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a b s t r a c t

Many time series are sampled at different frequencies. When we study co-movements between such
series we usually analyze the joint process sampled at a common low frequency. This has consequences
in terms of potentially mis-specifying the co-movements and hence the analysis of impulse response
functions—a commonly used tool for economic policy analysis. We introduce a class of mixed frequency
VARmodels that allows us tomeasure the impact of high frequency data on low frequency and vice versa.
Our approach does not rely on latent processes/shocks representations. As a consequence, the mixed
frequency VAR is an alternative to commonly used state space models for mixed frequency data. State
spacemodels are parameter-drivenwhereasmixed frequencyVARmodels are observation-drivenmodels
as they are formulated exclusively in terms of observable data and do not involve latent processes as well
as shocks and thus avoid the need to formulate measurement equations, filtering, etc. We also propose
various parsimonious parameterizations, in part inspired by recent work on MIDAS regressions. We also
explicitly characterize the mis-specification of a traditional common low frequency VAR and its implied
mis-specified impulse response functions. The class of mixed frequency VARmodels can also characterize
the timing of information releases for a mixture of sampling frequencies and the real-time updating of
predictions caused by the flow of high frequency information. Various estimation procedures for mixed
frequency VARmodels are also proposed, both classical and Bayesian. Numerical and empirical examples
quantify the consequences of ignoring mixed frequency data.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

It is simply a fact of life that time series observations are
sampled at different frequencies. Some data series – such as
financial ones – are easy to collect and readily available, while
others are costly to record and therefore not frequently sampled.
When we study co-movements between such series we usually
analyze the joint process sampled at a common low sampling
frequency. A typical example, following the seminal work of Sims
(1980), is a vector autoregressive (VAR) model with both real
and financial time series sampled quarterly—even though financial
series are observed more frequently. We introduce a mixed
frequency data VAR model and analyze the consequences of
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ignoring the availability of high frequency data. Take a simple
example: GDP growth observed quarterly and non-farm payroll
published monthly. We could look at the dynamics between the
two series at a quarterly frequency—ignoring the fact that we do
have monthly data for the second series. How does the shock to
non-farm payroll and its impact on future GDP growth produced
by standard VAR model analysis relate to the monthly surprises
in the series? The quarterly VAR model shocks will be some
mixture of the innovations in the underlying series. What type of
mixture would this be? What are the costs in terms of impulse
response analysis whenwemis-align the data by ignoring the high
frequency data? Howdoes the flow of high frequency data allow us
to update predictions of future low and high frequency data? We
provide formal answers to all of these types of questions.

We introduce a relatively simple mixed sampling frequency
VAR model. By simple we mean, (1) a specification that does not
involve latent shocks, (2) a specification that allows us to measure
the impact of high frequencydata onto low frequency ones and vice
versa, (3) as far as VARmodels go parsimonious, (4) a specification
that can be estimated and analyzed with standard VAR analysis
tools – such as impulse response analysis, and can be estimated
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with standard VAR estimation procedure (5) one that can track the
proper timing of low and high frequency data – that may include
releases of quarterly data in the middle of the next quarter along
with the releases of monthly data or daily data.

Themixed frequency VAR provides an alternative to commonly
used state space models involving mixed frequency data.2 State
space models involve latent processes, and therefore rely on
filtering to extract hidden states that are used in order to predict
future outcomes. State space models are, using the terminology
of Cox (1981), parameter-drivenmodels. Themixed frequencyVAR
models are, using again the same terminology, observation-driven
models as they are formulated exclusively in terms of observable
data. The fact we rely only on observable shocks has implications
with respect to impulse response functions. Namely, we formulate
impulse response functions in terms of observable data – high
and low frequency – instead of shocks to some latent processes.
Finally, mixed frequency VARmodels, likeMIDAS regressions, may
be relatively frugal in terms of parameterization.

Technically speaking we adapt techniques typically used to
study seasonal time series with hidden periodic structures, to
multiple time series that have different sampling frequencies. The
techniques we adapt relate to work by Gladyshev (1961), Pagano
(1978), Tiao and Grupe (1980), Hansen and Sargent (1990, Chap.
17), Hansen and Sargent (1993), Ghysels (1994), Franses (1996),
among others. In addition, the mixed frequency VAR model is a
multivariate extension of MIDAS regressions proposed in recent
work by Ghysels et al. (2006), Ghysels andWright (2009), Andreou
et al. (2010) and Chen and Ghysels (2011), among others.

We also characterize the mapping between the mixed fre-
quency VAR model and (1) a traditional VAR model where all
the data are sampled at a common low frequency as well as (2)
a hidden state high frequency VAR commonly used in a state
space model setting. This mapping allows us to study the mis-
specification of impulse response functions of traditional VAR
models.3

Finally, we study two classes of estimation procedures, classical
and Bayesian, for mixed frequency VAR models. For the former we
characterize how the mis-specification of traditional VAR models
translates into pseudo-true VAR parameter and impulse response
estimates. Parameter proliferation is an issue in both mixed
frequency and traditional VAR models. We therefore also cover
a Bayesian approach which easily accommodates the potentially
large set of parameters to be estimated.

The paper is organized as follows. Section 2 introduces the
structure of mixed frequency VAR models, discusses parsimony
and impulse response functions. Section 3 elaborates on structural
VARmodels in the context of real-time updating of predictions and
policy analysis. Section 4 covers the (mis-specified) traditional low
frequency VAR process dynamics and impulse response functions
implied by a mixed frequency VAR and also characterizes the loss
of information due to ignoring high frequency data. Section 5
discusses classical and Bayesian estimation procedures. Section 6
provides numerical illustrative examples and finally Section 7
reports empirical findings with conclusions appearing in Section 8.

2 See for example, Harvey and Pierse (1984), Bernanke et al. (1997), Zadrozny
(1990), Mariano and Murasawa (2003), Mittnik and Zadrozny (2004), and
more recently Aruoba et al. (2009), Ghysels and Wright (2009), Kuzin et al.
(2009), Marcellino and Schumacher (2010), Foroni and Marcellino (2014)
and Schorfheide and Song (2013), among others.
3 The VAR models we propose can also handle time-varying mixed frequencies.

Not allmonths have the samenumber of trading days, not all quarters have the same
number of weeks, etc. Assuming a deterministic calendar effect, which makes all
variation in changing mixed frequencies perfectly predictable, we are able to write
a VARwith time-varying high frequency data structures. For the sake of keeping the
paper concise we skip the details. They appear in a web version of the paper.

2. Mixed frequency vector autoregressive models

Since thework of Sims (1980), it is now standard to characterize
the co-movements of macroeconomic time series as a VAR
model. This typically involves some real activity series (i.e. GDP
growth), some price series (i.e. inflation) and some monetary
policy instrument (i.e. short term interest rates). This means we
actually do have a mixture of respectively quarterly, monthly
and daily series. Usually the sampling frequencies are aligned,
for example inflation is computed quarterly and only end-of-
the-quarter interest rates are sampled. Since the purpose of
VAR models is to capture time series dynamics, it is natural to
wonder how much harm is done both in terms of specification
errors and prediction inaccuracy. Specification errors affect policy
impulse response analysis and also have consequences as far as the
asymptotic properties of estimators goes.

When we think of mixed frequencies, we need to distinguish
situations where the high frequency data are sampledm(τL) times
more often than the low frequency series where either m(τL) =

m, a constant or m(τL) has a deterministic time path (random
mixed frequency sampling is not considered). For example quar-
terly/annual, monthly/quarterly, hourly/daily amount to fixed m,
whereas of daily/quarterly or weekly/quarterly involve m(τL) fea-
turing pre-determined calendar effects. We start with the case of
fixedm, namely:

Assumption 2.1. We consider a K -dimensional process with the
first KL < K elements, collected in the vector process xL(τL), are
only observed every m fixed periods. The remaining KH = K − KL
series, represented by double-indexed vector process xH(τL, kH)
which is observed at the (high) frequency periods kH = 1, . . . ,m
during period τL.

Wewill often refer to xL(τL) as the low frequency (multivariate)
process, and the xH(τL, kH) process as the high frequency
(multivariate) one. Note that, for the sake of simplicity we
consider the combination of two sampling frequencies. More
than two sampling frequencies would amount to more complex
notation, but would be conceptually similar to the analysis with
a combination of two frequencies (see also Section 4 for further
discussion).

2.1. Shocks: Latent versus observable

So far attempts to accommodate mixed frequency data involve
latent processes and therefore latent shocks. Zadrozny (1990)
starts with a joint high frequency VAR(MA) model as if high
frequency observations for xL(τL) were available. A state space
representation is then used to match the latent process with
the mixture of data observed. This approach has recently been
generalized by Chiu et al. (2011) who develop a Bayesian approach
to such mixed frequency VAR models where the missing data
are drawn via a Gibbs sampler. Note that in such an approach
the fundamental shocks are with respect to the hidden high
frequency VAR. Factor models are also commonly used to handle
mixed frequency data. For example,Mariano andMurasawa (2003)
extract a coincident factor using quarterly andmonthly time series
(see also Nunes, 2005). Along similar lines, Aruoba et al. (2009)
describe a dynamic one-factor model evolving on a daily basis
to construct a coincident business index. Here too, the system is
driven by latent shocks—not shocks to a high frequency VAR, but
instead shocks that drive the latent factor that is measured with
error through repeated high and low frequency data observations.

Our approach does not involve latent shocks. This means there
is no need for filtering and the impulse response functions are
based on observable shocks. To analyze mixed frequency vector
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processes we use insights from periodic models and construct
stacked skip-sampled processes. We will start with an example
where all the low frequency τL series appear at the end of the (low
frequency) period. Namely, consider the following finite order VAR
representation of a stacked vector:

xH(τL, 1)
...

xH(τL,m)
xL(τL)

 = A0 +

P
j=1

Aj


xH(τL − j, 1)

...
xH(τL − j,m)
xL(τL − j)

+ ε(τL) (2.1)

which is KL + m ∗ KH dimensional VAR model with P lags. Hence,
with quarterly data we stack for example the months of January,
February and March together with the first quarter low frequency
data. Similarly we stack April, May and June with the second
quarter, etc. For themoment, we focus on predicting next quarter’s
high and low frequency data given previous quarter’s high and
low frequency observations. Note however, that one may think
of a specification similar to structural VAR models where we
pre-multiply the vector [xH(τL, 1)′, . . . , xH(τL,m)′, xL(τL)′]′ with a
matrix Ac :

Ac


xH(τL, 1)

...
xH(τL,m)
xL(τL)

 = A0 +

P
j=1

Aj


xH(τL − j, 1)

...
xH(τL − j,m)
xL(τL − j)

+ ε(τL) (2.2)

where the matrix Ac pertains to contemporaneous (in this case
within quarter) relationships. Writing the matrix Ac explicitly, we
have the left hand side of (2.2) as:

IKH . . . A1,m
c A1,m+1

c
... . . .

...
...

Am,1
c . . . IKH Am,m+1

c

Am+1,1
c . . . Am+1,m

c IKL



xH(τL, 1)

...
xH(τL,m)
xL(τL)

 . (2.3)

Hence, elements below the diagonal pertain to downstream
impacts, i.e. high frequency data affect subsequent within-τL
period observations. This will be relevant notably for intra-τL
period prediction updating—a topic discussed in Section 3.1. In
contrast, elements above the diagonal will be relevant notably
when we will discuss policy rules in Section 3.2. Obviously, with
Ac invertible we can always view Eq. (2.1) as one obtained after
pre-multiplying both sides of (2.2) by A−1

c . Hence, for the moment
we will ignore the presence of Ac .

Note that VAR models with latent shocks yield non-Markovian
processes in observables, or by implication infinite order VAR
models, in contrast to the stacked system appearing in (2.1) which
is by definition a finite order VAR. Nevertheless, one might think
that the stacked system appearing in (2.1) could be prone to
parameter proliferation. That may not actually be the case as we
will show later in the section. While we do not address parameter
proliferation issues for the moment, it is worth pointing out the
relationship with MIDAS regressions, in particular, by looking at a
special case with KL = KH = 1. The last equation in the system
then reads:

xL(τL) = Am+1,1
0 +

P
j=1

Am+1,m+1
j xL(τL − j)

+

P
j=1

m
k=1

Am+1,k
j xH(τL − j, k) + ε(τL)

m+1,1 (2.4)

which is the ADL MIDAS regression model discussed in Andreou
et al. (2010). There are various parsimonious parameterizations

suggested for such regressions, see e.g. Ghysels et al. (2006), An-
dreou et al. (2010) and Sinko et al. (2010), which will be discussed
later.

Note that the aforementioned VAR model contains, besides
MIDAS regressions, also the impact of what one might call the
low frequency shock ε(τL)

m+1,1 (the last element of the innovation
vector in this particular example) onto both future high and low
frequency series as well as high frequency shocks ε(τL)

i,1 (i =

1, . . . ,m again in this particular example) onto future high and low
frequency series.

