
Assessing the Scalability of Parallel
Programs: Case Studies from IBAMR

Elijah DeLee

SENIOR HONORS THESIS

Mathematics Department
University of North Carolina at Chapel Hill

April 2018

Approved:

Boyce Griffith, Ph.D.
Thesis Advisor

Katie Newhall, Ph.D
Reader

David Adalsteinsson, Ph.D
Reader

Many thanks to my friends and family, for supporting me in this and every
endeavor.

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.

Date: Author signature

Abstract

Title: Assessing the Scalability of Parallel Programs: Case Studies from IBAMR

Author: Elijah DeLee

Supervisor of the bachelor thesis: Boyce Griffith, Ph.D.

Abstract:

Programmers are driven to parallelize their programs because of both hardware
limitations and the need for their applications to provide information within ac-
ceptable timescales. The modelling of yesterday’s weather, while still of use, is
of much less use than tomorrow’s. Given this motivation, those researchers who
build libraries for use in parallel codes must assess the performance when deployed
at scale to ensure their end users can take full advantage of the computational
resources available to them. Blindly measuring the execution time of applications
provides little insight into what, if any, challenges the code faces to achieve op-
timal performance, and fails to provide enough information to confirm any gains
made by attempts to optimize the code. This leads to the desire to gain greater
insight by inspecting the call stack and communication patterns. The author
reviews the definitions of the forms of scalability that are desirable for different
applications, discusses tools for collecting performance data at varying levels of
granularity, and describes methods for analyzing this data in the context of case
studies performed with applications using the IBAMR library.

Keywords: performance, scalability, parallel, memory-bound

Contents

1 Introduction 2
1.1 Defining scalablity . 2
1.2 Challenges to scalability . 4

1.2.1 MPI Communication Overhead 4
1.3 Problem size . 5
1.4 Formative Assessment of Performance 6

2 Methods 7
2.0.1 Methods to gain introspection 7
2.0.2 Presentation and Analysis of the data 8

2.1 Tool Selection . 10
2.2 Preparing the weak scaling trials 11

2.2.1 Case Study 1: Linear Solver with HPCToolkit 12
2.2.2 Case Study 2: 3D ABC Flow with Score-P 14

2.3 Data Analysis . 16
2.3.1 HPCToolkit Data . 16
2.3.2 Score-P Data . 18

3 Results 20
3.1 Krylov Linear Solver . 20
3.2 3D ABC Flow Simulation . 25

4 Discussion 29
4.1 Interpretation of Results . 29

4.1.1 3D Krylov Solver Results 29
4.1.2 3D ABC Flow Simulation Results 30

4.2 Technical Limitations . 31
4.3 User experience of Profiling Tools 32

4.3.1 Score-P . 32
4.3.2 HPCToolkit . 33

4.4 Conclusion . 34

Bibliography 36

Appendix 38

1

Chapter 1

Introduction

Programmers are often driven to parallelize programs by two different desires,
either they want the results from a program with a fixed workload faster, or they
want to solve a larger problem in the same amount of time as it took to solve a
smaller problem. Whether the parallelization of a program is scalable is a metric
of how successful the implementation is at achieving these ends. These end goals
are disparate enough that they deserve two different metrics for measuring how
successful we have been at achieving them.

First, I will review the definitions of these types of scalability. Then I will
discuss what barriers programmers face in both ascertaining and achieving scal-
ablity. Finally, I will discuss what we hope to get out of any assessment of the
scalability of a program. This information will frame the method in which cases
studies were performed and the results found.

1.1 Defining scalablity

If a program must perform many computations on a limited data set, this is
generally termed compute bound. It may make sense to say that we would
like to devote more hardware to the problem and expect a solution in a shorter
amount of time. If we rework this program to split the computational steps
over more processors, when we evaluate whether or not we have achieved our
goal, we should be concerned with strong scalibility. More formally, a program
exhibits strong scalability when its time to solution decreases in proportion
to the increase in processors given a fixed “problem size”. A classic compute
bound problem is brute force encryption cracking. If we are in the business of
de-encrypting data we do not have the private key to, then our workload is fixed,
and we are interested in using more hardware to arrive at a solution faster.

Because we cannot expect perfect strong scalability, it is common to define
two terms to help us asses how strongly scalable a program is. If the time a
program takes to execute in serial is Tserial and the time it takes to execute in
parallel is Tparallel, speedup, S, is defined as:

S =
Tserial

Tparallel

Then we can conceive of the “efficiency”, E, of a parallel implementation as
the following (where nprocessors is the number of processors used in the parallel

2

run of the program):

E =
S

nprocessors

=
Tserial

nprocessorsTparallel

Unlike a compute bound problem, a memory bound problem faces limita-
tions to its run time not because of the time it takes for computations to complete
on the processor, but because it takes time to load the data into memory. Most
modern computers have been built exploit a hierarchy of memory, keeping re-
cently used data in very “fast” memory in the form of the processor’s registers
and cache, the rest residing in much slower main memory, and when this fails to
hold the data it may also be written to disk (“swap”), which is extremely slow.
Beyond the question of the speed of memory, there are physical limitations to how
much memory can be on a chip (cache size), and to the volume of memory that
can be transferred to the chip in any given amount of time (memory bandwidth).
These factors support a upper bound to any gains in efficiency optimization of
data access patterns can hope to achieve. So when a programmer parallelizes this
type of code, it is with the hope that spreading the data over more nodes can
effectuate a improvement in the execution time because each node has less data
to work through and can fit a greater proportion of the data in faster memory.
Also, it is quite possibly the case that the program simply has memory needs that
exceed the memory available on any single machine that the user has access to. In
this case, if the problem can be partitioned into smaller problems and spread out
over several machines, then it transitions from being “completely unsolvable”,
to “solvable”, which provides an excellent speedup factor of an immeasurable
quantity. In cases such as this, there is no sensible way to compare the parallel
program with the serial version, because it may simply be impossible to run our
program in serial on any hardware we have access to.

