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1 Introduction and Background

1.1 Problem History

We will consider the Strauss conjecture for a system of coupled wave equations. The original setting
of the Strauss conjecture was in the following wave equation:

{
�u = up

u(0, ·) = fu, ∂tu(0, ·) = gu.
(1)

Here � = ∂2t −
∑3
i=1 ∂

2
xi and u is a function in R × Rn, which we view as n spatial dimensions

and a time dimension. The Strauss conjecture is that there is some pc ∈ R such that p > pc
implies existence of a global (both in space and in time) solution for sufficiently small initial data,
while p < pc implies existence of arbitrarily small initial data that result in finite time blow-up of
solutions. In [4], the conjecture was proven in three spatial dimensions, with pc = 1 +

√
2.

Our result (which we will describe later) is on a coupled version of this equation:


�u = vp, �v = uq

u(0, ·) = fu, ∂tu(0, ·) = gu

v(0, ·) = fv, ∂tv(0, ·) = gv.

(2)

Note that we can get small-data solutions if p, q > 1 +
√

2 by the methods for solving (1). However,
it turns out that if one exponent is sufficiently large, the other exponent can be smaller than 1+

√
2.

The authors of [1] showed global existence given sufficiently small data when p, q > 2, 1 > 2+p+1/q
pq−1 ,

and 1 > 2+q+1/p
pq−1 .

We will prove the same result, but in a more general setting. In particular, we use a method that
is robust under geometric perturbations of the � operator. The weighted Strichartz estimate we
rely on is developed in [7], which is an extension of that from [3] and [6].

1.2 Notation

We will use A . B as shorthand for A ≤ CB where C is a positive constant independent of

important parameters. We write r = |x| =
√∑3

i=1 x
2
i for the radius of x in R3 (ignoring the
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time component). If Z = {z1, z2, ..., zk} is a set of operators and f is a function, we will define
‖Z≤jf‖ =

∑
|α|≤j

‖Zαf‖ for all multi-indices α.

1.3 Sobolev Spaces

The methods used in this paper rely heavily on Sobolev spaces and estimates on these spaces. We
will follow the treatment of this subject from [8]. Consider the Fourier transform of a function
f ∈ L1(Rn):

Ff(ξ) = f̂(ξ) =
1

(2π)
n
2

∫
Rn
e−ix·ξf(x)dx. (3)

We use the Fourier transform to define a space called the Sobolev space. For s ∈ R, define
Λs = F−1(1+ |ξ|2)s/2Ff . Now we define Hs(Rn) = Λ−s(L2(Rn)) with the norm ‖f‖Hs = ‖Λsf‖L2 .

We also define the homogeneous Sobolev norm by ‖f‖Ḣs = ‖|ξ|sf̂‖L2 .

If s ∈ N, we have an equivalent definition:

‖f‖Hs =

∑
|α|≤s

‖∂αf‖2L2

1/2

. (4)

We will need two basic properties of Sobolev spaces:

• When a < b and a, b ∈ R, we have ‖f‖Ha . ‖f‖Hb .

• If f ∈ Ck, ‖f‖Hs . ‖∂jf‖Hs−j for any integer j ≤ k.

1.4 General Approach

The way that we attack the problem relies on two types of inequalities. The first is a weighted
Strichartz estimate, which effectively gives a lower bound on the rate at which energy leaves a
region. The weighted Strichartz estimates we use hold generally for equations �u = F and are
roughly of the form

‖Ψ1(r)u‖LptLprL2
ω
. E0 + ‖Ψ2(r)F‖L1

tL
1
rL

2
ω

(5)

where Ψ1 and Ψ2 are decaying functions of the radius and E0 is a nonnegative real number, which
depends solely on the initial conditions. Note that we are using a mixed-norm notation, which is
defined as follows:
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‖f‖LptLrqLsω =

∫ (∫ [∫ |f(t, rω)|sdωS2

]q/s
r2dr

)p/q
dt

1/p

(6)

The other inequalities we use relate different Lp-spaces and Sobolev spaces. In particular, we will
use Hölder’s inequality

‖fg‖Lt ≤ ‖f‖Lp‖g‖Lq ,
1

p
+

1

q
=

1

t
, (7)

and a special case of the Sobolev embedding theorem in Rn

‖f‖Lp . ‖f‖Hs
1

2
− 1

p
≤ s

n
. (8)

Additionally, note that we have ‖f‖H0 = ‖f‖L2 .

The method begins by applying the weighted Strichartz estimate to both of the equations in the
system and summing. Ignoring the angular components for now, we get something of the form

‖Ψ1,1(r)u‖LqtLqr + ‖Ψ1,2(r)v‖LptLpr . E0 + ‖Ψ2,1(r)vp‖L1
tL

1
r

+ ‖Ψ2,2(r)uq‖L1
tL

1
r
. (9)

With some work, it will be possible to choose parameters such that Ψ2,1(r) = Ψ1,2(r)p and Ψ2,2(r) =
Ψ1,1(r)q. Then the second term on the right side will be the pth power of the second term on the
left side, and the third term on the right side will be the qth power of the first term on the left
side. This will allow us to set up a function iteration: u−1 ≡ v−1 ≡ 0, �uj = vpj−1, and �vj = uqj−1
(where j ranges over nonnegative integers), with all iterates having the same initial data. Our goal
is to show that this sequence of tuples of functions converges to a solution to the wave system.
From (9), with the proper choice of parameters we can get an expression similar to

‖Ψ1,1(r)uj‖LqtLqr + ‖Ψ1,2(r)vj‖LptLpr . E0 +
(
‖Ψ1,1(r)uj−1‖LqtLqr

)q
+
(
‖Ψ1,2(r)vj−1‖LptLpr

)p
(10)

Note that u−1 and v−1 are both 0 when measured in these norms. It turns out that we will be able
to get the same inequality with the angular components of the norms included. This will allow us
to establish a constant bound on the norms of uj and vj (with the Ψ weights) given small initial
data. From this, we will apply (5) on the equation �(uj+1 − uj) = (vj)

p − (vj−1)p. Using the
constant bounds and with some manipulation of the norms, we will be able to show that uj − uj−1
measured in a suitable norm decays geometrically with j (we will skip the details for now), and
similarly for vj−vj−1. This will give that the function sequence is Cauchy. And as we will be using
a norm from a complete space, we then have convergence as desired.
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2 Flat Problem

Here, we will demonstrate existence of global solutions to the wave system in flat space. This is an
adaptation of the methods from [3]. The goal is to provide a concrete example of an application of
the above approach. In a later section, we will generalize this approach to show existence in a class
of asymptotically flat geometries. Because flat space falls into this class, the result in this section
will be a corollary of the later result, but as the proof is easier to follow in flat space, we give it
first as preparation for the main result.