It will be convenient to use a more compact notation for the
KL + m ∗ KH dimensional vector x(τL), namely we will write Eq.
(2.1) as:

A(LL)(x(τL) − µx) = ε(τL) (2.5)

whereLL is the low frequency lag operator, i.e.LLx(τL) = x(τL−1),
and:

A(LL) = I −

P
j=1

AjL
j
L

µx =


I −

P
j=1

Aj

−1

A0 (2.6)

where we assume that the VAR is covariance stationary to be able
to write the above equations (see Assumption 4.1 below) and we
let E[ε(τL)ε(τL)

′
] = CC′.

We are also interested in a second representation which will
be useful for studying the relationship between mixed frequency
and traditional VAR models which ignores the availability of
xH(τL, kH). To this end, we will introduce a joint process x(τL) ≡

(xH(τL)
′, xL(τL)′)′, where the second sub-vector of low frequency

observations is left unspecified for the moment—i.e. we are not
going to be explicit until Section 4 about how the high frequency
data aggregate to low frequency observations. We will denote the
low frequency VAR model as:

B(LL)(x(τL) − µx) = ε(τL) (2.7)

whereB(LL) = I−
P

j=1 BjL
j
L, and E[ε(τL)ε(τL)

′
] = CC′. Note that

the lag length of the VAR may not be finite, i.e. P may be infinite.
Obviously, what also interests us is the relationships between the
(traditional) VAR characterized by B(LL) and C and the original
mixed frequency dynamics LL and C. It is one of our goals to
characterize this relationship.

2.2. The constituents of the stacked vector

We adopt a general approach, and therefore analyze a generic
stacked vector systems. Yet, we also need to keep in mind that
the observations we stack into vectors may differ from application
to application and in particular may depend on the focus of the
application.

For example, let us consider two different scenarios involving
a mixture of monthly and quarterly data. The first scenario, one
could refer to as economic time, seeks to study the fundamental
dynamics of the economy. Namely, there is a number of people
employed during the month of January, another number for
February, a third forMarch, and then there is a GDP number for the
first quarter. This yields four numbers, threemonthly employment
figures and one GDP, which would logically be collected in a single
stacked vector. An alternative scenario is news-release time. For
example, on January 6 the Bureau of Labor Statistics (BLS) releases
the December employment report, on January 27 the Bureau of
Economic Analysis (BEA) will release the GDP number for the
fourth quarter of the previous year, on February 3 the BLS will
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release the employment report for January and a revised value for
the employment number for December, on February 29 the BEA
will release a revised estimate of previous fourth quarter of GDP, on
March 2 the BLS will release the employment report for February
(and revisions of the December and January counts), and onMarch
29 the BEA will release yet another estimate of the previous year
GDP. Perhaps we want to collect all eight of these numbers in the
vector for the first quarter. Note also that in the first scenario we
would take final data, not the real-time series.

Clearly, both scenarios are of interest and can be covered by our
generic mixed frequency VAR model. While throughout the paper
wewill try to provide a general discussion, itwill be clear that some
parts of our analysis will bemore relevant for specific applications.
For example, themapping frommixed frequency to traditional low
frequencyVARmodels and the analysis of potentiallymis-specified
impulse response functions appearing in Section 4 is clearly more
relevant for the aforementioned economic time structural dynamic
analysis.

If one is interested in a real-time forecasting exercise, then we
clearly consider the second approach. For example, assume all low
frequency data are release at the same time and compare:

x(τL) =


xH(τL, 1)

...

...
xH(τL,m)
xL(τL)

 versus


xL(τL)

xH(τL, 1)
...
...

xH(τL,m)

 or


xH(τL, 1)

...
xL(τL)

...
xH(τL,m)

 (2.8)

where the release of low frequency appears at the end, begin-
ning or some time in the middle of τL. The order of appearance
in the vector therefore determines the timing of intra-τL period
releases and that will be important later to understand the im-
pact and timing of shocks as well as the updating of predictions
as new intra-τL period shocks occur. Moreover, the high frequency
releases of low frequency data can occur at various kH through-
out period τL and therefore impact the structure of shocks and re-
sponses. More specifically, KL low frequency series K kH

L in xL(τL)
are released at time kH in period τL for kH = 1, . . . ,m, withm

i=1 K
i
L = KL.

4 When we need to keep track of the high frequency
releases of low frequency data we use xL(τL, kH), for the sub-
vector released at kH . All xL(τL, kH) combined for kH = 1, . . . ,m,
yield the time-stamped low frequency process. Hence, when all
the low frequency data are released at the end of period τL then
x(τL) ≡ (xH(τL, 1)′, . . . , xH(τL,m)′, xL(τL)′)′, otherwise it contains
(xL(τL, kH)′, xH(τL, kH)′)′ for the sequence kH = 1, . . . ,m.5

For many parts of the paper the details about the specific
constituents of the stacked vector will be irrelevant, and we
will put all the high frequency data first followed by the low
frequencydata. However,when the focus is real-time analysis, as in

4 Most releases are on a fixed schedule, with notable exceptions such as
some FOMC announcements. In addition to the extensive academic literature,
mostly studying the phenomenon of financial market impact of announcements—
one can find many details regarding announcement schedules on financial
news sites such as http://www.nasdaq.com/markets/us-economic-calendar.aspx or
http://biz.yahoo.com/c/e.html, among many others. The framework presented in
this paper can, with some modification handle announcements that may occur at
random—technical details are omitted here.
5 If xH (τL, kH ) is empty for some kH , we only stack the high frequency data.

Sections 2.5 and 3.1, we will deal more explicitly with the specific
order of the elements in the stacked vector.

2.3. Parsimony

The question of parsimony in VAR models has been much
discussed as it is an issue that is particularly acute for large
dimensional models and/or models involving many lags. One
might think that the acuteness of parameter proliferation is likely
to be even more an issue with a mixture of sampling frequencies.
It is the purpose of this section to show that it may not be as severe
as one might think. There are mainly two reasons why there may
not be a parameter proliferation problem despite the potentially
large dimensional VAR systems. First, the stacking of high
frequency data typically involves repeating the same parametric
structure across all m replicas. Second, the key insights of MIDAS
regressions also play a key role in keeping the parameter space
low dimensional. We develop a few examples showing how one
could potentially write sparsely parameterized mixed frequency
VAR models. These are not per se the specifications, but they
provide a few leads on how onemay go aboutwriting conveniently
a parametric structure. The common theme, however, is that
we aim for specifications with the appealing feature that the
number of parameters does not depend on m, i.e. the number
of high frequency observations per low frequency time period.
The sparsely specified VAR models introduced here will also serve
another purpose. In Section 5.2 we cover Bayesian estimation of
mixed frequency VAR models. The priors for the Bayesian VAR
models will be inspired by the examples we present next.

For the purpose of streamlining the exposition we will start
againwith an examplewhere all the low frequency τL series appear
at the end of the stacked vector as in Eq. (2.1). In addition, we set
KL = KH = 1 and assume that all the series are either demeaned
or are assumed mean zero.6 Therefore, we rewrite Eq. (2.1) as:
xH(τL, 1)

...
xH(τL,m)
xL(τL)

 =

P
j=1


A1,1
j . . . A1,m

j A1,m+1
j

... . . .
...

...

Am,1
j . . . Am,m

j Am,m+1
j

Am+1,1
j . . . Am+1,m

j Am+1,m+1
j



×


xH(τL − j, 1)

...
xH(τL − j,m)
xL(τL − j)

+ ε(τL)

which is m + 1-dimensional VAR model with P lags. When we
assume that the high frequency process is ARX(1) with the impact
of the low frequency series constant throughout the period, we
have:


xH(τL, 1)

...
xH(τL,m)
xL(τL)

 =


0 . . . ρ a
... . . .

...
...

0 . . . ρm a


1 +

m−1
j=0

ρ j


w(γ )m . . . w(γ )1 α1



×


xH(τL − 1, 1)

...
xH(τL − 1,m)
xL(τL − 1)



6 In Section 5.2 we will cover the cases with KL low frequency and KH high
frequency series.

http://www.nasdaq.com/markets/us-economic-calendar.aspx
http://biz.yahoo.com/c/e.html
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+

P
j=2


0 . . . 0 0
... . . .

...
...

0 . . . 0 0
w(γ )jm . . . w(γ )(j−1)m+1 αj



×


xH(τL − j, 1)

...
xH(τL − j,m)
xL(τL − j)

+ ε(τL) (2.9)

which involves P parameters αj, two parameters ρ and a and a
low dimensional MIDAS polynomial parameter vector γ . When
all αj = 0 for j > 1, and the dimension of γ is 2, which is
not unreasonable (see Appendix A for details), we end up with 5
parameters regardless of the value ofm. Admittedly, this is a tightly
constrained model, yet it is not an unreasonable starting point.
Continuing with the system in (2.9), the innovation covariance
matrix may also be sparsely specified. Continuing with the above
specification, we can write E[ε(τL)ε(τL)

′
] as in Box I, adding

another three parameters, and therefore a total of eight again
independent ofm.7

The specification of the MIDAS regressions, when KL > 1,
deserves some attention as well. Namely, consider the following:

[Am+1,1
1 . . . Am+1,m

1 Am+1,1
2 . . . Am+1,m

P ]

=


KH×m×P

i=1

(w(γ )i)


⊗ B (2.11)

with B a KL × KH matrix and a scalar MIDAS polynomial withKH×m×P
i=1 (w(γ )i) = 1.8 Hence, we impose a common decay pat-

tern with a single polynomial lag structure with B containing the
collection of slope parameters identified as the sum of the polyno-
mial lag weights add up to one. As noted before, there are various
parsimonious parameterizations suggested for the weights ω(γ )i,
that are briefly reviewed Appendix A. The above specification has
the virtue of reducing (KL ×KH)×P ×m parameters to just KL ×KH
plus the dimension of γ which is two in many of the examples dis-
cussed in the aforementioned Appendix. Needless to say that this
characterization of the polynomials may be too restrictive—yet as
in the previous case, it may be a reasonable starting point in many
practical settings. Along the same lines, one can consider a less par-
simonious specification inspired by the so calledmultiplicativeMI-
DAS (see Eq. (A.8) in Appendix A):

[Am+1,1
j . . . Am+1,m

j ] =


KH×m
i=1

(w(γ )i)


⊗ Bj j = 1, . . . , P (2.12)

meaning that within-τL period high frequency weights remain in-
variant and yield a low frequency parameterized process xH(τL −

j)(γ ) with lag coefficients Bi. The advantage of this specification is
that the impact of high frequency data on low frequency ones nests
specifications with ad hoc linear time aggregation such as time
averaging—taking the last within-τL period high frequency obser-
vation. Bai et al. (2013) show that the above specification matches
a steady state Kalman filter prediction equation obtained from a
single factor state space model and provides a good approxima-
tion formanymore complex state spacemodel specifications. Note

7 Obviously, for some of the high frequency applications, one may consider
adding ARCH-type dynamics to the innovations, or add announcement effects to
some of the elements of the covariances—which would entail a richer, yet still
manageable parameter structure independent ofm.
8 It is worth noting here that the multiplicative MIDAS specification is known to

suffer from the well known Davies (1987) problem.

that, at least for the block of low frequency series, the above speci-
fication is quite similar to a traditional VARwith lag coefficients Bi,
augmented by a small number of parameters used in the filtering
scheme. Here again, the number of parameters does not augment
with m.

The use of MIDAS polynomial permits to reduce the number
of parameters to be estimated, and therefore achieves a necessary
degree of parsimony that is often critical in empirical applications.
However, parsimony achieved through zero restrictions and
MIDAS polynomials clearly impose a specific structure on the data,
and therefore one looses the rich dynamics that is allowed for
by standard (unrestricted) VAR models. This may be especially
problematic in the context of structural studies. A more appealing
way to proceed in this case is to rely on Bayesianmethods to handle
parsimony—as discussed in Section 5.2. Foroni and Marcellino
(2014) and Schorfheide and Song (2013) are some recent examples
of identifying and estimating DSGE models using mixed frequency
data. While they formulate VAR models imbedded in a state space
models which feature latent shocks, the use of Bayesian and
structural parameter-restricted Kalman filter estimation methods
readily apply to the mixed frequency VARmodels discussed in this
paper. Formulating Bayesian priors for stacked mixed frequency
VAR models is a particular case of the priors discussed later in the
paper.

We adopt in the remainder of the paper a generic setting
where all the parameters are collected into a vector Ψ . The above
sparsely parameterized mixed frequency VAR model is a frugal
example, while more richly specified structures obviously will
involve higher dimensional parameter vectors. In general, we will
write the finitely parameterized mixed frequency VAR models
appearing in Eqs. (2.5) as:

AΨ (LL)(x(τL) − µΨ
x ) = ε(τL) (2.13)

with E[ε(τL)ε(τL)
′
] = C(Ψ )C(Ψ )′.

To streamline the notation, we will drop the parameter vector
Ψ for the remainder of this section, although one has to keep in
mind that thematerial we will present is subject to potential spec-
ification errors resulting from parsimonious parameterizations—a
subject we will address in the next section.