In the case of memory bound applications there is likely an ideal ratio of
“work” to each “worker”. We can quantify “work” as the volume of data, since
this is our limiting factor, and the “workers” as CPU cores, as this is how we will
distribute the work. If we can find this ideal proportion1, and keep this ratio of
data to number of CPU cores constant, we would hope to be able to solve a larger
problem in the same amount of time as it took us to solve a smaller problem. This
is what is called weak scalability, when the time to solution stays constant as
we increase the amount of computational resources in proportion to the growth
in problem size.

Many numerical schemes for basic matrix operations provide the classic exam-
ple of memory bound algorithms. Often matrices and arrays are used to represent
data on a spatial grid, such as in the fluid structure interaction problems users
of IBAMR implement. In this use case, if we want to run our simulation with a
certain resolution of the spatial grid, we would hope to be able to run the program
at a low resolution on a set number of nodes in an acceptable amount of time,
and then and then scale the number of nodes in proportion to the resolution of
the grid and still get our solution in roughly the same amount of time.

1Performing trials to determine this ideal problem size to compute power ratio is referred to
as a static scaling study [1].

3

1.2 Challenges to scalability

Parallelizing programs must come at some cost, at least because of the cost
of communication unless a problem is of the class of “embarrassingly parallel”
problems2. The communication itself is limited by the rate and volume at which
data can be transmitted from one process to another. Additional costs are also
incurred by the software that makes this communication possible.

1.2.1 MPI Communication Overhead

IBAMR and several libraries it depends on, including PETSc, [2], and SAM-
RAI, [3] utilize the MPI standard3 to enable their programs to be run on dis-
tributed memory systems, where separate processes (also referred to as “ranks”)
each only have direct access to their own memory address space, and perform
other communication and data access over the network.

Network latency and bandwidth then contribute to the time to solution, an-
nulling some of the gains that the parallelization may have achieved. Much
research is devoted to the limitations provided by network communication and
the network topology of high performance computing clusters. In general, the
programmer would like to be agnostic of these details and write a program that
runs well on any system that provides the necessary runtime environment. But
it is important to note the fact that performance can vary greatly from one clus-
ter to another, and even from one run on a cluster to another depending on the
distribution of the nodes in the network provisioned by the cluster’s scheduling
system.

Because network communication is expensive, it is important to design our al-
gorithms to divide the workload as “evenly” as possible, as whenever one node is
waiting, it means that another is working harder than it needs to be. IBAMR uses
adaptive mesh refinement (AMR), to discretize different portions of the compu-
tational domain at different levels of refinement. This process occurs throughout
simulations, causing a great variability in total workload. The domain is di-
vided into “patches” that are then distributed to the ranks. These patches are
redistributed as some interval, and this is a step that is fraught with possible
performance issues if data locality is not properly considered by the distribution
algorithm.

Using MPI also incurs other incidental costs that may not be obvious to
those who have only considered parallel computing from a distance. Initializing
the MPI communication infrastructure takes a non-trivial amount of time that
increases at a rate that is at least O(n), if not O(n2), n being the number of
nodes or CPU cores. The cost of this set up stage can be amortized over longer
running programs, but it can dominate the execution time if the workload of the
program is too small. A programmer attempting to assess the scalability of their
code should to take this into consideration when designing their profiling trials.

2Embarrassingly parallel problems are those where no communication between each parallel
process is necessary because each process acts on data that is not e�ected by the results of the
other processes.

3The MPI standard (Message Passing Interface) is implemented by various libraries, includ-
ing Open MPI, [4], and MPICH, [5].

4

Figure 1.1: Graphical depiction of a mesh with various patches of different levels
of refinement.The patches, outlined in bold, are distributed to the ranks. So-
called “ghost cells” exist on the boundaries of each patch to allow each patch
access to the cells that are directly adjacent to it. The process of filling these
ghost cells requires communication between the ranks. Source: Presentation by
Ann S. Almgren, Lawrence Berkeley National Laboratory [6]

The MPI implementation may also do other work that can have unexpected
consequences. One such activity is so called “busy waiting”. Both MPICH and
OpenMPI use “busy waiting”. In summary, it is common to use “helper” threads
spawned by each rank to check to see if anything needs to be done (for example,
receive data that the rank has been sent). These helper threads can be very
active and if more processes have been spawned than there are available cores,
the helper threads will end up interrupting the execution of the actual program.
This can have horribly detrimental effects on the performance of the program
and can lead to very misleading results when analyzing scalability. This provides
another constraint when designing what weak scaling trials should look like.

1.3 Problem size

As mentioned before, IBAMR’s fluid solvers utilize algorithms that are con-
sidered classically memory bound. Generally the computational domain is fixed
to a certain region of interest, but the level of refinement of the spatial grid is
configured by the user at runtime in an input file. Because of the nature of pro-
grams that use adaptive mesh refinement, memory usage of the program evolves
over time. The most defining factors of how much memory will be consumed
are the initial grid spacing, the ratio at which the grid is refined at each level of
refinement (notice the finer grid spacing of the smaller patches in figure 1.1), and
the number of levels of refinement allowed4.

