provide a sense of the degree to which an observed modularity

score reflects something unusual for a given network, analysts require some sense of the

baseline level of modularity that might be observed at random in that network. By gen-

erating a reference distribution for modularity in a given network, scholars can develop

a better sense of the degree to which a division partitions the network unusually well. A

5Thus, all the ties within communities and across communities occur. This means that modularity
is not a true probabilty distribution. Technically, it is a discrete measure, that can only take on a
finite number of values because there are only a finite number of possible community structures in any
particular network.
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useful avenue for generating reference distributions for modularity is permutation (Erik-

son, Rader, and Pinto 2010, O’Gorman 2005, Edgington and Onghena 2007). Using

permutations of actors’ attributes that could potentially divide a network, an analyst

can simulate a random distribution of modularity for a particular social network and a

particular attribute.

The permutation test works as follows. First, an analyst measures a network and

either through theoretical insight or community discovery develops a partition of interest

for the network. That partition of interest provides a modularity score, but the analyst

would like to know whether that modularity score is better than one might expect at

random (implying that the partition is better than one might expect at random). The

analyst then takes the community memberships defined by the partition and rearranges

them amongst the actors, maintaining the size of groups, but randomly assigning each

actor to a new community. This new partition with randomly assigned community mem-

berships also produces a modularity score. This random assignment to communities is

done hundreds (or perhaps thousands) of times and a distribution of modularity scores

emerges.6 Table 5.1 provides an example of a partition and its implied membership

permutations.

The permutation approach to generating reference distributions scrambles the co-

memberships while maintaining hypothesized group sizes and all the measured connec-

tions in the networks.7 Thus, the permutation approach is operating on the δ(ci, cj) of

the initial modularity equation. This means the summation is including randomly chosen

actors, but maintaining the size of the groups the summation adds up. None of the other

6Technically, the permutation approach does not develop a continuous reference distribution. Because
there are only a fixed number of permutations for any vector, there are also only a fixed number of
possible modularity reference values. However, for any network of at least 40 actors there are more than
100,000,000 possible permutations of two different communities with 20 actors in each.

7In my discussions, I work with a community structure of two groups, but community structures
can contain many more than two groups. Permutations scramble the co-memberships by relabeling the
memberships of the actors.
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Initial Memberships Permutation 1 Permutation T
1 1 ... 0
1 0 ... 0
1 1 ... 0
0 0 ... 1
0 1 ... 1
0 0 ... 1

Table 5.1: Permutations of Known Network Partition

elements in the modularity equation are disturbed. The range of modularity values gen-

erated by the permuted membership vectors allows an analyst to observe the non-zero

modularity values that a random membership vector might generate and compare the

observed modularity to this range.

5.2.1 A Simulation for the Permutation Reference Distribution

A simple test of the approach I outline might ask 1) does modularity increase as con-

nections within groups strengthens and 2) can the permutation reference distribution

identify when non-zero modularity is due to chance?8 To answer these questions, I simu-

late networks with varying in-group connection strengths and assess modularity and its

reference distribution. First, some n set of actors are randomly assigned to g groups.

Then I generate a network of connections between the actors. Actors not in the same

group have some baseline rate of connection, α, and actors in the same group have some

increased rate of connection α plus a bonus value, β. I then draw a single observation

from a Poisson distribution using the rate of connection between two actors as the λ

parameter for the dyad. This generates a network of count connections between actors

8The question of whether modularity does the task its designed for has been answered before, but is
a useful verification step and helpful for introducing modularity to those unfamiliar with the statistic.
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where actors in the same group are likely to have higher connection levels, but not guar-

anteed. Actors not in the same group are also likely to have some level of connection

between them, but because their connections come from a probability distribution, they

may have very large connections or no connection at all. This mimics the probabilistic

nature of network formation in networks with some true community structure and some

random noise.9 Figure 5.1 provides a graphical representation of this process in a network

of six actors in two groups of three.

Once I have simulated a network based on group membership, I measure the group

modularity of the count network for the initial group assignments and the reference dis-

tribution of group modularity using 1000 permutations of the group assignments. This

represents one iteration of the simulation. I perform 500 iterations of this procedure

for some fixed bonus value. Next, I increase the bonus value providing actors in the

same groups with a higher rate parameter, and thus, an increased likelihood of a large

connection. I have two expectations for these simulations. First, as the bonus value for

within group connection strength increases, the group modularity score should also in-

crease. This would indicate that modularity is doing its job well measuring higher quality

partitions when group membership is a stronger determinant of network behavior. Sec-

ond, when the bonus value of within group membership is zero, the observed modularity

score will be contained within the reference distribution of modularity generated through

the permutation of group membership. When the within group bonus value is zero, the

probabilistic translation of group membership into network behavior may produce non-

zero modularity scores. The reference distribution of modularity I generate will indicate

when the observed modularity score is a result of effective network divisions and when

the modularity score is a result of the stochastic nature of social behaviors.

Figure 5.2 presents results from a simulation using 50 actors randomly assigned to

9This is the same process used to test the “fastgreedy” algorithm by Newman and Girvan (2004),
but with count edges instead of binary edges.
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three groups. The baseline rate of connection α is one, and the bonus value for two

actors being in the same group varies from 0.5 to 3.0. Thus, the λ parameter passed to

the Poisson distribution varies between 1 and 4. To give these numbers some magnitude,

the average connection strength between actors not of the same group across all the

simulations is 0.98. The average strength of connection for actors in the same group when

the bonus value is 0.5 is 1.475. The average connection strength for members of the same

group when the bonus value is 3.0 is 4.005. An α of one was selected to minimize the odds

of the simulated networks containing actors completely unconnected from the remainder

of the network. These isolated actors present unique challenges in community detection

since there is no way to evaluate whether they belong to any potential community. Figure

5.2 nicely reflects the expectation that as within group connections become more distinct

from out-of-group connections, modularity indicates a higher quality partition of the

network. Thus, modularity is performing its designated task well. Additionally, Figure

5.2 also indicates that for all the positive bonus values of within group connections,

modularity never overlaps with the reference distributions I generate. This indicates

that Type I error (accepting the null hypothesis when the alternative of group structure

is true) is unlikely to occur using the permutation approach. When an attribute is a true

division of a network, modularity will reveal its quality and the reference distribution

will not cause scholars to question it.

Figure 5.3 presents the same results at a much closer level and includes the results

for modularity scores and the reference distribution of modularity when the within group

bonus value equals zero. When this value equals zero, the rate of connection within

groups is the same as the rate of connection between groups. In this circumstance, I

expect that modularity will generate non-zero values due to the stochastic generation of

the network (though they should remain close to zero). These non-zero modularity scores

should frequently overlap with the reference distribution of modularity, indicating that
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while modularity may be non-zero it is no different from a modularity score expected at

random.

This is precisely what I observe in Figure 5.3. When the within group bonus value

is zero, the reference distribution of modularity covers the entire range of the non-zero

modularity scores that the probabilistic networks generated. The size of the reference

distribution would grow as the number of permutations increased. As the in-group bonus

value increases from zero, the distance between the reference distribution of modularity

and the observed modularity score increases. Modularity will appear less like a draw from

a random distribution the more an attribute divides the relevant network well. Thus,

this permutation approach to assessing uncertainty in modularity scores is valuable in

discovering when modularity might not just be large or small, but when modularity might

be larger or smaller than expected at random.

5.3 An Example from State Legislatures

To provide a practical example from applied research, I utilize modularity and its refer-

ence distribution to determine the degree to which party structures the collaborative ac-

tivities between legislators in U.S. lower state legislative chambers. Political parties have

long been noted to structure the individual behavior of legislators in office, and research

on the patterns of legislative interaction has also demonstrated that the relationships

between legislators can largely be predicted by political party affiliation (Caldeira and

Patterson 1987, 1988, Clark, Caldeira, and Patterson 1993, Sarbaugh-Thompson, et al.

2006).

To determine the power of party in structuring collaborative activity, I utilize a unique

data set of cosponsorship networks between state legislators in lower chambers for the

year 2007. An edge exists between two legislators ij if legislator i has cosponsored a

bill sponsored by legislator j. I measure cosponsor-sponsor connections for every bill
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introduced in the calendar year of 2007 (Kirkland 2011, Fowler 2006a, Fowler 2006b).

No resolutions are considered. This results in 48 social networks comprised of counts of

cosponsorship between legislators.10 I then record the political party affiliation of each

legislator in the chamber. Using the modularity function from the igraph package in

the R statistical language (R Core Development Team 2008, Csardi and Nepusz 2006), I

assess the quality of political party as a division of the cosponsorship network along with

the null distribution of modularity that results from permutations of the party affiliation

vector.

Figure 5.4 presents the results of measuring party modularity for the lower state

legislative chambers. Each point represents the actual modularity measurement for party

in a particular state’s lower legislative chamber cosponsorship network. The grey bar

represents the reference distribution of modularity for the state’s cosponsorship network

generated by 1000 permutations of the party membership vector. Notice the two states

indicated by the arrows in the plot. The point furthest to the left is the measurement of

party modularity for the Hawaii lower legislative chamber and the indicated point further

to the right is the measurement of party modularity for the North Dakota lower legislative

chamber. Ignoring the null distributions momentarily, an analyst encountering these two

results would be reasonable in assuming two things: 1) North Dakota’s legislative network

appears to have a larger party modularity score, therefore 2) North Dakota’s legislative

network is more structured by party than the Hawaii’s legislative network is.

The empirical evidence warrants the first of those two statements. The party modu-

larity score for the North Dakota legislative network is larger than the party modularity

score for the Hawaii legislative network. However, the second of those two statements

represents an incorrect inference. Using the reference distributions of modularity for each

10Nebraska is unicameral. Scholars typically treat its lone chamber as a Senate (Wright and Schaffner
2002). It is also non-partisan, meaning it can have no party modularity score. Additionally, the Idaho
legislature did not actually record cosponsorships until 2009. While I have obtained that data to complete
the data set, for comparability reasons I do not present it here.
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state’s cosponsorship network, this analysis indicates that party structures the Hawaii

cosponsorship network. The party modularity score for the Hawaii legislative network

falls just outside the range of modularity scores for randomly drawn divisions of the net-

work of the same size. The North Dakota cosponsorship network is no more structured

by party than it would be by a random division of the social network.