Before stating the theorem, we need to define the set of vector fields Z = {∂i,Ωij = xi∂j − xj∂i}.
These are needed to describe the sense in which the initial data are small.

The theorem we will prove is as follows:

Theorem 1 Given any p, q ∈ R+ with p, q > 2, 1 > 2+p+1/q
pq−1 , and 1 > 2+q+1/p

pq−1 , and any
fu, gu, fv, gv ∈ C∞c , there exists some ε > 0 such that


�u = vp, �v = uq

u(0, ·) = fu, ∂tu(0, ·) = gu

v(0, ·) = fv, ∂tv(0, ·) = gv

(11)

has global solutions u and v given E2 < ε, where Ek = ‖Z≤kfu‖Ḣγ1(R3) + ‖Z≤kgu‖Ḣγ1−1(R3) +

‖Z≤kfv‖Ḣγ2 (R3) + ‖Z≤kgv‖Ḣγ2−1(R3), in which γ1 = 7+4p−3pq
2−2pq and γ2 = 7+4q−3pq

2−2pq .

This theorem only allows us to go below the Strauss exponent in n = 3, since the condition p, q > 2
is independent of the dimension, and the Strauss exponent is always at most 2 when n ≥ 4. To
prove this, we rely on a weighted Strichartz estimate from [3]:

Theorem 2 Let u solve the Minkowski wave equation

{
�u = F, (t, x) ∈ R× R3

u(0, ·) = f, ∂tu(0, ·) = g.
(12)

Then, for 2 ≤ p ≤ ∞, and γ satisfying

1

2
− 1

p
< γ <

3

2
− 1

p
,

1

2
< 1− γ < 3

2
, (13)

we have the following estimate:

‖r
3
2−

4
p−γu‖LptLprL2

ω(R+×R3) . ‖f‖Ḣγ(R3) + ‖g‖Ḣγ−1(R3) + ‖r− 1
2−γF‖L1

tL
1
rL

2
ω(R+×R3). (14)
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We apply the theorem to both equations in the system, giving two inequalities that look like (14),
and sum. For now, we are going to ignore the angular component of the norms; we will deal with
them later. The sum of the inequalities is

‖r
3
2−

4
q−γ1u‖LqtLqr + ‖r

3
2−

4
p−γ2v‖LptLpr . ‖fu‖Ḣγ1 (R3) + ‖gu‖Ḣγ1−1(R3)

+ ‖fv‖Ḣγ2 (R3) + ‖gv‖Ḣγ2−1(R3) + ‖r− 1
2−γ1vp‖L1

tL
1
r

+ ‖r− 1
2−γ2uq‖L1

tL
1
r
. (15)

The first four terms on the right side sum to the constant E0, so we have

‖r
3
2−

4
q−γ1u‖LqtLqr + ‖r

3
2−

4
p−γ2v‖LptLpr . E0 + ‖r− 1

2−γ1vp‖L1
tL

1
r

+ ‖r− 1
2−γ2uq‖L1

tL
1
r
. (16)

Now we have reached the central idea of the method. If given our p and q we can find some appro-
priate γ1 and γ2, we can write the vp term on the right side as a power of the v term on the left,
and similarly for the uq and u terms. The powers of r will need to be weighted in such a way that
they match. This will allow us to set up the iteration of functions.

2.1 Flat Problem - Choosing Parameters

Now we will find the appropriate parameters (when they exist). Because of the hypotheses from
(13), we need

1

2
− 1

q
< γ1 <

1

2
,

1

2
− 1

p
< γ2 <

1

2
(17)

and to get the exponents on r to match, we need

p(
3

2
− 4

p
− γ2) = −1

2
− γ1, q(

3

2
− 4

q
− γ1) = −1

2
− γ2. (18)

Solving (18) for γ1 gives γ1 = 7+4p−3pq
2−2pq , and similarly γ2 = 7+4q−3pq

2−2pq . Substituting for γ1 in the first

half of the first inequality from (17) and performing some manipulations gives 1 > 2+p+1/q
pq−1 , and we

can get an analogous inequality by swapping the roles of p and q (and γ1 and γ2). Therefore, our
parameters need to satisfy

1 >
2 + p+ 1/q

pq − 1
, 1 >

2 + q + 1/p

pq − 1
. (19)

This pair of inequalities appeared in related problems in [2], [5], and [1]. We also require p > 2
and q > 2. Because of this, the hypotheses from (13) of the types 1 − γ < 3

2 and γ < 3
2 −

1
p are

redundant. Note that under the constraint p = q, the inequalities give p > 1 +
√

2. In this regard,
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this theorem is a generalization of Fritz John’s classic result [4] that �u = up with small initial
conditions has solutions in R3 if p > 1 +

√
2.

We do still have to handle the hypotheses γ1, γ2 <
1
2 . This inequality is actually not true for all p, q

which satisfy (19) - given any fixed p, there is some q satisfying (19) such that γ1 ≥ 1
2 or γ2 ≥ 1

2 .
However, it is always possible to find some q̃ ≤ q that works and rewrite as �v = uq̃uq−q̃, which
admits a solution (as we will discuss later).

