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The Ediacaran Period witnessed the first appearance of macroscopic animal life in Earth's history. However, the
biogeochemical context for the stratigraphic occurrence of early metazoans is largely uncertain, in part due to
the dearth of integrated paleobiological and chemostratigraphic datasets. In this study, a comprehensive
geochemical analysis was conducted on the fossiliferous Khatyspyt Formation in Arctic Siberia, in order to gain
insights into the Ediacaran paleoenvironments. This study was designed to specifically address the relationship
between paleoredox conditions and Ediacaran fossil occurrences in the Khatyspyt Formation. Our data reveal a
dramatic shift in pyrite sulfur isotope compositions (δ34Spyrite) fromca.−20‰ to ca. 55‰, and this shift is intrigu-
ingly associated with the first occurrence of Ediacara-type macrofossils at the studied section, suggesting a pos-
sible link between seawater redox conditions and distribution of earlymacroscopic organisms. Based onmultiple
lines of sedimentological and geochemical evidence, we propose that the development of oceanic euxinia —
which may be widespread in the continental margins due to enhanced oxidative weathering in the terminal
Ediacaran Period — may have locally prohibited the colonization of Ediacara-type organisms and resulted in
low δ34Spyrite values in the lowerKhatyspyt Formation. In themiddle andupper Khatyspyt Formation, progressive
secular transition fromeuxinic to non-euxinic andmorehabitable conditionsmayhave allowed for the colonization
of Ediacara-type and other macro-organisms.
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1. Introduction

The Ediacaran Period (ca. 635–541 Ma) holds the answers to key
questions related to the origins of themodern Earth system. In particular,
Ediacaran strata contain the planet's first unambiguous evidence ofmac-
roscopicmetazoans and assemblages of “Ediacara-type” fossils (Xiao and
Laflamme, 2009). Our present understanding of the origin of animals de-
pends critically on the ability to interpret fossil impressions in siliciclastic
sediments made by the Ediacara-typemacro-organisms (Gehling, 1999;
Narbonne, 2005; Fedonkin et al., 2007) and to document their spatial
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and temporal distribution (Grazhdankin, 2011, 2014; Narbonne et al.,
2014). However, siliciclastic rocks, particularly coarse-grained sand-
stones, offer limited opportunities for biogeochemical reconstructions
of the deep-time record. Fortunately, Ediacara-type macrofossils can
also be preserved in carbonate rocks, including the Khatyspyt Formation
in Siberia (Fedonkin, 1990; Nagovitsin et al., 2015; Rogov et al., 2015)
and the Dengying Formation in South China (Ding and Chen, 1981;
Sun, 1986; Xiao et al., 2005; Chen et al., 2014). Chemostratigraphic
investigation of these fossiliferous carbonate successions can provide
critical geochemical data that complement our understanding from
siliciclastic successions.

Ediacaran animals and perhaps Ediacara-type macro-organisms are
believed to be oxygen-breathing life forms (Cloud, 1968; Cloud, 1976;
Xiao, 2014), therefore a putative rise in atmospheric oxygen during
the Ediacaran Period (Derry et al., 1992; Kaufman et al., 1993) may
have dictated their evolutionary trajectories and their environmental
distribution. Compilations of redox-sensitive proxies at broad timescale
suggest a general pattern of rising atmospheric oxygen levels during the
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Fig. 1.Map showingmeasured sections of the Khatyspyt Formation (including the studied 0601 and 0605 sectionsmarked as red dots) along the Khorbusuonka River in the Olenek Uplift,
northeastern Siberia, Republic of Sakha, Russia.
late Proterozoic (Kah et al., 2004; Canfield et al., 2007; Kump, 2008; Kah
and Bartley, 2011; Shields-Zhou and Och, 2011; Lyons et al., 2014;
Planavsky et al., 2014; Liu et al., 2016), although oceanic anoxia has
also been argued to remain persistent in many parts of the ocean even
in the Ediacaran Period (Canfield et al., 2008; Sperling et al., 2015c;
Reinhard et al., 2016; Sahoo et al., 2016). In addition, individual case
studies on integrative chemostratigraphy and biostratigraphy of the ter-
minal Ediacaran strata, including the Blueflower Formation in NW Can-
ada (Johnston et al., 2013; Macdonald et al., 2013; Sperling et al.,
2015a), the Nama Group in Namibia (Hall et al., 2013; Darroch et al.,
2015; Wood et al., 2015), and the Dengying Formation in South China
(Duda et al., 2014; Cui et al., 2016a) reveal dynamic redox histories in
these depositional basins, suggesting a complex relationship between
the emergence of macrometazoans and the putative Ediacaran oxygen-
ation. To further test the various hypotheses about the relationship
between the rise of animals and atmospheric oxygen levels, we carried
out an integrative investigation of the terminal Ediacaran Khatyspyt
Formation in northern Siberia, which contains a moderate diversity
of Ediacara-type macrofossils and abundant carbonate rocks for
chemostratigraphic analysis (Knoll et al., 1995; Pelechaty et al.,
1996a). The goal of this study is to assess the effect of redox conditions
on the distribution of early macro-organisms — particularly Ediacara-
type macro-organisms — in the Khatyspyt Formation, using carbon,
oxygen, sulfur, and strontium isotopes, as well as trace element
concentrations.
2. Geological background

2.1. Lithostratigraphy

The fossiliferous Khatyspyt Formation is well exposed along the
right-hand side tributaries of the Olenek River (i.e., the Khorbusuonka
and Kersyuke rivers) that drains the Olenek Uplift in the northeastern
part of the Siberian platform, Republic of Sakha, Russia (Figs. 1
and 2A) (Nagovitsin et al., 2015). Sedimentological observations from
the studied Khatyspyt interval (0–130 m in Fig. 3) suggest an overall
shelf marine environment with relatively deeper water depth com-
pared with the Maastakh Formation and the overlying Turkut Forma-
tion. The lowermost Khatyspyt Formation is dominated by thick
packages of intraclastic limestone occurring as channelized bodies up
to 7 m in thickness, with abundant tilted angular intraclasts (Fig. 2B)
and soft-sediment deformation structures (Fig. 2C), and are laterally
persistent over tens to hundreds of meters. The majority of this forma-
tion consists of finely laminated medium-bedded limestone with occa-
sional small cross beddings (Fig. 2D). The succession also includes
intervals of alternating thin layers of limestone and shale (Fig. 2E),
abundant carbonaceous compressions preserved on the bedding planes
(Fig. 2F), packages of thin-bedded (Fig. 2G) and thick-bedded limestone
(Fig. 2H). The latter often showwavy bedding (Fig. 2J). Finely laminated
limestones (Fig. 2I) sometimes contain dense assemblage of Nenoxites
fossils, which were initially regarded as meniscate trace fossils
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Fig. 2. Sedimentary features of the Khatyspyt Formation. (A) Outcrop of the Khatyspyt Formation and stratigraphic position of the studied interval; (B) Intraclastic limestone suggesting a
local slope break in a ramp setting; (C) Dolomitized intraclastic limestones with soft-sediment deformation structures suggesting a local slope break in a ramp setting; (D) Cross-bedded
limestone in a mid-ramp setting; (E) Alternating limestones and shales in an outer ramp setting; (F) Carbonaceous compressions preserved on a bedding plane of finely laminated
limestones; (G) Thin-bedded limestones in a mid-ramp setting; (H) Alternating thin-bedded and thick-bedded limestone characteristic of a distal mid ramp to proximal outer ramp
zone (pencil for scale); (I) Thin-bedded limestone with debated ichnofabric in an outer to mid-ramp setting; (J) Wavy-bedded limestone in a mid-ramp setting; (K) Soft-sediment
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Fig. 3. Integrated litho-, bio- and chrono-stratigraphy of the Khorbusuonka and lowermost Kessyusa groups in Arctic Siberia. ControversialNenoxites/Shaanxilithes-type structure occurs in
the basal Khatyspyt Formation,whichmay represent the oldest evidence of bioturbation (Rogov et al., 2012), or enigmatic ribbon-shapedbody fossils (Shen et al., 2007;Meyer et al., 2012;
Tarhan et al., 2014). Typical Ediacara-type fossils were found in the middle Khatyspyt Formation (Grazhdankin et al., 2008). Small skeletal fossils were found in the overlying Turkut and
Syhargalakh formations (Nagovitsin et al., 2015). The Turkut Formation is penetrated by diatremes that yielded a U–Pb zircon date of 543.9 ± 0.3 Ma (Bowring et al., 1993). The small
shelly fossil Anabarites trisulcatus was found in limestone clasts in the tuff breccia from the diatreme. The limestone clasts are inferred to have derived from the Turkut Formation,
although the exact stratigraphic horizon of Anabarites trisulcatus has not yet been located in the Turkut Formation. A new U–Pb zircon date of 529.56 ± 0.24 Ma has recently been
reported for a volcanic tuff in the Mattaia Formation (Kessyusa Group) higher in the sequence (Kaufman et al., 2012). Both ages are measured by TIMS (Thermal Ionization Mass
Spectrometer).