As will be discussed at further length, the goal of the scaling study should be a
guiding principle when it comes to defining what the problem size is. If the goal is
primarily to provide results that guide refactoring of code to produce measurable

4These parameters are referred to in IBAMR input �les as follows: The initial discretization
of the domain in one dimension, which is for the purposes of this study is always equal in
each spatial dimension, is referred to simply as N. So if N = 64, a cubic domain will consist
of 643 cells. The ratio of re�nement of one level in respect to the previous level is known as
REF RATIO. The number of levels of re�nement allowed is known as MAX LEVELS

5

benefits to the scalablity of the program that are meaningful to the end user and
utilize computational resources in a cost effective manner, the problem size should
be defined in the simplest possible manner that garners these results. Given this
guidance, the problem size will be considered the number of cells in the initial
level of refinement. For example, in a three dimensional simulation, if the initial
number of cells on one face of the cubic domain is 64, then the initial number of
cells is 643 = 262144. For simplicity I will often refer to simply the refinement
of one face, which in this example is 64. Other measures of “problem size”, for
example the number of time steps in a simulation that models the evolution of
the fluid on the spatial grid over time, will be fixed to isolate the resolution of
the spatial grid as the only parameter measuring workload in the study.

1.4 Formative Assessment of Performance

Despite the fact that it is unlikely to achieve perfect scalability, it is very
likely that we can improve the scalability of a program. Attempting to guess
where the inefficiencies in a program are is likely to result in what is colloquially
termed “Premature Optimization”. Moreover, even if we blindly refactor code in
an attempt to improve its efficiency, it is difficult to accurately gauge to results
of our optimization if we simply measure time to solution. We may very well
have improved one portion of our program but incurred some kind of incidental
loss of performance in another region of the code. Another consideration specific
to the types of simulations built with IBAMR is the fact that we are quantifying
“problem size” on the refinement of the spatial grid, but the computation models
the fluid-structure interaction as it evolves over time. In this case, there may
be costs incurred in initializing MPI or setting up the solver that are one time
costs. This means that these portions of the program have diminishing relative
cost when the simulation is run for more time steps. This means we are not
equally concerned with the scalability of all portions of the code, because they
have varying impacts on time to solution. It would provide much clearer gains to
the end user for the solve step to be scalable rather than the initialization of the
solver, because many solve steps are performed in a simulation, but the solver is
only initialized once.

For these reasons, to draw actionable conclusions from a performance study,
it is important to gain some introspection into different portions of the code so
we can know what regions of our program are to blame for our performance
challenges. There are several ways to gain this introspection, with variable side-
effects on the normal functioning of the program.

6

Chapter 2

Methods

This section will describe the tools used to asses the scalability in each of the
case studies as well as the formulation of the case studies and the configuration
of the tools for each study.

2.0.1 Methods to gain introspection

There are a handful of data sources that most profiling tool-chains use to
gain introspection into the program flow across the many processes of a par-
allel program. I have concerned myself exclusively with the tools available for
C/C++/FORTRAN based programs.

There are two primary avenues for collecting the data. The first is to in-
terrupt the program at some configured rate and make observations. This is
accomplished by running the parallel process through another process, which fa-
cilitates monitoring when libraries are loaded and unloaded. In this case it is not
necessary to insert any additional code into the original program to gain insight
into what functions are running at any given time. This produces a statistical
view of the runtime, telling you what percentage of the time the monitoring pro-
cess found itself in each portion of the code. In this method, the amount of
overhead the measurement generates is proportional to the sampling frequency,
not the frequency of calls or depth of the call stack. Inevitably, because the tool is
interrupting the program flow on the chip and performing some amount of action
itself, it can perturb the counts on the very hardware counters that it is using
to assess the program. The programmer can choose to accept this perturbation
as small enough if the sampling frequency is low enough to not be statistically
significant.

Alternatively, some tools instrument code by inserting statements into code
to generate metrics, producing data about how long a function executed for by
collecting the time at entry and the time at exit. The instrumented code is
executed as normal, and the metrics are generated at runtime. The process of
instrumentation may be manual or automated. Instrumented code generally will
execute slower from the user’s perspective compared to the previous method, but
does not perturb the measurement of the time for sections of the code that it is
measuring. The cost of a slower executing program may be non-trivial depending
on the computational resources available to the programmer.

Both methods of data collection can be used to generate information that
can provide insight and inform action on the part of the programmer, and both

7

Figure 2.1: Graphical depiction a calling context tree reconstructed by inspecting
the call stack at the time of measurement and using the return address to identify
the caller. Adapted from hpctoolkit.org: [9]

methods have their implicit costs.
A commonality between the methods is that they generally leverage two C

libraries libunwind [7] and PAPI [8]. The libunwind library facilitates intro-
spection into the call chain of a program. This can be used to display the data in
a calling context tree, and to calculate metrics such as the “exclusive” execution
time of a function call (eg, subtracting the time or other metric that child items
are responsible for from the parent item.) The PAPI library provides a consistent
interface to hardware counters many performance analysis tools use in an effort
to be platform independent. This is necessary because chips from different man-
ufacturers often has different APIs for the hardware counters that collect data,
for example the number of FLOPs computed in a certain number of cycles. Both
are freely available as source code to be built by the user.

These tools can then be used to assess how much time each rank spend in
each function call, or other metrics including how many floating point operations
were performed in a function call.

In the case studies performed, I used tools from both types and will comment
on the user experience of both in further detail in the discussion section.

2.0.2 Presentation and Analysis of the data

These data are then generally presented in two modes, called profiles and
event traces. In a profile, the time dimension is compressed, giving a sum of a
metric over the course of the program and associating it with items in either a
calling context tree, giving us a sum for each node in the tree over the course of
the program, or a flat view where all instances of a function call are squashed as
well, giving us a sum over the course of the entire program. In the flat view, each
function call is shown with its sum total of the metric in question, as it may be
the child item of several higher level functions. A calling context tree (as shown
in 2.1), displays the metric associated with each function call as a node in a tree,
as shown in figure 2.2. If an function call f1 is called by both f2 and f3, it will
appear as a child item of both in the tree.

We can learn more about how the load is distributed across the ranks by
looking at how much time each rank spent waiting. Ascertaining load balance

8

Figure 2.2: In a profile, the time dimension is compressed and we are presented
with a single metric for each item in the call tree.

must be done with care, as some times it may appear that one function is to
blame when it is not in reality the bad actor. This is because there a function
may have a barrier at the end, but have no blocking wait before the function call.
So it may appear that the program spent a large deal of time in a function, but
in actuality the load imbalance lays in the function call before it. This scenario
is illustrated in figure 2.3.