Now that we have chosen our parameters to deal with the exponents of r, we will abbreviate our
notation. We write α2 = −( 3

2 −
4
p − γ2) and α1 = −( 3

2 −
4
q − γ1). This allows us to rewrite (16)

as

‖r−α1u‖LqtLqr + ‖r−α2v‖LptLpr . E0 + ‖r−pα2vp‖L1
tL

1
r

+ ‖r−qα1uq‖L1
tL

1
r
. (20)

2.2 Flat Problem - Angular Component

We have set up the parameters such that the radial and time components of the norms align. We
still need to work with the angular components. Ideally, we would like to have the result that
‖fp‖L1

tL
1
rL

2
ω
≤ ‖f‖p

LptL
p
rL2

ω
. This would allow us to set up the iteration immediately, as the quanti-

ties on the left side would already be powers of the quantities on the right side. This result is not
quite true, though. We will instead work with some operators on u, which will allow us to apply
Sobolev embeddings.

Specifically, recall the set of operators Z = {∂i,Ωij = xi∂j − xj∂i}, where i, j ∈ {1, 2, 3}. These
operators commute with � [8]. When we apply two Z operators to |v|p, we always obtain sums of
terms of the form |v|p−2|Z≤1v|2 or |v|p−1|Z≤2v| (at least, up to unimportant constants). To see
this, note that Z(Z(|v|p)) has terms that look roughly like Z(|Zv||v|p−1) by the chain rule, and
then applying the second Z results in terms of the above two types, by the product rule. Also, note
that we can assume u and v are twice differentiable, because they solve (12).

Now we wish to bound the quantity ‖r−pα2Z≤2vp‖L1
tL

1
rL

2
ω

. We will use the triangle inequality to

break the inside up into the individual terms of Z≤2vp. As discussed above, we have to deal with
terms of two types. In the below, we will write out only the angular components of the norms.

For terms of type ‖|v|p−1Z≤2v‖L2
ω

, we apply Hölder’s inequality (in which we may take liberties

with infinities, as in 1
2 + 1

∞ = 1
2 ) to obtain

‖|v|p−1Z≤2v‖L2
ω
. ‖v‖p−1L∞ω

‖Z≤2v‖L2
ω
. (21)

Now we apply a Sobolev embedding on the L∞ term. Because 1
2 < 1 (we are working on the

2-dimensional space S2), we have
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‖v‖L∞ω . ‖v‖H2
ω
. ‖Z≤2v‖H0

ω
= ‖Z≤2v‖L2

ω
. (22)

The first inequality and the equality are basic facts about relationships between Sobolev norms and
Lp norms. The second inequality is due to the second property from Section 1.3. Now we substitute
back into (21) and obtain

‖|v|p−1Z≤2v‖L2
ω
. ‖Z≤2v‖p−1L2

ω
‖Z≤2v‖L2

ω
= ‖Z≤2v‖pL2

ω
(23)

as desired. Then we work with terms of type ‖|v|p−2|Z≤1v|2‖. First we apply Hölder’s inequality
twice:

‖|v|p−2|Z≤1v|2‖L2
ω
. ‖v‖p−2L∞ω

‖|Z≤1v||Z≤1v|‖L2
ω
. ‖v‖p−2L∞ω

‖Z≤1v‖2L4
ω
. (24)

Now we apply a Sobolev embedding to the term in L4. Because 1
2 −

1
4 ≤

1
2 , we have

‖Z≤1v‖L4
ω
. ‖Z≤1v‖H1

ω
. ‖Z≤2v‖H0

ω
= ‖Z≤2v‖L2 (25)

in which the first inequality is the embedding, and the rest is basic manipulation of Sobolev norms.
Substituting back into (24), then, gives

‖|v|p−2|Z≤1v|‖2L2
ω
. ‖Z≤2v‖p−2L2

ω
‖Z≤2v‖2L2

ω
= ‖Z≤2v‖pL2

ω
. (26)

There are finitely many terms in Z≤2vp, all of whose norms are bounded above by ‖Z≤2v‖pL2
ω

.

Reintroducing the radial and time components of the norm, we obtain the desired inequality:

‖r−pα2Z≤2vp‖L1
tL

1
rL

2
ω
. ‖r−α2Z≤2v‖p

LptL
p
rL2

ω
. (27)

By the symmetry of (v, p,−α2) and (u, q,−α1), we may apply the same argument to obtain

‖r−qα1Z≤2uq‖L1
tL

1
rL

2
ω
. ‖r−α1Z≤2u‖q

LqtL
q
rL2

ω
. (28)

2.3 Flat Problem - Iteration

Now we have the tools we need to set up a function iteration. We will follow the sketch outlined in
Section 1.4, but in more detail. Consider the sequence of functions given by


u−1 ≡ v−1 ≡ 0,

�uj = vpj−1, �vj = uqj−1,

uj(0, ·) = fu, ∂tuj(0, ·) = gu,

vj(0, ·) = fv, ∂tvj(0, ·) = gv.