2.4. State space models revisited

It was noted in the Introduction that state space models are
often used to handle mixed frequency data. Building on the
early work of Harvey and Pierse (1984), Bernanke et al. (1997)
and Zadrozny (1990), recent papers have further explored their
use, see Aruoba et al. (2009), Ghysels and Wright (2009), Kuzin
et al. (2009), Marcellino and Schumacher (2010), Foroni and
Marcellino (2014) and Schorfheide and Song (2013), among others.
They are a solution to the parsimony issue discussed in the
previous subsection. To set the scene, we consider a state space
model for the stacked vector we have been considering so far:

xH(τL, 1)
...

xH(τL,m)
xL(τL)

 =


G11 0 . . . 0
0 G22 . . . 0
...

...
0 . . . Gmm
0 . . . GL


 s(τL, 1)

...
s(τL,m)


+ ε(τL)

s (2.14)

where s(τ , i) is a high frequency state process. To streamline the
presentation, without loss of generality, let us proceed with the
special case considered before of KL = KH = 1. In addition, we
also assume that the latent state process is univariate. Hence, we
consider a single factor process which drives respectively one low
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
σ 2
HH ρσ 2

HH ρ2σ 2
HH ρ3σ 2

HH σHL

(1 + ρ2)σ 2
HH ρ(1 + ρ2)σ 2

HH ρ2(1 + ρ2)σ 2
HH (1 + ρ)σHL

(1 + ρ2
+ ρ4)σ 2

HH ρ(1 + ρ2
+ ρ4)σ 2

HH (1 + ρ + ρ2)σHL

(1 + ρ2
+ ρ4

+ ρ6)σ 2
HH (1 + ρ + ρ2

+ ρ3)σHL
σLL

 (2.10)

Box I.

and one high frequency process. Moreover, we also assume that
the state process is a mean zero AR(1) process with persistence
parameter ρs and innovation variance σ 2

s . Then following Bai et al.
(2013, equation (2.21)), one canwrite the (low frequency) one-step
ahead prediction conditional on past x(τL − j), j = 0, 1, . . . can be
written as:

xL(τL + 1) = E[xL(τL + 1)|x(τL − j)]

=

∞
j=0

ϑ j



κ1

m
k=2

(ρs − ρsκk)

κ2

m
k=3

(ρs − ρsκk)

...

ρm
s κm,2ρ

mj
s

ρm
s κm,1ρ

mj
s



′


xH(τL − j, 1)

...
xH(τL − j,m)
xL(τL − j)

 (2.15)

where κk and κm,k are the periodic Kalman gains defined in Bai et al.
(2013) (above equation (2.21)). The above equation pertains to
one-step ahead prediction conditional on past x(τL− j), j of the low
frequency process. Similar derivations apply to the high frequency
process as well. Taken together, this implies, not surprisingly
that the latent factor Markov order one state space model leads
to an infinite order stacked VAR model. Note that the VAR is
indeed tightly parameterized, but of infinite order. The discussion
highlights the differences between traditional VAR and state space
models in a mixed sampling frequency setting. As emphasized
earlier, the innovations to the infinite VAR do not have the same
(structural) interpretation as do those in the stacked VAR model.

2.5. Shocks and Cholesky factorization

Much has been written about impulse response functions in
VAR models, in particular with regards to the interpretation of
shocks. The class of mixed frequency VAR models sheds new light
on this topic. First of all, let us recall that the vector x(τL) has a
natural order for the intra-τL period timing of shocks since their
elements represent a sequence of time events. If more than one
series is released at a specific time, then the order of associated
shocks is subject to the same considerations as in traditional VAR
models—or perhaps not. For example if during a day, or a week,
or month both financial and macro series are released, we do not
necessarily know how to order them—except that macro data are
released before financial markets open, so there is again a natural
order despite the contemporaneous time stamp in the vector
x(τL).

The stacked mixed frequency VAR model implies an impulse
response function:

(x(τL) − µx) =


I −

P
j=1

AjL
j
L

−1

ε(τL)

=

∞
j=0

Fjε(τL − j) ≡ F(LL)ε(τL) (2.16)

where I = (A(LL))F(LL), which allows us to study the intra-
τL period timing of both high frequency and low frequency
shocks.

Therefore the impulse responses potentially tell us something
about the impact of say a macroeconomic announcement of a low
frequency series onto future low and high frequency ones, and
surprises in high frequency series on both future low and high
frequency series. Compared to the impulse responses from the VAR
in Eq. (2.7), namely: (x(τL)−µx) = (B(LL))

−1ε(τL)we can see how
intra-τL period shocks are scrambled — somethingwewill bemore
explicit about in Section 4.

Since the order of the entries into the stacked vector is no long
arbitrary, it is also the case that the Cholesky factorization of the
innovations is no longer arbitrary. In particular consider:

E[ε(τL)ε(τL)
′
] = CC′

= M[m]ΩM′

[m]
(2.17)

whereΩ is a diagonalmatrix andM[m] is a lower triangularmatrix.
We add the index m to the latter as it will be relevant for the
material presented in the next subsection. Since the inverse of a
lower triangular matrix is again a lower triangular one, consider
(M[m])

−1
= N[m], and:

A(LL)(x(τL) − µx) = ε(τL)

= M[m]η(τL)

N[m]A(LL)(x(τL) − µx) = η(τL) (2.18)

where E[η(τL)η(τL)
′
] = Ω , a diagonal matrix.

When we turn our attention again to the parsimonious ex-
amples in the previous subsection, and in particular Eq. (2.10)
we realize that the parameters governing the covariance matrix
E[ε(τL)ε(τL)

′
] and thus its Cholesky factorization, are tied to the

parameters governing the VAR dynamics, in particular the param-
eter ρ in Eq. (2.9). This leaves us with the choice of either (1) esti-
mate the factorization unconstrained, or (2) explore the common
parameter restrictions and aim for a more efficient estimation of
the impulse response functions. This issue is reminiscent of struc-
tural VAR models as alluded to in Eq. (2.2). We will revisit the
connectionwith traditional structural VARmodels in the next sub-
sections. To summarize:while Cholesky factorizations are typically
ambiguous in terms impulse response analysis in traditional VAR
models, they are a more natural tool for impulse response analysis
for time-stampedmixed frequency VAR systems. In addition, there
are potential gains to be made from considering common param-
eter restrictions between the mixed frequency VAR dynamics and
the lower triangular factorization.

3. Structural mixed frequency VAR models

We turn our attention now to structural VAR models and
consider various specifications for the Ac matrix appearing in
Eq. (2.2). We will focus on two particular applications, namely
real-time prediction updating and policy analysis. A subsection
is devoted to each topic. A final subsection will deal with a
generalization of mixed frequency VAR models relevant for both
real-time and policy analysis.



E. Ghysels / Journal of Econometrics ( ) – 7

3.1. Real-time predictions

The potential mis-specification of shocks due to aggregation
of mixed frequency data also leads us to the question how much
is lost by ignoring the real-time stream of high frequency data
as one foregoes the possibility to engage in within-τL updates of
forecasts. It turns out this will be an example of using certain types
of structural VAR matrices to update within-τL information.

Continuing with the example in Eqs. (2.5) and (2.18) con-
sider the following transformations for i = 1, . . . ,m − 1:
N[i]A(LL)(x(τL) − µx) = N[i]ε(τL) or:

N[i]x(τL) = N[i]A0 +

P
j=1

N[i]Ajx(τL − j) + N[i]ε(τL) (3.1)

involving thematrices,N[i], i = 1, . . . ,m−1, which can bewritten
as:

N[i] =



I 0 · · · · · · 0 0
N 2,1

[i] I 0 · · · 0 0
...

...
...

N i+1,1
[i] · · · N i+1,i

[i] I
... 0

...
... 0

. . .
...

N m+1,1
[i] · · · N m+1,i

[i] 0 · · · I


(3.2)

where the matrices N a,b
[i] are of dimension KH × KH except for

a = m+1.MatricesN m+1,b
[i] are of dimension KL×KH . Thesematri-

ces are related to the inverse of the Cholesky lower triangular de-
composition, namely recall from Eq. (2.18) that (M[m])

−1
= N[m],

and define the matrices, N[i] as the partial triangular decomposi-
tions orthogonalizing only the first i shocks.

To clarify the role played by the transformation appearing in
(3.2), let us for instance take a look at N[1], which applies to a first
high frequency data point becoming available, and the special case
considered before of KL = KH = 1, i.e.:

N[1] =


I 0 · · · 0

N 2,1
[1] I · · · 0
... 0

. . .
...

N m+1,1
[1] 0 · · · I

 .

Then the last equation in the system reads:

xL(τL) + N m+1,1
[1] xH((τ )L, 1) = Am+1,1

0 +

P
j=1

Am+1,m+1
j xL(τL − j)

+

P
j=1

m
k=1

Am+1,k
j xH(τL − j, k) + ε(τL)

m+1,1 (3.3)

which is the ADL MIDAS regression model with (one) lead(s)
discussed in Andreou et al. (2010). Alternatively, we can also write
the last equation, based on the inversion of the N[1] matrix as:

xL(τL) = (Am+1,1
0 − N m+1,1

[1] A1,1
0 ) − N m+1,1

[1] ε(τL)
1,1

+

P
j=1

(Am+1,m+1
j − N m+1,1

[1] A1,1
j )xL(τL − j)

+

P
j=1

m
k=1

(Am+1,k
j − N m+1,1

[1] A1,k
j )xH(τL − j, k)

+ ε(τL)
m+1,1. (3.4)

The latter representation is closer to a Kalman filter approach
as it adds the information innovation ε(τL)

1,1, which equals

xH((τ )L, 1) − EτL [xH((τ )L, 1)], to the equation and re-weights all
the old information accordingly.

Note, the simplicity of the updating scheme: (1) we estimate
a mixed frequency VAR model, (2) compute the Cholesky
factorization of the errors and then take them−1 lower triangular
truncations of the original factorization. It is also worth recalling
that we may or may not impose common parameter restrictions
between the parameters of the mixed frequency VAR and the
covariance matrix of the full system as noted at the end of the
previous section.

3.2. Policy response functions

The analysis in the previous subsection is one example of
mixed frequency VAR models with a particular choice of Ac
matrix appearing in Eq. (2.2). In the present subsection we study
structural VAR models with mixed frequency data for the purpose
of studying policy analysis. To do so, we consider a high frequency
vector that contains somemonetary policy instrument, such as the
Federal funds rate (henceforth FFR). In particular, to simplify the
presentation, let us only focus on FFR in combination with some
low frequency series:

Ac



FFR(τL, 1)
...

FFR(τL, k)
...

FFR(τL,m)
xL(τL)


= A0 +

P
j=1

Aj



FFR(τL − j, 1)
...

FFR(τL − j, k)
...

FFR(τL − j,m)
xL(τL − j)


+ ε(τL) (3.5)

with

Ac =



IKH . . . . . . . . . . . . A1,m
c A1,m+1

c
...

. . .
...

...
...

. . .
...

...

Ak,1
c . . . Ak,k−1

c IKH Ak,m
c Ak,m+1

c
...

...
. . .

...
...

Am,1
c . . . . . . IKH Am,m+1

c

Am+1,1
c . . . . . . Am+1,m

c IKL


. (3.6)

Let us focus on the equation for FFR(τL, k). For simplicity, we set
Ak,j
c = 0 for j < k − 1 and k < j ≤ m. Moreover, we leave

unspecified the regressors appearing on the right hand side of the
above equation, and therefore we have:

FFR(τL, k) = Ak,1
0 − Ak,k−1

c FFR(τL, k − 1) − Ak,m+1
c xL(τL)

+ regressors prior to τL + ε(τL)
k,1. (3.7)

Note that the above equation for FFR(τL, k) features the low
frequency xL(τL) (as well as lagged low and high frequency data).
This means that policy variable may respond to current (low
frequency) conditions—although xL(τL) may not yet be observed
at period k of τL. This obviously raises some interesting issues. To
address these, let us define the information set I(τL, k) as all the
information available at period k of τL. Therefore, onemay interpret
Eq. (3.7) as:

FFR(τL, k) = Ak,1
0 − Ak,k−1

c FFR(τL, k − 1)

− Ak,m+1
c E[xL(τL)|I(τL, k)] + · · · (3.8)

involving real-time estimates of xL(τL). Therefore, we may think
of cross-equation restrictions since E[xL(τL)|I(τL, k)] involves
the rows of N[k]x(τL) pertaining to the concurrent estimates
of xL(τL). Recall that in Eq. (2.10) we noted that parameters
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governing the covariance matrix E[ε(τL)ε(τL)
′
] and thus its

Cholesky factorization, are tied to the parameters governing the
VAR dynamics. Imposing such restrictions – while feasible – may
be convoluted. Fortunately, there is an easy shortcut. It is worth
recalling that the instruments used in the estimation of (3.7), and
all FFR equations across all k, are orthogonal to the error xL(τL) −

E[xL(τL)|I(τL, k)]. Therefore, using an argument often invoked in
the estimation of rational expectations models (see e.g. McCallum,
1976), we can obtain consistent estimates of Ak,m+1

c in Eq. (3.7)
using ex post realizations of low frequency series to analyze the
real-time policy decision rules.

