An effective and easily maintainable information organization system is vital to the success of any enterprise, be it in the public or private sector. The proper use of metadata is a key means to this end. Applying metadata, however, is not a static task. Rather, it is a process by which metadata is created and manipulated by any number of people, using a variety of tools at different stages of the lifecycle of a digital object. Information on these components of the metadata process was gathered via a survey of metadata practitioners. The study found the metadata process is quite complex, with substantial variability in all components. A large variety of software applications are used for manipulating of metadata. This result and the fact that in-house developed tools were most common suggest there is no single turn-key solution for the metadata process. In conclusion, careful planning of the metadata process, including consideration of all sources of an enterprise’s information, is essential to the successful implementation of a metadata process.

Headings:

Surveys/Metadata

Business Processes/Metadata

Metadata/Management

Metadata/Software

Metadata/Quality Control
Table of Contents

Introduction ... 2

Literature Review .. 3

1.1 People involved with metadata ... 5
1.2 Resources and Metadata ... 7
1.3 Tools and Metadata ... 8
1.4 Rules of the metadata process ... 10

Research goals .. 13

Methodology .. 13

Results ... 14

1.5 People working with metadata .. 15
1.6 The Setting and the metadata .. 17
1.7 Tools and Metadata ... 19
1.8 Software features, their importance, support level, necessity 23
1.9 Rules and Requirements for the Metadata Process ... 28
1.10 Process in action ... 37

Discussion ... 38

Limitations and Areas for future research .. 40

Conclusion .. 40

Bibliography ... 42
Introduction

In this age of vast and ever-expanding amounts of information, organizing that information in order to aid resource discovery, improve the ability to administer resources, ensure its authenticity, and manage access rights has become paramount. The implementation of metadata is a key means to this end. Metadata elements are, in essence, the encoding of information an organization designates as important (Kim 2005) and “metadata management is the process of acquiring and maintaining a controlled set of metadata with or without automation, in order to describe, discover, preserve, retrieve, and access the data to which it refers” (Westbrooks 2004, 144).

The process of metadata implementation and management, however, is recognized to be difficult so many organizations, including those in both the public and private sectors, choose not to implement metadata or do so only in a limited fashion (Smith 2002, Westbrooks 2004). One oft-heard reason for not using metadata concerns cost. Some organizations believe it is too expensive to create a system that supports metadata (both in time – particularly if using a home-grown software tool – and in the expense of any outside expertise and software tools deemed necessary) (Morville and Rosenfeld 2007). In some cases, organizations that do incorporate some sort of metadata process have people who believe creating metadata is pointless (Greenberg, et al. 2003) or the metadata that is created is inconsistent or not maintained (Hutt and Riley 2005). An organization could go a long way towards solving these problems if they had guidelines for the creation and management of metadata – hereafter referred to as ‘metadata process’.

All organizations benefit from well-organized information. Non-profit and governmental organizations, however, tend to be more open about their business processes than those in the private sector due to the competitive nature of businesses in the private sector. Examples of available information for the processes used by public institutions include the National Science Digital Library (NSDL) (Hillman, et al. 2004;
Dushay, et al. 2003; Lagoze, et. al 2006), the National Institute of Environmental Health Sciences (NIEHS) (Greenberg, et al. 2003), the US Government Information Locator Service (GILS) (Moen, et al. 1997), Sandia National Laboratories (Holmes, et. al 2004), cultural heritage institutions in the US (Palmer and Knutson 2004; Hutt and Riley 2005) and digital libraries in the UK (Currier, et al. 2004; Kelly, et. al 2005). Not surprisingly, a study of metadata in corporate environments conducted by the Comité Européen de Normalisation (CEN) found that, while many of the practitioners would like to share their experience, they were unable to do so publicly due to the competitive nature of their industry, (CEN 2005). Given the fast-paced nature of competitive businesses, any improvement in accessing and managing information can give a corporation a better edge in the marketplace. Since few guidelines exist, any organization that wants the benefits of metadata has to start from scratch, which is expensive in terms of both money and development time. The first step to creating such guidelines is to understand what process organizations are currently using to address these problems. The goal of this study is to understand current practices and limitations of the ‘metadata process’ in the corporate environment. To study this objective, this study gathered data on who is creating and editing metadata, on when it is being created and edited, the software tools used, as well as any approval or verification process(es) that are in place.

Literature Review

Process, in general, can be defined by activity theory as that which is comprised of people who manipulate objects using tools, guided by rules working towards some goal (Wilson 2006). Metadata process, therefore, includes the people of an organization involved with metadata in some way, such as the creation, management, approval / evaluation, and preservation of metadata. It, of course, also includes the metadata being manipulated. The tools of the metadata process are the methods, procedures and software tools used to manipulate metadata. The rules of metadata process dictate how metadata should be created, edited, and managed along with what metadata must be included as well as the syntax of that metadata. Metadata process, however, does not contain people, metadata, tools, and rules as autonomous objects. Rather, it is the understanding of the interconnectedness of these pieces that will give us a fuller understanding of the metadata
process as a whole. Therefore, a few brief examples of metadata processes will be discussed. After which, we will focus a bit more closely on these different components.