(29)

7



Here j ranges over the nonnegative integers. Applying (14) and the commutativity of � and Z to
Z≤2�u = Z≤2vp and Z≤2�v = Z≤2uq, we have

‖r−α1Z≤2uj‖LqtLqrL2
ω

+ ‖r−α2Z≤2vj‖LptLprL2
ω

. E2 + ‖r−pα2Z≤2vpj−1‖L1
tL

1
rL

2
ω

+ ‖r−qα1Z≤2uqj−1‖L1
tL

1
rL

2
ω
. (30)

Now that we have applied the vector fields, we have shown that we can pull exponents out of the
right side to obtain

‖r−α1Z≤2uj‖LqtLqrL2
ω

+ ‖r−α2Z≤2vj‖LptLprL2
ω

≤ C
(
E2 + ‖r−α2Z≤2vj−1‖pLptLprL2

ω
+ ‖r−α1Z≤2uj−1‖qLqtLqrL2

ω

)
. (31)

Note the similarity between the terms on the left and the terms on the right: in fact, the second
term on the right is the pth power of the second on the left, and the third term on the right is the qth
power of the first on the left. Using this, we will show by induction that there exists a sufficiently
small ε such that E2 < ε implies ‖r−α1Z≤2uj‖LqtLqrL2

ω
≤ 3Cε and ‖r−α2Z≤2vj‖LptLprL2

ω
≤ 3Cε for

all j ≥ −1. In particular, we will choose ε = min( 1
(3C)(q/(q−1)) ,

1
(3C)(p/(p−1)) )

The base case is trivial, since u−1 ≡ 0 and v−1 ≡ 0 imply that ‖r−α1Z≤2u−1‖LqtLqrL2
ω

=

‖r−α2Z≤2v−1‖LptLprL2
ω

= 0 ≤ 3Cε. For the induction step, assume ‖r−α1Z≤2uj−1‖LqtLqrL2
ω
≤

3Cε and ‖r−α2Z≤2vj−1‖LptLprL2
ω
≤ 3Cε. Then, applying (31) and the inductive hypothesis, we

have

‖r−α1Z≤2uj‖LqtLqrL2
ω

+ ‖r−α2Z≤2vj‖LptLprL2
ω
≤ C(E2 + (3Cε)p + (3Cε)q) (32)

for all j ≥ 0. As ‖r−α1Z≤2uj‖LqtLqrL2
ω

and ‖r−α2Z≤2vj‖LptLprL2
ω

are both nonnegative, bounding the
right side above by 3Cε suffices, which occurs if we can bound each of (3Cε)p and (3Cε)q above by
ε. And rearrangement of the definition of ε gives that (3Cε)q < ε and (3Cε)p < ε. E2 < ε then gives
that the right side is in fact less than C(ε+ ε+ ε) = 3Cε, completing the induction. Therefore, we
have shown a constant upper bound on the norms. Our final goal will be to show that the sequences
are Cauchy, implying convergence.

2.4 Flat Convergence

We have shown that the terms in the sequence are bounded. Now we want to show that the se-
quence is Cauchy. Our eventual goal is to show that the differences between consecutive iterates
decrease geometrically. First, we apply (14) to �(uj+1 − uj) = vpj − v

p
j−1. Note that we have no

E2 term because successive iterates have the same initial conditions, and so the E2 terms will cancel.

8



We claim:

‖r−α1(|uj+1 − uj |)‖LqtLqrL2
ω
. ‖r−pα2(|vpj − v

p
j−1|)‖L1

tL
1
rL

2
ω

. ‖r−(p−1)α2(|vj |p−1 + |vj−1|p−1)r−α2(|vj − vj−1|)‖L1
tL

1
rL

2
ω
. (33)

To show this, consider vpj − v
p
j−1 =

∫ 1

0
∂s((svj − (1− s)vj−1)p)ds = p

∫ 1

0
(svj + (1− s)vj−1)p−1(vj −

vj−1)ds. The factor (svj + (1− s)vj−1)p−1 is of order |vj |p−1 + |vj−1|p−1, because each cross term

that looks like vp−1−qj vqj−1 is dominated by the larger of |vj |p−1 and |vj−1|p−1. Now we use Hölder’s

inequality again. For the L1 norms, we use p−1
p + 1

p = 1. We break the L2 angular component into

an L2 and an L∞.

.

(
‖(r−α2 |vj |)p−1‖

L
p
p−1
t L

p
p−1
r L∞ω

+ ‖(r−α2 |vj−1|)p−1‖
L

p
p−1
t L

p
p−1
r L∞ω

)
‖r−α2(|vj − vj−1|)‖LptLprL2

ω

(34)

Note that the L2 part of the product looks like the left hand side of (33), but applied to an earlier
iterate (and swapping v for u). Our goal is to control the L∞ part of the product. Now, we can
apply two Z operators as before, and pull the p− 1 exponents outside of the norms (which changes

L
p
p−1 to Lp). This gives

.
(
‖r−α2Z≤2vj‖p−1LptL

p
rL2

ω
+ ‖r−α2Z≤2vj−1‖p−1LptL

p
rL2

ω
)
)
‖r−α2 |vj − vj−1|‖LptLprL2

ω
, (35)

which, as we have shown the boundedness of the functions in the iteration, gives

.
(
(‖r−α2Z≤2vj‖LptLprL2

ω
)p−1 + (‖r−α2Z≤2vj−1‖LptLprL2

ω
)p−1

)
‖r−α2(|vj − vj−1|)‖LptLprL2

ω

≤ C ′2(3Cε)p−1‖r−α2(|vj − vj−1|)‖LptLprL2
ω
. (36)

So from (33) to (36), we have shown

‖r−α1 |uj+1 − uj |‖LqtLqrL2
ω
≤ C ′2(3Cε)p−1‖r−α2(|vj − vj−1|)‖LptLprL2

ω
(37)

for some fixed C ′ > 0. So an appropriately small choice of ε will give

‖r−α1 |uj+1 − uj |‖LqtLqrL2
ω
≤ 1

2
‖r−α2 |vj − vj−1|‖LptLprL2

ω
(38)

after which we note that reindexing and swapping the roles of u and v, we can also get

‖r−α2(|vj − vj−1|)‖LptLprL2
ω
≤ 1

2
‖r−α1(|uj−1 − uj−2|)‖LqtLqrL2

ω
, (39)
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which at last gives

‖r−α1(|uj+1 − uj |)‖LqtLqrL2
ω
≤ 1

4
‖r−α1(|uj−1 − uj−2|)‖LqtLqrL2

ω
. (40)

The same argument can be made to show that the difference between consecutive vj decreases
geometrically. The fact that the indices decrease by 2 rather than 1 is not an issue; we can bound
separately the norms of uj − uj−1 for even and odd j. So this gives that the sequence is Cauchy,
and thus converges. Defining u∗ = limj→∞ uj and v∗ = limj→∞ vj and taking the limit on the left
and right sides of �uj = vpj−1 and �vj = uqj−1 gives �u∗ = (v∗)p and �v∗ = (u∗)q. Note that we
are interchanging a limit of a sequence of functions with the box operator; this is in fact justified
(see chapters 3 and 5 of [8]). So u = u∗, v = v∗ gives a global solution to the wave system as desired.