(Sokolov and Fedonkin, 1984; Rogov et al., 2012, 2013a, 2013b, 2015),
but have alternatively been interpreted as enigmatic tubular body fos-
sils similar to Shaanxilithes that has been reported from the terminal
Ediacaran strata in South China and India (Hua et al., 2004; Shen et al.,
2007; Meyer et al., 2012; Brasier et al., 2013; Gámez Vintaned and
Zhuravlev, 2013; Mángano and Buatois, 2014; Tarhan et al., 2014). The
uppermost Khatyspyt Formation is characterized by soft-sediment
slump and deformation features (Fig. 2K) and gutter cast structures
(Fig. 2L). Sedimentological observations suggest deposition within a
starved intracratonic rift developed in a marine ramp setting, with
intraclastic limestone representing debris flows deposited adjacent to
inferred syn-sedimentary faults (Knoll et al., 1995; Pelechaty et al.,
1996a; Nagovitsin et al., 2015).

The Khatyspyt Formation overlies pebble-bearing trough and tabu-
lar cross-bedded channelized sandstone, microbial dolostone and finely
laminated shale of theMaastakh Formation, and is overlain bymicrobial
dolostone, cross-bedded oolitic and pisolitic dolostone, microbialite
bioherms of the Turkut Formation (Fig. 3). These three formations con-
stitute the Khorbosuonka Group, which is bounded by regional uncon-
formities (Sokolov and Fedonkin, 1984; Knoll et al., 1995; Pelechaty et
al., 1996a; Nagovitsin et al., 2015).

2.2. Geochronological constraints

Available geochronometric constraints for the Khorbusuonka Group
and the overlying Kessyusa Group are currently based on two ages. A
diatreme that penetrates the Turkut and the lowermost Syhargalakh
formations in a section along the Khorbusuonka River yield a U–Pb zir-
con age of 543.9 ± 0.24 Ma (Bowring et al., 1993; Rogov et al., 2015).
This age provides a minimum age constraint on the Khatyspyt Forma-
tion and a maximum age constraint on the first appearance of the
trace fossil Treptichnus pedum in the overlying strata of the uppermost
Syhargalakh Formation. A U–Pb zircon age of 529.56 ± 0.24 Ma has re-
cently been reported for a volcanic tuff in the Mattaia Formation
(Kessyusa Group) higher in the sequence (Kaufman et al., 2012) (Fig.
3). These two ages are consistent with an inferred terminal Ediacaran
age for the studied Khatyspyt Formation.

2.3. Biostratigraphy

The Khatyspyt Formation is exceptionally fossiliferous, with multi-
ple taphonomic windows into the Earth's earliest macroscopic commu-
nities. The fossil assemblages contain soft-bodied organisms (Avalon-
type biota) with moldic preservation through authigenic carbonate ce-
mentation, carbonaceous compression macrofossils (Miaohe-type
biota) (Grazhdankin et al., 2008; Nagovitsin et al., 2015), and the enig-
matic fossil Nenoxites (Rogov et al., 2012). The fossils are unevenly dis-
tributed in theKhatyspyt Formation. Apart from sporadic occurrences of
Nenoxites, rare low-relief discoidal structures (microbial colonies sensu
Grazhdankin and Gerdes, 2007), and a single small individual resem-
bling Khatyspytia grandis, the lower part of the formation (i.e., the inter-
val of 0–67.7m from the base) is essentially unfossiliferous. The interval
from 15m to 40mwas not sampled because of poor exposure, resulting
in an incomplete lithostratigraphic column of the lower Khatyspyt For-
mation. Regardless, field inspection of available outcrops in this interval
suggests that it is non-fossiliferous, although future investigation of bet-
ter exposures is needed to verify this observation.

Diverse Avalon-type fossils, including the globally distributed
rangeomorph taxon Charnia masoni, “Hiemalora”-type holdfast struc-
tures (sensu Hofmann et al., 2008), and the arboreomorph Khatyspytia
grandis showing similarities with Charniodiscus procerus from New-
foundland (sensu Xiao and Laflamme, 2009), appear suddenly in finely
laminated limestones of the Khatyspyt Formation (at ~42 m). There is
no visible evidence of any significant change in depositional rate or fa-
cies at this stratigraphic level. Avalon-type fossils are found throughout
the rest of the Khatyspyt Formation with little variation in taxonomic
composition. Nenoxites fossils also become increasingly abundant in
the upper part of the Khatyspyt Formation. Abundant and diverse car-
bonaceous compression macrofossils, including some Miaohe-type
taxa (Xiao et al., 2002), first appear in the mid-Khatyspyt Formation.
The appearance of carbonaceous compressions is not accompanied by
notable isotopic perturbation, thus may be related to taphonomic fac-
tors (Grazhdankin et al., 2008).

The paleontological characteristics of the Khatyspyt Formation is not
particularly indicative of specific Ediacaran stratigraphic age, although
macrofossil assemblages consisting of palaeopascichnids, rangeomorph,
erniettomorph, and/or arboreomorph frondose taxa in the absence of
many other iconic Ediacaran forms usually (but not always) suggest a
late Ediacaran age (Kolesnikov et al., 2015; Boag et al., 2016; Darroch
et al., 2016). However, it should also be taken with caution that ecolog-
ical control of Ediacaran organisms may have imposed serious limita-
tion in the use of biostratigraphic correlation (Gehling and Droser,
2013; Grazhdankin, 2004, 2014). Supposing the Nenoxites ichnofabric
(sensu Rogov et al., 2012) and the body fossil Shaanxilithes refer to ap-
proximately the same structure, then the latter could be used as a reli-
able biostratigraphic marker for global correlation of terminal
Ediacaran strata immediately preceding the oldest small skeletal fossils
(Shen et al., 2007; Zhuravlev et al., 2009; Meyer et al., 2012; Tarhan et
al., 2014; Rogov et al., 2015; Darroch et al., 2016; Xiao et al., in press).
Indeed, the lowest stratigraphic occurrence of the small skeletal fossil
Cambrotubulus decurvatus in the northwestern slope of the Olenek Up-
lift is found to be 1.4m above the base of the Turkut Formation that con-
formably overlies the Khatyspyt Formation.

3. Samples and analytical methods

The samples were collected from the Khatyspyt Formation at the
0601 (GPS: 71° 08′ 28.80″ N, 123° 52′ 23.97″ E) and 0605 (GPS: 71°
12′ 17.20″ N, 123° 39′ 35.43″ E) sections. The 0601 section is of particu-
lar interest because it has yielded an exceptionally preserved assem-
blage of diverse Ediacara-type macrofossils, representing the first
appearance of these fossils in theKhatyspyt Formation (Fig. 3). Using re-
gionally consistent occurrence of thick-bedded limestones and volcanic
tuffs as marker beds, we correlated the 0605 section with a covered in-
terval (90–106m) at the 0601 section in order to achievemore compete
chemostratigraphic sampling (Figs. 4 and 5). The sampled interval in
this study covers the lowest occurrence of Ediacara-type macrofossils,
and is composed of thin-bedded carbonates deposited in normalmarine
environments.