4. High, mixed and low frequency VAR models

Wenoted in the Introduction thatmixed frequency typically in-
volve latent processes. In this section we discuss the relationships
between VAR models involving exclusively high frequency data –
and therefore latent processes – and respectively mixed and low
frequency processes. We adopt a high frequency VAR setting sim-
ilar to Zadrozny (1990) which was recently generalized by Chiu
et al. (2011). We use a slightly more general setting in fact, as will
become clear shortly. It should also be noted that we could also
start from a hidden state spacemodel with a common factor struc-
ture, as in Mariano and Murasawa (2003), Aruoba et al. (2009),
among many others.

Throughout the section we will work with fixed mixed
sampling frequencies, as stated in Assumption 2.1. Recall from
Assumption 2.1 that we startedwith a K -dimensional processwith
the first KL < K elements, collected in the vector process xL(τL),
observed every m fixed periods while the remaining KH = K − KL
series are observed as xH(τL, kH). To build a high frequency process,
we consider a K -dimensional partially latent high frequency
process zH(τL, kH). Moreover, we will also consider the m ∗ K -
dimensional stacked version of the vector, which we will denote
ẍ(τL) ≡ [zH(τL, 1)′ . . . zH(τL,m)′]′, and characterize it via the linear
aggregation scheme:

xH(τL, 1)
...

xH(τL,m)
xL(τL)

 = D(LH)

 zH(τL, 1)
...

zH(τL,m)

 (4.1)

such as for example:

D(LH) ≡ diag

0KH×KL IKH


, . . . ,


0KH×KL IKH


,

DL(LH) 0KL×KH


in which case the high frequency series xH(τL, kH) are exact copies
of the KL + 1, . . . , K elements of ZH(τL, kH), whereas the low
frequency series are obtained via a linear aggregation scheme,
where the aggregation scheme may involve long spans, i.e. that
may involve lags larger than m. Hence, the low frequency vector
may pertain to τL − 1 realizations of zH .9

Note that the above specification relates to what we referred
to in Section 2.2 as economic time. When real-time series are
the constituents for the stacked vector, one can also construct
a relation similar to Eq. (4.1) with a more general structure for
D(LH). Namely, one can think of the mixed frequency VAR model
in terms of filtered zH , which may represent a combination of flow
and stock variables andmay capture amixture of releases involving

9 For more discussion of general linear aggregation schemes, see e.g. Lütkepohl
(1987). Note that stock and flow sampling schemes are of course special cases.

publication delays. Therefore, wewill in general setting replace the
scheme in Eq. (4.1) by the generic scheme:

x(τL) = D(LH)ẍ(τL) =

Pa
j=0

m
kH=1

Dj∗m+kH (L
j∗m+kH
H )ẍ(τL). (4.2)

By the same token, we also can characterize the mapping from
ẍ(τL) and the aggregated process x(τL) via:

x(τL) = D(LH)ẍ(τL) (4.3)

as well as:

x(τL) = F(LH)x(τL). (4.4)

Building on the example appearing in (4.1), the latter would be:


xH(τL)
xL(τL)


=


0KH . . . FH(LH) 0KL
0KH . . . 0KH IKL


xH(τL, 1)

...
xH(τL,m)
xL(τL)

 . (4.5)

Next, we need to specify the data generating process for the high
frequency process. It will convenient to write the process in a
stacked version as we did in the above Eqs. (4.1) and (4.2). In
particular, we assume that:

Assumption 4.1. The vector ẍ(τL) ≡ (zH(τL, 1)′, . . . , . . . , zH
(τL,m)′)′ is of dimension m ∗ K and has a finite order covariance
stationary VAR representation:

Ä(LL)(ẍ(τL) − µẍ) = ε̈(τL) (4.6)

where Ä(LL) = I −
P

j=1 ÄjL
j
L, µẍ = (I −

P
j=1 Äj)

−1Ä0 and
E[ε̈(τL)ε̈(τL)

′
] = C̈C̈′.

The above finite order VAR assumption for ẍ(τL) requires some
discussion. In particular, the finite order VAR structure for the
stacked mixed frequency vector x(τL) in Eq. (2.1) combined with
the aggregation scheme in (4.1) may not be compatible with
Assumption 4.1.

In addition, the DGP in Assumption 4.1 includes a class of
periodic models studied in Gladyshev (1961) and in particular Tiao
and Grupe (1980), Hansen and Sargent (1990, Chap. 17), among
others noted earlier. For example, consider the zero mean periodic
VAR(1) model:

IK . . . . . . . . . 0K

−A2,1
c IK . . . . . . 0K

0K
. . . . . . . . . 0K

...
. . .

. . .
...

0K . . . . . . −Am,m−1
c IK

 ẍ(τL)

=


0K . . . . . . . . . A1,m

0K . . . . . . 0K
...

. . . . . . . . . 0K
... . . .

...
0K . . . . . . 0K 0K

 ẍ(τL − 1) + ε̈(τL). (4.7)

We emphasize the inclusion of periodic models, in part because
suchmodels imply that impulse response functions varywithm, as
stressed in a seasonal context by Hansen and Sargent (1990, Chap.
17). If in the above periodic VAR(1) model all the matrices Ai,i−1

c ,
for i = 2, . . . ,m, and A1,m are equal then we have a regular high
frequency (non-periodic) VAR(1) model notably used by Chiu et al.
(2011). Note that in such a case, all impulse response functionswill
be the same across time.



E. Ghysels / Journal of Econometrics ( ) – 9

We are interested in the relationship between the stacked
process ẍ(τL) and respectively the mixed frequency process x(τL)
and the aggregated process x(τL). Since we assume that all the
processes are covariance stationary we can operate via their
spectral representations. In particular, let ẍ(τL), x(τL) and x(τL)
have spectral densities equal to respectively S̈(z), S(z) and S(z),
for z = exp(−iω) with ω ∈ [0, π]. Then the low frequency VAR
model is determined by the following relationship:

S(z) = D(z)S̈(z)D(z−1)′

S(z) = D(z)S̈(z)D(z−1)′

S(z) = F(z)S(z)F(z−1)′. (4.8)

The result follows straightforwardly fromspectral density relation-
ships via transfer functions (see e.g. Priestley, 1981). Note that the
spectral densities S(z) and S(z) in (4.8) typically do not correspond
to finite order VAR specifications. The mapping to such specifica-
tions is what will be covered in the next section.

5. Specification and estimation

Empirical work involves critical choices of model specification
and parameterization. In the context of VAR models this amounts
to selecting: (1) the variables that are included in the VAR, (2)
the sampling frequency of the model, (3) the number of lags to
be included and (4) restrictions on the parameter space. Choices
of the second type – namely sampling frequency – are not much
discussed in the literature and are the focus of this section.
Obviously, the choice of sampling frequency is not detached from
all the other aforementionedmodel selection choices. For instance,
lag selection is verymuch related to sampling frequency and so are
the parameterizations of the VAR.

To formulate a maximum likelihood based estimator of mixed
frequency VARmodels, consider the conditional density of the τLth
observation:

f (x(τL)|x(τL − 1), . . . , x(τL − P); Ψ )

= (2π)
m̃τL
2 |(CτL(Ψ )CτL(Ψ )′)−1

|
1/2

× exp−
1
2
(ε(τL)

′(CτL(Ψ )CτL(Ψ )′)−1ε(τL))

which yields the sample log likelihood function for a sample of size
TL:

L(x(τL)
TL
1 |Ψ ) = (−1/2)

TL
τL=1

m̃τL log(2π)

+ (1/2)
TL

τL=1

log |(CτL(Ψ )CτL(Ψ )′)−1
|

− (1/2)
TL

τL=1

[ε(τL)
′(CτL(Ψ )CτL(Ψ )′)−1ε(τL)] (5.1)

which for m fixed, i.e. under Assumption 2.1, specializes to the
usual sample log likelihood function:

L(x(τL)
TL
1 |Ψ ) = (−TL(KL + m ∗ KH)/2) log(2π)

+ (TL/2) log |(C(Ψ )C(Ψ )′)−1
|

− (1/2)
TL

τL=1

[ε(τL)
′(C(Ψ )C(Ψ )′)−1ε(τL)]. (5.2)

The asymptotic analysis of VAR models is well known, see
e.g. Hamilton (1994), and applies in the current settingwithout any
modifications.10

In a first subsection we cover the asymptotic properties of
mis-specified VAR models with an emphasis on mixed versus low
frequency specifications. A final subsection covers Bayesian mixed
frequency VAR estimation.

5.1. Asymptotic properties of mis-specified VAR model estimators

Having specified some potentially parsimonious mixed fre-
quency specifications, we now turn our attention to the study of
a standard low frequency VAR model with a finite number of lags
and parameter vector Φ as well as a mixed frequency VAR model
with a finite number of lags and parameter vector Ψ . To so, we as-
sume the DGP is the m ∗ K dimensional vector ẍ(τL) described by
Eq. (4.6):

Ä(LL)(ẍ(τL) − µẍ) = ε̈(τL)

with E[ε̈(τL)ε̈(τL)
′
] = C̈C̈′. Against the backdrop of this DGP

we have on the one hand the mixed frequency VAR specification
appearing in (2.13) parameterized byΨ , and on the other hand the
K dimensional traditional low frequency VAR parameterized byΦ.

Hence, we look at a researcher who ignores the high frequency
data, picks a finite set of lags and possibly imposes parameter
restrictions on the VAR, versus a researcher who looks at the high
frequency data, picks a finite set of lags – not necessarily the right
number – and possibly imposes restrictions to tackle parameter
proliferation.

In terms of spectral representations, we are looking at two
parameterized spectral densities: (a) S(z, Φ) and (b) S(z, Ψ )

against the DGP S̈(z). Since the discussion here essentially revolves
around the estimation of mis-specified linear Gaussian processes,
we will be using a notion of relative (rather than absolute)
entropy—that is the Kullback and Leibler (1951) measure to assess
approximation errors.

Analogous to the Eq. (5.2) we also have the sample log
likelihood function:

L(x(τL)
TL
1 |Φ) = (−TL(KL + KH)/2) log(2π)

+ (TL/2) log |(C(Φ)C(Φ)′)−1
|

− (1/2)
TL

τL=1

[ε(τL)
′(C(Φ)C(Φ)′)−1ε(τL)]. (5.3)

Using results from Hansen and Sargent (1993) we obtain the
following:

Proposition 5.1. Let Assumptions 2.1 and B.1 through B.4 hold and
the DGP is described by (4.6) with aggregation schemes appearing
in (4.8) characterized by D and D. Then the maximum likelihood
estimator appearing in (5.1), denoted Ψ̂ , minimizes

Ψ̂ = Argmin
Ψ


E1(S(Ψ )) + E2(S(Ψ ), S̈,D) + E3(S(Ψ ), S̈)


E1(S(Ψ )) =

1
2π

 π

−π

log(det S(ω, Ψ ))dω

E2(S(Ψ ), S̈,D) =
1
2π

 π

−π

trace(S(ω, Ψ )−1D(ω)S̈(ω)D(ω−1)′)dω

10 In a classical framework, maximum likelihood may prove to be intractable for
large systems. In a context similar to ourswith daily andmonthly data, Chauvet et al.
(2013) propose a two-step procedure to estimate a mixed-frequency VAR model
based on SUR regressions.
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E3(S(Ψ ), S̈) = (µx − µΨ
x )′S(0, Ψ )−1(µx − µΨ

x ) (5.4)

where µΨ
x is the mean for the high frequency process implied by the

parametric specification of themixed frequency VARwhereasµx is the
mean implied by theDGP. Likewise, themaximum likelihood estimator
appearing (5.3), denoted Φ̂ , minimizes

Φ̂ = Argmin
Φ


E1(S(Φ)) + E2(S(Φ), S̈,D) + E3(S(Φ), S̈)


E1(S(Φ)) =

1
2π

 π

−π

log(det S(ω, Ψ ))dω

E2(S(Φ), S̈,D) =
1
2π

 π

−π

trace(S(ω, Φ)−1D(ω)S̈(ω)D(ω−1)′)dω

E3(S(Φ), S̈) = (µx − µΦ
x )′S(0, Ψ )−1(µx − µΨ

x ). (5.5)

Proof see Appendix B.
Not surprisingly the asymptotic properties depend not only on

the tension between the assumed and actual DGP, but also the
aggregation scheme, through the filters D and D appearing in Eq.
(4.8). The term E1 relates to the likelihood function in the absence
of mis-specification. The terms E2 and E3 represent the impact of
mis-specification, the latter pertaining to the zero frequency only.

5.2. Bayesian mixed frequency VAR

It was noted in the Introduction that the new class of models
in the paper have a few virtues, including a specification that
can be estimated and analyzed with standard VAR analysis tools—
including Bayesian estimation. We therefore start with adopting
standard BVAR tools to a mixed frequency setting.