Figure 5.4 uses the entire range of the simulated reference distribution for modularity.

This means that outliers from the distribution may cause a rejection of a particular

partition as effective. Some analysts may prefer to use 95% of the density or 99% of

the density of the reference distribution in an effort to mimic a traditional cutpoint for

a hypothesis test. Figure 5.5 presents the same data as Figure 5.4, but now includes

indicators for both 99% and 95% of the density of the simulated reference distribution.

These regions represent the bulk of the density of the simulated reference distribution

rather than the entire simulated distribution. Notably, in several places (Oklahoma and

North Dakota), use of the entire reference distribution would cause an analyst to accept

the hypothesis of no partisan structure, while the 99% region would allow an analyst

to comfortably reject the hypothesis of no partisan structure. Ultimately, the choice

of using the entire simulated reference distribution or some subset is analogous to the

somewhat arbitrary choice of p-values in a hypothesis test and is best left in the hands

of the applied researcher.11

11Figures 5.4 and 5.5 demonstrate that the size and location of the permutation reference distribution
change from network to network. In the supplemental appendices to this article, I provide an analysis
of the properties that influence the size and location of the distribution. In summary, the density of the
network, the size of the subgroups in the network, and the true level of modularity in the network all
exert influence over the properties of the reference distribution.
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5.4 An Example Using International Trade

A common hypothesis in the analysis of international trade is that democracies will

trade with other countries more often, and that they will more commonly trade with one

another (Aidt and Gassebner 2010, Mansfield, Milner, and Rosendorff 2000, Mansfield,

Milner, and Rosendorff 2002, Morrow, Siverson, and Tabares 1998, Yu 2010). This imme-

diately implies that the international trade network should have high modularity along

the political regime dimension. Democracies having unusually strong trade connections

with one another would lead to clustering in the trade network amongst democracies

with autocracies either being isolated from all other countries or being highly clustered

themselves.

To test this hypothesis, I utilize the Correlates of War dyadic trade data set to

construct international trade networks from 1870 to 2006 (Barbieri, Keshk, and Pollins

2009). I then categorize country-year observations using Polity IV measures of regime

type (Marshall and Jaggers 2007). While it is possible to use the raw Polity IV scores

as the categories themselves, this may be an overly specific category scheme. Instead,

I collapse Polity IV scores into three categories, one if a country-year Polity IV score if

greater than zero, a second if a country-year Polity IV score equals zero, and a third for

country-year Polity IV scores less than zero.12 I then use this category scheme to test

whether countries with similar Polity IV scores are more likely to have strong connections

with one another than not. The results of this analysis are presented in Figure 5.6. As the

figure indicates, while the actual polity-based modularity scores of the international trade

network vary quite a bit, they are virtually never distinct from the modularity reference

distribution generated through permutations. This means that the polity categorization

scheme I employ rarely divides the international trade network better (or worse) than a

12While it is possible to use the raw Polity IV scores as a set of categories, R’s modularity formula
struggles with negatively valued category assignments.
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random division of the international trade network would.

While across the majority of the series regime type fails to separate the trade network

better than random chance, there is a brief period prior to World War II where polity

scores do seem to be effective partitions. In 1935, 1936, 1937, and 1938 the permutation

test indicates that countries with similar Polity IV scores are more likely to have strong

connections with one another (and weak connections with countries of dissimilar Polity

IV scores) than would be expected due to random chance. This may be a result of the

simplification of categories I employed. Thus, to guard against a faulty inference based

on a categorization choice, Figure 5.7 presents results of permutation tests using three

different categorization schemes based on Polity IV scores for the period of 1935-1945.

The first panel of Figure 5.7 uses the same scheme as Figure 5.6. The second panel uses

two categories, pooling Polity IV scores of 0 with the positive polity scores category. The

third panel uses a four category scheme where Polity IV scores greater than 5 are a group,

scores between 0 and 5 are a group, scores between -5 and -1 are a group, and scores less

than -5 are a group. In each of these schemes, similar polity scores seem to divide the

network effectively. Thus, from 1935-1938, the international trade network seems to be

partitioned effectively by regime type, while in all other time periods regime type does

not seem to drive trade partner choices.

Figure 5.7 also helps emphasize the important point that an increase in the magnitude

of a modularity score does not necessarily imply a more effective partition than random

chance would generate. The absolute value of the modularity scores from 1939 to 1945

is greater than the absolute value of modularity scores from 1935 to 1938, but the size

of the region of modularity scores expected due to random divisions of the network is

much larger in this later period.13 Thus, it is the period of 1935-1938 that seems to have

13The supplemental appendix to this article contains a discussion of network attributes that cause
this wider gap. The 1939-1945 period has much larger modularity reference regions because the trade
networks in this period are extremely sparse networks.
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a modular international trade network well-partitioned by regime type.

5.5 Properties of the Simulated Random Distribu-

tion

Several interesting things emerge from Figure 5.5 that warrant further explanation. The

reference distributions across the state cosponsorship networks are of different sizes, as are

the 95% densities of the reference distributions. Additionally, the reference distributions

are centered close to zero, but vary in their actual locations. In order to understand why

these elements of the reference distribution change, I will work through each piece of the

modularity equation and demonstrate its impact on the subsequent reference distribution.

As indicated earlier, the mathematical formula for network modularity is:

Mod =
1

2m

∑
ij

[Aij −
kikj
2m

] ∗ δ(ci, cj) (5.2)

The first term of the equation is 1
2m

, where m represents the number of connections

(or “density”) of the social network of interest. As m approaches its maximum, this

normalizing fraction becomes an increasingly smaller number. Regardless of what is

added together by the summation, it will be multiplied by an increasingly small quantity

as the network becomes more dense. Thus, as network density increases, the resultant

modularity reference distribution should collapse towards zero.

Figure 5.8 provides the results from a simulation testing this hypothesis. In the

simulations, there are 50 actors assigned to two groups with equal probability. The

connections between the actors are governed by a Poisson distribution with a baseline

rate of connection, α, and some group bonus value, β. In these simulations β=0, but α

varies from -0.5 to 1.0 in increments of 0.5 with 500 simulations for each value of α. When

α is low, the network is extremely sparse. When α is higher, the network has greater
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Figure 5.8: Range of the Reference Distribution as Network Density Increases

density. Therefore, in these simulations, there is no real community structure, and I fix

the probability of co-membership at 0.5. The density of the network is all that is changing.

The grey dots in the figure represent the upper and lower 95% reference distribution limits

from each simulation. The grey area represents a smoothed polygon amongst these dots.

The figure confirms the expectation that as the density of the network increases, the

modularity reference distribution shrinks. Thus, modularity values in sparse networks

face a more difficult test in order to be distinguished from randomly drawn partitions of

the network than do modularity values in dense networks.

Next, consider
∑

ij δ(ci, cj), the third term of the equation. Summed across all po-

tential ij combinations, this value is equivalent to the probability that any two actors
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from the network chosen at random will be in the same category or community.14 This

value can vary from a minimum of 1
NumberofHypothesizedGroups

to 1. As this value increases

and the probability of two actors being in the same community increases, the possible

permutations of the membership vector contain less new information being added to the

reference distribution. In other words, there is less possible variance in the permutations

of the membership vector as the probability of co-membership goes up. Because there is

less variance in the possible permutations of the membership vector there should also be

less variance in the resultant reference distribution.

To test this hypothesized relationship, I have again constructed simulated networks of

50 actors in two groups. There is no in-group bonus in the network so connections between

actors in the same community are equally as strong as relationships between actors in

different communities. However, rather than leaving the probability of assignment to

group 1 and group 2 equal, I vary that probability. I change the probability of actor

assignment to group 1 from 0.5 up to 0.8 in increments of 0.1 with 500 simulations for

each probability value. Thus, the size of group 1 relative to group 2 is increasing across

the simulations and the probability of co-membership in the same community is also

increasing.15

Figure 5.9 plots the results of this simulation. The simulation reveals that as the

probability of group 1 assignment increases (increasing the size of group 1 relative to

14For example, the probability that two legislators are of the same party is equivalent to asking what
is the probability that i = Democrat and j = Democrat OR i = Republican and j = Republican.
The probability that any actor selected at random is a Democrat or Republican is simply the size of
these groups divided by the network’s size. The joint probability that both i and j are Democrats
is the product of the individual probabilities, or (NumberofDemocratsNetworkSize )2. Thus, the probability of any
two actors randomly chosen from the cosponsorship network being of the same party is given by:
(NumberofDemocratsNetworkSize )2 + (NumberofRepublicansNetworkSize )2.

15The probability of two randomly chosen actors being in the same group when the probability of being
assigned to group 1 is 0.5 is also 0.5. The probability of co-membership when the probability group 1
assignment is 0.6 is 0.52. When the probability of assignment to group 1 is 0.7, co-membership has a
probability of 0.58, and finally, when the probability of assignment to group 1 is 0.8, co-membership has
a probability of 0.68.
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Figure 5.9: Range of the Reference Distribution as the Probability of Being in Group 1
over Group 2 Increases

group 2), the reference distribution for modularity shrinks. This is in spite of the fact

that there is no difference in the strength of relationship within groups versus across

groups. I also hold network density constant across the simulations. Thus, the relative

sizes of the hypothesized communities in the community structure of a network influence

the variance of the reference distribution for network modularity. A highly modular

network with one large community and other smaller communities is more unexpected

than a highly modular network in which the community sizes are relatively equal.

The final piece of the modularity equation is
∑

ij[Aij −
kikj
2m

]. Recall that this term

is measuring the strength of connections between two actors, Aij, and substracting the
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strength between those actors that might be expected to randomly occur in the network,

kikj
2m

. To work through the impact of this term on the resultant reference distribution,

consider a network with some “true” group structure. If a network has some real group

structure (even if it is not the structure currently being tested), then when two actors of

different groups are added together this value will come to zero. The observed strength

of connection between two randomly chosen actors of different communities, and the

expected connection strength those actors should cancel out. If two actors are truly

members of the same community, and have stronger connections as a result, those two

actors will consistently have stronger connections then they are expected to have at

random, resulting in a positive value. Thus, when there is a stronger community structure

in the network, the summation using random partitions will consistently add together

values increasingly greater than zero to values that average out to zero resulting in a

distribution centered above zero. This implies that the permutation-based reference

distribution will shift upwards as the network being considered becomes more modular.