A total of 176 sampleswere systematically analyzed to obtain a com-
plete suite of chemostratigraphic data, including carbonate carbon
(δ13Ccarb) and oxygen isotopes (δ18Ocarb), strontium isotopes
(87Sr/86Sr), organic carbon isotopes (δ13Corg), sulfur isotopes of total sul-
fur in acidified residuals (δ34STS, comprising dominantly pyrite S with
trace amount of organic S), carbonate-associated sulfate sulfur isotopes
(δ34SCAS), andmajor and trace element concentrations. Sample prepara-
tion work, including sample cutting, crushing, acidification, leaching,
and polishing,was conducted at the Trofimuk Institute of PetroleumGe-
ology and Geophysics, Siberian Branch of the Russian Academy of Sci-
ences, Novosibirsk. Elemental analyses were conducted in the
Carnegie Institution of Washington. All the isotope analyses were con-
ducted in the Department of Geology, University of Maryland by using
standard methods (e.g., McFadden et al., 2008; Cui, 2015; Cao et al.,
2016; Cui et al., 2015, 2016a, 2016b, under review), which are briefly
outlined below.

3.1. Carbon and oxygen isotope analysis

Rock sampleswere cut and polished for detailed petrographic obser-
vation and micro-drilling in order to obtain powders from the least-al-
tered, least-recrystallized, and purest phases for carbonate carbon and
oxygen isotope analysis. The powders were measured with a Multicarb
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inlet device in-linewith anElementar Isoprime continuous-flow isotope
ratio mass spectrometer, and precision for both isotopes was routinely
better than 0.1‰.

3.2. Organic carbon and pyrite sulfur isotope analyses

The organic carbon, total sulfur isotope compositions were mea-
sured by combustion of the decalcified residuals to CO2 or SO2 with a
Eurovector elemental analyzer in-line with a second Elementar
Isoprime isotope ratio mass spectrometer. Around 15 g of bulk crushed
sample was acidified with 3 M HCl. Acidified residues were washed
with ultra-pure Milli-Q (18 MΩ) water, centrifuged, decanted, and
dried. The residues were packed into folded tin cupswith V2O5 for com-
bustion to CO2 or SO2 in a Eurovector elemental analyzer in-line with a
second Elementar Isoprime isotope ratio mass spectrometer, which
measured isotope abundances. Uncertainties for carbon and sulfur iso-
topemeasurements determined bymultiple analyses of standardmate-
rials during analytical sessions are better than 0.1‰ and 0.3‰,
respectively.

3.3. Sulfate sulfur isotope analysis

Approximately 100 g of bulk carbonate powders were used for ex-
traction of carbonate-associated sulfate (CAS). To minimize the
contamination of soluble non-CAS sulfate (Marenco et al., 2008; Wotte
et al., 2012; Peng et al., 2014; Schobben et al., 2015), bulk powders
were leached by 10% NaCl until no sulfate could be tested from the
leachate, and then washed with Milli-Q water for at least 3 times prior
to acidification of the leached powders with 3 M HCl to release CAS.
Both non-CAS and CAS precipitates were collected as BaSO4 three days
after BaCl2 was added to the solution for δ34Sleachate and δ34SCAS analy-
ses, respectively. The BaSO4 precipitates were packed into folded tin
cupswith V2O5 for combustion to SO2 in a Eurovector elemental analyz-
er in-line with a second Elementar Isoprime isotope ratio mass spec-
trometer. Uncertainties for sulfur isotope measurements determined
by multiple analyses of standard materials during analytical sessions
are better than 0.3‰. Sulfur isotope fractionation between sulfide and
sulfate are calculated as Δδ34S ≈ δ34SCAS − δ34STS, assuming the sulfur
species in the acidified results of our pyrite-rich samples are dominated
by pyrite (i.e., δ34STS ≈ δ34Spyrite).

3.4. Strontium isotope analyses

For strontium isotope analysis, only limestone samples were select-
ed for extraction and measurement. Micro-drilled powders (ca. 10 mg)
were leached three times in 0.2 M ammonium acetate (pH ∼ 8.2) to re-
move exchangeable Sr from non-carbonate minerals, and then rinsed
three times with Milli-Q water. The leached powder was centrifuged,
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decanted, and acidifiedwith doubly distilled 0.5M acetic acid overnight
to release strontium from the carbonate crystal structure. The superna-
tant was centrifuged to remove insoluble residues and then decanted,
dried, and subsequently dissolved in 200 μl of 3MHNO3. Strontium sep-
aration was carried out via cation exchange using a small polyethylene
column containing ∼1 cm of Eichrom Sr specific resin. The column was
rinsed with 400 μl of 3 MHNO3 before the dissolved sample was loaded
onto the column. After loading, the samplewas sequentially elutedwith
200 μl of 3 M HNO3, 600 μl of 7 M HNO3, and 100 μl of 3 M HNO3 to re-
move the Ca, Rb and REE fractions; the Sr fraction adsorbs strongly to
the resin in an acidic environment. The Sr fraction was removed by elu-
tionwith ∼800 μl of 0.05 MHNO3 and the resultant eluate collected and
dried. Approximately 200–300 ng of the dried sample was transferred
onto a degassed and pre-baked (∼4.2 A under high vacuum) high purity
Re filament with 0.7 μl of Ta2O5 activator. The prepared filaments were
measured using the VG Sector 54 thermal ionizationmass spectrometer
(TIMS) facility in theUniversity ofMarylandGeochemistry Laboratories.
Filaments were transferred to a sample carousel, heated under vacuum
(∼10−7 to 10−8 atm) to a temperature between 1450 °C and 1650 °C,
and analyzed when a stable signal (N1.0 V) was detected on the mass
88 ion beam. Approximately 100 87Sr/86Sr ratios were collected for
each sample. Final data have been corrected for fractionation using the
standard value 87Sr/86Sr = 0.1194. The fraction of 87Sr resulting from
in situ decay from 87Rb was removed by measurement of rubidium
abundance at mass 85. Repeated analysis of the NBS SRM987 standard
yields an average value of 87Sr/86Sr=0.710245±0.000011 (2σ) during
the analytical window.

3.5. Elemental analyses

Based on petrographic observations, carbonate samples with low
detritus contentswere selected formajor and trace element analysis. Al-
iquots of micro-drilled carbonate powders were dissolved in 0.4 M
HNO3, centrifuged, and then analyzed for elemental concentrations.
The resulting solutions were analyzed on a Thermo Scientific iCAP-Q
ICP-MS (Inductively Coupled Plasma – Mass Spectrometry) at the



Carnegie Institution ofWashington. Precision of these analyses as deter-
mined by repeated measurements of a house standard carbonate was
b5% (2σ) for major elements with high concentrations and b10% (2σ)
for the REEs. Ceriumanomaly values are calculated by using the formula
Ce/Ce*= [Ce]PAAS / ([Pr]2PAAS / [Nd]PAAS) in order to further constrain the
redox conditions of the depositional environment (e.g., Lawrence et al.,
2006; Ling et al., 2013; Cui et al., 2015, 2016a).