For this reason, a second mode of presentation is often used called a trace view.
To generate the trace view, much more data must be collected than is needed
to generate the profile view. The trace view generates what can be conceived
of as a three dimensional view of the program’s execution. Generally, we are
presented with colorized data where each function call is assigned a color, and
we can see in each process at each unit of time what function call the program

Figure 2.3: In this drawing, Function A is the actual cause of the load imbalance,
but it may appear to be in Function B with a naive analysis of mpi wait times

9

Figure 2.4: This labeled screenshot of HPCToolkit’s trace viewer (aptly named
hpctraceviewer) shows all elements expected in a trace visualization. These
are: a plot with each process colorized to indicate what function it was found in
at each measured time slice at one layer of the call stack, a side view of all the
layers of the call stack, and a legend relating the colors to function calls.

was in. This data is layered, so at each instance of time in each process we can
navigate through the layers of the call stack. These attributes are illustrated in
figures 2.4 and 2.5.

2.1 Tool Selection

Various additional factors placed constraints on the choice of tool selection.
These include the cost, if any, to acquire any of the tools or data presentation
software, the compatibility of any of the tools with the platform that the pro-
grammer has available to them, and personal preference when it comes to the
user experience of any of the profiling software.

Obtaining additional funds to acquire licenses to any non-free software was
outside the time scope of this project, and I decided to prejudice myself towards
free tools that I was able to acquire quickly, had documentation available, and was
able to build with minimal compatibility issues. The two tool sets that arose as
having the most available documentation and I had ready access to the profiling
and data presentation software for were the HPCToolkit ecosystem [11] and the
Score-P ecosystem [12]. I qualify them as ecosystems because one must commit
to the use of a whole array of tools that cannot be intermixed with other tool

10

Figure 2.5: Conceptual drawing of the trace view from HPCToolkit presentation
by John Mellor-Crummey [10]

chains. All of the HPCToolkit tools are free, and the profiling portion of the
Score-P ecosystem is also free. It is the case that the Score-P trace generation
tool is free, and the file format of the traces is open source, but there are no
currently active projects (at the time of writing) other than the non-free Vampir
[13] trace viewer to consume this trace data.

Returning again to the primary motivation of this study, which is to derive
actionable information about the scalability of different portions of IBAMR, I
would have been well served to be even more prejudiced about the difficulties I
might face as a user of the profiling tools. Challenges faced building and run-
ning, storing and moving the data generated, as well as viewing and otherwise
consuming the data generated, all slow the process and take available time away
from achieving the primary goal, which is assessment and improvement of the
scalablity of the software under study. That said, once you have chosen a tool,
there is a certain amount of investment made that is difficult to justify throw-
ing away at the first roadblock. This includes time reading documentation as
well as building the environment that the tool requires. It is common knowledge
among users of scientific software that navigating a myriad of user configured
and built C/C++/Fortran libraries can “inhibit software evolution by imposing
an unintentionally-high cost to change and dilution of effort to meet short-term
deliverables, ” [14].

2.2 Preparing the weak scaling trials

Two case studies were performed, each with one of the tool chains named
above, HPCToolkit and Score-P. I will describe any special preparation of the
application for profiling as well as the design of the scaling trials.

For all runs it was determined to fix the refinement ratio, maximum levels of
refinement, the number of cores to use on each node, and time steps taken in the
simulation if applicable. In this way we hoped to control these elements that can
effect memory consumption and saturation, and isolate just the base grid spacing
as our measure of “workload” or “problem size”. By “memory saturation” I mean
to say that while there were 22 real cores (each capable of hyper threading) on each
of the nodes I was working with, the ability of the node to move memory to the
cores becomes saturated at some point before all cores are working because they
reside on the same motherboard and share physical main memory (RAM) and
there is a finite capacity to transfer data held in main memory to the cores [15].

11

So while they are working independently and are not being actually interrupted
by each other, they still are in effect “waiting in line” for memory. For this reason
we fixed the number of cores at 8 per node, well below the total 22 cores on each
node.

To attempt to control for user error, which there were ample opportunities for,
I created templates for the submission script and input files for the application,
to ensure each trial was doing the exact same simulation and only varying the
grid spacing and the number of nodes on which it was running. Additionally I
disabled all visualization data output, as this time consuming activity of writing
to disk would obscure the phenomena I was attempting to observe, which is the
performance of the solver. Additionally I logged information regarding the the
grid spacing and the number of cores the run was using in the logging of stdout
and stderr that the scheduling system provides jobs. Finally, I separated the
data by creating a directory structure such that each trial would output its logs
and profiling data into directories whose names encoded information about the
run.

Additionally, I had the submission scripts create symbolic links to the same
binary of the application, so as to ensure that all trials were running the same
compiled program and only varying the input file.

experiment root folder

nodes 1

N 128
submit.sh

nodes 2

N 160
submit.sh

Diagram of directory structure of a weak scaling trial.

2.2.1 Case Study 1: Linear Solver with HPCToolkit

The only specific compile-time requirement for preparing the application for
profiling with HPCToolkit’s hpcrun is to compile the IBAMR library and all
dependencies with the -g compiler flag that tells the compiler to include extra
debugging data when producing the symbols, which allows hpcrun to link the
symbols it encounters back to the original source code.