To test this assertion, I have constructed simulated networks with 50 actors in two

groups. Each actor is assigned to group 1 or group 2 with equal probability. As before,

the connections between the actors are governed by a Poisson distribution with a baseline

rate of connection, α, and some group bonus value, β. The baseline rate of connection α is

fixed at 1, but I vary β from 0 to 5 in increments of 1 with 500 simulations for each value.

Thus, the network is becoming increasingly modular as β increases, while all the other

potential components of modularity are being held constant. Figure 5.10 plots the results

of this simulation. The light grey dots represent the minimum and maximum values of

95% of the density of the simulated reference distribution. The dark grey dots represent

the midpoint in a single simulation of the permutation reference distribution. The black

line is a lowess smooth over these midpoints. The figure demonstrates that as the true

modularity of a network increases, the midpoint of the reference distribution increases.
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Thus, the true community structure of a network drags the reference distribution in its

direction.

Each piece of the modularity equation influences the subsequent permutation refer-

ence distribution, either in location or in scale. A network’s density and the probability

of co-membership of the hypothesized groups affect the variance in the permutation refer-

ence distribution. The degree to which a network is actually modular drives the location

of the reference distribution. More modular networks pull the reference distribution
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upwards.16

5.6 Discussion

Summary statistics are critical ways for researchers to measure and express the structure

of a social network, but the complexities of network analysis make hypothesis tests for

such statistics difficult. Computational, nonparametric approaches provide a powerful

way to measure the uncertainty surrounding any given summary statistic from a social

network and to test that statistic against a reference distribution generated directly

from the data. I have demonstrated one such test for a popular network summary

statistic – network modularity. Permutation testing for network modularity provides an

easily interpretable test for the hypothesis that a particular group structure partitions a

network better than might be expected at random with the added benefit of a freedom

from many statistical assumptions that come with using known probability distributions

as references for comparison. Thus, the permutation test I advocate, and nonparametric

approaches more generally, represent important tools for network scholars seeking to

explore and compare social networks.

I have also provided an example of network modularity and its attendant reference

distribution from cosponsorship networks in the lower chambers of U.S. legislatures and

for the international trade network from 1870-2006. Network modularity provides an

intuitive way to capture how partisan the collaborative networks of legislatures are and

the degree to which international trade is clustered by regime type. The least partisan

legislature seems to be North Carolina, though many other chambers are no more struc-

tured by party then they would be by random chance. The most partisan chamber seems

to be Iowa’s lower chamber. Iowa and Virginia’s lower chambers appear to be quite a

16The next appendix to this article includes a regression analysis of these relationships in the state
legislative data.
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bit more partisan than the other legislative chambers. Finally, only international trade

in the period just before the second World War seems to be partitioned by regime type.

Moving forward, it would be valuable to develop confidence intervals around the point

estimates of modularity. This would facilitate inter-network comparisons in ways that

the permutation reference distribution does not.
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Chapter 6

Conclusion

The preceding chapters have demonstrated that: a) legislative relationships play a

critical role in the production of bills by a legislature, and b) those same legislative re-

lationships are influenced by the design and rules of a legislature. There are electoral

motivations for legislative collaboration that can be influenced by electoral institutions,

and there are internal chamber and committee structures that also influence legislative

collaboration. The scholarly implications here are large. Much of the existing work on

legislatures examines legislative behavior through a micro-economic lens with a focus on

individual actors and their preferences for bill outcomes. My work suggests that alter-

native levels of analysis are fruitful avenues for the continued development of legislative

studies. The study of legislatures as organizations with emergent properties (rather than

as a collection of individuals who are simply the sum of the individual parts) can facili-

tate greater focus on organizational efficiency, optimal design, and adaptation to external

changes. One of the primary goals of research into complex systems is the unification

of micro-level motivations for human behavior and macro-level organizational outcomes

that seem to be more than/different than the sum of individual agents. This sort of a

perspective, focused on legislatures as complex, adaptive organizations, has the potential

to provide novel and important insights into how representative democracies aggregate

the policy preferences of mass public into policy outcomes.



Additionally, this work points to the importance of continued research on relationships

between legislators and how they alter outcomes above and beyond the accumulation of

legislative preferences. Indeed, some of the earliest work on legislative behavior (Routt

1938) asserted that legislators are “experts in human relationships” rather than experts

in any policy arena, and that this ability to negotiate, cooperate, and manipulate others

is what sets legislators apart from the mass public. The coalitions developed within a

legislature can cut lines of obvious division in a legislature (i.e. political party), and

surprising coalitions are key to legislative outcomes even in the two party systems of

most U.S. legislatures.

This research also points out the utility of testing legislative theories in multiple

legislative venues. As Squire and Hamm (2005) point out, legislative studies, and partic-

ularly the study of legislative institutions, is necessarily a comparative endeavor. General

theories of legislative behavior can and should be tested across legislative settings, and the

U.S. state legislatures provide excellent comparative units for the U.S. Congress. There

is a tremendous volume of legislative theory specifically developed to provide scholars

with a better understanding of the U.S. House and Senate. As data from state legisla-

tures becomes easier to gather, our opportunities to generalize these theories and better

adjudicate between rivals will only expand. Additionally, understanding the state legis-

latures is a useful exercise beyond their utility as a counterfactual for Congress. State

legislatures are more likely to engage in institutional reforms, have wide cross-sectional

variance in their institutional structures, electoral mechanisms, and constituency make-

ups, and in many cases pre-date the U.S. Congress by decades. A general understanding

of state legislatures would provide scholars with a more comprehensive understanding of

the connections between all of these components and facilitate the development of more

comprehensive legislative theories. For example, scholars are more likely to develop ex-

planations for why some legislative institutions are chosen over others by studying state
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legislatures than any single chamber individually.

While there are many scholarly implications of this research, the broader normative

implications are simpler to outline. Congressional politics in the early 21st century has

been marked by gridlock, polarization, and a failure to compromise between critical veto

players in the legislative system. My research tells us that this need not be the case, and

indeed was likely not the case in other legislatures. Even in an environment of polarized

political parties and political preferences, citizens can design legislative institutions that

encourage collaboration. Polarization need not automatically imply a dysfunctional or-

ganization. This is encouraging news, for while the attitudes of legislators may be very

difficult to change,1 the institutions of a legislature are much simpler to alter. Indeed, in

the past decade, two state legislatures have altered the institutions at the hearts of Chap-

ters 3 and 4 in this dissertation. North Carolina’s lower chamber removed multi-member

districts as electoral institutions in 2002, thus decreasing the number of cross-party col-

laborations that existed in the chamber. Alternatively, in that same year, Rhode Island

decreased the size of its lower chamber, decreasing the power of party to structure leg-

islative collaboration.

My examination of the weak ties theory also reveals that the legislators who are most

successful in passing legislation are those who are most willing to cross obvious lines of

division between legislators. Thus, while the narrative of the early 21st century U.S.

legislature is one marked by bitter partisan divides and little in the way of collegiality, it

remains those legislators open to compromise who produce the largest share of legislative

outcomes. So long as legislators develop clusters of support smaller than the chamber

itself, bridging ties across those clusters will help individuals succeed in achieving their

legislative goals.

Future research on the nature of legislative relationships should focus on developing

1Polarization has also reached the mass public’s attitudes, thus creating a legislature from the mass
public that is not polarized would be difficult.
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more conservative tests of the weak ties theory of legislative outcomes. The empirical

test I develop utilizes a large n sample across many states, providing a very general

examination of the hypotheses generated. Further research on the topic should consider

both developing tests of the hypotheses in a smaller n setting and pitting the weak ties

hypotheses against alternative models more directly. For example, legislative scholars

have long relied on the proximity model of behavior as a means to determine which

legislation would pass or fail in a legislature with the implication that legislation targeted

at the median voter on the relevant dimension would be most likely to be successful.

Unfortunately, each legislative dimension may have a unique median voter meaning that

testing the weak ties theory of influence and the proximity model of legislative outcomes

across many issue dimensions may be very difficult. Thus, an attempt to examine the

added explanatory power of weak ties to a proximity model might examine a subset of

legislation where the ideological distribution of legislators is well understood and then see

what novel coalitions created by legislators on that dimension add in terms of predictive

power.

Further research might also consider a qualitative approach to both the influence

of legislative relationships on outcomes and the influences of institutions on legislative

relationships. My work has relied on cosponsorship networks as reasonable proxies for

legislative collaborations. Qualitative investigations would allow scholars to examine

the validity of this approach while also gathering data on other legislative networks

of interest. In particular, my hypotheses regarding chamber and committee size and

its influences on partner selection would seem like ideal candidates for more in depth

qualitative examination. If committees do indeed provide opportunities for collaborative

relationships, interviews would be helpful in uncovering those relationships.

Outside of stronger tests of my own theories, new research on bipartisanship and

legislative relationships might also consider the electoral impacts of these sorts of choices.
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Harbridge and Malhotra (2011) have shown that while all partisans espouse a preference

for bipartisanship, strong partisans evaluate legislators more poorly when they actually

behave in a bipartisan manner. Thus, bipartisanship may lead to greater legislative

success, but may also have serious electoral implications, particularly in primary elections

where strong partisans are the critical constituency.

Finally, future scholarship would benefit from the development of a unified agent-

based model of coalition politics in U.S. legislatures based on the weak ties theory of

legislative outcomes. Such a model would approach a legislature as an organization

of individual agents competing and cooperating in the production of legislation, and

requiring the assistance of others to do so. Precisely when and why coalitions arise, who

are likely to form those coalitions, when they run counter to political party structures,

how long coalitions can persist, and how the actors in those coalitions are benefited by the

coalition’s existence would all be questions of interest in such an effort. A more formalized

model of the process outlined in Chapter 2 would provide a clearer understanding of the

implications of legislative relationships across all types of legislatures.
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Chapter 7

Appendices

7.1 Appendix 2A- Model Results for the Analysis of

Legislative Success

In Table 7.1, I present four models in which the dependent variable is a dichotomous

outcome coded 1 if a bill survives committee deliberation in a state and 0 otherwise.