Recent work on MIDAS regressions includes Bayesian estima-
tion approaches, see notably Rodriguez and Puggioni (2010), Ghy-
sels and Owyang (2011), Ghysels et al. (2014), Pettenuzzo et al.
(2014), among others. It is also the purpose of this section to ex-
pand these recent developments to a mixed frequency VAR frame-
work.

5.2.1. Standard Bayesian VAR and mixed frequency data
Standard priors in Bayesian VAR models involve univariate

AR(1) models, or even more restrictively a random walk, see
e.g. Doan et al. (1984), Litterman (1986), Kadiyala and Karlsson
(1997), Sims and Zha (1998), among others. We will therefore also
proceed with AR(1) priors, adapted to a mixed frequency setting.

It will be convenient to start again with a simplified example.
Namely, consider the case where all the low frequency τL series
are release at the end of the period as in Eq. (2.1) with zero mean
series, with KL and KH of any dimension (hence not necessarily
one). In particular, let us assume that all high frequency data are
mean zero and follow a univariate AR(1) model with the same
persistence featuring parameter ρH and the low frequency data are
also mean zero and follow a univariate AR(1) model with the same
persistence with parameter ρL. Note that a special case of course is
ρH = ρL. SeparatingρH fromρL in the prior allows for the flexibility
of having different persistence. In particular, we typically set ρH =

0, i.e. all high frequency processes arewhite noise, andputρH equal
to some value between zero and one, and possibly equal to one.
Under the univariate AR(1) the stacked system, similar to Eq. (2.9),
looks as follows:

xH(τL, 1)
...

xH(τL,m)
xL(τL)

 =


0 . . . diag(ρH) 0
... . . .

...
...

0 . . . diag(ρm
H ) 0

0 . . . 0 diag(ρm
L )



×


xH(τL − 1, 1)

...
xH(τL − 1,m)
xL(τL − 1)

+ ε(τL). (5.6)

The Bayesian priors will be tailored according to the above
specification. To do so, it will be useful to first write again the
general VAR as:
xH(τL, 1)

...
xH(τL,m)
xL(τL)

 =

P
j=1


A1,1
j . . . A1,m

j A1,m+1
j

... . . .
...

...

Am,1
j . . . Am,m

j Am,m+1
j

Am+1,1
j . . . Am+1,m

j Am+1,m+1
j



×


xH(τL − j, 1)

...
xH(τL − j,m)
xL(τL − j)

+ ε(τL)

where dim(Am+1,m+1
j ) = K 2

L , dim(Ai,m+1
j ) = KH × KL for i =

1, . . . ,m and finally dim(Aa,b
j , a, b = 1, . . . ,m) = K 2

H .
Using the aforementioned univariate AR of order one priors, we

have:

E[Aa,m
1 ] = diag(ρa

H)K2
H

V[Aa,m
1 ] =

λ2

[(a)]2
1K2

H
a = 1, . . . ,m

E[Am+1,m+1
1 ] = diag(ρm

L )K2
L

V[Am+1,m+1
1 ] =

λ2

[(m)]2
1K2

L

(5.7)

and

E[Aa,b
j ] = 0K2

H
, V[Aa,b

j ] =
λ2

[(j − 1)m + (m − b + a)]2
1K2

H

1 ≤ a ≤ m, 1 ≤ b ≤ m − 1

E[Am+1,b
j ] = 0K2

H
,

V[Am+1,b
j ] =

λ2

[(j − 1)m + (m − b + 1)]2
1K2

H
b = 1, . . . ,m

E[Aa,m
j ] = 0K2

H
,

V[Aa,m
j ] =

λ2

((j − 1)m + a)2
1KH ,KH j > 1, a = 1, . . . ,m

E[Aa,m+1
j ] = 0KH×KL ,

V[Aa,m+1
j ] = ϑHL

λ2

[(j − 1)m + a]2
SHL a = 1, . . . ,m

(5.8)

where the notation V[ ] stands for a matrix of variances, 0 and 1
are matrices respectively of zeros and ones, with the dimension
as subscript, diag(x) is a diagonal matrix with elements x and
again the dimension as subscript, and finally SHL ≡ [σ 2

i,H/σ 2
j,L; i =

1, . . . , KH , j = 1, . . . , KL]. The latter captures the difference in
scaling betweenhigh and low frequency data, as is typically done in
Bayesian VAR models (see above references). The hyperparameter
λ governs the overall tightness of the prior distributions around the
AR(1) (including white noise) specification for the high frequency
process. The hyperparameter ϑHL ∈ (0, 1) governs the extent
to which the low frequency data affect high frequency data.
Note that we leave within low frequency series prior distribution
uniform. Namely, since we write V[Aa,b

j ] is only scaled by j, a and
b we essentially treat the dependence within the vector of high
frequency data as uniform. We can change this by replacing 1K2

H
with a matrix that would involve another set of hyperparameters
that would govern the extent to which low frequency series are
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mutually affected. This is an easy generalization which we do not
consider for the sake of simplicity.11

The variances of the prior tell us that the precision on the
parameters is tighter as lags increase. This is typically done in
traditional Bayesian VAR models, and is shrinking at a rate that is
the square of the lag length as in Litterman (1986). Note, however,
that the decay is not only governed by j, but also by (a, b) as they
represent the intra-τL period lag structure.

Last but not least, we also need to formulate priors for the
innovation variance covariance matrix. Here we refer to Kadiyala
and Karlsson (1997) who consider so called Minnesota priors with
fixed residual covariance matrices, or the Normal–Wishart and
Diffuse priors, theNormal-Diffuse and ExtendedNatural Conjugate
priors. In all cases they derive the posterior distributionswhich are
summarized in Kadiyala and Karlsson (1997, Table 1).

5.3. Extensions of Bayesian MIDAS to VAR

While there have been many discussions regarding priors in
standard Bayesian VAR models, it is worth commenting a bit
further on the specification of the MIDAS related part of the VAR.

We start with the framework of the previous subsection and
revisit the prior (mean) E[Am+1,b

j ] = 0K2
H

in (5.8). One can
view the completely unrestricted specification where each weight
is estimated separately as inspired by the U-MIDAS approach
suggested by Foroni et al. (2015) shown to work for small values
ofm.

Instead of a U-MIDAS setup one can also implement the
estimation of mixed frequency VAR models using the step
functions approach to MIDAS of Ghysels et al. (2006). Namely, we
can think of prior means for step functions:

[Am+1,1
1 . . . Am+1,m

1 Am+1,1
2 . . . Am+1,m

P ]

=


B1 . . . B1   B2 . . . B2   . . . Bs . . . Bs  


(5.9)

with s step matrices that imply fixed lag effects across subsets that
span P × m lags. Now, we are left with specifying priors for the
step functions. Then we can use a non-zero decaying prior similar
to that appearing in (5.13) for E[Bj] and V[Bj].

In the remaining of this subsection we deal with modifying
the specification of priors when we use MIDAS polynomials in
the context of mixed frequency VAR models. Hence, we need to
focus on the priors regarding Am+1,b

j appearing in (5.7). Recall from
Section 2.3 that we considered two schemes, appearing in Eqs.
(2.11) and (2.12):

[Am+1,1
1 (γ ) . . . Am+1,m

1 (γ )Am+1,1
2 (γ ) . . . Am+1,m

P (γ )]

=


B ⊗


KH×P
i=1

(w(γ )i)



Bi ⊗


m
i=1

(w(γ )i)


, i = 1, . . . , P


.

(5.10)

Recall also that B a KL × KH matrix and in Section 2.3 we
assumed

KH×P
i=1 (w(γ )i) is a scalar MIDAS polynomial such that

the weighting schemes are the same across the different low
frequency equations. We can easily relax this, by assuming a
scheme where all the MIDAS polynomials are driven by a common

11 Another simplification is that we do not discuss the overall mean of the VAR
and its Bayesian estimation—since this is widely covered in the aforementioned
references.

prior, namely [Am+1,1
1 (γ ) . . . Am+1,m

1 (γ )Am+1,1
2 (γ ) . . . Am+1,m

P (γ )]
can be expressed as:


Ba,b


KH×P
i=1


w(γ a,b)i


, a = 1, . . . , KL; b = 1, . . . , KL



Ba,b
i


m
i=1


w(γ a,b)i


, i = 1, . . . , P, a = 1, . . . , KL;

b = 1, . . . , KL] .

(5.11)

We will consider the case of MIDAS Beta polynomials (see
Appendix A), the other cases are similar and therefore not covered.
The prior both in the case of a single MIDAS polynomial (5.10) or
the common prior in the case of many single MIDAS polynomials
as in (5.11), is a Gamma distribution. Since the MIDAS Beta
polynomial involves two parameters, we draw each parameter
from an independent Gamma. In the case of (5.11) the KL × KH
MIDAS polynomials each involve two parameters and they also
have two independent Gamma distributions. We use a Gamma
distribution as the values of the Beta polynomial take on positive
values. For simplicity we cover the single MIDAS polynomial, then
the prior for γ ≡ (γ1, γ2) is:

γi ∼ Γ (f0, F0) i = 1, 2 (5.12)

where f0 = F0 = 1. This prior amounts to a flat weighting
scheme that put equal weight on all high frequency data. Yet, there
are several variations that put further restrictions. They are: (a)
downward sloping weights: γ ≡ (1, γ2) with γ2 ∼ Γ (f0, F0) and
f0 = F0 = 1, (b) hump-shaped weights γ ≡ (1 + γ1, 1 + γ1 +

γ2), among others. The downward sloping scheme is particularly
appealing as it amount to a single parameter weighting scheme.

Following Ghysels and Owyang (2011), we utilize aMetropolis-
in-Gibbs step (as in Chib and Greenberg (1995)) to sample the
MIDAS hyperparameters. The Metropolis step is an accept–reject
step which requires a candidate draw, γ ∗, from a proposal density,
q

γ ∗

|γ [i]

, where γ [i] is the last accepted draw. The draw is then

accepted with a probability that depends on both the likelihood
and parameters’ prior distribution. In this case, the functional form
of the weighting polynomial motivates our choice of the proposal
density. Because we have chosen the beta weighting polynomial, a
Gamma proposal distribution provides a suitable candidate.

To formalize, for the (i + 1) iteration, we can draw a candidate
γ∗

=

γ ∗

1 , γ ∗

2

′ from
γ ∗

j ∼ Γ


c

γ

[i]
j

2
, cγ [i]

j


,

where c is a tuning parameter chosen to achieve a reasonable
acceptance rate. The candidate draw is then accepted with
probability a = min {α, 1}, where

α =
L(x(τL)

TL
1 |Ψ−γ , γ∗)

L(x(τL)
TL
1 |Ψ−γ , γ [i])

dΓ (γ∗
|f0, F0)

dΓ

γ [i]|f0, F0

 dΓ (γ [i]
|c (γ∗)2 , cγ∗)

dΓ (γ∗|c

γ [i]
2

, cγ [i])
,

where L(x(τL)
TL
1 |Ψ−γ , γ∗) is the conditional likelihood given the

parameters Ψ−γ—which are all the parameters in Ψ excluding γ
and dΓ (.|., .) is the Gamma density function. Obviously, when-
ever there are multiple MIDAS polynomials the aforementioned
Metropolis step is repeated for each weighting scheme separately.
Hence, in such casewe essentially draw variousweighting profiles.
For convenience we will keep using the notation γ for a single as
well as multiple MIDAS polynomial weighting schemes to avoid
further complicating the notation.

The subsequent steps are similar to those appearing in the
previous subsection with a slight modification. In particular, we
should think of the matrices Aj(Ψ−γ , γ ) as depending on the
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parameter vector driving the MIDAS polynomial weights as well
as the remaining parameters in Ψ−γ . Hence, from here on we
can again follow Doan et al. (1984), Litterman (1986), Kadiyala
and Karlsson (1997), Sims and Zha (1998), among others, for the
formulation of priors regarding Ψ−γ , which is partitioned into
three blocks (dropping the dependence on γ etc. for convenience):

• Ψ−γ ,H = ((Aa,b
j , a = 1, . . . ,m, b = 1, . . . ,m + 1), j =

1, . . . , P)′, the set parameters pertaining to the high frequency
components of the vector.

• Ψ−γ ,V = ((CC′)a,b; a = 1, . . . ,m + 1, b = 1, . . . ,m + 1)′, the
parameters pertaining to the covariance matrix of the errors,

which can be directly taken from (a) the specifications in (5.7) and
(5.8) – except the second entry in the latter – and (b) the priors
for the innovation variance covariance matrix mentioned in the
previous subsection. Finally:

• Ψ−γ ,L = (B or Bi, i = 1, . . . , P)′, the slope parameters
pertaining to the MIDAS regressions.

Regarding the MIDAS regressions in Ψ−γ ,L, we have the following
priors for the slope coefficients:

E[B] = 0KL×KH , V[B] = ϑLHλ21KL×KH SLH

E[Bj] = 0KL×KH , V[Bj] = ϑLH
λ2

j2
1KL×KH SLH

(5.13)

with ϑLH and SLH having interpretations similar to the ones
considered for the high frequency data regressions in the VAR.
Not that the prior in (5.13) implies that we typically start from a
VAR that has flat weights for the MIDAS polynomial and the high
frequency data do not have an impact on the low frequency data.
Note also that the reverse is also true since we put the prior that
E[Aa,m+1

j ] = 0KH×KL .