4. Geochemical results

4.1. δ13Ccarb and δ18Ocarb data

Chemostratigraphic profiles of the Khatyspyt Formation reveal
strong fluctuations in carbon and sulfur isotope compositions (Figs. 4
and 5). The percent carbonate values of most limestone samples are
high (approaching 100%) except the shaly interval in the 0605 section
(Fig. 4A). Carbonate carbon isotope (δ13Ccarb) data show a positive ex-
cursion (up to ca. 5‰) in the intraclastic limestone interval of the
0601B section, and then decrease to lower values (Fig. 4B). The lower
45 m of the measured section generally reveals a δ13Ccarb negative ex-
cursion and is succeeded by more positive values up section. Carbonate
oxygen isotopes (δ18Ocarb)mostly remain−5‰, except a slight positive
excursion to ca. 0‰ in the lower 45 m (Fig. 4C).

4.2. δ13Corg and TOC data

Total organic carbon content data in the Khatyspyt Formation (Fig.
4F) are generally high (0.28% ± 0.4, 1σ) compared with time-equiva-
lentGaojiashanMember in South China (0.08%±0.15, 1σ). Organic car-
bon isotope values (δ13Corg) are mostly between −30‰ and −40‰
(Fig. 4D), providing a relatively large total carbon isotope fractionation
(Δδ13C) (Fig. 4E) compared with some older Ediacaran successions
(McFadden et al., 2008; Sansjofre et al., 2011; Cui et al., 2015) or the
Phanerozoic record (Hayes et al., 1999; Oehlert et al., 2012; Oehlert
and Swart, 2014).

4.3. δ34Spy and δ34SCAS data

A dramatic increase in pyrite sulfur isotopic compositions (δ34Spyrite)
from ca. –20‰ to as high as ca. +55‰ occurs in the lower Khatyspyt
Formation in the 0601 section (Fig. 5B). Such a large magnitude of δ-
34Spyrite excursion has never been reported in the terminal Ediacaran Pe-
riod (see equivalent chemostratigraphic records in Fike and Grotzinger,
2008; Ries et al., 2009; Cui et al., 2016a) (Fig. 7). Two stages could be de-
fined to describe this dramatic δ34Spyrite excursion. The lower 45 m
(Stage 1), sampled at section 0601B and lower part of section 0601C,
is characterized by negative δ34Spyrite values and an increase from
−20‰ to ca. 0‰. The next 85 m of the measured Khatyspyt Formation
(Stage 2) is characterized by positive δ34Spyrite values with an average
value of 31.7‰ ± 10.1‰ (1σ) and maximum value as high as +55‰.
In contrastwith this dramatic variation in δ34Spyrite, sulfur isotope values
(δ34SCAS) of carbonate-associated sulfate (CAS) are less variable, with an
average value of +40.7‰ ± 6.5‰ (1σ). Assuming the sulfur species in
the acidified residuals of our samples are dominated by pyrite (e.g.,
McFadden et al., 2008; Zhelezinskaia et al., 2014; Cui et al., 2016a), cal-
culated sulfur isotope differences (Δδ34S) between sulfate and pyrite
are large in the lower 45 m (up to 50‰), but decline to lower and
even negative values up section (Fig. 5C). Coincidentwith the large pos-
itive excursion in δ34Spyrite is a dramatic decrease in CAS concentration
(Fig. 5D). CAS concentration data in the lower 50 m are remarkably
high (up to almost 2000 ppm), but drop to much lower values
(ca. 100 ppm) in the upper section. Total sulfur concentration (TS)
data are generally below 0.2%, with higher values in the shaley interval
of the 0605 section (Fig. 5E). Intriguingly, the first appearance datum
(FAD) of soft-bodied Ediacara-type macro-organisms coincides with
the negative-to-positive shifts in both δ13Ccarb and δ34Spyrite in the
lower Khatyspyt Formation (Figs. 4 and 5).
4.4. 87Sr/86Sr and elemental concentration data

87Sr/86Sr values in the Khatyspyt Formation (Fig. 4H) are ca.
0.7080 ± 0.0001 (1σ), which are consistent with published data from
the same section (Vishnevskaya et al., 2013). Rb/Sr andMn/Fe concentra-
tion ratios of the samples analyzed for 87Sr/86Sr are all consistently low,
which are mostly b0.01 and b0.1, respectively. Ce/Ce* data (Fig. 4G)
remain steady values of 0.84 ± 0.06 (1σ) throughout the section.
5. Discussion

5.1. Diagenetic evaluation

Multiple lines of evidence (Fig. 6) suggest that the measured sam-
ples from the Khatyspyt Formation are well preserved, and experienced
little diagenetic alteration. In contrast with the proposed diagenetic al-
teration trend (Arthur, 2009; Knauth and Kennedy, 2009; Derry, 2010;
Oehlert and Swart, 2014), which typically shows a positive correlation
between δ13Ccarb and δ18Ocarb resulting from meteoric water alteration
and organic carbon oxidation during fluid percolation, the Khatyspyt
samples shows a broadly negative correlation between δ13Ccarb and
δ18Ocarb (Fig. 6A), suggesting little influence by meteoric water or
deep burial.

It has been proposed that sulfur isotopic compositions of carbonate-
associated sulfate (δ34SCAS) could possibly be contaminated by pyrite
oxidation (Marenco et al., 2008; Wotte et al., 2012; Theiling and
Coleman, 2015) or secondary atmospheric sulfate (Peng et al., 2014).
If true, cross plot between CAS content and δ34SCAS should follow a
mixing line. However, [CAS]–δ34SCAS cross plot reveal little correlation
(Fig. 6F), suggesting minimum contamination in the measured δ34SCAS
values. Another line of evidence supporting the fidelity of our δ34SCAS
data comes from the general consistency with comparable δ34S values
(ca. 40‰) of bedded anhydrite from the terminal Ediacaran Ara Group
in Oman (Fike and Grotzinger, 2008, 2010), suggesting a global seawa-
ter signal of ca. 40‰. The consistent δ34SCAS values (ca. 40‰) indepen-
dent of [CAS] abundances in the Khatyspyt Formation are also
consistent with previous studies (Lyons et al., 2004; Gill et al., 2008;
Cui et al., 2016a), demonstrating that CAS can track seawater sulfate
compositions. We also plot concentration data against isotopic data
(e.g., δ13Corg–TOC, δ34STS–TS) in order to test whether any diagenetic
processes could preferentially change the isotopic compositions. These
cross-plots show little correlation (Fig. 6B, C) as would be expected
from diagenetic alteration.

In addition to δ34STS and δ34SCAS data, sulfur isotope compositions of
non-CAS from leachate solutions (δ34Sleachate) were also analyzed (Fig.
6G). The δ34Sleachate data are mostly higher than δ34STS in the lower
45 m of the section. In contrast, δ34Sleachate values are mostly lower
than the δ34STS in the upper Khatyspyt Formationwhere superheavy py-
rite is common. The sources of sulfate in the leachate solution could be
diverse, including pyrite oxidation (Marenco et al., 2008; Wotte et al.,
2012; Theiling and Coleman, 2015), secondary atmospheric sulfate
(Peng et al., 2014), or loosely bounded secondary sulfate derived from
diagenetic fluids. Thus, δ34Sleachate values may be controlled by various
geological factors at different stratigraphic intervals. Regardless, it is no-
table that all δ34SCAS data are consistently higher than δ34Sleachate data,
demonstrating the importance of leaching pretreatment before CAS
extraction.

In summary, sedimentological observations and geochemical
data suggest that the limestones in the studied Khatyspyt Formation
are well preserved, and provide reliable geochemical signals for
chemostratigraphic interpretation.
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demonstrating the significance of leaching pretreatment before CAS extraction. All the data are measured from the studied interval in the Khatyspyt Formation at the 0601 and 0605
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5.2. Redox constraints for the depositional basin

The dominance of carbonate lithology and the presence of Ediacara-
type fossils in the Khatyspyt Formation provide important geobiological
links between early macro-organisms and their marine environments
(Xiao et al., 2013). However, because the most widely used tools for
redox reconstruction ofmarine sediments—including iron speciation anal-
ysis (e.g., Canfield et al., 2007, 2008; Poulton and Canfield, 2011) and
redox-sensitive trace element analysis (e.g., Scott et al., 2008; Sahoo et
al., 2012, 2016; Li et al., 2015b)—are best calibrated for shale lithofacies
(but see also Clarkson et al., 2014; Wood et al., 2015), constraints on the
redox conditions of theKhatyspyt Formationneed to be sought elsewhere.