The goal of the Facilitating Access to Information on Learning Technology for Engineering (FAILTE) project was to provide a “unified approach to the description and cataloging of electronic learning resources for engineering” (Slater 2002a). The FAILTE project provides documentation on how metadata records are created and evaluated and even include a flowchart illustrating the steps (Chumbe 2000). A cataloger, using either a MS Access front end or web browser, can create, analyze, alter status or remove records. They also review resources suggested by the users and approve or reject them. When they create a record, its status is ‘admitted’. Then, the cataloger, using a web browser, checks the FAILTE database, along with two others from related organizations. If the record is not in any of those, the status of the record is changed to ‘pending’ and the system waits for cataloger to verify it. If, however, the record is in one of those databases, it is removed from FAILTE. The cataloger then checks the resource itself to determine if it is appropriate for FAILTE. The metadata records are examined for those resources. The cataloger checks for

- spelling errors
- required fields empty
- duplication of metadata fields

Once the record has been edited to the satisfaction of the cataloger (who is free to add additional metadata), its status becomes ‘valid’. Next, an automatic process checks for required fields. If one is missing, it is marked ‘incomplete’ and sent back to the cataloger; otherwise it is marked ‘complete’. An automatic process runs periodically to take complete records and move them to the main database (i.e., the one users search on) (Chumbe 2000).

A second example of metadata workflow concerns Intute (Burgess 2006a; Burgess 2006b; Intute 2006). Intute is a gateway provided by UK universities to educational and research resources on the web, divided into four subject areas. Intute is one place where subject experts are responsible for selecting and assigning subject metadata to websites included in its directory. It is unclear from available documentation if there are automatic checks during metadata creation. Controlled vocabularies and
thesauri are used for some elements during creation but the process is a manual one. There are two keywords fields – one ‘controlled’ and one ‘uncontrolled’. To use a controlled keyword, a cataloger enters a keyword into the search box, chooses the thesaurus, selects ‘look up’ and then finds the appropriate term in the thesaurus and selects it (Intute 2006). Spell checking is also incorporated. A weekly automatic process is run to check links. Once a resource is added, there are two automatic practices for ensuring quality. First, the administrator of the resource being cataloged is sent an email informing them that the resource has been added and is invited to send comments or corrections to the Intute cataloger. The second automatic method for ensuring quality is a yearly email reminder to the cataloger to verify the resource (Intute 2006).

The third and final example of metadata process concerns the Exploit Interactive E-Journal (Kelly 2002). This journal was funded by the European Union’s Telematics for Libraries program and provided information about projects funded by the program. Their goal for metadata was to enhance search facilities. Using Dublin Core, they wanted to allow users to search on author, title, and description and also allow them to restrict searches by 1) article type and/or 2) funding body. The metadata was stored in server-side include (ssi) files located in the same directory as the article the metadata describes. This metadata was converted to HTML <meta> tags via the ssi file. They chose this route because using ssi files meant metadata could be converted to other formats (e.g. XHTML) with a simple script change. Next, they used Microsoft’s SiteServer software to index the <meta> tags. Users then had access to this metadata via a web form.

1.1 People involved with metadata

The research reviewed thus far illustrates some of the relationships among several components of the metadata process. The roles of the people involved with the metadata process in these and other organizations ranges widely. In the case of the FAILTE project, metadata professionals were the ones responsible for metadata creation and editing (Chumbe 2000), while Intute uses subject experts and the e-journal employed journal editors (neither metadata professional nor subject expert) (Kelly, et. al 2005). In other research, we see at the Cornell University Geospatial Information Repository (CUGIR) a combination of metadata specialists and subject experts being used for the
manipulation of metadata (Westbrooks 2004). As part of the Automatic Metadata Generation Applications (AMeGA) Project, Greenberg, et al. surveyed metadata experts and found a variety of roles creating metadata (2005). This included administrative/executive professionals, metadata professionals, and Information Web Architects.

The performance of the people involved in the three examples of metadata process provided above was not explicitly measured so we turn to other research to shed light on this. By performance, here we mean how good, consistent and meaningful the metadata is. When comparing the performance of metadata professionals and authors / subject experts, the results are mixed. One study found that metadata specialists had a better understanding of the purpose of metadata (and consequently included a wider range of elements) while resource creators had a better understanding of the context (and so focused on these aspects when creating metadata). Neither group, however, did well at handling the pedagogic aspects of the resources (Barton, et al. 2003). Another study found that, with a small amount of training, NIEHS authors could produce metadata “acceptable for inclusion in a Web resource header…that would facilitate resource discovery” (Greenberg, et al. 2001). The consensus seems to be that there are advantages and disadvantages to using either content creators or metadata professionals. Some authors feel that assistance from catalogers during metadata creation would help them understand how to create high quality metadata along with improving their consistency (Greenberg and Robertson, 2002). This sentiment is echoed by researchers (Barton et al. 2003; Lagoze et al. 2006) who suggest that a “collaborative approach to metadata creation is needed to optimise the quality of metadata” (Barton, et al. 2003, 5).