We still need to resolve the case where p or q is too large. As we mentioned before, it is possible to
have them sufficiently large that the conditions (17) fail, but (19) still holds. In this case, we can

always find p̃ and q̃ such that (p̃, q̃) satisfies (19) and p ≥ p̃, q ≥ q̃. Then we have �uj = vp−p̃j−1v
p̃
j−1

(and analogously for �v). Once we reach equations (23) and (26), we use Hölder’s inequality to pull
out excess copies of v on the left sides, putting them in L∞. Then we use a Sobolev embedding,
applying Z≤2, which moves the copies from L∞ to L2. This is exactly what is needed on the right
sides of (23) and (26).

3 Geometry Problem

3.1 Introduction

Now that we have given an example of the proof in a relatively specific case, we will examine a
more general case. It turns out that the approach is robust in small geometric perturbations on
the � operator (and in fact allows for different perturbations in the two equations in the system).
Our conditions on the geometry (which we will discuss formally later) are that it supports a local
energy estimate and that it “looks like” flat space sufficiently far away from the origin, i.e. that
the perturbations decay sufficiently quickly.

Because we are using different hypotheses, we will need to use a different weighted Strichartz
estimate, as Theorem 2 no longer holds. We will use an estimate from [7]. The proof is beyond
the scope of this report, so we will cite it without justification. However, to state it, we do need to
define the following norm:

‖u‖`sqA = ‖φj(x)u(t, x)‖`sqA =
∥∥∥(2js‖φj(x)u(t, x)‖A

)∥∥∥
lq
j≥0

,

for any norm A and for a φ such that
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∑
j≥0

φ2j (x) = 1, supp φj ⊂ {〈x〉 ≈ 2j}.

where 〈x〉 =
√

1 + x2. Intuitively, the norm is a summation over annuli supported away from the
origin.

3.2 Geometry Problem Statement

Consider the coupled system of equations


P1u = Fp(v), P2v = Fq(u),

u(0, ·) = fu, ∂tu(0, ·) = gu,

v(0, ·) = fv, ∂tv(0, ·) = gv,

(41)

in some spacetime M . Fp(v) is any function of v such that

2∑
j=0

|v|j |∂jvFp(v)| . |v|p (42)

and analogously for Fq(u). We assume p, q ∈ R and p, q > 2. P1 and P2 are variations of � = ∂2t −∆
in the spacetime geometry and with some asymptotically decaying perturbation. More precisely,
Pku =

∑3
α=0

∑3
β=0 ∂xαg

αβ
k ∂xβu+

∑3
α=0 b

α
k∂xαu+ cku, with restrictions on gk, bk, and ck that will

be discussed later in this section. Note that we are using a convention that x0 = t to write the
summations more conveniently.

Our hypotheses are the hypotheses in [7], with some simplifications due to the fact that we know
we are working in R3. We will need to assume a local energy estimate for use near the origin and
some bounds on the radial behavior of the metric’s perturbation, which are needed for the weighted
Strichartz estimate and for commuting with Ω. As we will just assume the weighted Strichartz
estimate here, we will state the hypotheses on the metric and on P without discussion. Also note
that instead of vp we are using Fp(v) and similarly for u and q. The function vp is one example of
a function satisfying the condition for Fp(v), so this is in fact a generalization.

The spacetime M is either M = R+ ×R3 or M = R+ × (R3\K) where K ⊂ {x : |x| < R0} and has
a smooth boundary. We will not need to refer to K again, because the weighted Strichartz estimate
already takes it into account.

We assume that gk (for k = 1, 2) is a Lorentzian metric inducing the operator Pk and that gk can
be decomposed as

gk = m+ gk,0(t, r) + gk,1(t, x), k = 1, 2, (43)

11



where m = diag(−1, 1, 1, 1) denotes the Minkowski metric. Note that g1 and g2 need not be the
same. The perturbations decay as follows:

‖∂µt,xgk,i,αβ‖`i+|µ|1 L∞t,x
= O(1), i = 0, 1, k = 1, 2 |µ| ≤ 3. (44)

The lower-order perturbations bk and ck in Pk also decay:

‖∂µt,xbαk‖`1+|µ|1 L∞t,x
+ ‖∂µt,xck‖`2+|µ|1 L∞t,x

= O(1), k = 1, 2, |µ| ≤ 2. (45)

And to get commutativity with Ω, we assume

m+gk,0 = (−1+ g̃k,00(t, r))dt2 +2g̃k,01(t, r)dtdr+(1+ g̃k,11(t, r))dr2 +(1+ g̃k,22(t, r))r2dω2
S2 . (46)

and ‖∂µt,xg̃k,αβ‖lµ1L∞t,x = O(1) for |µ| ≤ 3 Finally, we have the local energy estimate. Recall that R0

is the radius outside of which all points of R × Rn are guaranteed to be in M . The hypothesis is
that there exists R1 > R0 so that if u is a solution to the linear wave equation Pu = F , then

‖∂∂µu‖L∞t L2
x

+ ‖(1− χ)∂∂µu‖
`
− 1

2
∞ L2

t,x

+ ‖∂µu‖
`
− 3

2
∞ L2

t,x

. ‖u(0, ·)‖H|µ|+1 + ‖∂tu(0, ·)‖H|µ| +
∑
|ν|≤|µ|

‖∂νF‖L1
tL

2
x

(47)

for all |µ| ≤ 2. χ is any smooth function that is 1 on BR1/2 := {|x| ≤ R1

2 } and supported in BR1
.