The graphical analysis presented earlier provides easier interpretation of these highly

conditional results and demonstrates strong support for the weak ties theory of influence

diffusion. Within the table itself, the results indicate that strong ties produce negative

insignificant effects on the probability a bill will survive at the committee stage in both

models 1 (direct connections) and 2 (secondary connections). The results also show

a consistent positive effect for direct weak ties. Additionally, models 3 and 4 show a

positive interaction term indicating that the marginal effect of direct weak ties increases

as the weak ties lead to larger and larger secondary connections. Recall, however that

the individual coefficients on ties are less important than their combined effects. The

path to individual success should be through a combination of weak ties to secondary

connections. Model 3 shows a positive effect for both direct and secondary weak ties

and a positive interaction term and Model 4 shows a positive effect for direct weak ties



and a positive interaction term. Thus, it would seem that the combined effects of these

variables produce increased legislative success for individuals.

Table 7.2 mirrors the analysis from Column 3 and 4 performed in Table 7.1, this

time using data from the US House. The dependent variable is dichotomous, coded 1

if a bill was reported out by a committee and 0 otherwise. Rather than allowing for

varying state intercepts, I allow for intercepts to vary by Congress. I have included

the absolute value of the bill author’s DW Nominate score in order to control for the

possibility that members closer to the median ideologically experience more legislative

success because they generate more palatable legislation to both sides of the ideological

spectrum. Interestingly, the replicated analysis in Table 7.2 from Columns 1 and 2, do

not demonstrate the same relationship as we see in Table 7.1. Instead of having positive

effects felt through direct connections, the models demonstrate that legislative success

through weak ties plays out through a positive coefficient on secondary connections and

a positive interaction term between direct connections and secondary connections. Both

models in Table 7.2 present negative and significant coefficients on direct weak ties, but

as with the state analysis the more important test of the weak ties theory lies in the

combined effects of direct and secondary connections which is presented in the graphical

analyses in Figures 5 and 6 in the main body of the paper.

In the next table in this appendix, I present two interactive models of bill passage

on the floor of the US House. The dependent variable is dichotomous, coded 1 if a bill

passes on the floor and 0 otherwise. While sample selection may be a small concern here,

many more bills pass without being reported out by a committee in the US House than

in the states, alleviating the need for a selection model to some degree. Once again, the

models in Table 7.3, Columns 1 and 2 report negative coefficients on direct weak ties,

but positive coefficients on secondary ties and on the interaction term between direct
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Table 7.1: Logistic Regression Models Predicting Bill Survival at Committee Stages in
State Legislatures

Variable Model 1 Model 2 Model 3 Model 4

Sponsor Institutionally Advantaged 0.289 * 0.294 * 0.294 * 0.302 *
(0.048) (0.048) (0.048) (0.049)

Sponsor Tenure 0.001 0.001 0.001 0.001
(0.002) (0.002) (0.003) (0.002)

Sponsor Majority Party 0.386 * 0.391 * 0.384 * 0.398 *
(0.052) (0.051) (0.051) (0.052)

Number of Cosponsors on Specific Bill 0.032 * 0.031 * 0.031 * 0.032 *
(0.003) (0.003) (0.003) (0.002)

Weak Ties — 0.111 0.081 0.146 *
(—) (0.061) (0.058) (0.073)

Strong Ties — -0.004 — 0.004
(—) (0.026) (—) (0.031)

Secondary Connections from Weak Ties 0.028 — 0.011 -0.014
(0.044) (—) (0.045) (0.051)

Secondary Connections from Strong Ties -0.039 — — -0.060
(0.031) (—) (—) (0.034)

Weak * Secondary Connections from Weak — — 0.036 0.018
(—) (—) (0.034) (0.038)

Strong * Secondary Connections from Strong — — — 0.022
(—) (—) (—) (0.019)

Intercept -0.942* -0.900* -0.934 * -0.944 *
(0.243) (0.257) (0.261) (0.260)

σ̂state 0.443 0.502 0.501 0.493
N 12900 12900 12900 12900
LogLik -7663 -7663 -7661 -7659

Note: Columns (1), (2), (3), and (4) report multi-level logistic regression coefficients with

varying intercepts by state. The dependent variable is a dichotomous measure of bill passage

from committee. Models have standard errors in parentheses. Varying intercepts are not

reported, but anova tests indicate that state level intercepts significantly improve model fit.

Higher Log Likelihood indicates better model fit. * p < 0.05.
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Table 7.2: Logistic Regression Models Predicting Bill Survival at Committee Stages in
the US House (1991-2005)

Variable Model 1 Model 2

Sponsor Institutionally Advantaged 1.052 * 1.048 *
(0.052) (0.053)

Sponsor Tenure 0.020 * 0.023 *
(0.004) (0.004)

Sponsor Majority Party -0.004 * -0.0041
(0.002) (0.0022)

Number of Cosponsors on Specific Bill 0.003 * 0.003 *
(0.0004) (0.0004)

Absolute Value of DW Nominate Score -0.595 * -0.275 *
(0.118) (0.125)

Weak Ties -0.338 * -0.160 *
(0.018) (0.027)

Strong Ties — -0.261 *
(—) (0.032)

Secondary Connections from Weak Ties 0.115 * 0.096 *
(0.019) (0.019)

Secondary Connections from Strong Ties — -0.046 *
(—) (0.022)

Weak * Secondary Connections from Weak 0.043 * 0.048 *
(0.015) (0.015)

Strong * Secondary Connections from Strong — -0.034
(—) (0.019)

Intercept -2.387 * -2.551 *
(0.063) (0.071)

σ̂Congress 0.007 0.012
N 37056 37056
LogLik -11285 -11233

Note: Columns (1) and (2) report multi-level logistic regression coefficients with varying intercepts by

Congress. The dependent variable is a dichotomous measure of bill passage from committee. Models

have standard errors in parentheses. Varying intercepts are not reported, but anova tests indicate

that Congress level intercepts significantly improve model fit. Higher Log Likelihood indicates better

model fit. * p < 0.05.

138



and secondary weak ties. This positive interactive effect is responsible for the increases

in bill passage as direct and secondary weak ties increase observed in Figure 2.6, in spite

of the negative coefficient on direct weak ties presented in the model.

7.2 Appendix 2B- An Alternative Approach to the

Measurement of Weak Ties

In my analysis of the impact of relational determinants of legislative success, I differentiate

between the impact of strong and weak relational ties arguing that strong ties provide

little opportunity for influence. The empirical analysis I employ to test the hypotheses

that result from my weak ties theory are based on the admittedly arbitrary (though

not without precedent) distinction between strong and weak ties occurring at the mean

level of connectivity in a social network, plus one standard deviation. While to my mind

standard deviations exist for just this purpose (to identify unusually high or low positions

in a distribution) I understand that some readers may be skeptical of analysis confirming

my theory based on an arbitrary censoring rule. Accordingly, I offer a sensitivity analysis

in Table 7.4. This sensitivity analysis re-examines the analysis presented in Table 7.1,

this time using alternative cutpoints to distinguish between strong and weak ties. The

first two results in Table 7.4 make use of the mean plus 0.75 standard deviations as a

cutpoint between strong and weak ties. The second two models present an analysis using

the mean plus 1.25 standard deviations. I only present the fully specified additive and

analogous interactive models from Table 7.1.

While the interactive effects in these models have become negative and very near

to zero, the general finding that weak ties lead to increases in bill survival and thus

legislative success remains consistent across disturbances to the cutpoint distinguishing
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Table 7.3: Logistic Regression Models Predicting Bill Passage in the US House (1991-
2005)

Variable Model 1 Model 2

Sponsor Institutionally Advantaged 1.127 * 1.117 *
(0.052) (0.052)

Sponsor Tenure 0.011 * 0.015 *
(0.004) (0.004)

Sponsor Majority Party -0.005 * -0.004 *
(0.002) (0.002)

Number of Cosponsors on Specific Bill 0.004 * 0.004 *
(0.0003) (0.0003)

Absolute Value of DW Nominate Score -0.784 * -0.436 *
(0.117) (0.122)

Weak Ties -0.310 * -0.122 *
(0.018) (0.026)

Strong Ties — -0.274 *
(—) (0.031)

Secondary Connections from Weak Ties 0.080 * 0.064 *
(0.019) (0.019)

Secondary Connections from Strong Ties — -0.041
(—) (0.021)

Weak * Secondary Connections from Weak 0.042 * 0.046 *
(0.015) (0.015)

Strong * Secondary Connections from Strong — 0.014 *
(—) (0.019)

Intercept -2.209 * -2.379 *
(0.077) (0.079)

σ̂Congress 0.0221 0.0216
N 37056 37056
LogLik -11881 -11825

Note: Columns (1) and (2) report multi-level logistic regression coefficients with varying intercepts by

Congress. The dependent variable is a dichotomous measure of bill passage from committee. Models

have standard errors in parentheses. Varying intercepts are not reported, but anova tests indicate

that Congress level intercepts significantly improve model fit. Higher Log Likelihood indicates better

model fit. * p < 0.05.
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strong and weak ties. In all four models presented above, increasing direct weak ties

leads to increases in bill survival controlling for the other variables in the model. The

interaction terms are so small that their negative conditioning effects never bring the

marginal effect of direct ties back down to zero/statistically insignificant. This analysis

provides more robust support for for the overall conclusion that the most efficient paths

to legislative success remain weak ties rather than strong ties.

7.3 Appendix 2C- Matching to Reduce Model De-

pendence

To test my hypotheses about weak ties leading to legislative success, I have made heavy

use of hierarchical or multi-level logit models. While hierarchical models were designed

with this sort of multi-level data in mind, they come with two limitations. First, they

are most useful in datasets with many small clusters whereas this state level data is the

reverse, a few very large clusters. Secondly they are rather sensitive to multicollinearity,

requiring collinear variables to be centered or normalized in order to reach convergence.

This creates some concerns about the level of model dependence in my results. In other

words, I am imposing a number of parametric assumptions on data and violations of

these parametric assumptions may be driving results. Ho et al. (2007) suggest making

use of matching techniques to limit model dependence and more clearly estimate robust

results.