6. Numerical examples

In this sectionwe provide somenumerical illustrative examples
to compare the behavior of impulse response functions (IFRs)
in mixed frequency and traditional VAR models. The analysis in
the section pertains to population properties. We need to rely on
numerical computations to obtain these properties. We look at
bivariate systems, i.e. we study cases with a single series of each
type—low and high frequency. We do this to simplify the study of
IRFs.

The DGP is based on Eq. (4.7), and in particular: I2 02 02

−A2,1
c I2 02

02 −A3,2
c I2

 ẍ(τL) =

02 02 A1,3

02 02 02
02 02 02

 ẍ(τL − 1)

+ ε̈(τL) (6.1)

which is a periodic VAR(1) model with m = 3. We will mostly
work with akij = alij for k, l = 1, 2 and 3. Hence, we focus primarily
on a regular high frequency VAR(1) model. Hence, we assume
a data generating process which consists of a monthly bivariate
system, and therefore the stacked system is of dimension 6 when
we sample quarterly. The data structure following Eqs. (4.2) and
(4.3) is as follows:

x(τL) ≡


xH(τL)
xL(τL)


=


1 0 1 0 1 0
0 1 0 1 0 1


ẍ(τL, 1)
ẍ(τL, 2)
ẍ(τL, 3)
ẍ(τL, 4)
ẍ(τL, 5)
ẍ(τL, 6)

 (6.2)

for the low frequency VAR model and:

x(τL) ≡

xH(τL, 1)
xH(τL, 2)
xH(τL, 3)
xL(τL)



=

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 1 0 1



ẍ(τL, 1)
ẍ(τL, 2)
ẍ(τL, 3)
ẍ(τL, 4)
ẍ(τL, 5)
ẍ(τL, 6)

 . (6.3)

The above equation implies that the first series is available every
month, whereas the second series is aggregated as a flow vari-
able. The low frequency VAR involves both series being flows. We
fit two mis-specified VAR models with Gaussian innovations: (1)
the mixed frequency VAR(1) and (2) a low frequency VAR(1). In
both cases we compute population pseudo-true parameter values
which are obtained from minimizing the criterion appearing in
Proposition 5.1. Hence, we view the mixed frequency and tradi-
tional VAR models as a mis-specified models estimated via stan-
dard MLE. The low frequency VAR(1) involves four parameters for
the autoregressive dynamics, and three parameters for the innova-
tion covariancematrix. Themixed frequency VAR is parameterized
as follows:

x(τL) =


0 0 ρH a1
0 0 ρ2

H a2
0 0 ρ3

H a3
b1 b2 b3 ρL

 x(τL − 1) + ε(τL) (6.4)

hence the MIDAS regression coefficients are unconstrained, and
so is the impact of low frequency onto high frequency. The total
number of parameters is therefore equal to ten for the innova-
tion covariance matrix plus eight in the above specification of the
dynamics, which adds up to eighteen parameters. Hence, the
mixed frequency VAR has eleven more parameters, four related to
the conditional mean dynamics.

We consider several parameter settings for the DGP in Eq. (6.1).
In particular, we consider three cases. Cases I through III have the
setting:

A2,1
c = A3,2

c = A1,3
=


a11 a12
a21 a22


(6.5)

where we have the following parameter configurations:

• Case I: aii = .5, for i = 1, 2; a12 = 0, a21 = .1.
• Case II: aii = .5, for i = 1, 2; a21 = 0, a12 = .1.
• Case III: aii = .5, for i = 1, 2; a12 = .1 a21 = .1.

Hence, for Case I, Granger causality runs from high to low
frequency data, Case II is the opposite and Case III features bi-
directional Granger causality.We took .5 for the persistence,which
is neither an extremely persistent nor an i.i.d. sequence. The
strength of the Granger causality was chosen accordingly. While
one could choose many other examples, our small set of cases
highlights the most important issues.

It is important to clarify the nature of the shocks in our analysis.
There are essentially three types of shock configurations,which are
given as (6.6) in Box II. The six-dimensional error process ε̈(τL) is
latent since we assume never to see the high frequency bivariate
process, and therefore the shocks pertain to a data filtration
we do not observe. The four-dimensional ε(τL) mixed frequency
process is the best we can achieve—given the assumed information
technology. Finally, the two-dimensional process ε(τL) is obtained
after aggregation. We will therefore compare three types of IFRs.
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
ẍH(τL, 1)
ẍL(τL, 1)
ẍH(τL, 2)
ẍL(τL, 2)
ẍH(τL, 3)
ẍH(τL, 3)

  


ε̈(τL, 1)
ε̈(τL, 2)
ε̈(τL, 3)
ε̈(τL, 4)
ε̈(τL, 5)
ε̈(τL, 6)


  

 xH(τL, 1)
xH(τL, 2)
xH(τL, 3)
xL(τL)

  

 ε(τL, 1)
ε(τL, 2)
ε(τL, 3)
ε(τL, 4)


  

Latent Mixed
xH(τL)
xL(τL)


 


ε(τL, 1)
ε(τL, 2)


  

Low .

(6.6)

Box II.

• HI → Lo : Responses of xL(τL), i.e. the aggregated series, to
shocks ε̈(τL, 1) and ε̈(τL, 5), that is the first and last period high
frequency series shocks using the latent high frequency VAR
appearing in (6.1), and compare them to:
– Responses of xL(τL) to shocks ε(τL, 1) and ε(τL, 3), again the

first and last period high frequency series shocks given the
mixed frequency filtration,

– Responses of xL(τL) to shocks ε(τL, 1) in the low frequency
bivariate system.

• Lo → HI: Responses of ẍH(τL, 1) and ẍH(τL, 3) to shocks ε̈(τL, 2)
and ε̈(τL, 6), that is the first and last period latent low frequency
series shocks, and compare them to:
– Responses of xH(τL, 1) and xH(τL, 3) to shocks ε(τL, 4), i.e. the

observed low frequency series shocks
– Responses of xH(τL) to shocks ε(τL, 2) in the low frequency

VAR.

Hence, our strategy is to study the impact of high frequency shocks
onto low frequency shocks and vice versa, and to compare them
across the three VAR specifications.

The IRFs appear in Figs. 1 through 3. Each of the figures have
the same structure. The top panel shows the IRFs appearing above
as HI → Lo. It contains two plots—the left one are the IRFs for
a shock in the first month of the quarter, the right one contains
the IRFs for the last month. The lower panel in each figure has the
Lo → HI results again with two plots for first and last month.
Note that for the low frequency VAR the left and right plots should
contain the same IRF, since there is no distinction possible for first
and last month of the quarter, hence the IRFs are simply repeated
for the purpose of comparison. The plots also share the same line
characteristics: circles for the high frequency IRFs, pluses for the
low frequency ones, and finally stars for themixed frequency ones.
Finally, the time scale is quarterly.

The results for Case I appear in Fig. 1. The top panel shows
how the low frequency IRF is very different from the high and
mixed frequency ones. The latter are obviously not identical, but
remarkably close. They both die out quickly — around three to four
quarters, whereas the low frequency IRFS spikes at two quarters
and tapers off much more slowly. It is also important to note that
the IRFs are not the same for the first and lastmonthhigh frequency
shocks (recall that the low frequency IRF is repeated and therefore
identical). Although this is not quite exactly the case, one notices
that the IRFs depicted in the right plot looks almost like a shifted.
This is expected. A shock in the first month affect the second and
third month high frequency series, therefore the total impact on
the aggregated low frequency process is different from the IRF for
the last month where such an accumulation effect does not occur.
We will observe similar patterns in the next section where we
report empirical IRFs. It is therefore not an indication that the DGP
has a periodic structure, i.e. within quarter variation of the VAR
parameters as allowed for in Eq. (6.1). Obviously, as emphasized

byHansen and Sargent (1990), in the case of genuine periodmodels
one might obtain far more diverse patterns of IRFs.

The lower panel in Fig. 1 is arguablymore interesting. Recall that
there is no Granger causality from the low frequency to the high
frequency process. Hence, the IRFs with circles are flat. Neither the
mixed nor the low frequency VAR models feature such a pattern.
The former show positive responses, and the latter the opposite.
Both appear to be poor approximations to the actual IRF.

Fig. 2 covers Case II, where the low frequency process Granger
causes the high frequency one, i.e. the reverse of the previous case.
Therefore, one observes now the flat IRFs in the top panel instead.
We notice again that the mixed frequency VAR model IRFs—while
not entirely flat on the x-axis, show a pattern to zero. In contrast,
the low frequency IRF shows a pattern almost identical to that
appearing in the top panel of Fig. 1. The lower panel of Fig. 2
now features non-trivial IRFs. Yet, the conclusions one can draw
are similar to those we noted in Fig. 1. Case III—a mixture of the
previous two showsimilar features: high frequency shocks arewell
identified inmixed frequency VARmodels, but the reverse remains
harder.

Table 1 displays the numerical values that were obtained from
minimizing the criterion appearing in Proposition 5.1. Hence, the
table shows the degree of mis-specification one obtains in large
samples. Of particular interest are the off-diagonal elementswhich
reveal that the Granger causality patterns in the DGPs are not
maintained after aggregation, something which is known and also
revealed by the IRFs.12 Table 2 does the same for the mis-specified
mixed frequency VARmodels. While somewhat harder to identify,
we also see that either the MIDAS coefficients, or the last column
do not feature the desired Granger causality patterns.

Case IV is not fully covered. It is meant to show that the IRFs for
low frequency shocks may not always be so poorly approximated
in a mixed frequency VAR model. Case IV is identical to Case II,
except that the persistence of the high frequency process is turned
off, i.e. a11 = 0 while all other parameters are kept the same.
We only report the IRFs to low frequency shocks in Fig. 4 which
indicate that the mixed frequency VAR model captures the true
DGP better.

7. Empirical examples

In the previous section we showed several empirical examples
that revealed the discrepancies thatmay occur in IRFs due tomixed
frequency sampling versus temporal aggregation. We now turn

12 Much has been written about the spurious effects temporal aggregation may
have on testing for Granger causality, see e.g. Granger (1980, 1988), Lütkepohl
(1993), Granger (1995), Renault et al. (1998), Breitung and Swanson (2002),
McCrorie and Chambers (2006), among others.
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(a) Hi → Lo- First. (b) Hi → Lo- Last.

(c) Lo → Hi- First. (d) Lo → Hi- Last.

Fig. 1. Impulse response functionsmonthly/quarterly—Case I. The DGP appears in Eq. (6.1) withm = 3 and a parameter setting labeled Case I, namelywith aii = .5, for i = 1,
2; a12 = 0, a21 = .1 in Eq. (6.5). Low and mixed frequency VAR(1) models are estimated using the aggregations schemes appearing in (6.2) and (6.3). Two mis-specified
VAR models are considered: (1) the mixed frequency VAR(1) and (2) a low frequency VAR(1). In both cases population pseudo-true parameter values are obtained from
minimizing the criterion appearing in Proposition 5.1. The top panel shows the impulse response functions (IRFs) of a high frequency series shock compared with the IRFs
obtained from the mis-specified mixed frequency VAR and low frequency VAR(1) models. The top panel contains two plots—the left one is the IRF for a shock in the first
month of the quarter, the right contains the IRF for the last month. The lower panel shows the IRFs of a low frequency series shock compared with the IRFs obtained from
the mis-specified mixed frequency VAR and low frequency VAR(1) models. The lower panel also contains two plots—the left one is the IRF for a shock in the first month of
the quarter, the right contains the IRF for the last month.

Table 1
Approximate low frequency vector autoregressive models. The table reports the mis-specified low frequency VAR(1)
given the high frequency VAR data generating process appearing in Eq. (6.1) and the aggregation scheme appearing in
(6.2). The entries to the Table contain the pseudo-true parameter valueswhich are obtained fromminimizing the criterion
appearing in Proposition 5.1. We report the conditional mean dynamics as well as the innovation covariance matrix. The
DGPs, Cases I through IV—are described in Section 6.

Case I
xH (τL)

xL(τL)


=


0.30 −0.11
0.20 0.28

 
xH (τL − 1)
xL(τL − 1)


+ ε(τL) E[ε(τL)ε(τL)

′
] =


6.31 0.50
0.50 6.36


Case II

xH (τL)

xL(τL)


=


0.31 −0.10
0.19 0.27

 
xH (τL − 1)
xL(τL − 1)


+ ε(τL) E[ε(τL)ε(τL)

′
] =


6.36 0.50
0.50 6.31


Case 3

xH (τL)

xL(τL)


=


0.32 −0.023
0.20 0.27

 
xH (τL − 1)
xL(τL − 1)


+ ε(τL) E[ε(τL)ε(τL)

′
] =


6.40 1.00
1.00 6.39



our attention to IRFs with real data. To do so we implement the
Bayesian estimation procedure discussed in Section 5.