Authors / subject experts and metadata professionals are not the only classes of people creating or editing metadata. Most of the literature, however, tends to focus on these two classes but as Greenberg, et al. showed, there are potentially many more classes of people that could be involved in creating or editing metadata. This includes administrative personnel, project managers, and system administrators. This study hopes to more some light on the various roles responsible for manipulating metadata.
1.2 Resources and Metadata

Turning from the people involved, we now look at objects of the metadata process – the digital objects described by the metadata and the metadata itself. Exploit Interactive, FAILTE, and Intute were primarily concerned with textual objects. In the journal’s case, they created metadata for journal articles while both FAILTE and Intute created metadata for web sites. FAILTE and Intute gathered various kinds of metadata including automatically generated metadata, fields with a restricted set of allowed values (e.g. controlled vocabulary), and free text fields. The e-journal, on the other hand, only had free text fields. FAILTE and Intute also gathered a much more extensive set of metadata than the e-journal. All three gathered author, title, and description metadata. In addition, FAILTE and Intute gathered administrative metadata and access rights management metadata. The use of a controlled vocabulary was evident in FAILTE’s subject metadata element and in Intute’s keyword metadata element.

In other research, a study by Obershaw of element usage by corporate intranets found that there are some elements corporations need which are not in the Dublin Core schema, often used alone or as the basis for a metadata schema (2002). Nor was there a schema available for intranets at the time of the study. Security and contact information were the two most prevalent pieces of information schemas lacked. Security defines the access level required to view the document and, in the case of one company surveyed, was used to filter resources so that the user only saw listings for documents he could access.

Knowing which metadata elements are being used is important but looking at *how* the metadata is used can also tell us something about metadata process. In many cases, people employ workarounds in order to capture metadata that their schemas do not support. In a study of the usage of Dublin Core in cultural heritage institutions, Cole and Shreeves found disparities in the semantics of elements between different providers of metadata (2004). As an example of the semantic disparity, when describing coverlets, data provider A used the ‘source’ element to define materials used such as cotton and embroidery floss. Data provider B, however, used the ‘description’ element for this information. There is some confusion also as to what the metadata record is representing. Data provider A focused on the digital image of the coverlet while B described the coverlet itself. This is evident in the usage of the ‘format’ element. Data provider A
describes the type of scanner and software used to create the image while B gives the measurements of the coverlet. Another study found that 28% of the creator elements served as a pseudo-qualifier of the individual’s role, rather than containing the name of the individual (Hutt and Riley 2005). They believe this “implies that data providers of cultural heritage materials feel role qualification is of significant importance either within a local collection interface or within an aggregated search environment” (Hutt and Riley 2005, 266). In addition to role qualification, they and others found a number of refinements to the creator element used for inexact dates such as ‘summer 1957’ or ‘80s’ (Hutt and Riley 2005; Shreeves, et al. 2005).

1.3 Tools and Metadata

The next component of the metadata process to consider is the set of tools used to create and maintain metadata. FAILTE and Intute had a database backend for storing the metadata. FAILTE catalogers were also required to check other databases. The e-journal instead relied on a combination of ssi files, Microsoft SiteServer, and custom scripts to add and manage their metadata. All three used a web form for the initial entering of metadata.

Another factor the three had in common was their reliance on custom built tools for their metadata. This seems quite prevalent as a number of other organizations built in-house, custom tools. This includes various digital libraries (Palmer and Knutson 2004) and Sandia National Laboratories (Holmes, et al. 2004). Sandia National Laboratories, responsible for ensuring the nuclear weapons stockpile is safe, created SimTracker, a metadata tool that allows scientists to manage and organize massive amounts of data generated from computer simulations. SimTracker tracks all files associated with simulation, as well as create graphic snapshots as the simulation is running. The most prevalent tool used by the corporations the CEN surveyed were in-house developed tools. Over 20% used in-house tools while the second most common tool, ContentDM, was only used by 5% of the corporations surveyed (CEN 2005).

Custom solutions for metadata creation and management can range from complex systems such as SimTracker to simpler tools such as templates, which are

… basic cribsheets that sketch a framework or provide an outline of schema elements without linking to supporting documentation. Templates, in both print and
electronic format, have been predominant in metadata generation, probably because they are simple to produce and maintain.

-- Greenberg 2003

The CEN found that 71% of the corporations they surveyed provided some sort of web or paper-based form where, “in some cases pull-down lists of controlled values have been developed locally and are available to content originators and metadata staff” (2005, 10). NIEHS and the Gateway to Educational Materials (GEM) are just two examples of organizations using templates. A third is NSDL, which not only includes Simple Dublin Core and a few OAI elements, but also indicates which elements are required, and provides definitions of the elements (NSDL 2001).

In addition to custom software and templates, there are a number of commercial software tools which can affect metadata. A partial list includes Microsoft Office, EndNote, Adobe Dreamweaver, Adobe Photoshop, Moveable Type and ContentDM (Greenberg, et. al 2005). In some cases, content creation or management software plays the primary role in metadata creation. In others, a tool specifically for metadata will be primary. Often, though, a number of tools will be used throughout the different phases of metadata process. The AMeGA project, for instance, found that while a majority of the organizations they surveyed mentioned using only one tool, 30% used two and 19% used 3-7 (Greenberg, et. al 2005).