In Table 7.5 I present four logit models, in which the dependent variable is bill sur-

vival at the committee stage in state legislatures. Unlike the analysis in Table 7.1,

these data have been matched using the “MatchIt” package in R, treating direct weak

ties, direct strong ties, secondary weak ties, and secondary strong ties as treatments,

respectively. Because matching software has yet to successfully implement continuous
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treatments (though the statistics for such an algorithm have been developed, see Hirano

and Imbens (2004)), matching requires a dichotomous treatment variable. In order cre-

ate this dichotomous treatment, I take each of the four continuous treatments I wish to

study and code them one if the variable is above its own median and zero otherwise. This

forced choice is less preferable than matching on a continuous treatment would otherwise

be, but matching in this way does limit the impact of model dependence on the outcomes

observed even if it obscures information about the important treatment variables. I use

nearest neighbor matching to produce the matched data and summary statistics indicate

that balance is always improved in the matched sample over the unmatched samples.

Because these data have been matched and standard logit models are used, the data

have not been normalized explaining the differences in the magnitudes of the coefficients

from Table 7.1.

Table 7.5 is presented using all of the matched data set, thus the treatment variable

coefficients represent the average treatment effect (ATE) for the entire sample of moving

from below the median on the treatment variable to above the median on the treatment

variable. In all four models presented direct weak ties have a positive coefficient and

in three of the four models presented the interaction between direct and secondary ties

is positive. Additionally, in all four models direct strong ties and secondary strong ties

have a negative effect on bill passage and in two of the four models the interaction

between direct and secondary strong ties is negative. This is strong evidence that even

when the data are matched on several different potential treatment variables and model

dependence is reduced using a matching approach, the most efficient path to increased

bill success remains through weak ties.

While the matching approach presented above forces different choices on a researcher

interested in a continuous treatment, it can represent a nice robustness check by ensuring

that the influence of the parametric assumptions in a model are wreaking as little damage
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Table 7.5: Matched Logistic Regression Models Predicting Bill Survival at Committee
Stages in State Legislatures

Variable Model 1 Model 2 Model 3 Model 4

Sponsor Institutionally Advantaged 0.300 * 0.329 * 0.289 * 0.293 *
(0.049) (0.049) (0.049) (0.049)

Sponsor Tenure -0.001 0.005 0.001 0.001
(0.003) (0.003) (0.002) (0.002)

Sponsor Majority Party 0.368 * 0.396 * 0.395 * 0.366 *
(0.052) (0.052) (0.053) (0.052)

Number of Cosponsors on Specific Bill 0.031 * 0.031 * 0.031 * 0.031 *
(0.003) (0.003) (0.003) (0.003)

Weak Ties 0.145 0.008 * 0.000 0.004
(0.139) (0.003) (0.004) (0.003)

Strong Ties -0.002 -0.119 -0.001 -0.004
(0.003) (0.085) (0.003) (0.003)

Secondary Connections from Weak Ties -0.000 -0.000 -0.236 0.000
(0.000) (0.000) (0.136) (0.0001)

Secondary Connections from Strong Ties -0.0002 -0.0005 * -0.0002 * -0.131
(0.0001) (0.0001) (0.0001) (0.081)

Weak * Secondary Connections from Weak 0.0001 -0.000 0.009 * 0.000
(0.0001) (0.000) (0.003) (0.000)

Strong * Secondary Connections from Strong -0.000 0.0004 * -0.000 0.006
(0.000) (0.0001) (0.000) (0.003)

Intercept -0.711 * -0.840 * -0.730 * -0.785 *
(0.120) (0.129) (0.133) (0.130)

N 12790 12776 12782 12760
LogLik -7553 -7551 -7560 -7568

Note: Columns (1), (2), (3), and (4) report logistic regression coefficients with unreported dummy

variables by state. The dependent variable is a dichotomous measure of bill passage from committee.

Models have standard errors in parentheses. State level dummy variables are not reported but

anova testing indicates that they significantly improve model fit. In Column (1) direct weak ties

are considered the treatment (and are thus matched on in the matching stage). In Column (2)

direct strong ties are considered the treatment. In Column (3) secondary weak ties are considered

the treatment. In Column (4) secondary strong ties are considered the treatment. Higher Log

Likelihood indicates better model fit. * p < 0.05.
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as is possible. By reducing model dependence through matching and pairing this with

highly parametrized multi-level models, the case for the weak ties theory is made even

stronger.

7.4 Appendix 2D- Creating an Assessment of Uncer-

tainty in Modularity

Modularity as a statistic is bounded between negative one and one, and because the

distribution of modularity has yet to be explored I have a limited ability to draw inferences

about the magnitude of the differences between the strong and weak ties networks. In

order to provide some intuition about the statistical magnitude of the observed differences

in modularity, I have simulated a null distribution of modularity for a given state’s strong

ties network. To do this, I take a particular state’s strong ties network, randomly draw

25,000 partitions of that network and record the modularity of that randomly drawn

partition on the strong ties network.1 This creates a distribution of modularity for

potential random partitions, and 95% of the density of this distribution centered around

the mean can inform us of the degree to which the observed modularity score is likely at

random. While this is not a perfect approach to drawing inferences about the magnitude

of differences of these statistics, it does provide some empirical ground for asserting

that these similarity partitions are more effective at separating actors in the strong ties

network than in the weak ties network.

These random partitions can take on any type of division, even dividing the network

into sets of 1 and n− 1 groups. Allowing the partitions to take on any shape generates

1Because the strong ties network has some effective partitions in it, the standard deviation of modu-
larity from randomly drawn partitions in the strong ties network is higher than the standard deviation
of modularity from randomly drawn partitions in the weak ties network. Thus, the standard deviation
of the strong ties network represents the more conservative estimate.
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the widest possible distribution for random modularity scores. Restricting the type of

divisions that could be considered (for example, only allowing divisions that divide the

network into groups the same size as the observed political party memberships) shrinks

the null distribution of modularity by limiting divisions that might actually divide the

network well because of their size. Thus, while restricting the random divisions to match

the size of the real world divisions might create different null distributions for different

attributes (meaning there would be a different null distribution of party modularity and

gender modularity), this is actually a less conservative test than the nearly fully random

exploration I use here.

These empirically derived distributions of modularity for each state indicate that

party is a better than expected partition of the strong ties network in North Carolina,

Minnesota, Mississippi, Hawaii, Alabama and Alaska, while party is only a better than

expected partition of the weak ties in Minnesota and Alabama. Gender is a better than

expected partition of the strong ties network in North Carolina, Minnesota, Mississippi,

Hawaii, and Alabama, while it is never a better than expected partition of the weak

ties network. Race is a better partition of the strong ties network than expected at

random in North Carolina, Mississippi, and Alabama and is also never a better than

random partition of the weak ties network. Using the range of 95% of the density of

the simulated distribution as a mark of statistical difference between the modularity of

the strong and weak ties networks, party always creates statistically larger modularity

scores in the strong ties network than in the weak ties network. Gender creates larger

modularity scores in North Carolina, Minnesota, Mississippi, and Hawaii, while gender

fails to partition the strong ties network better than the weak ties network in Indiana,

Delaware, Alabama, and Alaska. Race creates larger modularity scores in North Carolina,

Mississippi and Alabama. These results demonstrate that strong ties are in large part

driven by the pre-existing similarities between legislators while weak ties are not driven
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by these similarities. Coupled with the empirically supported notion that weak ties are

also the ties which lead to increased legislative success, this would seem to be strong

evidence in support of the weak ties theory of influence diffusion in a legislative network.

This reinforces the evidence from the main body of the paper. Even when account-

ing for the uncertainty in the measure of modularity, strong ties are largely driven by

similarities while weak ties are not.

7.5 Appendix 3A- Descriptive Statistics

To test my expectations regarding the effect of shared constituency on collaboration

between legislators, I make use of cosponsorship data and district overlap data from

the North Carolina General Assembly from 1997-2007. Table 7.7 presents descriptive

statistics for this data. The density of the cosponsorship network refers to the proportion

of potential network connections that are realized. In other words, it is the proportion of

legislators connected to one another. The number of dyads sharing a constituency refers

to the number of pairs of legislators being coded as having formerly shared a district

(the definition of shared constituency used in Figure 3.1). Both the number of bills

sponsored and the density of the network increase sharply in 2005, meaning the change

in the coefficients reported in the paper that occurs in 2003 cannot be caused by changes

in the opportunities for or frequency of cosponsorship.

There is a large drop in the number of dyads being coded as sharing a constituency,

which may be responsible for the change in the precision of estimates reported in Figure

3.1. This makes the second analysis using the number of legislators coming from districts

that were once multi-member more important. Both analyses show a large change in

covariate values at the 2002 cutpoint. Because this is a Bayesian model (with flat priors),

I can directly interpret the posterior coefficient distributions as probabilities. While
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Table 7.7: Descriptive Statistics for the Analysis of the North Carolina House (1997-2007)

Variable 1997 1999 2001 2003 2005 2007

Number of Bills Introduced 1765 1866 1809 1807 2895 2808
Density of the Cosponsorship Network 0.37 0.27 0.23 0.41 0.60 0.71
Number of Dyads Sharing Constituency 30 30 30 10 8 6
Democrats/Republicans 59/61 66/54 62/58 60/60 63/57 68/52

the precision of the estimates reported in Figure 3.1 does decrease following the 2002

institutional change, 88.9% of the posterior density of the coefficient estimate on shared

constituency in 2003 is below the minimum of the 2001 estimate. If I instead use the

lower 95% confidence interval for the 2001 estimate, 93.8% of the posterior density for

the 2003 estimate is below this threshold. Even in the face of much smaller numbers of

observations on shared constituency, there is reasonable certainty that the coefficients

are different than one another.