Given the intimate link between cerium abundance in carbonates
and seawater/porewater redox conditions (e.g., Zhou et al., 2012; Ling
et al., 2013), cerium anomaly Ce/Ce* = [Ce]PAAS / ([Pr]2PAAS / [Nd]PAAS)
has been explored to constrain the redox conditions of the depositional
environment. Cerium exists in two redox states in marine environ-
ments, namely Ce(III) and Ce(IV). Trivalent Ce can be oxidized into tet-
ravalent Ce in oxic environments (Tanaka et al., 2010), and then
scavenged byMn-oxides and hydroxides and removed from the seawa-
ter. Thus, in oxygenated seawaters, tetravalent Ce is preferentially re-
moved from the system, leaving the seawaters with a Ce negative
anomaly in REE patterns. In contrast, trivalent Ce is more soluble in re-
duced environments, resulting in relatively high Ce/Ce* values (Bau et
al., 1996). Therefore, Ce/Ce* ratios of carbonates may help to trace
redox changes in seawater/porewater if the samples have not yet expe-
rienced significant diagenetic alteration. Here in the Khatyspyt Forma-
tion, Ce/Ce* values of well-preserved limestone samples are
consistently high throughout the section, with an average value of
0.84 ± 0.06 (1σ), suggesting possible anoxic conditions.

Supporting evidence for an overall anoxic condition of the Khatyspyt
Formation also comes from sedimentological observations in the field,
where limestones are mostly finely laminated and remarkably rich in
organic matter, including bitumen. Total organic carbon (TOC) abun-
dances in most of the carbonate samples are high (0.28% in average)
compared with the correlative Gaojiashan Member (0.08% in average),
and δ13Corg values range from −24.1‰ to −38.9‰ and average at
−33.2‰, suggesting the possible presence of chemoautotrophic or
methanotrophic communities at the oxic-anoxic interface in the water
column or sediments (Hayes, 1993; Brocks et al., 2005; Johnston et al.,
2009; Jiang et al., 2012; Houghton et al., 2014; Guo et al., 2015).

Sulfur isotope data and sulfur abundance data have also been used to
constrain the redox conditions of the Khatyspyt Formation. In the lower
45mof the studied interval, negative δ34Spyrite values (as lowas−20‰)
and remarkably high sulfate contents ([CAS] up to 1969 ppm) suggest
strong euxinic conditions and syngenetic pyrite formation in the
water column (e.g., Canfield and Teske, 1996; Li et al., 2010; Cui et al.,
2016a; Kah et al., 2016); whereas in the upper 85 m of the measured
section, relatively lower [CAS] concentrations and anomalously high δ-
34Spyrite values suggest non-euxinic conditions in the water column



and authigenic pyrite precipitationwithinmarine sediments in an envi-
ronmentwith relatively low sulfate concentration (e.g., Ries et al., 2009;
Fike et al., 2015;Wu et al., 2016), although the marine sulfate reservoir
was large enough to be isotopically buffered, as suggested by the rela-
tively invariant δ34SCAS values.

Collectively, integrated sedimentological and geochemical data sug-
gest that the Khatyspyt Formation records a transition from euxnic con-
ditions in the lower 45 m to non-euxinic conditions in the upper 85 m.

5.3. Stratigraphic correlation at a global scale

In order to investigate the effect of redox conditions on early meta-
zoans at a global scale, four upper Ediacaran successions are considered
for integrated stratigraphic correlation: the Ara Group in Oman, the
Nama Group in Namibia, the Gaojiashan/Shibantan Member in South
China, and the Khatyspyt Formation in Arctic Siberia (Fig. 7). The late
Ediacaran age of these sections is supported by biostratigraphic data
and corroborated by available U–Pb zircon dates from volcanic tuffs
(Bowring et al., 1993; Grotzinger et al., 1995; Amthor et al., 2003;
Condon et al., 2005; Halverson, 2006). Chemostratigraphic data in
high stratigraphic resolution are all available for these four successions
(Fike and Grotzinger, 2008; Ries et al., 2009; Cui et al., 2016a).

5.3.1. Chemostratigraphic δ13C correlation
Integrated sedimentological, stratigraphic, and geochemical studies

of carbonate successions of terminal Ediacaran records demonstrate
the utility of carbon isotope chemostratigraphy for intra- and inter-ba-
sinal correlations. The late Ediacaran δ13Ccarb record of northeastern Si-
beria reflects global variations seen elsewhere, featuring (in ascending
order) a strong δ13Ccarb positive shift to values near 6‰ in theMaastakh
Formation and basal Khatyspyt Formation, an intermediate interval of
relatively little isotopic change with a monotonic decrease in δ13Ccarb
from 2‰ to near 0‰ throughout most of the Khatyspyt Formation and
Turkut formations, and a negative excursion to ca. −4‰ just beneath
the Ediacaran–Cambrian boundary (Knoll et al., 1995; Pelechaty et al.,
1996a, 1996b). Similar δ13Ccarb positive excursions have also been re-
vealed in the broadly equivalent Nama Group of southern Namibia
(Kaufman et al., 1991; Saylor et al., 1998), the Ara Group in Oman
(Fike and Grotzinger, 2008), and the Dengying Formation in South
China (Jiang et al., 2007; Zhou and Xiao, 2007; Wang et al., 2014; Cui
et al., 2016a).

5.3.2. Chemostratigraphic 87Sr/86Sr correlation
Given themuch longer residence timeof strontium in the ocean than

the seawater mixing time, strontium isotopes (87Sr/86Sr) have been
widely used as a tool for inter-basinal stratigraphic correlation (e.g.,
Halverson et al., 2007; Cui et al., 2015). Terminal Ediacaran limestones
typically have 87Sr/86Sr ratios ca. 0.7084, including the fossiliferous
Shibantan Member of the Dengying Formation in South China (Jiang
et al., 2007), the Blueflower Formation in NW Canada (Narbonne et
al., 1994), the Nama and Witvlei groups in Namibia and South Africa
(Kaufman et al., 1993), the Tamengo Formation of Corumba Group in
Brazil (Gaucher et al., 2003; Boggiani et al., 2010), and the Itapucumi
Group in NW Paraguay (Warren et al., 2011). However, 87Sr/86Sr values
of the Khatyspyt Formation are consistently ca. 0.7080 (Vishnevskaya et
al., 2013 and this study), raising questions about a 87Sr/86Sr
chemostratigraphic correlation between the Khatyspyt Formation and
other terminal Ediacaran successions worldwide.

Two possibilities may account for the relatively lower 87Sr/86Sr
values of the Khatyspyt Formation comparedwith other roughly equiv-
alent successions mentioned above. Largely due to inappropriate lithol-
ogy (i.e., dolostone, instead of limestone) in the other sections, the
0.7084 values are mainly based on limited analyses of sections in low
stratigraphic resolutions, thus may not represent a complete evolution
of the 87Sr/86Sr during that time. The overall 0.7080 values of the
Khatyspyt Formation thus may reflect primary seawater signals of a
time interval that has not yet been captured in other terminal Ediacaran
data sets before. Alternatively, it is also possible that the lower 87Sr/86Sr
values in the Khatyspyt Formation may reflect a secondary signal
overprinted by enhanced hydrothermal input (e.g., Frei et al., 2011).
We cannot resolve these alternative interpretations with the available
data.