Clearly, the extent and type of a software application’s support for metadata elements has a direct impact on metadata process. If metadata are created automatically, then there is less work on the part of the author. AMeGA found that Macromedia’s Dreamweaver did not have any automatically derived metadata while EndNote had 12 of 15 elements filled in automatically (Greenberg, et al. 2005). AMeGA also found that more than half of those surveyed had worked with tools that did some sort of automatic creation. Some examples of metadata elements handled by the tools surveyed included title – which Microsoft Word 2003 pre-fills from the first line in the document; author – which many applications pre-fill based on the computer’s system properties; and subject – which generally requires manual input.

The Adobe Creative Suite (ACS), a more sophisticated metadata environment based on the eXtensible Metadata Platform (XMP) than that which is provided with applications such as Word and EndNote includes Acrobat, Illustrator, Photoshop, along
with others (Adobe 2005). Not only are there a number of additional elements available to users, but metadata templates can be created which serve to improve metadata quality and simplify metadata creation. Origin, contact information, and metadata captured by digital cameras are a few examples of additional metadata available. Metadata templates allow the administrator to determine which elements are available to users, include custom metadata elements, and set default values for the elements. The goal of this functionality is to help to create good and consistent metadata, in order to lessen the time spent correcting mistakes further along the object’s lifecycle.

There are other ways in which the Adobe suite can affect metadata process. Because all applications in the suite are based on XMP and metadata is embedded in the object, metadata can travel with the digital object through various stages of its development. An Adobe white paper describes one possible workflow of a digital object – a logo is created with Illustrator, version controlled via Version Cue, rasterized by Photoshop into appropriate formats for use in InDesign to create a newsletter and GoLive to include on a web page (Adobe 2005). Applications other than Adobe can use and manage this metadata. A partial list includes Documentum, Interwoven’s Digital Asset Management, and Profium’s Semantic Information Router (SIR). These various tools can read and manipulate the XMP metadata, supporting Adobe’s claim that XMP could be used for workflow information.

1.4 Rules of the metadata process

Now that we have talked a bit about the people, metadata, and tools involved in the metadata process, it is time to consider the rules of metadata process. There is any number of possible rules for guiding the metadata process. Some of the most basic ones include:

- Who can create or otherwise manipulate metadata?
- What values are valid for a given metadata element?
- What metadata is required or optional?
- When metadata should be manipulated?
- Which tools should be used?

The FAILTE metadata process includes automatically generated metadata, some of which can be changed by catalogers but others are protected. In addition, only terms
from a specified vocabulary can be used for certain metadata elements for both FAILTE and Intute; including subject, rights: cost of resource, and medium of resource. Some of the free text fields are restricted in length. With FAILTE, many of the rules are enforced via the web form that is the interface. However, they also have rules without an enforcement mechanism. FAILTE and Intute also clearly indicate if a metadata field is compulsory or optional. FAILTE also includes conditional elements where filling in one field requires filling another. Some compulsory fields include title, recordID, and main URL. Most fields are optional, including different types of dates (creation, modification, and publication), and medium of resource. One example of a conditional element is catalogue – where the code assigned must be paired with the catalogue scheme from which it came. The e-journal, however, does not seem to have had many rules. There were conventions (e.g. the correct formatting of an author’s name) but no systematic method for enforcing these conventions.

A primary source for the rules of a metadata process is documentation, also called ‘best practices’. Both FAILTE and Intute have publicly published their documentation which lay out the rules discussed above along with a good deal of information on how metadata should be generated. It is unclear what kind of documentation the e-journal had for their metadata process. The NSDL, the national digital library for education and research in science, technology, engineering, and math, contains resources that come from a wide array of people, most of whom are educators and not metadata specialists. Therefore, NSDL put together a Metadata Primer with guidance on how to use certain elements, which elements best help resource discovery (e.g., format, description, and type), along with a list of recommended elements and information on how to best fill those elements (NSDL).

One item particularly stressed in best practice guides as well as in the research literature concerns the usage of controlled vocabularies. Both the AMeGA project and the CEN found support for and integration of controlled vocabularies to be very high on organizations’ wish list (Greenberg, et al. 2005; CEN 2005). The NSDL Primer recommends using standard controlled vocabularies such as LCSH for subject and the Thesaurus of Geographic Names (TGN) for geographic information. CEN found that 43% of the organizations they surveyed use ISO3166 for geographic coverage. The
Gateway for Educational Materials (GEM) provides controlled vocabularies for most of its elements, including Subject, teaching methods, and assessment (Laundry 2006). CEN, however, believes that for commercial enterprises, there is still a need to develop controlled vocabularies. Because of this, this study will gather information on the usage of controlled vocabularies in the corporate environment.

Good documentation is one part of setting up the rules of an organization’s metadata process. The ability to enforce these rules, however, also needs to be built into the metadata process. Otherwise, that documentation will be put on shelf and forgotten! There are various ways and times that rules can be enforced. Software tools and people are the two primary methods of enforcing rules. Rules can be built into the metadata tools to check formatting of entered metadata, to force the selection of a metadata value from a controlled vocabulary, or to ensure that certain elements are filled in. Requiring approval or verification by a person other than the initial metadata creator / editor are other possible ways to enforce the rules of the metadata process.