7.6 Appendix 3B- Latent Position Methods for So-

cial Network Analysis

In order to model the effects of a shared district and to model the latent dimensions

driving collaborative choices, I use the latent space model for social network data (Hoff

et al. 2002). The latent space model accounts for interdependence in network data by

placing actors closer to one another in a latent social space if they are more strongly

connected. The model then estimates actors’ positions within this space simultaneously

with pair- and individual-level covariates via standard MLE or MCMC processes. The

latent space model has two ways in which it can calculate these positions, either through

a standard distance model or a projection model. In my estimations, I focus on the
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distance model because of its strong connections to spatial decision models commonly

used in legislative analysis. In the distance model, two actors i and j are considered more

likely to be tied if their positions in the latent space are closer to one another. Thus, the

simple logistic model predicting the existence of a tie takes on the form:

logodd(yi,j = 1|zi, zj, xi,j, α, β) = α + β ∗ xi,j − |zj − zi| (7.1)

Without any observed covariates, this model simplifies to a baseline probability of connec-

tion (α) and the distance between two actors on an unobserved dimension. The location

parameters zi are placed within a user specified dimensional space <k, which can be as

simple as two-dimensional and where k is specified before estimation. Likelihood ratio

tests allow researchers to determine whether additional dimensions provide worthwhile

increases in model fit. As k approaches ∞, the error term of the model vanishes and the

LSM fits data arbitrarily well. A particular benefit of the latent space model is its foun-

dations in generalized linear model theory. Because the latent space model is a standard

glm that controls for interdependence through the latent space, it is easily extendable to

non-binary social networks.

The estimation of the latent space model proceeds as follows, where Z is the matrix

of positions in the latent social space:

1. Identify an MLE Ẑ of Z, centered at the origin, by the direct maximization of the

likelihood.

2. Using Z0 = Ẑ as a starting value, construct a Markov chain over the parameters

as follows:

(a) Sample a proposal Ž from J(Z|Zk), a symmetric proposal distribution.
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(b) Accept Ž as Zk+1 with probability p(Y |Ž,αk,βk,X)
p(Y |Zk,αk,βk,X)

π(Ẑ)
π(Zk)

(c) Store Z̃k+1 = argminTZk+1
tr(Ẑ − TZk+1)′(Ẑ − TZk+1), where T is the pro-

crustean transformation of Z

3. Update α and β with a Metropolis-Hastings algorithm.

I utilize the statnet package in R (Handcock et al. 2008) to estimate the models, using

the default (and diffuse) priors over Z. I utilize a burn-in period of 25,000 runs and store

a sample space of 5,000 posterior simulations. The Markov chains from each state mix

well and subsequent checks indicate that the models reach convergence in each chamber.

While the distance model has some theoretical and intuitive appeal, the latent space

model has an alternative parameterization based on projection. This projection-based

approach assumes that actors have unique characteristics/positions on a k-dimensional

sphere. In this case, the likelihood of a connection between two actors is a function of

the angle on the sphere imposed by their positions. In other words, if the angle formed

between two actors and the origin is less than 90 degrees, a tie between the two is likely

and if it is more than 90 degrees, a tie between the two is unlikely. Said yet another way,

the projection model specifies that if two actors unobserved characteristics are “pointed”

in the same “direction” they are likely to form a tie and if they are in different directions,

the tie is unlikely. This allows for asymmetries in the connections implied by the latent

space. While the work I present here relies on the distance method, future work might

take advantage of this parameterization for a number of problems. For example, there

seems to be a nice parallel in these model choices to the spatial versus directional debate

in voting behavior.
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7.7 Appendix 3C- Model Results from Latent Space

Models of Cosponsorship

In the main body of this paper, I present graphical analysis of a model of cosponsorship

behavior in the North Carolina House from 1997-2007. While this graphical analysis

facilitates comparisons well, interpretation of graphics is somewhat less precise than

results presented in a table. Below I present two tables of results from Poisson latent

space models over time. In the first table, shared constituency in 2003, 2005, and 2007

is a dummy variable coded 1 if two legislators were ever representatives of a multi-

member district together. In the second table, shared constituency in 2003, 2005, and

2007 is coded one if two legislators represent districts that were ever a part of a multi-

member district. Thus, in the second analysis I code two legislators as having shared

a constituency although they were themselves never a representative of a multi-member

district. The variable “edges” represents the intercept of the latent space model and

indicates the Poisson parameter on the number of edges or connections expected by the

model controlling for all the other covariates. These representatives inherited districts

that were at one point multi-member, but no longer are.

While model fit statistics can be reported for these types of models, the likelihood

based BIC may be a less than intuitive way to understand how well the latent space

models predict outcomes. As an alternative, Figure 7.1 presents the density of prediction

errors for each of the models in Table 7.8. A prediction error is defined as the difference

between the actual Yij and the predicted Yij from the latent space model. The figures

show that in each of the models the distribution of errors is highly peaked around zero,

indicating that the models accurately predict the weight of tie formation more often

than not. The average value is actually 89% of ties accurately predicted within one bill
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cosponsorship. In addition to providing a clearer interpretation of model fit, this error

analysis indicates that concerns about under-specification are unwarranted. There is very

little variance in the network not already predicted by the two dimensional latent space

model I utilize, thus there is very little information for omitted variables to explain.

As additional analysis in the main body, I present graphical results from states other

than North Carolina that use combinations of multi-member and single-member districts.

I report the results that generate these graphical results below in Table 7.10. Once again,

the model results indicate that sharing a constituency increases cosponsorship behavior

both within and across parties. Party still strongly structures the cosponsorship network.

Once again in order to provide a more interpretable indication of model fit, Figure 7.2

reports the density of the differences in the predicted and observed connections strength in

the cosponsorship networks. In each of these states, the bulk of the errors in the model are

centered on zero, indicating that there are few predictive errors and the model fits quite

well. These strong levels of model fit are a function in large part of the latent dimensions’

ability as predictors. It would be surprising if the latent space, derived directly from the

dependent variable, did not provide large improvements to predictive ability. This is

similar to the increases in predictive accuracy a model receives for including random

effects for cluster variables. The cluster random effects in a hierarchical model improve

predictive accuracy by modeling cluster means in addition to covariates not unlike the

latent space placing actors in space as a function of each actors transitive and reciprocal

relationships.
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7.8 Appendix 3D- Committee Specific Results from

Latent Space Models

The results presented in the main body this article suggest that legislators from shared

districts collaborate on legislation more often than their colleagues from single-member

districts. This result exists controlling for party and alternative, unmeasured dimensions

of behavior. However, the possibility exists that the collaboration that occurs between

legislators in a multi-member district is not a general phenomenon, but instead is a

result of collaboration on a specific type of legislation. For example, legislators from

multi-member districts might collaborate on bills that bring projects back to their home

districts, but oppose one another on all other legislation. In order to evaluate whether

the observed collaboration created by shared constituency is content specific, I have re-

constructed the cosponsorship networks in North Carolina’s legislature in 2001 and 2003.

Instead of including all legislation, I construct three different cosponsorship networks for

each year, a network for bills referred to the Appropriations Committee, a network for

bills referred to the Finance Committee, and a network for bills referred to the Rules

Committee. In the network for the Appropriations Committee bills, a tie between i

and j exists if legislator i cosponsors a bill sponsored by legislator j and the bill’s first

referral was to the Appropriations Committee. In North Carolina, the Appropriations

Committee deals with expenditures by the legislature, the Finance Committee deals with

revenue/taxes created by the legislature, and the Rules Committee receives the bulk of

the substantive legislation before it is re-referred to expert committees. Thus, examining

only bills referred to each of these committees allows me to discover whether collabora-

tion generated by shared constituency is specific to pork projects, substantive legislation,

or occurs in all three areas.
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Figure 7.3 plots the coefficients and their 95% credible intervals from a model predict-

ing the number of cosponsorships between actors for each of the three committee types in

2001 and 2003. The models are run precisely as in the main body of the paper, with co-

variates for co-partisanship, shared district, an interaction of co-partisanship and shared

district, and two latent unobserved dimensions. I place the coefficients for each variable

from all three models side-by-side to facilitate comparisons across committee models. The

black points represent the coefficients in 2001 and the grey points represent coefficients

in 2003. In each of the models, co-partisanship is a statistically significant predictor of

collaboration in 2001 and 2003. Just as in the general models, the coefficient on shared

constituency is signficant in 2001 but not 2003 for each committee type. Finally, the

interaction term for co-partisan and shared constituency is negative and significant for

the Appropriations Committee in 2001, but is insignificant for the other five models.2

Even on taxation issues, shared constituency generates collaboration. Additionally, there

is no significant difference in collaboration for cross-partisan and co-partisan legislators

from the same district.3 Thus, it would seem that the results I report in the main body

of the paper are not specific to pork-barrel legislation or substantive legislation, but

occur in many types of bills. That the model uncovers significant cross-party, shared

constituency effects on bills focusing on taxation seems to be strong evidence that the

observed collaboration crosses across many bill types.

2The marginal effect of shared constituency and same party remains positive even with the interaction
term’s negative influence.

3The interaction term between the two is insignificant implying that the marginal effect of same
party, shared constituency on cosponsorship is no different than the marginal effect of cross party, shared
constituency. Because the covariates are all dummy variables, a full marginal effects plot is unnecessary.
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7.9 Appendix 3E -But What About Roll Call Votes

Throughout the paper, I have used cosponsorship networks as a test of induced legislative

collaboration through shared consituency. I believe cosponsorship to be the most appro-

priate test for this hypothesis because cosponsorship requires an active decision by both

a sponsor and a potential cosponsor. Decisions by a bill’s sponsors about whom to solicit

as cosponsors sends a signal to the floor about the legislation being sponsored (Kessler

and Krehbiel 1996). Decisions about what to cosponsor send certain kinds of signals

about individual legislators to their colleagues (Kirkland 2011). Thus, both actors must

wish to send a signal and must agree to send that signal collaboratively. Sponsors can

reject cosponsors, and cosponsors can turn down requests from sponsors. Additionally,

cosponsorship can occur on any bill sponsored in the chamber. Alternatively, roll call

voting is much less a sort of dyadic behavior and is subject to selection mechanisms in

ways that make it a less ideal indicator for my analysis. Legislators are expected to take

vote on nearly all legislation that comes to roll call, meaning they can be less selective

about the type of signal they wish to send with their votes. Additionally, there is much

less concern from the sponsor of a bill about who votes for a bill. He or she simply wishes

for a majority of legislators to vote in favor of his or her legislation. Crafting the appro-

priate coalition is much less important at this stage of legislative deliberation. Finally,

roll calls are subject to selection at the committee stage meaning patterns of co-voting

at the roll call stage would represent coordinated behavior on only a small subset of the

possible opportunities for collaboration.