The program chosen to profile is a model problem for testing one of the linear
solvers used extensively in other IBAMR applications. The program uses the
solver to produce the solution to a problem of the form ∆u = f . Based on initial
test runs, it became apparent that the time taken to initialize MPI as well as
to initialize the solver were dominating the runtime of the application. Because
of this, and the statistical nature of the sampling that HPCToolkit performs,
not enough data was being generated to get a meaningful idea of how the solver
was scaling. For this reason, I modified the program to do the same solve step
many times (one hundred times to be exact). This caused a greater portion of
the entire program to be spent in the solver, because the solver need only be
initialized once to be used many times, and this more accurately reflects how it

12

is generally used in the types of simulations users build with IBAMR where the
solver is used many times as the simulation evolves over time.

Initially, I was attached to the idea that I would double the refinement of the
coarsest level of mesh and increase the number of cpus by a factor of 8 for each run
in the weak scaling trial. This yielded two issues, the first being only 4 possible
runs were possible on the cluster I was interested in, that being with 1 node, 8
nodes, 16 nodes, and 128 nodes. The second problem was that submitting a job
to use 128 nodes of a cluster that has only 183 nodes yielded unacceptable wait
times for it to progress through the queue (a week or more). This motivated me
to consider intermediate multiples of the initial workload, to give me data points
that were less dispersed. I finally decided on scaling the grid spacing by 11

4
with

each run. This resulted in the configuration displayed in the following figure.

Second Design for Weak Scaling Trials (3D domain)
N Cells Nodes Cores Cells/Core
128 2097152 1 8 262144
160 4096000 2 16 256000
200 8000000 4 32 250000
250 15625000 8 64 244140.63
316 31554496 16 128 23478.05
391 59776471 32 256 233501.84

More details arose in discussion with other IBAMR developers that informed
my design of the trials for this second program.

It is a commonly held belief among IBAMR developers that the algorithms
IBAMR and SAMRAI use can display poor performance or odd load balance
when the number of grid cells can not be evenly divided by the number of MPI
ranks. This is by the basic nature that patches are distributed to each rank and
each rank gets at least one patch, and patches must consist of integer numbers
of cells.

Because of the additional constraint of desiring the base grid spacing to be
evenly divided by the number of cores, I decided it was acceptable to perturb
this value a small amount to arrive at a convenient number whose cube was
divisible by the number of cores. This resulted in the configuration displayed in
the following figure.

Final Design for Weak Scaling Trials (3D domain)
N Cells Nodes Cores Cells/Core
64 262144 1 8 32768
80 512000 2 16 32000
100 1000000 4 32 31250
128 2097152 8 64 32768
160 4096000 16 128 32000
200 8000000 32 256 31250

Finally, I had to select an “event” to measure. I was interested in how much
time each function took, and selected the REALTIME event at the frequency
of 6000 microseconds between samples (roughly 166 sample per second). The
frequency was chosen based on recommendations in the HPCToolkit user manual

13

[16]. HPCToolkit generates profiles that are relatively large because they include
a copy of the entire source code tree that it finds when doing the static analysis
of the binary.

Collecting the trace data with HPCtoolit generates data files on the order of
gigabytes. This is much larger than the data files generated when only collecting
profile data with HPCToolkit, which is on the order of megabytes. I could not
find any practical way to compare the trace data across runs. For these two
reasons, I only collected the trace data for the largest run as a means to look to
see if load imbalance was a problem.

2.2.2 Case Study 2: 3D ABC Flow with Score-P

The second case study used the Score-P tools to collect data from running
a three dimensional periodic flow simulation of a classical problem that has an
analytic solution, used by IBAMR developers as a model problem for convergence
study of the solvers. The simulation is of what is termed the “Arnold-Beltrami-
Childress” flow1 with periodic boundary conditions [17]. The general form is
given by equation 2.1.

uA;B;C(x; y; z) = (A sin z + C cos y; B sin x + A cos z; C sin y + B cos x) (2.1)

This simulation uses refinement but does not use AMR, in that the levels of
refinement do not change size or location in the domain.

Building Score-P with my initial choice of compilers, OpenMPI using gcc 4.8,
on the cluster I was working on was uneventful and mislead me to think that
this would be the case were I to build it on another system or with another set
of compilers. This proved not to be the case upon further investigation, but was
not an issue for the completion of this case study, seeing as it worked “out of the
box” in this scenario.

To profile an application with Score-P it is necessary first build Score-P with
the compiler of choice, and then to compile the application with the Score-P
wrapped compilers and any libraries that the application depends on to the extent
of the interest of the researcher doing the profiling. I started with only compiling
IBAMR and the application with the Score-P wrapped compilers.

Score-P provides some ability to narrow the regions of the code where profile
and trace data is collected. This helps to greatly reduce the size of the profile
as well as make the data easier to consume for the end user, yielding much less
cruft and flotsam to sort through in the search for the part of the code you are
interested in. The filtering can be informed by running an small test of your
program and analyzing the resultant profile with a tool that is built along side
the other Score-P tools called scorep-score. This tool provides metrics about
how large the trace would be and what calls are responsible for the size of the
profile.

This data may be helpful to some, but did not provide any information I was
able interpret, other than the profile would be very large if I did not do anything
to trim it down. A direct way narrow the focus of the profile that I chose was to

1I will abbreviate this as \ABC Flow"

14

define my own custom “region” name and create a filter file that instructs Score-P
to ignore everything outside of that region. By wrapping the solve step with the
a macro provided by including a header from the Score-P source code, I was able
to reduce the size of the profile down to a size where I could compress the whole
directory tree for the entire set of weak scaling trials down to an archive less than
100 megabytes in size. All child items of this root call are included in the profile.

#include <scorep/SCOREP_User.h>

// ... omitting unrelated code ...

SCOREP_USER_REGION_DEFINE(solve)

SCOREP_USER_REGION_BEGIN(solve, "solve", SCOREP_USER_REGION_TYPE_FUNCTION)

// main solve step

time_integrator->advanceHierarchy(dt)

SCOREP_USER_REGION_END(solve)

// ... omitting unrelated code ...