Quality control is another way of enforcing the rules of the metadata system. Measuring the quality of the metadata is key to knowing if the metadata process is really functional. Quality control processes involved in checking for quality range from automatic, to manual, or to a combination of the two. There are also various points in the metadata process where QC can occur. In some cases, QC can be performed as part of the metadata creation process (e.g., spell checking). Often, however, QC is a phase separate from creation. Both FAILTE and Intute had some automatic spell checking. FAILTE had an automatic check for required fields. In the AMeGA study, participants were asked to discuss their evaluation / quality control practices, where quality control was defined as separate from metadata creation (Greenberg, et. al 2005). They found that 63% stated that some type of formal QC is done, while 17% noted evaluation done at metadata creation stage. Processes mentioned included:

- selecting high-quality metadata records for copy cataloging
- using authority files or controlled vocabularies
- proofreading

Most QC processes relied on human involvement – 69%, while 12% had a combination of automatic and manual processes. Very few, 7%, had a fully automatic QC process.
There are a number of pieces to any metadata process. Obviously, people are intimately involved (even in systems with automatic components) in the process of manipulating metadata. In order to manipulate said metadata, tools such as software or other means are necessary and often affect the performance of a metadata system. In order for metadata to be consistent and conformant to expectations, rules on which tools should be used, the way to fill out metadata elements, which elements are required and other requirements are essential.

Given the number of pieces involved in a metadata process, it behooves any organization to have a set of guidelines to follow. There is a fair amount of information on the metadata creation process. Very little of this information, however, comes from the corporate sector. In addition, research has focused more on the creation portion of the metadata process and less on quality control and tool usage. Understanding current practices could help corporations in creating or modifying a metadata process that fits their business needs. This could potentially reduce the cost and time of implementation, along with improving the quality and consistency of the metadata. Therefore this research aims to fill this gap by focusing on metadata process in the corporate sector.

Research goals

The goal of this study is to understand current components in the metadata process. It is hoped this research will benefit organizations who wish to create or improve their metadata process as well as software and system designers in building better tools to support this process. With that in mind, this study examines the following overarching research questions:

- Who creates and / or edits metadata?
- When is metadata created and edited?
- What tools are used for creating and editing metadata?
- What kind of documentation exists in conjunction with the metadata process?
- Which software features are important to an institution?
- How well features of the software are supported?

Methodology

A survey of metadata professionals was conducted in September 2006 and participants were asked about the types of metadata they create and manage, along with
how and when metadata was created and edited. In addition, participants were asked about software tools currently used as part of their metadata process along with rating the importance and support level of certain software features. The participants were sought by sending email to several mailing lists related to metadata. These included:

- DublinCore – Corporate
- Dublin Core – General
- Dublin Core – Tools
- Taxonomy Community of Practice (TaxoCoP)
- MetadataLibrarians
- GIS Metadata Discussions
- Taxonomy

Participation was totally voluntary and participants could quit the survey at any time. There were a total of 40 questions. SurveyMonkey was used to conduct the survey which included both structured and open ended questions. Questions fell broadly into the following categories:

- Creation phase – who creates metadata, when creation occurs and what tools are used
- Editing phase – who edits, when editing occurs, what tools are used
- Tool features – what is currently supported, what is important and needed

Descriptive statistics will be provided to describe the results. Use of inferential statistics, which depend on a probability sample, are not applicable and so will not be reported.

Results

Fifty-six (56) survey participants provided responses useful for data analysis. Five others started the survey but did not go beyond the first few questions and hence were not useful for analysis. Of the 56 participants who took the survey, forty-five (45) actually completed it. All questions were optional and the data presented here is based upon the response rate for each individual question. It was hoped that by soliciting responses from mailing lists geared towards corporate workers, a picture of metadata process in the corporate environment would emerge. Unfortunately, this was not the case as half of the participants indicated they work in academic libraries. In spite of this, the results will still benefit the corporate sector because the goals of expediting information access and better information management are shared by both the public and private sectors.
1.5 People working with metadata

There is no consensus on the number of people involved in creating and editing metadata. Participants were asked about the number of people involved with metadata – and could choose from 1-3; 4-6; 7-9; 10+. No single range held a majority or even differed much from the others. Nineteen respondents (35%) indicated that between 1 and 3 people are involved with metadata, while eleven respondents (20%) had 4-6, eight (15%) had 7-9 and 17 (31%) had 10 or more.

Often, people with different roles in an organization are involved in some way with metadata. This could be different types for different roles (content administrators overseeing administrative metadata; content creators responsible for subject metadata). Or, the various roles could be involved with metadata at different points in the digital object’s lifecycle. Information on participant’s primary interaction with metadata was gathered. Over half (58%) indicated that their primary interaction with metadata was as a metadata specialist. While 16% described themselves as catalogers, only a few (11%) indicated they are information specialists and just 1 apiece described themselves as a content creator and an editor.

There were a variety of other primary roles described by participants themselves. A few indicated that they did not have a ‘primary’ role but instead had several roles. One, for instance, stated that they create, edit and catalog metadata. One described themselves as a metadata schema manager. Another said their role was to “create metadata for an online repository and to validate metadata entered by researchers depositing their work in the repository.” Similarly, one described themselves as a manager of a “repository service with author created metadata”. Two participants explained that they both create metadata and create systems for metadata creation and metadata. Respondents also included a taxonomist and a team manager. One respondent described themselves as a programmer responsible for quality control – “transform and massage metadata.”