The empirical application is tailored after Chiu et al. (2011)
who develop a Bayesian approach to such mixed frequency VAR
models where the missing data are drawn via a Gibbs sampler.
Their primary objective is to formulate amodel that allows analysis
of GDP at a frequency higher than the quarterly data readily
available. Their analysis also has the virtue of keeping the empirical
exercise simple and transparent. We want to do the same and
therefore replicate their setting for the purpose of comparison. In

particular they consider a latent VAR(1) model involving industrial
production, inflation, and unemployment rate, and GDP for the
US. All but the last series are observed monthly. The data are
the twelve-month change in industrial production (denoted IP)
and inflation (denoted INFL), the four-quarter change in real GDP
(denoted GDP), and the unemployment rate (denoted UNEMP), all
expressed as percentage points. Chiu et al. (2011) assume – like
we do – that every month, the monthly data are observed, and
the quarterly data are observed only during the last month of each
quarter. We compare the mixed frequency VAR with a traditional
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(a) Hi → Lo- First. (b) Hi → Lo- Last.

(c) Lo → Hi- First. (d) Lo → Hi- Last.

Fig. 2. Impulse response functions monthly/quarterly—Case II. The DGP appears in Eq. (6.1) with m = 3 and a parameter setting labeled Case II, namely with aii = .5, for
i = 1, 2; a21 = 0, a12 = .1. in Eq. (6.5). Low and mixed frequency VAR(1) models are estimated using the aggregations schemes appearing in (6.2) and (6.3). Two mis-
specified VAR models are considered: (1) the mixed frequency VAR(1) and (2) a low frequency VAR(1). In both cases population pseudo-true parameter values are obtained
from minimizing the criterion appearing in Proposition 5.1. The top panel shows the impulse response functions (IRFs) of a high frequency series shock compared with the
IRFs obtained from themis-specified mixed frequency VAR and low frequency VAR(1) models. The top panel contains two plots—the left one is the IRF for a shock in the first
month of the quarter, the right contains the IRF for the last month. The lower panel shows the IRFs of a low frequency series shock compared with the IRFs obtained from
the mis-specified mixed frequency VAR and low frequency VAR(1) models. The lower panel also contains two plots — the left one is the IRF for a shock in the first month of
the quarter, the right contains the IRF for the last month.

Table 2
Approximatemixed frequency vector autoregressivemodels. The table reports themis-specified low frequency VAR(1) given the high frequency VAR data generating process
appearing in Eq. (6.1) and the aggregation scheme appearing in (6.3) The entries to the Table contain the pseudo-true parameter values which are obtained fromminimizing
the criterion appearing in Proposition 5.1.We report the conditional mean dynamics as well as the innovation covariancematrix. The DGPs, Cases I through IV—are described
in Section 6.

Case IxH (τL, 1)
xH (τL, 2)
xH (τL, 3)
xL(τL)

 =

 0 0 0.49 0.02
0 0 0.24 0.02
0 0 0.12 0.04

−0.13 0.12 0.07 0.29


xH (τL − 1, 1)
xH (τL − 1, 2)
xH (τL − 1, 3)
xL(τL − 1)

+ ε(τL) E[ε(τL)ε(τL)
′
] =

1.00 0.50 0.25 0.20
0.50 1.25 0.62 0.30
0.25 0.63 1.31 0.15
0.20 0.30 0.15 6.40


Case IIxH (τL, 1)

xH (τL, 2)
xH (τL, 3)
xL(τL)

 =

 0 0 0.49 0.05
0 0 0.24 0.06
0 0 0.12 0.06

−0.04 −0.05 −0.18 0.30


xH (τL − 1, 1)
xH (τL − 1, 2)
xH (τL − 1, 3)
xL(τL − 1)

+ ε(τL) E[ε(τL)ε(τL)
′
] =

1.00 0.50 0.25 0.00
0.50 1.26 0.64 0.00
0.25 0.64 1.33 0.24
0.00 0.00 0.24 6.28


Case IIIxH (τL, 1)

xH (τL, 2)
xH (τL, 3)
xL(τL)

 =

 0 0 0.49 0.05
0 0 0.24 0.06
0 0 0.12 0.07

−0.09 0.03 0.06 0.31


xH (τL − 1, 1)
xH (τL − 1, 2)
xH (τL − 1, 3)
xL(τL − 1)

+ ε(τL) E[ε(τL)ε(τL)
′
] =

1.00 0.50 0.26 0.20
0.50 1.26 0.64 0.30
0.26 0.64 1.34 0.39
0.20 0.30 0.39 6.36



quarterly VAR model. Therefore, we study the co-movements of: IP(τL)
INFL(τL)

UNEMP(τL)
GDP(τL)

 vs

xH(τL, 1)
xH(τL, 2)
xH(τL, 3)
GDP(τL)


with xH(τL, j) =

 IP(τL, j)
INFL(τL, j)

UNEMP(τL, j)


. (7.1)

The data set used in the empirical application runs from January
1948 to December 2011, for a total of 256 quarters and therefore
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(a) Hi → Lo- First. (b) Hi → Lo- Last.

(c) Lo → Hi- First. (d) Lo → Hi- Last.

Fig. 3. Impulse response functions monthly/quarterly—Case III. The DGP appears in Eq. (6.1) with m = 3 and a parameter setting labeled Case III, namely with aii = .5,
for i = 1, 2; a12 = .1, a21 = .1. in Eq. (6.5). Low and mixed frequency VAR(1) models are estimated using the aggregations schemes appearing in (6.2) and (6.3). Two mis-
specified VAR models are considered: (1) the mixed frequency VAR(1) and (2) a low frequency VAR(1). In both cases population pseudo-true parameter values are obtained
from minimizing the criterion appearing in Proposition 5.1. The top panel shows the impulse response functions (IRFs) of a high frequency series shock compared with the
IRFs obtained from themis-specified mixed frequency VAR and low frequency VAR(1) models. The top panel contains two plots—the left one is the IRF for a shock in the first
month of the quarter, the right contains the IRF for the last month. The lower panel shows the IRFs of a low frequency series shock compared with the IRFs obtained from
the mis-specified mixed frequency VAR and low frequency VAR(1) models. The lower panel also contains two plots—the left one is the IRF for a shock in the first month of
the quarter, the right contains the IRF for the last month.

(a) Lo → Hi- First. (b) Lo → Hi- Last.

Fig. 4. Impulse response functions monthly/quarterly—Case IV. The DGP appears in Eq. (6.1) with m = 3 and a parameter setting labeled Case IV, namely with a11 = 0.
and a22 = .5; a21 = 0, a12 = .1. in Eq. (6.5). Low and mixed frequency VAR(1) models are estimated using the aggregations schemes appearing in (6.2) and (6.3). Two mis-
specified VAR models are considered: (1) the mixed frequency VAR(1) and (2) a low frequency VAR(1). In both cases population pseudo-true parameter values are obtained
from minimizing the criterion appearing in Proposition 5.1. The top panel shows the impulse response functions (IRFs) of a high frequency series shock compared with the
IRFs obtained from themis-specified mixed frequency VAR and low frequency VAR(1) models. The top panel contains two plots—the left one is the IRF for a shock in the first
month of the quarter, the right contains the IRF for the last month. The lower panel shows the IRFs of a low frequency series shock compared with the IRFs obtained from
the mis-specified mixed frequency VAR and low frequency VAR(1) models. The lower panel also contains two plots—the left one is the IRF for a shock in the first month of
the quarter, the right contains the IRF for the last month.

768 months.13 Summary statistics for the variables are presented
in Table 3 (which is comparable to Chiu et al. (2011, Table 2)).

13 Our sample is slightly different from Chiu et al. (2011) who use data from
January 1948 to June 2011, for a total of 762 months or 254 quarters.

We report the posterior means and standard deviations for the
standard low frequency VARmodel in Table 4. While our sample is
not the same as in Chiu et al. (2011), we do find similar parameter
estimates. As a result, we also find similar impulse response
functions—which will be discussed later. The mixed frequency
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Table 3
Summary statistics data. The table reports summary statistics for our sample data
of industrial production, inflation, and unemployment rate, and GDP for the US. All
but the last series are observed monthly. The data sources are as follows:
• Industrial Production Index (SA), http://research.stlouisfed.org/fred2/series/
INDPRO/.
• Inflation: CPI All Urban, http://www.bls.gov/cpi/tables.htm.
• Unemployment rate — 16yrs and older (SA), http://www.bls.gov/webapps/
legacy/cpsatab1.htm.
• Real GDP (SA and chained 2005 dollars), http://www.bea.gov/national/.
The series are transformed as follows: the twelve-month change in industrial
production (denoted IP) and inflation (denoted INFL), the four-quarter change
in real GDP (denoted GDP), and the unemployment rate (denoted UNEMP), all
expressed as percentage points. The sample covers January 1948 until December
2011.

Mean Standard Dev. Autocorrelation

IP 2.976 5.8253 0.9660
INFL 3.549 2.8095 0.9879
UNEMP 5.801 1.6504 0.9892
GDP 3.130 2.6830 0.8507

counterpart appears in Table 5. Here the parameter estimates
display far more heterogeneous patterns, as expected.

Figs. 5 through 7 display the IRFs of GDP to shocks in the
three high frequency series, respectively IP, INFL and UNEMP. The
figures have the same structure. The top three plots display the IRFs
separately for each month of the quarter, compared in each case
with the IRF obtained from the quarterly aggregate VAR model. To
avoid having too many lines on a single graph, we also show the

impulse response function – without confidence bands – together
for all three months of the quarter again compared with the
aggregate VAR impulse response function. The confidence bands
are obtained from the Gibbs sampler iterations and represent the
5% and 95% percentiles obtained from the MCMC draws. Similarly,
the impulse response functions are the median of the same draws.
The legends for the plots appear in the plot without confidence
bands. The same legend is used in all the plots, in particular the
circled lines represent the aggregate VAR specification.

It is important to note the difference between our analysis
and the latent high frequency VAR model of Chiu et al. (2011).
The latter have only one response function per high frequency
series, since the basic model is driven by a monthly VAR(1) and
they do not analyze the impact of high frequency shocks to low
frequency series, as we did with the numerical examples reported
in the previous section. In their case the monthly estimates and
the quarterly estimates converted to their monthly counterpart
result in impulse response functions that, for the most part,
are quite similar if not identical. Hence, their findings suggest
that both the low frequency VAR and the latent high frequency
one yield similar responses of the economy to the exogenous
shocks. Most of the action in their comparison is with respect to
the precision of the impulse response estimates improving with
the monthly specification—exploiting the high frequency data.
With the coarsely sampled estimation method, since the data are
observed quarterly, co-movements of the variables, and hence the
effects of shocks, are harder to disentangle. Hence, the latent high

Table 4
Posterior mean and standard error estimates VAR model. The table reports the posterior mean and variances of VAR(1) model involving industrial production, inflation,
and unemployment rate, and GDP for the US. All but the last series are observed monthly. The data are the twelve-month change in industrial production (denoted IP) and
inflation (denoted INFL), the four-quarter change in real GDP (denoted GDP), and the unemployment rate (denoted UNEMP), all expressed as percentage points. The sample
covers.

IP(τL − 1) INFL(τL − 1) UNEMP(τL − 1) GDP(τL) A0

IP(τL) 0.85 −0.35 0.34 −0.03 −0.07
(0.06) (0.07) (0.06) (0.12) (0.19)

INFL(τL) 0.09 0.96 0.02 −0.07 0.01
(0.02) (0.02) (0.03) (0.04) (0.16)

UNEMP(τL) −0.02 0.03 0.94 −0.03 0.41
(0.01) (0.01) (0.01) (0.02) (0.07)

GDP(τL) 0.13 −0.12 0.18 0.64 0.11
(0.03) (0.03) (0.03) (0.05) (0.16)

Table 5
Posterior mean and standard error estimates mixed frequency VAR model. The table reports the posterior mean and variances of VAR(1) model involving industrial
production, inflation, and unemployment rate, andGDP for theUS. All but the last series are observedmonthly. The data are the twelve-month change in industrial production
(denoted IP) and inflation (denoted INFL), the four-quarter change in real GDP (denoted GDP), and the unemployment rate (denoted UNEMP), all expressed as percentage
points. The sample covers.