The documentation about the arguments to these macros consists of an exam-
ple in the user manual, with out any explicit acknowledgement of what becomes
of these arguments. Given this lack of guidance, I chose to keep things simple
and give it all the same name.

After creating this named region in the source code, I then was able to cut the
profile down to a very reasonable size by creating the following “filter file” and
alerting Score-P to its presence by exporting its path to an environment variable2

in my submission script.

SCOREP_REGION_NAMES_BEGIN

EXCLUDE *

INCLUDE

solve

SOLVE

advanceHierarchy

Hierarchy

SCOREP_REGION_NAMES_END

The method by which the string matching worked, which allows for wildcards
like “*”, was not clear from my reading of the documentation. Primarily, it is
unclear if the string matches act on the mangled names or on the unmangled
names. For this reason I erred on the side of being over zealous. The goal was to
cut down on the amount of noise and the size of the profile while not excluding
information I needed, which this filter achieved. If it still captured information I
did not end up needing, that was not of importance to me. The guiding principle
of “what will provide me with information that I can act on to improve my
program” again informed me to not spend much time optimizing this filtration
process.

2SCOREP FILTERING FILE

15

If Score-P encounters a function call that calls into another library, its child
items may not be present in the profile data if these functions do not have pub-
lic symbols defined. This was the case in a function that I was interested in
investigating further upon initial trials that resided in SAMRAI. To make this
information visible in the profile, I again created a custom user region in the
source code for the function I was interested in and rebuilt SAMRAI with the
Score-P compilers. This made the private SAMRAI function’s data appear as a
child item of the public SAMRAI call that had piqued my interest because of its
behavior (which will be discussed at more length in the results section).

While the compiler emitted warnings about multiple definitions of some Score-
P macros because of the fact that the header was included in the SAMRAI library
as well as the IBAMR application, everything appeared to function normally.

Having added this region, named “overlapping box” in homage to the function
name, I added it in various permutations to my Score-P filter file, including the
name of the function itself.

SCOREP_REGION_NAMES_BEGIN

EXCLUDE *

INCLUDE

solve

SOLVE

advanceHierarchy

Hierarchy

makeNonOverlappingBoxLists

overlapping_box

overlapping

SCOREP_REGION_NAMES_END

The final configuration of grid spacing to number of processors used for the
Krylov sovler was used again for this study.

Weak Scaling Trials for ABC Flow Simulation (3D domain)
N Cells Nodes Cores Cells/Core
64 262144 1 8 32768
80 512000 2 16 32000
100 1000000 4 32 31250
128 2097152 8 64 32768
160 4096000 16 128 32000
200 8000000 32 256 31250

2.3 Data Analysis

2.3.1 HPCToolkit Data

After collecting the profile data during the run of the program with hpcrun,
it is necessary to merge the data with the output of the static analysis tool
hpcstruct that HPCToolkit provides to be able to view the data with the data
viewer, hpcviewer. This merging step is done by another tool, of which there
are two versions, hpcprof and hpcprof-mpi (the “mpi” version obstensibly
parallelizes this merging task). I found the performance of these to be mildly

16

unreliable. They would intermittently fail to be able to merge the data, appearing
to have issues related to excessive recursion causing the Java Virtual Machine to
run out of memory. I was able to avoid trouble shooting this problematic behavior
by switching to the other version whenever the one I was using was not working.
So if hpcprof-mpi broke on the merge step, I would switch to hpcprof. This
workflow did not engender in me a great trust of the tool kit.

There are various command line options to generate different statistics from
the event data. I chose to use a catch all that would produce the average, sum,
standard deviation, inclusive and exclusive time metrics.

The workflow for each trial then looked (roughly) like this:

Perform static analysis, creating main3d.hpcstruct

> hpcstruct main3d.cpp

Run the program, generating measurements directory

> hpcrun --event REALTIME@6000 ./main3d input3d

Merge the static and runtime data

> hpcprof -S main3d.hpcstruct -I./’*’ hpctoolkit-main3d-measurements -M stats

archive results to transport to workstation to use GUI data viewer

> tar -cjf database.tar.bz2 *database*

This database is consumable by the hpcviewer tool, which has a graphical
interface. The data viewer is available in pre-compiled binary format for download
on the HPCToolkit website.

I would then bring these files down to my local workstation via scp because
other methods of connecting remotely to the database proved to have too much
latency for me to be able to do any meaningful work.

At this point in the project I was still guilty of some “premature optimization”
of my workflow, attempting to perform my data analysis and graph generation
with scripts. Initially I attempted to work with another of the HPCToolkit util-
ities, hpcdata [18], a command line tool that can consume the data format pro-
duced by hpcprof. This did not prove fruitful. The second workflow I attempted
to use was as follows:

1. Download archive of merged database and unpack

2. Open the database with hpcviewer

3. Export the data to csv with a button

4. Load the csv data into a python object provided by the pandas library

For the first trials I went through several more stages mangling this csv data
in python scripts to attempt to “automate” the generation of various figures.
This proved time consuming, spending a good deal of time dealing with various
inconsistencies in the string formatting of the data.

The final and most productive workflow I arrived at still involved exporting
the data to csv file format and then importing it into standard spread sheet
software available in most productivity suites. By using a lookup function, I was
able to merge the data from several runs into one spreadsheet by matching on the
function calls, which thankfully were consistent across data sets. The function
calls may not all be present in each data set, when they do appear, they match.

17

More specifically, if the function name is in column A of a spreadsheet, and data
from the 2 node case is in a sheet named nodes2, the spreadsheet software I
used (Google Sheets) allowed me to search through the nodes2 sheet and copy
a certain cell in a row if the corresponding column A cell had the same value as
my reference sheet with an equation called VLOOKUP. Documentation on the
VLOOKUP function can be found on the Google Docs help pages [19].