When compared against the institution type (discussed more fully below), we find that 2/3 of the corporate employees designated themselves as ‘metadata specialists’, along with 15 of 28 academic librarians. In addition, 9 out of 10 of those who identified themselves as ‘catalogers’ come from academic libraries.
Data was gathered on the variety of roles responsible for creating and editing metadata. Catalogers are the most common people who create metadata – 2/3 of the respondents indicated that catalogers are one party responsible for creating metadata but content creators follow closely behind with 62% respondents indicating that content creators also create metadata. When it comes to editing, however, catalogers give up first place to metadata specialists, 54% indicated they have catalogers who edit metadata.

![Figure 1: Roles of those creating and editing metadata](image)

In addition to the ability to select one or more of the above categories, respondents were able to write in other roles of people creating or editing metadata. One participant indicated that collection managers and their staff create metadata and they anticipate incorporating user-contributed metadata into their systems. Other roles mentioned by participants included linguists, taxonomists, student employees and volunteers, domain experts (in particular bioinformatics), programmer and scanning technicians.
1.6 The Setting and the metadata

Data was gathered concerning the type of institution the participants work in, along with what resource formats have metadata and where that metadata is stored.

Half of the participants surveyed work in an academic library setting while the other half works in a wide variety of settings. Eight people (14%) work in a corporate setting while 13% work in a government agency. Only a few work in the rest of the categories with 7% working for a non-profit organization, 5% working for a university, 3 for a non-academic library and 4% are consultants.

Data was gathered about the types of digital objects that have metadata. They were asked to include all types of formats with metadata. As expected, given the predominance of textual documents in general, textual objects were the top of the list with 88% of the participants; while those with metadata for images follow closely behind at 81%. Not only text and images, but greater than 50% of the participants have metadata for video (54%) and audio (52%). Only 11% of the participants have metadata for geospatial data. Participants had the option of describing other types of objects which had metadata. These included: projects, program source code, manuscripts, gene sequences, multimedia objects, and data sets. Some mentioned that metadata for audio and video is ‘in the works’.

Figure 2: Percentage of object types with metadata
Almost half (48%) of the participants have four or more types of digital objects for which they have metadata. In fact, the most common number of types (mode) was four – 30%.

Data was gathered on the location of participant’s metadata with respect to the organization. Over half of the participants indicated that metadata is stored both in the organization and in a third party location (for instance, a repository). Almost half of the participants (45%) store the metadata within only their organization while only a fraction of the participants (4%) store their metadata exclusively with third party organizations.

Closer inspection of the data indicate that Academic Libraries dominate the ‘Both’ category. If they are left out, we find that 2/3 store their metadata only within their institution and less than 1/3 (29%) store their metadata both locally and within a third-party organization.

Metadata, with respect to the digital object, can be stored in a variety of places and a variety of ways. Certain types of digital objects, like text files or mp3 files, can store their metadata within the object itself. For example, meta fields or comments can be used in HTML files to store the metadata. There are even standards for what kind of metadata and its format for various types of objects. The standard for mp3 files, for instance, allows for close to 50 different fields to be stored within the file itself. Other objects, on the other hand, cannot store their metadata internally and so must rely on an outside storage place, such as a database or spreadsheet.

The advantage of storing metadata internal to a digital object is obvious – wherever the object goes, the metadata goes with it. On the other hand, if metadata is only stored within the object, then this makes it more difficult for retrieval and management. Thus, it seems likely, perhaps even necessary, that organizations would store their metadata in multiple locations.

Across all types of institutions, three-quarters of the participants indicated that they store their metadata in a relational database. In addition, half also store their metadata within the object itself. Slightly less than half (46%) store their metadata in a digital object management system, such as ContentDM, while a little over a quarter
(29%) use spreadsheets. Participants had the option to also manually enter a response. Four participants explained that at least some of their metadata is stored in XML documents / databases. Three indicated the usage of flat files.

It was the belief of the author’s that, in this situation, it was highly likely that organizations would store their metadata in multiple locations. Over three-quarters of those surveyed keep their metadata in two or more locations; though the most common number (mode) is only 1. One participant mentioned in one of the open-ended process questions that metadata for HTML documents are stored as HTML tags but that for non-HTML files, they used a database.

Table 1 gives a break down of the top three types of institutions and the storage location of their metadata. Relational databases are also the most frequently used means of storing the metadata for the individual institution types. A slightly higher percentage of people in academic libraries use digital object management systems (68%) than do corporate bodies (50%). Corporate entities instead favored within-object storage of metadata – 63% versus 43% of the academic libraries. Government agencies used mostly within-object and relational databases for storing their metadata.