τL − 1 IP(., 1) INFL(., 1) UNEMP(., 1) IP(., 2) INFL(., 2) UNEMP(., 2) IP(., 3) INFL(., 3) UNEMP(., 3) GDP A0

IP(τL, 1) −0.26 −0.17 −0.29 0.07 0.24 0.23 1.13 −0.12 0.11 0.07 −0.18
(0.06) (0.15) (0.24) (0.09) (0.20) (0.25) (0.06) (0.13) (0.17) (0.07) (0.31)

INFL(τL, 1) −0.01 −0.05 0.07 0.01 0.00 −0.11 0.03 1.04 0.06 −0.02 −0.09
(0.02) (0.07) (0.13) (0.04) (0.10) (0.15) (0.02) (0.07) (0.12) (0.03) (0.13)

UNEMP(τL, 1) 0.01 0.02 0.05 0.03 −0.09 0.21 −0.05 0.06 0.71 −0.03 0.27
(0.01) (0.03) (0.06) (0.02) (0.05) (0.08) (0.01) (0.03) (0.07) (0.01) (0.06)

IP(τL, 2) −0.46 −0.01 −0.11 −0.02 −0.28 0.23 1.22 0.15 −0.01 0.29 −0.26
(0.09) (0.20) (0.32) (0.14) (0.27) (0.34) (0.09) (0.18) (0.27) (0.10) (0.39)

INFL(τL, 2) 0.03 0.05 0.19 −0.13 −0.22 −0.55 0.16 1.13 0.38 −0.05 −0.03
(0.03) (0.10) (0.18) (0.06) (0.15) (0.21) (0.04) (0.10) (0.17) (0.04) (0.19)

UNEMP(τL, 2) 0.03 0.03 0.10 0.06 −0.02 −0.02 −0.09 0.00 0.89 −0.05 0.33
(0.01) (0.04) (0.07) (0.02) (0.06) (0.10) (0.01) (0.04) (0.09) (0.01) (0.07)

IP(τL, 3) −0.54 −0.17 0.59 −0.12 −0.49 0.04 1.23 0.42 −0.41 0.43 −0.38
(0.12) (0.27) (0.44) (0.19) (0.37) (0.47) (0.12) (0.26) (0.39) (0.13) (0.51)

INFL(τL, 3) 0.04 0.01 0.16 −0.12 −0.06 −0.33 0.18 1.01 0.18 −0.10 0.09
(0.04) (0.13) (0.24) (0.07) (0.20) (0.29) (0.05) (0.13) (0.24) (0.05) (0.26)

UNEMP(τL, 3) 0.04 0.03 0.14 0.07 −0.04 −0.06 −0.10 0.03 0.87 −0.09 0.50
(0.02) (0.04) (0.09) (0.03) (0.07) (0.12) (0.02) (0.05) (0.10) (0.02) (0.09)

GDP(τL) −0.30 0.01 0.03 −0.04 0.00 0.01 0.35 −0.06 0.02 0.82 0.33
(0.04) (0.06) (0.03) (0.08) (0.06) (0.04) (0.05) (0.06) (0.04) (0.06) (0.23)

http://research.stlouisfed.org/fred2/series/INDPRO/
http://research.stlouisfed.org/fred2/series/INDPRO/
http://research.stlouisfed.org/fred2/series/INDPRO/
http://research.stlouisfed.org/fred2/series/INDPRO/
http://research.stlouisfed.org/fred2/series/INDPRO/
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(a) First month. (b) Second month. (c) Third month.

(d) Monthly versus aggregate quarterly responses.

Fig. 5. Response function of GDP to IP shocks—BVAR andmixed frequency BVAR comparison. The plot displays a comparison of impulse response functions obtained from the
BVAR model estimates reported in Table 4 with the corresponding three monthly impulse response functions obtained from the mixed frequency BVAR estimates reported
in Table 5. Monthly versus aggregate quarterly impulse responses with confidence bands.

frequency VAR yields more precise inference—while the impulse
responses remain the same as in the quarterly data VAR.

The numerical examples in the previous section suggest that
this is not what we expect to happen in a mixed frequency
VAR. Indeed, the numerical examples indicated that we may
expect quite different impulse response functions with traditional
VAR models and mixed frequency ones. Moreover, the numerical
examples in the previous section told us that shocks occurring
in different months will have different impacts, even in a non-
periodic setting.

We observe all these patterns, different IRFs between low and
mixed frequency VARmodels and IRFs that differ across themonth
of the quarter, with our empirical results. This is indeed what we
observe fromFigs. 5 through 7. Consider first a shock of IP ontoGDP
growth appearing in Fig. 5. The mixed frequency impulse response
functions look different from the quarterly data VAR specification.
The latter displays a strong initial response of GDP followed by
a negative impact after roughly two years. None of the mixed
frequency impulse response functions show neither such a strong
initial response, nor such a strong subsequent negative impact.
Themixed frequency impulse response functions also die outmore
quickly. There appears to be a slightly different pattern for the first
month’s impulse response, but judging by the confidence bands
this looks line it may not be significantly different from the other
two months. The mixed frequency specification also imply a more
delayed impact of shocks.

The case of inflation shocks reported in Fig. 6 is also quite
interesting. The mixed frequency VAR model tells us that the
impact of inflation shocks is close to zero—and they also look quite
similar across the three months. The low frequency VAR model
shows a very different, and arguably implausible pattern of amuch
stronger negative and long lasting impact on GDP. The only case
were the low and mixed frequency VAR models appear to agree
appears in Fig. 7 where unemployment shocks show a remarkable
similar pattern across all specifications, and also across all months
of the quarter.

8. Conclusions

In this paper we introduced a class of mixed frequency VAR
models that are in may important ways very close to traditional
VAR models. Unlike the bulk of the literature on mixed frequency
models, we do not resort to latent variable/shock representations—
but instead follow the standard observable shock paradigm. The
use of many standard tools in VAR analysis easily apply to
our setting, and in fact some tools—most prominently Cholesky
factorizations—become even more suitable for policy analysis.
The estimation of the new class of models also relies on well
established procedures. In addition, the absence of hidden shocks
avoids complications in terms of estimation and filtering.

Another merit of the paper is that it establishes a relationship
between hitherto completely disconnected literatures: (1) the vast
literature on VAR models and (2) the arguably more obscure
literature on periodic models (for seasonality). One might indeed
be tempted to characterize the connection as Hansen and Sargent
meeting Sims, since the former introduced periodic models into
the macro literature. It may also be appropriate to characterize the
contributions in this paper as establishing a link between on the
one hand MIDAS and on the other hand part of the literature on
seasonal time series models.
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(a) First month. (b) Second month. (c) Third month.

(d) Monthly versus aggregate quarterly responses.

Fig. 6. Response function of GDP to INFL shocks—BVAR and mixed frequency BVAR comparison. The plot displays a comparison of impulse response functions obtained
from the BVAR model estimates reported in Table 4 with the corresponding three monthly impulse response functions obtained from the mixed frequency BVAR estimates
reported in Table 5. Monthly versus aggregate quarterly impulse responses with confidence bands.

(a) First month. (b) Second month. (c) Third month.

(d) Monthly versus aggregate quarterly responses.

Fig. 7. Response function of GDP to UNEMP shocks—BVAR and mixed frequency BVAR comparison. The plot displays a comparison of impulse response functions obtained
from the BVAR model estimates reported in Table 4 with the corresponding three monthly impulse response functions obtained from the mixed frequency BVAR estimates
reported in Table 5. Monthly versus aggregate quarterly impulse responses with confidence bands.
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Appendix

Technical appendix

Appendix A. Parsimony—Details

We proceed with a brief discussion of univariate MIDAS re-
gression polynomial specifications. A detailed description appears
in Sinko et al. (2010). The most commonly used parameterizations
(some involving restrictions denoted by superscript r) are:

1. Normalized beta probability density function,

wi(γ ) = wi(γ1, γ2) =
xγ1−1
i (1 − xi)γ2−1

N
i=1

xγ1−1
i (1 − xi)γ2−1

(A.1)

wr
i (γ ) = wi(1, γ2), (A.2)

where xi = (i−1)/(N−1) and one often sets the first parameter
equal to one as in (A.2).

2. Normalized exponential Almon lag polynomial

wi(γ ) = wi(γ1, γ2) =
eγ1i+γ2i2

N
i=1

eγ1 i+γ2 i2
(A.3)

wr
i = wi(γ1, 0). (A.4)

3. Almon lag polynomial specification of order P (not normalized,
i.e. sum of individual weights is not equal to 1).

βwi(γ0, . . . , γP) =

P
p=0

γpip. (A.5)

Note that this can also be written in matrix form:

w0
w1
w2
w3
...

wN

 =



1 0 0 · · · 0
1 1 1 · · · 1
1 2 22

· · · 2P

1 3 32
· · · 3P

...
...

...
...

...

1 N N2
· · · NP




γ0
γ1
...
γP

 . (A.6)

Therefore the use of Almon lags in MIDAS models can be
achieved via OLS estimation with properly transformed high
frequency data regressors using the matrix representation
appearing in the above equation. Once the weights are
estimated via OLS, one can always rescale them to obtain a slope
coefficient (assuming the weights do not sum up to zero).

4. Polynomial specification with step functions (not normalized)

βwi(γ1, . . . , γP) = γ1Ii∈[a0,a1] +

P
p=2

γpIi∈(ap−1,ap]

a0 = 1 < a1 < · · · < aP = N

Ii∈[ap−1,ap] =


1, ap−1 ≤ i ≤ ap
0, otherwise

(A.7)

where a0 = 1 < a1 < · · · < aP = N . The step functions
approach to MIDAS appeared in Ghysels et al. (2006). A spe-
cial case is a completely unrestricted specification where each
weight is estimated separately. This so called U-MIDAS (unre-
strictedMIDAS polynomial) approach suggested by Foroni et al.
(2015) is shown to work for small values ofm.

A so called multiplicative ADL MIDAS regression specifications is
also suggested in Andreou et al. (2010). Taking the last equation in

(2.9) we have:

xL(τL) =

P
j=1

αj +

P
j=1

bjxH(τL − j)(γ ) + ε(τL,m + 1)

xH(τL − j)(γ ) ≡

m
k=1

w(γ )kxH(τL − j, k) (A.8)

hence, the within-τL period high frequency weights remain
invariant and yield a low frequency parameterized process xH(τL−
j)(γ ).

Appendix B. Proof of Proposition 5.1

We start with listing the regularity conditions. We assume the
DGP is them ∗ K dimensional vector ẍ(τL) described by Eq. (4.6):

Ä(LL)(ẍ(τL) − µẍ) = ε̈(τL)

with E[ε̈(τL)ε̈(τL)
′
] = C̈C̈′.

Following Assumption 4.1, the above DGP is covariance station-
ary and therefore has a spectral representation. In particular:

Assumption B.1. Theprocess ẍ(τL) satisfyAssumptions 2.1 and4.1
and has spectral density S̈(z) for z = exp(−iω) with ω ∈ [0, π],
which can be written as:

S̈(z) = Ä(z)−1C̈C̈′(Ä(z−1)−1)′.

Against this DGP we consider:

AΨ (LL)(x(τL) − µΨ
x ) = ε(τL)

with spectral density:

S(z, Ψ ) = AΨ (z)−1CΨ C′

Ψ (AΨ (z−1)−1)′

and:

S(z, Φ) = BΦ(z)−1CΦC′

Φ(BΦ(z−1)−1)′.

Moreover, the parameter vector spaces are respectively Φ ∈

∆Φ , Ψ ∈ ∆Ψ and

Assumption B.2. The parameter spaces ∆Φ and ∆Ψ are compact
subsets of a Euclidean space.

Assumption B.3. The spectral densities S(z, Ψ ) and S(z, Φ) for
z = exp(−iω) are continuous mappings mapping respectively
[−π, π] × ∆Ψ and [−π, π] × ∆Φ into the space of positive
definite Hermitian matrices such that for some 0 < εl < εu:
εlI ≤ S(exp(−iω), Ψ ) ≤ εuI and εlI ≤ S(exp(−iω), Φ) ≤ εuI for
respectively each (ω, Ψ ) ∈ [−π, π]×∆Ψ and (ω, Φ) ∈ [−π, π]×

∆Φ , S(exp(iω), Ψ ) is the complex conjugate of S(exp(−iω), Ψ )

and S(exp(iω), Φ) is the complex conjugate of S(exp(−iω), Φ).

Assumption B.4. µx is a continuous function on the domain of∆Φ .
µẍ is a continuous function on the domain of ∆Ψ .

Under the above assumptions, Hansen and Sargent (1993) show
for a generic potentially mis-specified model characterized by
spectral density G(δ) involving parameter vector δ against DGP
with spectral density S, that the maximum likelihood estimator
minimizes the Kullback and Leibler (1951) information criterion
which can be written as:

E(G(δ), S) = E1(G(δ), S) + E2(G(δ), S) + E3(G(δ), S)

E1(G(δ), S) =
1
2π

 π

−π

log(detG(exp(−iω)))dω
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E2(G(δ), S) =
1
2π

 π

−π

trace(detG(δ, exp(−iω))−1

× S(exp(−iω)))dω

E3(G(δ), S) = (µẍ − ν(δ))′G(0)−1(µẍ − ν(δ)) (B.9)

using results from Akaike (1973), Ljung (1978), White (1982)
and Pötscher (1987). The results in Eqs. (5.4) follows by substitut-
ing G(δ) with S(Ψ ) and the corresponding mean in E3. For the re-
sult in Eq. (5.5)we need to the same for the standard low frequency
VAR. Note that the spectral density S in each differs, as it is affected
by the aggregation schemes appearing in Eqs. (4.8).
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