2.3.2 Score-P Data

My endeavor to automate the data analysis of the HPCToolkit data had
sufficiently humbled me by the time I approached the profile data of Score-P.
Given this experience, I chose to not investigate how to script the extraction
of the data from the profile data. Instead I chose a very simple method that
provided me intelligible insight into the results with little over head.

The data viewer for the profile data, cube, was available via my workstation’s
operating system’s package manager (Fedora 25, using dnf). This worked without
any customization. I then performed the following steps to generate graphs that
compared the average run-time of functions across the weak scaling trials.

Score-P data analysis workflow

1. Archive entire experiment directory tree including logs and submission
scripts (possible because it is small enough to move over scp efficiently).

2. Copy the archived files to local workstation and unpack.

3. For the largest scale run, open the profile data and select the “time” data
(Score-P by default collects time, “visits” (unclear what this is), bytes sent
and bytes received.

4. Select the “flat” view.

5. Right click to discover option to sort calls based on inclusive time.

6. Record the top X “hot” calls (largest amount of time spent) (the value of
X depends on patience of scribe).

7. Observe how these calls were distributed over the ranks in the right pane
of the cube viewer and take note of any large differences that may indicate
load imbalance.

8. Close this data file. Open the smallest run.

9. Again select the time event and the flat view and sort on inclusive time.
This time, however find the same calls that were the top X calls in the
largest run. If they are no longer the top X, and they are difficult to find,
you can search for them in the calling context view and highlight them there
if you know where they care called. This selects them in the flat view as
well when you switch back. Unfortunately there is no “find” or “search”
function, but this does provide a second-best option to find functions of
interest. Record these numbers.

18

10. Repeat for remaining runs, still recording the data for the functions that
were the top X calls in the largest scale run.

11. Plot the run time as a function of the number of nodes. It is important to
recall that each number will be the sum across the ranks so it should be
divided by the number of cores or by the number of base grid cells to get
average per rank or per cell.

12. Examine the source code of any functions that become much more con-
sumptive of time in larger trials than smaller trials and determine if there
is any regions that may be problematic.

19

Chapter 3

Results

3.1 Krylov Linear Solver

The first trials running this program collecting data with HPCToolkit revealed
that the time spent initializing MPI and initializing the solver was dominating
the runtime of the program. This motivated modifying the original program to
solve the same problem multiple times. I chose to enclose the solve step in a loop
that ran 100 times. After quite a few iterations, final results showed relatively
good weak scaling of the solver itself but poorer scaling of a function named
opal progress. The graph in figure 3.4 and table 3.1 display data from the
trails.

Initial data collection and analysis also revealed that HPCToolkit also collects
information about MPI helper threads. I have in many cases excluded this data,
but the data regarding functions like opal progress are included because these
happen in the main thread of the program. Because several functions of interest
were related to communication, trace data was collected for the largest case using
32 nodes, an example of which is shown in figure 3.1. The sync wait st function
that is shown in magenta and the purple ompi_coll_base_allreduce_intra_

recursivedoubling are both child items of PMPI Allreduce, and both then re-
sult in calls to opal progress. The metrics in 3.1 related to opal progress can
be considered an aggregate of these calls. The root of these calls to PMPI Allreduce

can largely be associated with calls to IBTK::CCPoissonHypreLevelSolver::

solveSystem and KSPGMRESClassicalGramSchmidtOrthogonalization. Gram
Schmidt Orthogonalization involves many dot products, which inherently re-
quire a great deal of communication because of the nature of the operation
requires a call to PMPI Allreduce which is a blocking MPI operation. Calls
to SAMRAI::tbox::Schedule::communicate and SAMRAI::tbox::Schedule::

finalizeCommunication originate from IBTK::HierarchyGhostCellInterpolation::

fillData. These calls too eventually call opal progress while they wait for MPI
communication to complete.

The term “ghost cells” refers to the cells on the boundary of the patch that a
rank is performing computations on. These ghost cells provide data access to cells
that belong to a separate patch and may be “owned” by different MPI process.
Use of ghost cells then necessitates MPI communication.

Calls to both KSPGMRESClassicalGramSchmidtOrthogonalization and IBTK::

HierarchyGhostCellInterpolation::fillData appear exhibit some load im-

20

Figure 3.1: The trace shows that during calls to PMPI Allreduce not all ranks are
left in function calls that indicate they are waiting. Rather, this waiting behavior
is distributed in what appears to be a isolated region. This pattern is repeated
throughout the trace.

balance, because the total amount of time any rank spent in either of these func-
tions varies a good deal. The total time that any thread of the 32 node case spent
in KSPGMRESClassicalGramSchmidtOrthogonalization is shown in figure 3.2,
and the same metric is shown for IBTK::HierarchyGhostCellInterpolation::

fillData in figure 3.3. This graph is generated by HPCToolkit and graphs
the metric of each thread, including the MPI helper threads. For example,
the main thread of rank 2 is 2:0 and the two MPI helper threads are 2:1 and
2:2. Each of these helper threads have a dot plotted at 0 time spent in the
function because these threads contain no calls from the main program. HPC-
Toolkit reports that the standard deviation of the time that any rank spent in
KSPGMRESClassicalGramSchmidtOrthogonalization for the 32 nodes case was
9:01� 105 and for IBTK::HierarchyGhostCellInterpolation::fillData the
same metric was 8:28� 105. This value is of questionable use, however, as it in-
cludes the data of the MPI helper threads. For this reason, even the call to main,
which by definition takes the same time on each rank because of the structure of
the program, is reported as having a standard deviation of 1:49� 107 despite the
fact that all of the main processes enter and exit the main thread at the same
time. I was never able to engineer a method to make hpcviewer ignore the data
from these other threads. In the trace viewer, hpctraceviewer, the user is able
to filter out the data from the view with some regular-expression like syntax. So
it is relatively easy to only look at the main threads. The profile viewer provides a
“thread” view that allows similar filtering, but this view disabled the calculation
of the metrics.