5.3.3. Chemostratigraphic δ34S correlation
Chemostratigraphic profiles of paired sulfur isotopes (δ34Ssulfate and

δ34Spy) reported from upper Ediacaran Gaojiashan Member in South
China (Cui et al., 2016a), Nama Group in Namibia (Ries et al., 2009),
and Ara Group in Oman (Fike et al., 2006; Fike andGrotzinger, 2008) re-
veal both similarities and differences when compared to sulfur isotope
profiles of the Khatyspyt Formation (Figs. 7 and 8). All these sections
consistently show a large positive shift in δ34Spyrite; however, the abso-
lute values and the magnitude of this positive shift are different among
the four successions, whichmay reflect a global perturbation in S cycling
overprinted by local signals (e.g., Loyd et al., 2013; Wood et al., 2015).
The sulfate sulfur isotopes are generally steady at around 40‰ in Ara,
Gaojiashan, and Khatyspyt units (Fike and Grotzinger, 2010; Cui et al.,
2016a). However, the Nama Group shows lower δ34SCAS values with
large variations (27.3‰ ± 10.3‰, 1σ) (Ries et al., 2009). It should be
noted that δ34Ssulfate in Oman was measured from bedded anhydrite,
while δ34Ssulfate data in the other three successions were measured
from extracted carbonate-associated sulfate (CAS). Thus, the δ34Ssulfate
profile in Oman is probablymore reliable given the possible contamina-
tion of CAS during chemicalweathering in the field (Peng et al., 2014) or
lab extraction (Marenco et al., 2008). Another notable feature is the oc-
currence of superheavy pyrite (δ34Spyrite N δ34SCAS) in both Nama Group
and the Khatyspyt Formation (Figs. 7 and 8). If we accept the global δ-
34Ssulfate signal is ca. 40‰ as preserved in evaporates, then the compar-
atively lower δ34SCAS values [ca. 27.3‰ ± 10.3‰ (1σ)] in the Nama
Group and the anomalously high δ34Spyrite values in both Nama Group
and the Khatyspyt Formation need to be explained (see Section 5.5).

The inconsistent absolute values in sulfur isotopes among different
localities may result from potential alteration of δ34SCAS during post-de-
position (e.g., Peng et al., 2014), or locally expressed δ34Spyrite signals
due to largely heterogeneous sulfur reservoirs in the late Ediacaran
ocean (cf. Loyd et al., 2012). Nevertheless, the overall increasing trend
in δ34Spyrite and decreasing trend inΔδ34S are consistent among the sec-
tions, suggesting anoverall redox transition fromeuxinic conditions to a
more ventilated ocean. It should be noted that these euxinic water
masses may have largely been constrained within shelf basin environ-
ments (Lyons et al., 2014; Cui et al., 2015) instead of an open ocean phe-
nomenon. They may have been synchronized by a global enhancement
of sulfate flux into the ocean shelf environment during an oxidation
event.

5.4. Controlling factors for the chemostratigraphic δ34S excursion

Multiple factors, such as the ventilation effect of bioturbation (cf.
Canfield and Farquhar, 2009), sealing effect of microbial mat (e.g.,
Bouougri and Porada, 2007; Cai et al., 2010; Grotzinger and Al-Rawahi,
2014), or change in sedimentation rate (cf. Schiffbauer et al., 2014) of
marine sediments, could have potentially caused variation of δ34Spyrite
compositions in the studied Khatyspyt Formation. Here we briefly dis-
cuss these factors below.

5.4.1. Ventilation effect of bioturbation
It has been proposed that enhanced ventilation of marine sediments

and oxidation of authigenic pyrite could be triggered by bioturbation,
which consequently would increase the sulfate concentration in the
seawater (Canfield and Farquhar, 2009). The activity of bioturbation is
generally low during the late Ediacaran Period (Tarhan and Droser,
2014; Tarhan et al., 2015). Here we tentatively evaluate the intensity
of bioturbation via the abundance of the enigmatic Nenoxites fossils,
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Fig. 7.Global comparison of carbonate C andO isotope data (δ13Ccarb, δ18Ocarb), paired S isotope data (δ34SSO4, δ34Spyrite), and sulfur isotope fracionation (Δδ34S) data in terminal Ediacaran successions. Data source: Siberia (this study), South China (Cui
et al., 2016a), Oman (Fike et al., 2006; Fike and Grotzinger, 2008), and Namibia (Ries et al., 2009). Note that Oman δ34SSO4 data were measured from bedded anhydrite, whereas δ34SSO4 data in Siberia, South China and Namibia were measured from
extracted carbonate-associated sulfate (CAS). Fitted lines represent five-point running average for most of the data, and two-point running average for δ34SCAS and Δδ34S data in Gaojiashan and Siberia due to relatively smaller data set. The pink
background colour represents putative euxinic conditions. Biomineralizing animals have been found from sections in Oman (Amthor et al., 2003), Namibia (Germs, 1972) and South China (Bengtson and Zhao, 1992). Frondose Ediacara fossils
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2014), which is generally correlated with the Gaojiashan Member in southern Shaanxi Province of South China. Note that the enigmatic fossil Nenoxites/Shaanxilithes also appears to be restricted to non-euxinic intervals in both the Gaojiashan
Member (Shen et al., 2007; Meyer et al., 2012) and the Khatyspyt Formation (Rogov et al., 2012).
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though its origin still remains debatable (Brasier et al., 2013; Gámez
Vintaned and Zhuravlev, 2013; Mángano and Buatois, 2014; Budd and
Jensen, 2015; Rogov et al., 2012, 2013a, 2013b, 2015). IfNenoxites fossils
indeed result frombioturbation as proposed byRogov et al. (2012), then
it is revealed that bioturbation appears both below and above the
euxinic interval, and becomes more abundant starting from ca. 90 m
of the studied section (Figs. 4 and 5). However, these intervals with in-
ferred evidence of bioturbation all yield lower [CAS] concentration
values (Fig. 5D) instead of higher sulfate concentration predicted by
Canfield and Farquhar (2009). Thus, we preclude the possibility of bio-
turbation as a major controlling factor for the chemostratigraphic δ34S
excursion.
5.4.2. Sealing effect of microbial mat
The occurrence ofmicrobialmats could also potentially influence the

δ34S composition of pyrite in marine sediments. Below non-bioturbated
and microbially sealed sediments where the water–sediment interface
represents a significant diffusion barrier, pyrite may have higher δ34S
composition. Thismechanismmay have played a role in the time-equiv-
alent Gaojiashan Member in South China, where chemostratigraphic
higher δ34Spyrite values roughly correspond to the limestone interval
with abundant microbial mats (Cui et al., 2016a). However, in the stud-
ied Khatyspyt Formation, no clear evidence of microbial mats has been
found throughout the section. Thus, this possibility cannot readily ex-
plain the observed chemostraitigraphic δ34S excursion either.

5.4.3. Change in sedimentation rate
Sedimentation rate of marine sediments has been proposed to be a

controlling factor in S cycles within the pore water system
(Schiffbauer et al., 2014). Higher sedimentation rate may decrease the
sulfate diffusion between seawater and pore water, thereby increase
the δ34S composition of authigenic pyrite. However, in the studied
Khatyspyt Formation, the lithological facies seem to be largely constant,
with no clear depositional change or discontinuity (Figs. 2 and 3).More-
over, negative δ34S excursion covers both channelized intraclastic lime-
stone (presumablywith relatively higher sedimentation rate) andfinely
laminated limestone (presumably with relatively lower sedimentation
rate). Therefore, the scenario of changing sedimentation rate could not
readily explain the δ34S variation in the Khatyspyt Formation.

Taken together, based on the consideration above, it is unlikely that
variation in the intensity of bioturbation, abundance of microbial mats,
or sedimentation rate could well explain the large δ34S excursion re-
vealed in this study. In light of similar patterns of δ34S profiles from
roughly equivalent successions in Oman and South China (Fig. 7), it ap-
pears that this event is a global phenomenon and directly associated
with the formation of distinct superheavy pyrite (see the next section).
Thus, the interpretation of the δ34S profiles should not only explain the



overall positive shift in δ34Spyrite, but also reconcile the remarkably 34S-
enriched pyrite in the upper section.