<table>
<thead>
<tr>
<th></th>
<th>Within object</th>
<th>Relational DB</th>
<th>Dig Obj Mgmt System</th>
<th>Spreadsheet</th>
<th>XML</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Library</td>
<td>43%</td>
<td>75%</td>
<td>68%</td>
<td>39%</td>
<td>11%</td>
<td>18%</td>
</tr>
<tr>
<td>Corporate</td>
<td>63%</td>
<td>100%</td>
<td>50%</td>
<td>25%</td>
<td>0%</td>
<td>13%</td>
</tr>
<tr>
<td>Government agency</td>
<td>86%</td>
<td>86%</td>
<td>14%</td>
<td>14%</td>
<td>14%</td>
<td>14%</td>
</tr>
</tbody>
</table>

1.7 Tools and Metadata

Tools are the instruments people use to affect the objects they are working with. In the case of metadata process, this means any mechanism used to create, edit, store or manipulate metadata; including software applications, templates for creation, as well as manually adding or editing metadata.
1.7.1 Tool usage for creating and editing metadata

Participants answered questions on which software tools, along with other methods are used to create and edit metadata. A list of 19 commercially available software tools, along with the option to indicate internally developed software and 2 additional methods for creating and editing software were included, along with the option to add additional information. The additional methods included template-based and manually manipulating metadata. Though the author tried to incorporate a sizeable list of the different tools, it was inevitable that many tools participants used were not available from the pick list. Many chose to describe their tools in the ‘other’ section. Of those, Access, Excel, and Oxygen stood out as being more frequently used than others mentioned. Therefore, these have been extracted from the ‘Other’ option and included in Table 2. Some tools were not chosen by anyone and those have been omitted from Table 2. In all but 3 cases, the difference between usage in creation and editing are due to dropouts and not differences in tool usages. In those 3 cases (Oxygen, template, and manual), 1-2 people indicated that they used the tool during editing but not during creation of metadata. The most used commercial tool is ContentDM with 22% using it for creation and 20% for editing. The most used means, however, is non-commercial – manually creating metadata (40%) and manually editing metadata (31%). The second most used means was also non-commercial – internally developed software is used by 34% for creating metadata and 31% for editing metadata.

Table 2: Tool usage for creating and editing metadata

<table>
<thead>
<tr>
<th>Tool</th>
<th>Creation</th>
<th>Editing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access*</td>
<td>8%</td>
<td>4%</td>
</tr>
<tr>
<td>Acrobat</td>
<td>8%</td>
<td>4%</td>
</tr>
<tr>
<td>Arc Catalog</td>
<td>2%</td>
<td>0%</td>
</tr>
<tr>
<td>ArcView</td>
<td>4%</td>
<td>2%</td>
</tr>
<tr>
<td>ContentDM</td>
<td>22%</td>
<td>20%</td>
</tr>
<tr>
<td>Dreamweaver</td>
<td>12%</td>
<td>9%</td>
</tr>
<tr>
<td>Endeavor</td>
<td>8%</td>
<td>4%</td>
</tr>
<tr>
<td>Endeca</td>
<td>2%</td>
<td>0%</td>
</tr>
<tr>
<td>Excel*</td>
<td>12%</td>
<td>7%</td>
</tr>
<tr>
<td>Interwoven</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>Oxygen*~</td>
<td>10%</td>
<td>7%</td>
</tr>
<tr>
<td>Photoshop</td>
<td>14%</td>
<td>11%</td>
</tr>
<tr>
<td>Word</td>
<td>18%</td>
<td>16%</td>
</tr>
</tbody>
</table>
Another way to consider the tool usage is to group them into categories according to their primary function/role. Content creation tools are “essentially any software that can be used to create digital content, whether textual or multimedia” (Greenberg, et al. 2005, 8). Content management systems generally refer to systems used to organize and control content, often within the confines of an organization’s content workflow. Digital repository systems, on the other hand, manage access and retrieval of digital objects. For a list of tools and how they were coded, see Table 3.

Table 3: A selection of tools used to create and manage metadata

<table>
<thead>
<tr>
<th>Tool Type</th>
<th>Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content Creation tools</td>
<td>Acrobat, Microsoft Word, Dreamweaver, jEdit, Photoshop, NoteTab Pro</td>
</tr>
<tr>
<td>Content Management Systems</td>
<td>ContentDM, Joomla, Vignette, Millennium, Innovative Interfaces Symposia, Learning edge</td>
</tr>
<tr>
<td>XML Editors</td>
<td>XMLSpy, oXygen, xforms, xmetal</td>
</tr>
<tr>
<td>Digital Repository System</td>
<td>Connexion, Sirsi Hyperion, dSpace, DLXS, LUNA Insight, ePrints</td>
</tr>
<tr>
<td>Database / Spreadsheet</td>
<td>Access, Excel</td>
</tr>
<tr>
<td>Metadata tools</td>
<td>Reload editor, Editor-Convertor Dublin Core Metadata, Interwoven MetaTagger</td>
</tr>
<tr>
<td>GIS</td>
<td>ArcCatalog, ArcView</td>
</tr>
</tbody>
</table>

Figure 3 below gives us the percentage of people who indicated that they use the particular tool type as well as the percentage that use the other methods (manual manipulation and templates). Non-commercial means were the clear winners with manual manipulation the most common means used to create (40%) and edit (37%) metadata. This is followed by internally developed software with just under 35% for both creation and editing of metadata. Under the commercial umbrella, both content creation and content management software were used by approximately 1/3 of those surveyed for creating metadata. They were also fairly matched for editing.
1.7.2 Number of tools / methods

Calculations were made on the number of applications participants use, as well as on the total of applications and metadata creation/edit methods. The average number of tools used during the creation phase was 2.4 and that for editing was 1.7. When you combine tools and methods, means go up by approximately 1 method for both creation and editing. A quarter have 4 or more tools and methods used for creation and 16% have 4 or more for editing.