Nevertheless, there is a lengthy tradition of roll call analysis in legislative studies and

if my theory is correct I should be able to detect changes in roll call voting behavior after

the change in the North Carolina legislature to single-member districts. Additionally, it

is possible that legislators place little weight on cosponsorship making common cospon-

sorship an unimportant political activity. Roll call votes are clearly an important veto
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point in the chamber and carry a great deal of weight in determining policy outcomes.

As such, I have gathered the roll call votes for legislators in the North Carolina House

for the 2001-2002 session and the 2003-2004 session. Using Optimal Classification (Poole

2000, 2005), I fit a two-dimensional solution to the roll call votes by North Carolina

House members for each session.4 Figure 7.4 plots the coordinates of legislators on the

first dimension for the 2001 and 2003 legislative sessions. Republicans are colored grey

and Democrats are colored black. As expected, the first dimension of the solution has a

strong partisan structure with very little overlap between the two parties.

As before, I create a vector of differences between actors on the first dimension of the

solution. I can then compare the differences between legislators in the same district to dif-

ferences between their colleagues from single-member districts. Because the distribution

of differences is unknown, I again use the Wilcoxon Rank Test, which assesses whether

there is a systematic difference in the ranking of differences between shared district and

single-member district legislators. In 2001, the differences between members of the same

district but different parties were ranked as statistically smaller than differences between

members of different parties and different districts (p-value of 0.021). There was no mea-

sureable difference between members of the same party and same district versus members

of the same party but different districts. In 2003, the differences in first dimension pref-

erences between same districts, cross partisans and different district, cross partisans is no

longer statistically significant. Cross-partisans from formerly multi-member districts no

longer have distinct behaviors from the cross-partisan single-member colleagues. There

were still no measureable difference between members of the same party and same district

versus members of the same party but different districts.

Thus, even using the less appropriate but perhaps more politically important roll

4The one-dimensional solution explains over 90% of voting behavior by legislators in both sessions.
The addition of a second dimension adds virtually no explanatory power to the solution.
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call voting measures, multi-member districts created increased levels of similarity in vot-

ing patterns amongst cross-partisans. These similarities vanished once multi-member

districts were eliminated. Recall that these inferences are drawn on the same set of

multi-member district legislators before and after their district change, and that their

new districts are not particularly different from their prior districts. What has changed

is the nature of their elections and the fact that they no longer share a district.

7.10 Appendix 4A - Adding Unbalanced Parties to

the Model

The spatial model I use holds constant or randomly varies several elements of the data

generating process in order to isolate the influences of group size on network formation.

One of these elements is the distribution of party affiliations in the chamber. I randomly

assign actors in the model to one of the two parties with probability of 0.5. While I

allow the importance of party preferences for an individual to vary, I hold the balance

of partisans in the chamber at 50/50. In order to demonstrate that the results of the

computational model are robust to this choice, in this section I will present results from

the computational model where one of the two parties holds an advantage. In this model,

I assign actors to the political party coded 1 with probability 0.6 and the other party

with probability 0.4. This is akin to saying one of the two parties performed unusually

well in the preceding election and now holds a large majority in the chamber.

Otherwise, the simulation of the data proceeds precisely as before. Actors have their

preferences generated from distributions. They are assigned committees and they learn

about one another’s preferences through overlapping committee assignments. The con-

nections between the actors are a function of their perceived distances across all the
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dimensions of the preference distribution. I then calculate the distance across the sub-

sequent network using the average path length and calculate the partisanship of the

network using party modularity. Once again, while chamber size and committee size are

allowed to vary systematically, the attributes of the actors themselves are only allowed

to vary randomly. This assures that any systematic patterns observed in the network

topology are a function of group size only.

Figure 7.5 plots the average path length as a function of varying the size of com-

mittees for a legislature of 80 actors. Committees are allowed to take on sizes ranging

from 2 members to 50 members. As with the results presented in the main body of the

paper, when committees become larger distance across the network shrinks. Even in a

more partisan environment, actors learn about one another through common committee

assignments and their updated knowledge provides opportunities for connections that

otherwise would not exist. These novel connections shrink the distance across the leg-

islative network, resulting in a more efficient distribution of relationships amongst the

actors.

Figure 7.6 plots the partisan modularity for a network split along a 60-40 party divide

with committee size fixed at 15 members. The network takes on chamber sizes of 50, 60,

70, 80, 90, and 100 actors. For each of the four party weightings in committee preferences,

the relationship between chamber size and party modularity is positive and statistically

significant. Thus, it would seem that the sensitivity of partisan modularity to network

size is not a function of the number of actors associated with each party in the chamber.

Their relative propensity to work within parties versus across parties remains sensitive

to the size of the chamber, but not to the distribution of party affiliates.

A number of other extensions to the model may be worth pursuing, including intro-

ducing strategic connections by individual actors. In the computational model I present,

actors build connections to one another based on some set of similar characteristics, but
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in the real world, connections between actors are likely a function of both similarity and

strategy. It may also be possible to incorporate sender and receiver effects into the model

that reflect varying levels of prestige actors might have in a legislature. For example,

committee chairs or speakers may be more desirable relational partners. While these

extensions are certainly worth pursuing, it is unlikely that they will affect the results I

present here. My simulations control for individual level attributes rather thoroughly.

These individual-level extensions are likely to affect the intercepts of my simulations, but

not the slopes of the actual regression lines.

7.11 Appendix 4B - Exploring Measures of Network

Topology

Throughout my analysis, I focus on two measures of network topology: party modularity

and the average path length of a cosponsorship network. Network topology refers to

the global shape and structure of a network, which I assert is responsive to some of the

fundamental instutitions of a legislature. The global structure of a network is necessarily

hard to summarize in a single statistic, but path length and clustering are common

measures associated with the long line of research on small world networks (Tam Cho

and Fowler 2010, Watts and Strogatz 1998). Modularity allows me to examine clustering

along a relevent dimension rather than measuring the general tendencies toward any type

of clustering in the network. Other measures of bridging ties such as Burt’s structural

holes measure are calculations at the individual level, rather than measures of global

network properties.

In particular, I focus on the size of a legislature and the size of committees within

that legislature. These institutions covary with the measures of network topology in

predictable ways, which I take as support for my theory. Alternatively, however, it is
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possible that the regression relationships I observe in my networks are not a function

of a theoretical relationship of interest, but are instead a characteristic of the measures

I chose. For example, if modularity along any dimension increased whenever the size

of a network increased because of how modularity is calculated, then the relationship I

observe would not be support for the partner selection model I advocate. To alleviate

this concern, this section provides a detailed introduction to the measures I chose and

demonstrates why the relationships observed in the data are not generically expected

given my measures.

Modularity is a quality statistic developed primarily in statistical physics as a tool

for engaging in community detection. In community detection exercises, an analyst

attempts to partition a network of interactions into distinct groups, or communities,

where all the actors within a community have strong connections to one another and

relatively weak connections to actors in other communities. This partitioning exercise

necessarily requires some way to evaluate the quality of a particular partition. Modularity

is one such evaluation (and the most popular way). Modularity can actually be measured

using a variety of calcuations, but the general aim is to take the observed strength of

connections between members of a community and substract from it the number of

connections that would be expected between two randomly chosen actors in the network.

The most common formulation of modularity, and the calculation I use is:

Mod =
1

2m

∑
ij

[Aij −
kikj
2m

] ∗ δ(ci, cj) (7.2)

where m is the total number of connections in the network, Aij is the connection be-

tween actors i and j, ki is the total number of connections actor i has, and δ(ci, cj) is

the Kroneker delta for communities of actors i and j.5 Thus, modularity examines all

5Kroneker’s delta is a mathematical operation which returns a value of 1 if the two numbers within
the operation are equal to one another, and zero otherwise.
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the actors in the same community (δ(ci, cj)), adds up their connections with one an-

other (Aij), and subtracts the connections we might expect those actors to have in the

network generally (
kikj
2m

). Finally, the sum of all these components is normalized by the

total number of connections in the network ( 1
2m

). In networks with edge weights, where

connections between actors take on more than a zero or a one, the calculation is very

similar. In these weighted networks, Aij becomes the connection strength between i and

j, m becomes the sum of all the edge weights in the network, and ki becomes the total

weighted connections of actor i.

The results of my analysis indicate that modularity based on party affiliations in

legislative networks is tied to the size of the networks. If cosponsorship networks were

binary, then both the total number of connections in the network (2m) and the number

of connections each actor has (ki) would be tied to the number of actors in the networks.

However, because the cosponsorship networks are counts, m and k can be much larger

than N , where N is the total number of actors in the network. As such, these is no

fundamental connection between network size and modularity scores in count networks.

This result is also supported by Kirkland (2011).

The other measure I make heavy use of throughout the paper is the average path

length in a network. Average path length calculates the average shortest distance from

any node in the network to any other node in the network as if the connections between

them were paths that could be traveled. Path length is a global property of a network

that reflects how much more efficiently a set of relationships is distributed than a random

graph. Average path length is weakly connected to the size of a given network (Watts and

Strogatz 1998), thus it is no surprise that there is a strong positive connection between

chamber size and average path length. However, these is no a priori measurement-based

reason to expect that path length would be connected to committee size.

As with most network statistics, there are a variety of ways that average path length
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could be calculated. An analyst must account for the distance between connected nodes

and isolates in a network (actors with no connections), and in weighted networks, how to

properly reflect the distance between nodes. To deal with isolates, I utilized a measure

of path length that takes the distance between isolates and the rest of the network to

be the maximal distance conceivable across the network. So in a 100-actor network,

the distance between an isolate and any other actor in the network is 99. The isolate

must travel across all the other actors to reach any particular actor. This amplifies the

connection between path length and network/chamber size, but once again introduces

no reasons for path length to be connected to committee size.

The more pressing problem for the path length calculations is how best to deal with

weighted edges. Asserting that the distance between two actors who have cosponsored

with one another once is equal to the distance between two actors who have cosponsored

one another 10 times is problematic. My measure of path length uses the Djikstra al-

gorithm to calculate the shortest paths across the network for each actor and averages

across them (Csardi and Nepusz 2006). Djikstra’s algorithm (Djikstra 1959) is asymp-

totically the fastest known single-source shortest-path algorithm for arbitrary directed

graphs with unbounded nonnegative weights and in this case measures distance between

nodes as being proportional to the edge weight between them. Thus, a cosponsorship of 1

produces a distance of 1 and a cosponsorship of 10 produces a distance of 1/10. No con-

nection between actors is treated the same as for isolates, the distance is the maximum

possible distance across the network.