5.5. Biogeochemical origin of the superheavy pyrite

Paired sulfur isotopes of pyrite and sulfate from the Khatyspyt For-
mation are strongly decoupled. In the measured section, CAS sulfur iso-
tope values are consistently around 40.7‰ ± 6.5‰ (1σ), which are
similar to δ34SCAS data from well-preserved limestone samples in the
broadly equivalent Gaojiahsan Member of the Dengying Formation in
South China (Cui et al., 2016a) and bedded anhydrite in the Ara Group
in Oman (Fike and Grotzinger, 2008) (Figs. 5 and 7). However, sulfur
isotope compositions of total sulfur (δ34STS) in the acidified residuals
of the Khatyspyt Formation reveal a large positive shift (Fig. 5B). Assum-
ing sulfur in acidified residuals of these samples is dominantly pyrite
(e.g., McFadden et al., 2008; Zhelezinskaia et al., 2014; Cui et al.,
2015), calculated sulfur isotope differences between sulfate and sulfide
Δδ34S = δ34SCAS − δ34STS are large in the lower Khatyspyt Formation
(ca. 40–50‰), transitioning to negative values in the middle section
and then to ca. 20–30‰ in the upper section (Fig. 5C). It should be
noted, however, that the lack of negative Δδ34S values in the upper
Khatyspyt Formation may reflect the limited number of δ34SCAS analy-
ses. If the global sulfate δ34S compositions during the terminal Ediacaran
Period are 40‰ as recorded in bedded anhydrite in Oman (Fike and
Grotzinger, 2008, 2010), a number of samples in the upper 50 m of
the Khatyspyt Formation would give negative Δδ34S values.

5.5.1. Published models for superheavy pyrite
Superheavy pyrite and reverse fractionation (δ34SCAS b δ34Spyrite)

have also been reported from the time-equivalent Nama Group in Na-
mibia (Ries et al., 2009) and basal Ediacaran cap carbonates in north-
western China (Shen et al., 2008). Traditional sulfur isotope models
have difficulty explaining such phenomenon. Some workers have at-
tributed the reverse fractionation to decoupling of the surface- and bot-
tom-water sulfur reservoirs through ocean stratification (Shen et al.,
2008; Kah et al., 2016). This leads to Rayleigh distillation and the forma-
tion of 34S-enriched bottom waters, from which sulfate for pyrite pre-
cipitation is sourced. Similarly, CAS formed in surface waters could
have lower δ34S values resulting from input from oxidative weathering
of terrestrial pyrite (e.g., Shen et al., 2008) or oxidation of deeper euxinic
water mass (e.g., Thompson and Kah, 2012; Kah et al., 2016). However,
this mechanism would not work in the Khatyspyt Formation, which
shows largely invariant δ34SCAS profile decoupled with the δ34Spyrite
data.

Experimental studies of microbial cultures have shown that the
degree of sulfur isotope fractionation accompanying bacterial sulfate re-
duction (BSR) in seawater approaches to zero when [SO4

2−] is b200 μM
(Habicht et al., 2002). This may partly explain the large 34S enrichment
of pyrite observed in the Khatyspyt Formation andmay reflect low sea-
water [SO4

2−] in the Proterozoic time. Additionally, the inferred non-
euxinic conditions in the upper Khatyspyt Formation means that pyrite
formation likely occurred within porewaters, and sulfate availability for
BSR may have been limited by diffusion, leading to relatively small sul-
fur isotope fractionations. Despite this, low seawater sulfate concentra-
tion or availability by itself does not adequately explain the anomalous
superheavy pyrite values, because microbial culture studies show that
sulfur isotope fractionation during BSR approaches zero but does not
invert as seawater sulfate declines. Thus, additional mechanism is
required.

Abiotic oxidation of dissolved sulfide during sediment reworking
has recently been invoked to explain the reversed S isotope fraction-
ation or positive S isotope variations (Aller, 2014; Fike et al., 2015). Ex-
perimental studies reveal that abiotic oxidation of dissolved sulfide
could result in a fractionation of Δδ34Sreactant–product = δ34Ssulfide − δ-
34Ssulfate = 5.2± 1.4‰ (Fry et al., 1988). During abiotic oxidation of sul-
fide, 32S in sulfide is preferentially oxidized, causing the residual sulfide
reservoir to be more enriched in 34S. This mechanism has been pro-
posed to explain the reversed S isotope fractionation in the terminal
Ediacaran Nama Group (Ries et al., 2009) and positive δ34Spyrite values
in both modern marine sediments (Gao et al., 2013; Fike et al., 2015)
and Triassic strata (Thomazo et al., 2016). However, the limited
fractionation (ca. 5‰) associated with abiotic oxidation of sulfide can-
not fully explain the large δ34Spyrite shift in the Khatyspyt Formation.
For example, the δ34Spyrite offset between shallow (as high as 20‰)
and deep (as low as −35‰) drill cores of modern marine sediments
reaches ca. 55‰ (Fike et al., 2015), which would require almost com-
plete oxidation of sulfide and thus exceedingly low pyrite contents in
the sediments. Similarly, the δ34Spyrite variations in Triassic strata
show a large positive excursion from ca. −20‰ to 40‰ (Thomazo et
al., 2016), which is also too large to be adequately explained by abiotic
oxidation of sulfide.

Bacterial sulfide oxidation may also contribute to the 34S-enrich-
ment of residual sulfide. In experiments with Thiobacillus concretivorus
grownonH2S as the sulfur source, enrichment of 32S has been be detect-
ed in the product sulfate. Lab results show that sulfur isotope fraction-
ation between initial sulfide and the sulfate product during biological
oxidation of H2S by Thiobacillus concretivorus (Δδ34Sreactant–product = δ-
34Ssulfide − δ34Ssulfate) can be as much as 9‰ (Kaplan and Rafter, 1958)
and up to 18‰ (Kaplan and Rittenberg, 1964). This magnitude of frac-
tionation has not yet been confirmed in natural environment, but its po-
tential role in generating superheavy pyrite should be further
investigated in future research.

5.5.2. A synthetic model
In light of increasingly higher TOC content and possible anoxia con-

ditions in the upper Khatyspyt section, it is likely that the large δ34Spyrite
positive shiftmay reflect enhanced reaction rates ofmicrobial sulfate re-
duction (MSR) and pyrite formation. Environmentally controlled exper-
iments suggest that MSR-related fractionation is related to sulfate
reduction rates that are dependent on the availability of organic sub-
strates as electron donors (Canfield et al., 2010; Leavitt et al., 2013;
Wing and Halevy, 2014; Gomes and Hurtgen, 2015), and the degree of
S isotope fractionation is inversely proportional to the MSR rate
(Harrison and Thode, 1958; Kaplan and Rittenberg, 1964). This mecha-
nism has been well demonstrated in modern marine sediments, partic-
ularly in the sulfate–methane transition zonewhere sufficient methane
flux could significantly accelerate the reaction rates of microbial sulfate
reduction and cause the production of superhearvy pyrite (Borowski et
al., 1996, 2000, 2013; Jørgensen et al., 2004; Q. Lin et al., 2016; Z. Lin et
al., 2016).