This hypothesis controls three terms on the left side. The first term is the maximum energy that
exists at any time. The second term is a localized energy term, which needs the 1−χ factor to avoid
any rays that are trapped near the origin due to the geometry. The third term is a lower-order
term. As we are citing the weighted Strichartz estimate without proof, we will use this hypothesis
only sparingly - we will need to use the control on the third term later, but we will not need to deal
with the first two terms.

Now we can state the main theorem.

Theorem 3 Suppose p, q ∈ R+ with p, q > 2, 1 > 2+p+1/q
pq−1 , 1 > 2+q+1/p

pq−1 and fu, gu, fv, gv ∈ C∞c .

Consider the system (41) with the associated spacetime M , operators P1 and P2, and functions Fp
and Fq. Suppose (43), (44), (45), (46), and (47) hold. Then there exists some ε > 0 such that
‖fu‖H3 + ‖fv‖H3 + ‖gu‖H2 + ‖gv‖H2 < ε implies the existence of a global solution to (41).

In particular, flat space satisfies the hypotheses. Therefore, Theorem 1 is a special case of Theorem

3. Additionally, 1 > 2+p+1/q
pq−1 and 1 > 2+q+1/p

pq−1 are sharp, because [1] showed that they are sharp in
the flat case.
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3.3 Estimates

As in the flat case, a weighted Strichartz estimate is the key estimate. We only require a specific
case of the estimate, in which n = 3 and some parameters are already set, so we will quote this
version below. We will not prove this or either of the subsequent estimates. Proofs can be found
in [7].

Theorem 4 Consider the wave equation Pu = F , and suppose (43), (44), (45), and (47) hold.
Define E(u, γ, P ) = ‖u(0, ·)‖H3 + ‖∂tu(0, ·)‖H2 + ‖ψRZ≤2u(0, ·)‖Ḣs + ‖ψRZ≤2∂tu(0, ·)‖Ḣs−1 +
‖ψRZ≤1Pu(0, ·)‖Ḣs−1 . Then there exists R > R1 so that for any smooth ψR that is identically
1 on Bc2R and vanishes on BR, we have

‖ψRZ≤ku‖Lpt,rL2
ω
. E(u, γ, P ) + ‖ψpRZ

≤kPu‖L1
t,rL

2
ω

+ ‖∂≤kPu‖L1
tL

2
x

(48)

for any p ∈ (2,∞), s ∈ ( 1
2 −

1
p ,

1
2 ), and k ∈ {0, 2}.

The case where k = 2 is proven in [7], and the case where k = 0 requires only slight modifications
in that proof. Note that we only bound the first two terms of E(u, γ, P ) above by ε in Theorem 3.
This is because the other terms in E(u, γ, P ) either have three derivatives with a negative Sobolev
exponent, or two derivatives with a Sobolev exponent less than 1, and so are lower-order.

We also have some weighted Sobolev estimates, which mainly serve to move from one Lp space to
another, at the cost of derivatives:

‖rβu‖LqrL∞ω (r≥R+1) .
∑
|µ|≤2

‖rβ−2/p+2/qZµu‖LprL2
ω(r≥R), (49)

‖rβu‖LqrL4
ω(r≥R+1) .

∑
|µ|≤1

‖rβ−2/p+2/qZµu‖LprL2
ω(r≥R). (50)

3.4 Global Existence

Now we demonstrate global existence given sufficiently small initial data. We follow the same
general structure of showing that the iterates are bounded in some norm and then applying the
weighted Strichartz estimate to the difference between consecutive iterates to show that the se-
quence is Cauchy. However, this section is considerably more technical, because we need to account
for the geometry near the origin. The general strategy is to split into regions inside and outside of
a ball about the origin, and handle them separately, since the local energy estimate suffices inside
of the ball and the weighted Strichartz estimate suffices outside of the ball.

This is a modification of the proof that was given in [7]. We will go through the proof in more
detail here. We start by defining two norms.
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‖u‖Xk,α,q = ‖r−αψRZ≤ku‖LqtLqrL2
ω

+ ‖∂≤ku‖
`
− 3

2
∞ L2

tL
2
rL

2
ω

+ ‖∂≤k∂u‖L∞t L2
rL

2
ω
,

‖g‖Nk,α,q = ‖r−qαψqRZ
≤kg‖L1

tL
1
rL

2
ω

+ ‖Z≤kg‖L1
tL

2
rL

2
ω
.

Note that, as each term has either Z≤k or ∂≤k, we have ‖Z≤1u‖Xk,α,q . ‖u‖Xk+1,α,q
and similarly

for N . Summing (47) and (48) for both wave equations gives

‖u‖Xk,α1,q
+ ‖v‖Xk,α2,p

. E(u, γ1, P1) + E(v, γ2, P2) + ‖P1u‖Nk,α2,p
+ ‖P2v‖Nk,α1,q

. (51)

Now, we will give two lemmas which are sufficient to prove the result. These lemmas are also
from [7]. As the proofs do not require extra background material and demonstrate concretely the
important theme of treating the ball near the origin separately, we will give detailed proofs here. We
will prove the result assuming the lemmas and then return to them. The differences between this
segment and the analogous segment in the flat case are minor; we are demonstrating boundedness
and convergence in different norms, but the structure of the proof is identical.

Lemma 1 Suppose u ∈ C2 and p > 2. Then ‖up‖N2,α,p . ‖u‖
p
X2,α,p

.

Lemma 2 Suppose uj , uj−1 ∈ C2 and p > 2. Then

‖upj − u
p
j−1‖N0,α,p .

(
‖uj‖p−1X2,α,p

+ ‖uj−1‖p−1X2,α,p

)
‖uj − uj−1‖X0,α,p .

Comparing to the flat case, Lemma 1 and Lemma 2 are roughly analogous to (27) and (35) respec-
tively.