21

F
ig

u
re

3.
2:

T
h
e

to
ta

l
ti

m
e

th
at

an
y

th
re

ad
of

th
e

32
n
o
d
e

ca
se

sp
en

t
in

K
S
P
G
M
R
E
S
C
l
a
s
s
i
c
a
l
G
r
a
m
S
c
h
m
i
d
t
O
r
t
h
o
g
o
n
a
l
i
z
a
t
i
o
n
.

S
om

e
m

ai
n

th
re

ad
s

sp
en

t
al

m
os

t
tw

ic
e

as
lo

n
g

in
th

e
ca

ll
as

ot
h
er

s.

22

F
ig

u
re

3.
3:

T
h
e

to
ta

l
ti

m
e

th
at

an
y

th
re

ad
of

th
e

32
n
o
d
e

ca
se

sp
en

t
in

I
B
T
K
:
:
H
i
e
r
a
r
c
h
y
G
h
o
s
t
C
e
l
l
I
n
t
e
r
p
o
l
a
t
i
o
n
:
:
f
i
l
l
D
a
t
a
.

23

Increase in runtime in 32 node case relative to one node runtime
Function name Relative increase
opal progress 3.26E+00
SAMRAI::tbox::Schedule::finalizeCommunication 1.28E+00
SAMRAI::tbox::Schedule::communicate 9.00E-01
run example 4.42E-01
KSP PCApplyBAorAB 1.93E-01
PCApplyBAorAB 1.93E-01
IBTK::PETScKrylovLinearSolver::solveSystem 1.65E-01
IBTK::FACPreconditioner::FACVCycleNoPreSmoothing 1.49E-01
IBTK::FACPreconditioner::solveSystem 1.41E-01

Table 3.1: Results from weak scaling run of IBAMR application solv-
ing ∆u = f repeatedly to gauge scalability of the linear solver
used. The poorest scaling function call is a function called when
MPI calls are waiting to complete, opal progress. This is a child
item of both IBTK::HierarchyGhostCellInterpolation::fillData and
KSPGMRESClassicalGramSchmidtOrthogonalization.

Figure 3.4: The entire runtime of the example, wrapped in the function
call run example, displays much poorer scaling that the solve step, IBTK::

PETScKrylovLinearSolver::solveSystem. This can likely be attributed to in-
creased time for the initialization of the solver and MPI at the beginning of the
program. Again, of all calls that originate in the solve, the worst scaling is seen in
opal progress which is a child item of both the Gram Schmidt orthogonalization
done by the solver and the filling of ghost cells with data.

24

Figure 3.5: A log scale shows that the growth in the time spent in calls to
opal progress scales much poorer than all other calls. Several communication
intensive calls all end up calling opal progress to manage how long the rank
should wait and when it can proceed past a barrier.

3.2 3D ABC Flow Simulation

Initial analysis of the data from running the ABC flow simulation from IBAMR
showed problematic behavior of a minor function, resetLevels1, which is called
implicitly by objects of type SAMRAI::math::HierarchySideDataOpsReal, a class
used extensively in IBAMR. The average inclusive time for resetLevels is shown
in figure 3.6 in the red dotted line with stars at the collected data points in figure
3.6.

Investigation into the source code revealed that resetLevels performed aO(n2
patches) �

O(n2
processes) operation (there is always at least one patch per process) that was

essentially a “no-op”, as it it made no meaningful change to the state of the
program. The code loops over all the patches, of which there are at least as
many as there are MPI processes running, or in our case, this is the same as the
number of cores. Then for each patch it calls makeNonOverlappingBoxLists4,
which itself is also loops over an array that is the size of all the patches. This
set of nested loops is O(n2

patches), and it must be linear in order to weakly scale.
This is by nature of the fact that the number of patches will always be bounded
below by the number of processors, so if any algorithm scales quadratically with
the number of processors, the average time that it takes to complete will never

1I will refer to SAMRAI::math::HierarchySideDataOpsReal::resetLevels as
resetLevels for the remainder of the text.

4SAMRAI::hier::BoxUtilities::makeNonOverlappingBoxLists, original source code pro-
vided in Appendix B

25

Figure 3.6: Average inclusive time a rank spent in each function from initial
profiling of the 3D Shear Flow simulation. Notice resetLevels3, represented by
the dashed line with stars at the data points, takes very little time in the 1 node
case, and surpasses other main routines in the 32 node case. The vertical axis is
in a log scale.

be constant, as is desired. Moreover, nothing of substance appeared to be done
with this work!

Boyce Griffith supplied me with a patched version of SAMRAI whose sole dif-
ference was to “comment out” this problematic code, effectively deleting it. The
function was called in several related classes as well, and in the patched version
was also effectively deleted with preprocessor statements that excluded it from
being compiled. To confirm our hypothesis, I also instrumented SAMRAI with
Score-P and rebuilt IBAMR and the application I was profiling. Previously, only
resetLevels had appeared the profiling data, but by instrumenting Score-P and
inserting a custom user region in makeNonOverlappingBoxes in both the patched
and unpatched versions of SAMRAI, makeNonOverlappingBoxes appeared in the
subsequent profiling data5

I performed the trials again, this time running the patched and unpatched
versions in serial (one after the other) but in the same submission script given to
the SLURM scheduler on the cluster, so they would run on the same hardware.
Additionally, I had originally run the 32 node case with a base grid spacing of
N = 196, which cubed is not evenly divisible by the number of cores, 256. In
the second run, I used the final configuration as is described on in the Methods
section. I instrumented the patched SAMRAI in the same manner as the original
SAMRAI, in case there were any other calls to makeNonOverlappingBoxes that
were not excluded.

Figure 3.7 makes it clear that the calls to makeNonOverlappingBoxes make

5The instrumented version of makeNonOverlappingBoxes is supplied in Appendix C

26