The occurrences of superheavy pyrite are not limited to the Ediacar-
an System; in fact, they have also been reported from Tonian-
Cryogenian (Xu et al., 1990; Li et al., 1999; Liu et al., 2006; Guilbaud et
al., 2015), Cambrian (Gill et al., 2011), and Ordovician strata (Chen et
al., 2013; Sim et al., 2015; Kah et al., 2016). However, superheavy pyrite
is remarkably common in the Ediacaran System (Canfield, 2001;
Prokoph et al., 2008; Canfield and Farquhar, 2012) (Figs. 8 and 9), pos-
sibly indicatingunusual sulfur cycling and redox conditions in a strongly
stratified ocean at the dawn of metazoan diversification (Logan et al.,
1995). In the context of a progressively oxidized atmosphere
(Shields-Zhou and Och, 2011; Canfield, 2014), enhanced oxidative
weathering could have significantly enhanced the continental
weathering flux, bring nutrients and sulfate into the terminal Ediacaran
ocean, promoting primary production and water column bacterial sul-
fate reduction (Horton, 2015; Cui et al., 2016a, 2016b). Such a scenario
is also consistentwith themultiple S isotope study (Wu et al., 2014) and
progressive increase in the global seawater 87Sr/86Sr ratios during the
late Neoproterozoic (Halverson et al., 2007; Shields, 2007; McArthur
et al., 2012; Xiao et al., in press). Consistent with this view, largely
based on paired S analysis of the time-equivalent Nafun and Ara groups,
it was proposed that an increase in pyrite burial, most likely driven by
enhanced primary production and sequestration of organic carbon, led



0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000
–60

–50

–40

–30

–20

–10

0

10

20

30

40

50

60

70

80

90

–60

–50

–40

–30

–20

–10

0

10

20

30

40

50

60

70

80

90

δ34
S

 (
‰

 C
D

T
) 

-60

160

Phanerozoic (541–0 Ma)

120

80

40

0 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80

δ34S (‰ CDT) 

δ34Spy (n=1180)

δ34Ssulfate (n=236)

F
re

qu
en

cy

Ediacaran (635–541 Ma) Tonian–Cryogenian (1000–635 Ma)

δ34Spy (n=1083) δ34Spy (n=250)δ34Ssulfate (n=437) δ34Ssulfate (n=113)

-60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80

δ34S (‰ CDT) 
-60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80

δ34S (‰ CDT) 

160

120

80

40

0

F
re

qu
en

cy

-60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80

Mesoproterozoic (1600–1000 Ma)
80

60

40

20

0

δ34Spy (n=428) δ34Ssulfate (n=171)

δ34S (‰ CDT) 

F
re

qu
en

cy

-60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80

Archean (4000–2500 Ma)
500

300

400

200

100

0

δ34Spy (n=1137)

δ34Ssulfate (n=57)

δ34S (‰ CDT) 

F
re

qu
en

cy

50

30

40

20

10

0

F
re

qu
en

cy

-60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80

Paleoproterozoic (2500–1600 Ma)
250

150

200

100

50

0

δ34Spy (n=900)

δ34Ssulfate (n=33)

δ34S (‰ CDT) 

F
re

qu
en

cy

δ34Spyrite from published literature

δ34Ssulfate  from published literature

δ34Spyrite  in the Khatyspyt Formation

δ34Ssulfate in the Khatyspyt Formation

Age (million years ago) 

Fig. 9. Evaporite, carbonate-associated sulfate (CAS), and pyrite sulfur isotope data through Earth history. Paired δ34S data are compiled from the literature [after (Canfield and Farquhar,
2009; Och and Shields-Zhou, 2012; Sahoo et al., 2012; Cui et al., 2016a)]. The small panels are frequency distribution of paired sulfur isotopes of the Phanerozoic (541–0 Ma), Ediacaran
(635–541Ma), Tonian–Cryogenian (1000–635Ma), Mesoproterozoic (1600–1000Ma), Paleoproterozoic (2500–1600Ma), and Archean (4000–2500Ma). Note the relatively heavier δ34S
data in both sulfate and pyrite during the Ediacaran Period.
to the large paired S isotope anomaly (named Ara anomaly) in the ter-
minal Ediacaran Period (Fike and Grotzinger, 2008), which is notably
coupled with earlier reports of elevated oxidation of the atmosphere
(Kaufman et al., 2007), enhanced organic carbon burial (Hayes et al.,
1999), and widespread phosphorite deposition (Cook and Shergold,
1984; Papineau, 2010; Muscente et al., 2015; Cui et al., 2016b).

5.6. Oceanic redox conditions and fossil distribution

Integrated litho-, bio- and chemo-stratigraphy allows us to uncover
possible link between the distribution of early macro-organisms and
their paleo-environmental context. The Khatyspyt Formation reveals
an intriguing relationship between the first local appearance of Edia-
cara-type macrofossils and a positive shift in both carbonate carbon
and pyrite sulfur isotopes at ca. 42m in stratigraphy (Fig. 5). The occur-
rence of Ediacaran fossils in the non-euxunic intervals of the Khatyspyt
Formation and the GaojiashanMember indicates that this overall isoto-
pic-paleontological coupling relationship may reflect a biological re-
sponse of early macro-organisms to more habitable redox conditions
with less hydrogen sulfide in the water column (Fig. 10).

The poisonous nature of dissolved hydrogen sulfide in thewater col-
umnwould have been a source of stress for Ediacaran complex eukary-
otes (Anbar and Knoll, 2002), and would have been a major control on
where communities would have been able to establish themselves in
the Ediacaran oceans (Fig. 10A). As euxinic conditions in the lower
Khatyspyt Formation are replaced by non-euxinic and more habitable
conditions in the upper Khatyspyt Formation, macrofossils particularly
Ediacara-type fossils become more abundant in the upper 85 m of the
studied interval (Fig. 10B). Although the atmospheric and oceanic oxy-
gen contents remained below modern levels until the early Paleozoic
(Kah and Bartley, 2011; Chen et al., 2015), they may have already
crossed the threshold to support animal metabolisms and activities
(Knoll and Sperling, 2014; Mills and Canfield, 2014; Mills et al., 2014;
Planavsky et al., 2014; Sperling et al., 2015b). Ediacara-type organisms
preserved in the Khatyspyt Formation may have lived in non-euxinc
(weakly oxic and perhaps ferruginous) conditions. Indeed, iron specia-
tion studies from time-equivalent strata in NW Canada (Johnston et
al., 2013; Sperling et al., 2015a) and Namibia (Wood et al., 2015) also
support the view that early Ediacaran animals may have lived in dy-
namic redox environments fluctuating between ferruginous and oxic
conditions.

Oceanic euxinia may have been widespread in Mesoproterozoic
oceans (Canfield, 1998; Poulton et al., 2004; Scott et al., 2008;
Gilleaudeau and Kah, 2013) and may have been common in Ediacaran
continental margins due to enhanced oxidative weathering (e.g., Li et
al., 2010, 2015a, 2015b; Wang et al., 2012; Och et al., 2015; Sahoo et
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al., 2016).Whether earlymacro-organisms evolved the capability to de-
toxify water-column sulfide still remains unknown. Data from this
study, however, indicate that the local appearance of Ediacara-type
macrofossils in the Khatyspyt Formation does not support the sugges-
tion that early metazoans were capable of tolerating euxinic conditions.
If ocean euxinia had a lethal effect on early metazoans, more work is
needed to constrain the effect of spatiotemporal variation of euxinic
water masses on the distribution of early metazoans (e.g., Li et al.,
2010, 2015b; Cui et al., 2015; Och et al., 2015).

6. Conclusions

Based on integrated litho-, bio-, and chemo-stratigraphy of the ter-
minal Ediacaran Khatyspyt Formation in Arctic Siberia, a large positive
δ34Spyrite excursion with a magnitude of ca. 70‰ is reported here for
the first time in this time interval. This shift of δ34Spyrite values from
−20‰ to +55‰ is closely coupled with the local appearance of Edia-
cara-type macrofossils in the studied section, suggesting an intriguing
geobiological response of earlymetazoans to dynamic redox conditions.
Based on multiple lines of sedimentological and geochemical evidence,
we proposed that euxinic conditions in the continental margin may
have excluded Ediacara-type organisms and early metazoans from the
lower Khatyspyt Formation. The progressive transition from euxinic to
non-euxinic conditions allowed the colonization of early macro-organ-
isms in the upper Khatyspyt Formation.
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