To prove the result, recall the iteration used. Define α1 = −( 3
2 −

4
q − γ1) and α2 = −( 3

2 −
4
p − γ2),

just as in the flat case. Note that this numerology is why we get the same restrictions on p and q
as in the flat case. From the iteration, (51), and Lemma 1, we get

‖uj‖X2,α1,q
+ ‖vj‖X2,α2,p

. E + ‖vpj−1‖N2,α2,p
+ ‖uqj−1‖N2,α1,q

. E + ‖vj−1‖pX2,α2,p
+ ‖uj−1‖qX2,α1,q

, (52)

where E = E(u, γ1, P1) + E(v, γ2, P2).

We can use this to show that the iterates are bounded in X2 for sufficiently small E. Suppose the
multiplicative constant in (48) is C and the one in (52) is C ′. Now, if ‖uj−1‖X2,α1,q

+‖vj−1‖X2,α2,p
≤

3CE, then so is ‖uj‖X2,α1,q
+ ‖vj‖X2,α2,p

, provided C ′(3CE)p−1 ≤ 1
3 and C ′(3CE)q−1 ≤ 1

3 . Thus,
by induction, for sufficiently small E the sequences ‖uj‖X2,α1,q

and ‖vj‖X2,α2,p
are both bounded.

We will use this boundedness to show that the iterates are Cauchy (in X0), and thus converge to
a solution. In the below, we consider the difference between successive iterates in X0. Apply (51)
and then Lemma 2:
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‖uj − uj−1‖X0,α1,q
. ‖vpj−1 − v

p
j−2‖N0,α2,p

.
(
‖vj−1‖p−1X2,α2,p

+ ‖vj−2‖p−1X2,α2,p

)
‖vj−1 − vj−2‖X0,α2,p

.

As in the flat case, there is no E term because the initial data for successive iterates cancel. The
factor in X2 is bounded above by a constant, as shown earlier. By modifying the choice of E in
the boundedness argument, we can make that constant arbitrarily small. In particular, we can
guarantee ‖uj − uj−1‖X0,α1,q

≤ 1
2‖vj−1 − vj−2‖X0,α2,p

. And applying the same argument to the

right side, we can obtain ‖uj − uj−1‖X0,α1,q
≤ 1

4‖uj−2 − uj−3‖X0,α1,q
.

Therefore, the difference of successive iterates in {uj} decreases geometrically in the even terms
and in the odd terms (in X0). This is sufficient to guarantee that it is Cauchy. The proof for {vj}
is identical up to a change of variable names. Therefore, we have global existence for sufficiently
small data.

3.5 Proof of Lemmas

Now we return to proving Lemma 1 and Lemma 2. This will suffice to prove the theorem. To do
so, we will apply another pair of lemmas:

Lemma 3 Suppose g ∈ C2, f ∈ C1, and p > 2. Then ‖gp−2f2‖N0,α,p
. ‖g‖p−2X2,α,p

‖f‖2X1,α,p
.

Lemma 4 Suppose g ∈ C2, f ∈ C0, and p > 2. Then ‖gp−1f‖N0,α,p . ‖g‖
p−1
X2,α,p

‖f‖X0,α,p .

These are analogous to (26) and (23). From these lemmas, we can show Lemma 1 and Lemma 2 as
follows:

‖up‖N2,α,p = ‖Z≤2up‖N0,α,p . ‖|u|p−1|Z≤2u|‖N0,α,p + ‖|u|p−2|Z≤1u|2‖N0,α,p .

‖u‖p−1X2,α,p
‖Z≤2u‖X0,α,p

+ ‖u‖p−2X2,α,p
‖Z≤1u‖2X1,α,p

. ‖u‖pX2,α,p
, (53)

‖upj − u
p
j−1‖N0,α,p

.‖(uj + uj−1)p−1(uj − uj−1)‖N0,α,p
(54)

.
(
‖uj‖p−1X2,α,p

+ ‖uj−1‖p−1X2,α,p

)
‖uj − uj−1‖X0,α,p . (55)

So now it remains to show Lemma 3 and Lemma 4. As the N norm has two terms, we will show
that each of the terms separately is bounded above in the appropriate product of X norms.

First we handle the portions in L1
tL

1
rL

2
ω, applying Hölder’s inequality in each case and then moving

into the X norm via Sobolev embeddings. This is a rough analogue of (34).
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‖r−αpψpRg
p−1f‖L1

tL
1
rL

2
ω
. ‖r−αψRg‖p−1LptL

p
rL∞ω
‖r−αψRf‖LptLprL2

ω
. ‖g‖p−1X2,α,p

‖f‖X0,α,p ,

‖r−αpψpRg
p−2f‖L1

tL
1
rL

2
ω
. ‖r−αψRg‖p−2LptL

p
rL∞ω
‖r−αψRf‖2LptLprL4

ω
. ‖g‖p−2X2,α,p

‖f‖2X1,α,p
.

Finally, we work on the L1
tL

2
rL

2
ω term of the N norm. We use the weighted Strichartz estimate to

control the term outside of a ball about the origin, and we use the local energy estimate to work
with the inside.

Let us assume 4 + 6
p − 2q ≥ 0 and 4 + 6

q − 2p ≥ 0. If not, we use Hölder’s inequality to get a term of

the form ‖u‖jL∞t,x for some real j, which is bounded above by the second term of X2 using Sobolev

embeddings. Then we can obtain copies of u in X2 as needed, and similarly for v. This allows us to
recover equations Lemma 3 and Lemma 4. Now that we can make that assumption, using Hölder’s
inequality and (49) and working over radii at least 2R+ 1 gives

‖gp−1f‖L1
tL

2
r≥2R+1

L2
ω
.‖r

α
p−1 g‖p−1

LptL

2p(p−1)
(p−2)

r≥2R+1
L∞ω

‖r−αf‖LptLpr≥2R+1
L2
ω

(56)

.‖r
α
p−1−

2
p+

(p−2)
p(p−1)Z≤2g‖p−1

LptL
p
r≥2R

L∞ω
‖f‖X0,α,p

(57)

.‖r−αZ≤2g‖p−1
LptL

p
r≥2R

L∞ω
‖f‖X0,α,p

. ‖g‖p−1X2,α,p
‖f‖X0,α,p

. (58)

The application of (49) gets us from the first line to the second. We modify the power of r to get
from the second line to the third. We can do this as long as the power does not decrease, because
we are working outside of a ball about the origin. And in fact an elementary calculation verifies
that −α is at least as large as α

p−1 −
2
p + p−2

p(p−1) given our assumption on p and q.