7.12 Appendix 4C - A Model of Network Density

My empirical analysis uses the network statistics average path length and party modu-

larity as dependent variables with network density as an independent variable. This is

a control variable intended to account for the possibility that the patterns described by
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my model may be easier to detect in legislatures where cosponsorship is more common.

However, density itself maybe a quantity of theoretical interest. The learning model that

I advocate essentially asserts that legislators will become more risk averse in partner

selection as the size of the legislature grows. If this is true, then it is reasonable to expect

that as legislatures grow in size cosponsorship will generally become less common and

network density will decrease.

Table 7.11 provides a regression analysis with the network density from the 96 legisla-

tive cosponsorship networks as the dependent variable. Network density is calculated by

dividing the total number of connections in the network by the total number of connec-

tions that could exist in the network. It is bounded between 0 and 1, and is a scale free

measure of the frequency of connection. Thus, it is perfectly comparable between net-

works and has no measurement based reason to correlated with chamber size. I include

the same variables as the analyses reported in Table 4.1 as predictors of network den-

sity. As the table indicates, the coefficient on chamber size is negative and statistically

significant meaning that as legislative chambers grow in size, cosponsorship becomes less

common.6 This reflects the increasing risk aversion in large chambers that my theory

expects.

Interestingly, though it never proved a significant predictor of party modularity of

average path length, the term limits dummy variable also has a significant and negative

effect on network density. This implies that legislatures with term limits also have less

frequency of cosponsorship.

6Because network density is bound between 0 and 1, OLS is not an ideal estimation technique. Thus, I
have also run a beta regression with the same independent variable, which is more suited to a dependent
variable distributed between 0 and 1. The beta regression coefficients are in the same direction and
significance for each of the variables as those reported by OLS.
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Table 7.11: OLS Models of Network Density in State Legislatures

Variable Coefficients

Chamber Size -0.002 *
(0.001)

Average Committee Size 0.010
(0.008)

Number of Committees -0.002
(0.004)

Number of Bills Introduced -0.000
(0.000)

Holbrook and Van Dunk Index 0.005 *
(0.002)

Squire Professionalism Index 0.542 *
(0.284)

Term Limits Dummy -0.131 *
(0.069)

% of Membership Turnover -0.001
(0.003)

Margin of Party Balance -0.003
(0.002)

Intercept 0.249
(0.168)

N 96
Adjusted R-Squared 0.1489

Note: Model reports the results of Ordinary Least Squares regression model. The
dependent variable is the density of the cosponsorship network for a state legislature
which is continuous and bounded between 0 and 1. * p < 0.05 in a one-tailed test.
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7.13 Appendix 5A - Bayesian Models of Reference

Distribution Properties

The simulations presented above demonstrate the relationship between the various pieces

of the modularity formula and the subsequent modularity reference distribution I propose.

These results indicate that the variance of the reference distribution is driven by the

density of the network and the probability of co-membership in the hypothesized group

structure. The midpoint of the reference distribution is influenced by the degree of “true”

modularity in the network. Tables 7.12 and 7.13 provide an additional examination of

these hypotheses using the data from the state legislatures example in Figure 5.5. In

Table 7.12, I present results from a Bayesian OLS model predicting the range of the 95%

reference distribution from these empirical examples.7 The independent variables in the

model are the legislative network’s density, size (measured as the number of actors in

the network), party-based modularity, and probability of party co-membership. Table

7.13 uses the midpoint of the legislative network’s reference distribution as the dependent

variable with the same independent variables.

As expected from the simulations, the probability of co-membership and the density

of a network are negatively related to the range of the reference distribution in the em-

pirical examples. The actual party-based modularity score is positively associated with

the midpoints of the legislative network’s reference distribution. Thus, the relationships

observed in the simulations are supported in the empirical data. Table 7.14 reports the

results from the Raftery diagnostic used to assess model convergence from the regression

models. As the table reports, convergence is suggested by the model diagnostics. The

7The Bayesian model has a burn-in period of 1000 iterations and a posterior sample of 10,000. I use
diffuse priors. Both the Raftery and Geweke tests indicate model convergence.
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Table 7.12: Bayesian OLS Model Predicting the Size of 95% of the Random Modularity
Region

Variable Mean Standard Deviation 90% Posterior Density

Density -0.062 0.011 (-0.081, -0.042)
Network Size -0.000 0.000 (-0.000, 0.000)
Probability of Co-Membership -0.077 0.046 (-0.154, -0.002)
Party Modularity -0.024 0.032 (-0.078, 0.028)
Intercept 0.116 0.028 (0.070, 0.163)

Note: Cell entries report the mean, standard deviations, 2.5%, and 97.5% quantiles of
the posterior distribution from a model predicting the range of the simulated reference
distribution. The dependent variable in the model is the range of 95% of the simulated
modularity reference distribution. The Bayesian model contains flat priors with a burn-
in period of 1000 iterations and a sample size of 10000. Both the Geweke and Raftery
diagnostics indicate that the model has reached convergence.

Table 7.13: Predicting the Location of the Null Modularity Region

Variable Mean Standard Deviation 90% Posterior Density

Density 0.006 0.007 (-0.006, 0.018)
Network Size 0.000 0.000 (-0.000, 0.000)
Probability of Co-Membership 0.016 0.030 (-0.033, 0.065)
Party Modularity 0.064 0.021 (0.029, 0.097)
Intercept -0.024 0.018 (-0.054, 0.006)

Note: Cell entries report the mean, standard deviations, 2.5%, and 97.5% quantiles of
the posterior distribution from a model predicting the location of the simulated reference
distribution. The dependent variable in the model is the midpoint of the entire simulated
modularity reference distribution. The Bayesian model contains flat priors with a burn-
in period of 1000 iterations and a sample size of 10000. Both the Geweke and Raftery
diagnostics indicate that the model has reached convergence.

suggested burn-in periods are low, and the total iterations is well below the 10,000 iter-

ations I estimate. Additionally, the dependence in the Markov Chain is also very low.

While convergence in an MCMC can never be guaranteed, the suggestion of convergence

is re-iterated by the Geweke convergence diagnostics.

More traditional regression diagnostics also reveal no problems with the model spec-

ification. Using a standard OLS model, rather than a Bayesian model (though the two

are identical save some small rounding error thanks to my use of diffuse priors) allows

me to make use of traditional tests of violated OLS assumptions. The Brusch Pagan test
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Table 7.14: Raftery Diagnostics for Regression Models

Variables Burn-In Total Iterations Dependence Factor

Intercept 2 3867 1.03
Network Density 2 3929 1.05
Network Size 2 3710 0.99
Probability of Co-Membership 2 3834 1.02
Party Modularity 2 3834 1.02
σ2 2 3757 1.00

Note: The Raftery diagnostic reveals 1) the appropriate number of burn-in iterations to
suggest MCMC convergence, 2) the appropriate number of total iterations for the MCMC
algorithm, and 3) the dependence factor or autocorrelation between MCMC samples. High
levels of dependence in the Markov Chain indicate a variety of problems which suggest
non-convergence. The dependence factor in a chain that has likely converged is 1.0

for non-constant variance confirms that heteroskedasticity is not a concern, the Durbin

Watson test for autocorrelation in the errors reveals that serial correlation is not a con-

cern, and the Bonferroni adjustment reveals that there are no leverage points or outliers

influencing the results. Variance inflation factors are all very close to one, indicating that

multicollinearity is not inflating the standard errors. The R2 from the OLS version of

the model reported in Table 7.12 was 0.4626, and finally the R2 from the OLS version of

the model reported in Table 7.13 is 0.2382.

7.14 Appendix 5B - R Code for Simulations

# 3-22-11 #

# MCMC Modularity #

#############################

#########################

#Clear Memory and Set the Seed
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rm(list=ls())

set.seed(11)

library(igraph)

#########################

#Set the Parameters

num<-50 #actors in the network

groups<-3 #number of groups

rec.cor<-500 #record the correlations

alpha<-1 #baseline rate of connection

bonus<-0 # bonus for shared team

###################

#Create Matrices for data

max.vec2<-matrix(0, rec.cor, length(bonus))

mod.min<-matrix(0, rec.cor, length(bonus))

mod.max<-matrix(0, rec.cor, length(bonus))

mod.min2<-matrix(0, rec.cor, length(bonus))

mod.max2<-matrix(0, rec.cor, length(bonus))

###################

#Loop over parameter space

#########################

#Loop repeatedly within one set of parameter values

for(jj in 1:rec.cor){
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mat<-matrix(0, num, num)

actors<-sample(seq(1,groups,by=1), num, replace=T)

#########################

#Create Actor connections based on group assignment

for(i in 1:length(actors)){

zz<-which(actors==actors[i])

qq<-which(actors!=actors[i])

mat[i, zz]<-rpois(length(zz), exp(alpha+bonus))

mat[i, qq]<-rpois(length(qq), exp(alpha))

}

diag(mat)<-0

#######################################

#Permute Vector for distribution of Modularity

AMz<-graph.adjacency(mat, mode="directed")

library(gregmisc) #Load Permutation Library

mod2<-numeric(length=1000)

for(mm in 1:length(mod2)){

actors2<-sample(actors) #Permute Group Assignments

mod2[mm]<-modularity(AMz, actors2) #Modularity with Random assignment

}

#########################
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#Record Modularity Scores

max.vec2[jj]<-modularity(AMz, actors) #Group Mod

mod.min[jj]<-min(mod2) #Minimum Random Assignment

mod.max[jj]<-max(mod2) #Maximum Random Assignment

mod.min2[jj]<-quantile(mod2, 0.025) #Minimum Random Assignment

mod.max2[jj]<-quantile(mod2, 0.975) #Maximum Random Assignment

print(jj)

}

dput(max.vec2, file="NoBTeamModActors50.txt")

dput(mod.min, file="NoBMinModDist.txt")

dput(mod.max, file="NoBMaxModDist.txt")

dput(mod.min2, file="MinMod952.txt")

dput(mod.max2, file="MaxMod952.txt")
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