Similarly, using Hölder’s inequality, (49), and (50), we have

‖gp−2f2‖L1
tL

2
r≥2R+1

L2
ω
.‖r

2
p−2 (α−

2
p+

1
2 )g‖p−2

LptL
∞
r≥2R+1

L∞ω
‖r−α+

2
p−

1
2 f‖2LptL4

r≥2R+1
L4
ω

(59)

.‖r−α+
2
p g‖p−2

LptL
∞
r≥2R+1

L∞ω
‖r−α+

2
p−

1
2 f‖2LptL4

r≥2R+1
L4
ω

(60)

.‖r−αZ≤2g‖p−2
LptL

p
r≥2R

L2
ω
‖r−αZ≤1f‖2LptLpr≥2R

L2
ω

(61)

.‖g‖p−2X2,α,p
‖f‖2X1,α,p

. (62)

From the first line to the second line, we have increased the powers on r so that we can use the
weighted Sobolev embeddings to move into suitable norms. As above, we are in fact increasing
the exponent given our assumption on p and q. Thus, we do in fact have Lemma 3 and Lemma 4
outside of B2R+1.
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Now we work inside of B2R+1. We begin with an Lp Sobolev inequality:

‖g‖L∞x ≤ ‖∂
≤1g‖L6 . (63)

This holds due to the following embedding and the fact that 6 > 3:

‖g‖L∞(Rn) . ‖∂≤mg‖La(Rn), a >
n

m
, (64)

where we use n = 3 and m = 1. Now, picking q̃ so that 1
4̃

=
1
p−1

q̃ +
1− 1

p−1

6 , we can apply Hölder’s
inequality to the right side to get

‖g‖L∞x . ‖∂
≤1g‖

1
p−1

Lq̃
‖∂≤1g‖1−

1
p−1

L6 . (65)

Then Sobolev embeddings give

‖g‖L∞x . ‖∂
≤1g‖

1
p−1

H1 ‖∂≤1∂g‖
1− 1

p−1

L2 . (66)

provided 0 < q̃ < 6 (to give the Sobolev embedding for the Lq̃ piece). This condition in q̃ is always
satisfied when 2 < p.

From (66) and Hölder’s inequality, we get

‖g‖
L

2(p−1)
t L∞

r≤2R+1
L∞ω
. ‖∂≤1g‖

1
p−1

L2
tH

1
r≤2R+2

‖∂≤1∂g‖1−
1
p−1

L∞t L
2
r≤2R+2

L2
ω
. ‖g‖X2,α,p

. (67)

In particular, the bound is by the second term of X2,α,p. We can ignore the ` summation because
we are in a compact set. Now, from (67), we have

‖gp−1f‖L1
tL

2
r≤2R+1

L2
ω
. ‖g‖p−1

L
2(p−1)
t L∞

r≤2R+1
L∞ω
‖f‖L2

tL
2
r≤2R+1

L2
ω
. ‖g‖p−1X2,α,p

‖f‖X0,α,p

and

‖gp−2f2‖L1
tL

2
r≤2R+1

L2
ω
. ‖g‖p−2L∞t L

∞
r≤2R+1

L∞ω
‖f‖2L2

tL
4
r≤2R+1

L4
ω
. ‖g‖p−2X2,α,p

‖f‖2X1,α,p

as desired, showing Lemma 3 and Lemma 4 inside of B2R+1.
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4 Appendix - Discussion of a Weighted Strichartz Estimate

Here we give a brief discussion (though not a proof) of (2), the weighted Strichartz estimate from
[3] used for the flat problem. It is an interpolation between two estimates.

The first estimate is due to the trace lemma, which applied on the unit sphere is the following:

sup
r>0

r
3
2−s

(∫
S2
|v(rω)|2dσ(ω)

) 1
2

. ‖v‖Ḣs ,
1

2
< s <

3

2
. (68)

Now, we will introduce the notation eit|D|φ, which means the function whose Fourier transform is
eit|ξ|φ̂. We can obtain from (68)

‖|x|−αeit|D|φ‖L∞r L2
ω
. ‖φ‖

Ḣ
n
2

+α(R3)
, −1 < α < 0, (69)

by replacing the supremum with an L∞ and introducing α and eit|D|. This is one of the two
estimates that gives the interpolation. In the flat case, the second estimate (which follows) comes
from some manipulation of (68) for the Fourier transform of v, which we will not detail here. The
weighted Strichartz estimate we used for the version with a background geometry is a hypothesis.
It holds in flat space and has been proven on several geometries, such as for the Kerr black hole
backgrounds. See [7] for a discussion of several backgrounds on which the local energy estimate
holds.

‖|x|−seit|D|φ‖L2(R+×R3) . ‖|D|s−
1
2 ‖L2(R3),

1

2
< s <

3

2
. (70)

A method of interpolation between these two yields, for 2 ≤ q ≤ ∞,

‖|x|
n
2−

n+1
q −γeit|D|φ‖LqtLqrL2

ω(R+×R3) . ‖φ‖Ḣγ(R3),
1

2
− 1

q
< γ <

n

2
− 1

q
. (71)

If q = ∞, we recover (69), and if q = 2, we recover (70). So we have the left side of the estimate.
The right side comes from some manipulation of (71) and a duality argument which we will not
discuss here.
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