<table>
<thead>
<tr>
<th></th>
<th>Creation</th>
<th></th>
<th>Editing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Apps only</td>
<td>Apps and methods</td>
<td>Apps only</td>
</tr>
<tr>
<td>0-2</td>
<td>62%</td>
<td>44%</td>
<td>82%</td>
</tr>
<tr>
<td>3-5</td>
<td>26%</td>
<td>34%</td>
<td>11%</td>
</tr>
<tr>
<td>6-8</td>
<td>12%</td>
<td>18%</td>
<td>8%</td>
</tr>
<tr>
<td>9+</td>
<td>0%</td>
<td>4%</td>
<td>0%</td>
</tr>
</tbody>
</table>

1.7.3 Primary tool usage

Data was gathered on what tool was primarily used for creating and editing metadata. As can be seen in Table 5, the most commonly used tools for creation and editing were, as with overall tool usage, found in non-commercially available tools – 8 using internally developed software for creation, 5 for editing as well as 5 primarily editing manually. Of the commercially available software, ContentDM ranked above the rest, with 6 participants indicating it was primarily used in creation and 4 in editing.
Six people indicated that there was no primary tool for creating metadata; rather there were several tools used, depending on such things as format type (one participant uses Filemaker for images and oXygen and NoteTab for text), departments having or preferring different tools and “by collection type and by the system in which the object will eventually end up”. As with tools in general, most of the differences between creation and editing in primary tool usage was due to drop-outs. For those who answered both, generally the same tool or method was used for creation and editing.

Table 5: Primary tool usage

<table>
<thead>
<tr>
<th>Tool Type</th>
<th>Creation</th>
<th>Editing</th>
<th>Primary same for both</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Acrobat</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ContentDM</td>
<td>6</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Dreamweaver</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Endeavor</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Excel</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Interwoven</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Word</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>XMetal</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>XMLSpy</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Metadata tools</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Template-driven</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Internally developed software</td>
<td>8</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Manual</td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Other</td>
<td>9</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>No primary tool</td>
<td>4</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>43</td>
<td>37</td>
<td></td>
</tr>
</tbody>
</table>

1.8 Software features, their importance, support level, necessity

In addition to asking participants about key aspects of their metadata process, participants were also asked about various features of their software tools. They were asked to rate three different aspects of these software features – how well the feature is currently supported, how important it is and how much they need it. The features asked about included:

- Automatic creation of metadata
• Controlled vocabulary for metadata values
• Ability to designate metadata as required or optional
• Rule-based (if X is filled then Y must be)
• Ability to select metadata schema(s)
• Ability to create custom metadata fields
• Type-ahead functions
• Track changes to metadata
• Tool is open source
• Tool has strong vendor support

For support – they were asked to indicate if the feature was not supported at all, poorly supported, fairly supported, well supported, or extremely well supported. For importance – they were asked to indicate if the feature was unimportant, mostly unimportant, somewhat important, important or extremely important. Lastly, for need – they were asked to indicate if the feature was unnecessary, mostly unnecessary, somewhat needed, needed or desperately needed.

By comparing Figure 3 with Figures 4 and 5 below, it is easy to see that satisfaction with the support level of a feature does not match its importance or level of need for that feature.
Automatic creation of metadata – Less than 10% said this feature was well supported in the tools used by the participants; while just over half rate it as important or extremely important and almost three-quarters (73%) either need it or desperately need it.

Controlled vocabulary for metadata values – The most important and needed feature, 91% reported it as being either needed or desperately needed and 79% stated that it was important or extremely important. The controlled vocabulary feature also has the largest discrepancy between support and both importance and need; only one-third (30%) of
those who need it say it is well supported while only one half of those who say it is important say it is well supported.

Ability to designate metadata as required or optional – Second only to the controlled vocabulary feature in terms of both importance and need, around 80% said that it was important and needed. Support was judged as being fairly poor – 62% stated that it was not, poorly, or fairly supported.

Rule-based – Just over half (56%) said that it was important or extremely important as well as needed or desperately needed (58%) but only 22% said it was well or extremely well supported.

Ability to select schema(s) – While approximately three-quarters said it was important or extremely important as well as needed or desperately needed, only a third said that it is well or extremely well supported.

Ability to create custom fields – The best supported feature, just over half of the participants stated that it is either well or extremely well supported while approximately three-quarters said it is important or extremely important as well as needed or desperately needed.

Type-ahead – This is clearly the most unimportant (79%) and most unneeded (83%) feature. The fact that no one listed it as well or extremely well supported is not an issue, though, one could argue that this feature could help with quality, by reminding users of previously used terms as they were typing.

Tool is open source – After the ability to add custom fields, open source is the best supported feature – 44% state that it is either well or extremely well supported. Roughly one half indicate that it is important and needed.

Vendor support – Clearly, vendors have some work ahead of them – only 36% agreed that vendor support was decent, compared to the 63% who indicate a need for it, and compared to the 55% who said it was important.

Given human nature, one might expect that the support level and necessity would have an inverse relationship – the worse a feature is, the greater the perceived need. One might also expect there to be a correspondence between the importance and need of a feature. Figures 6-15 below seem to bear both of these assumptions out. For instance, those who stated that controlled vocabularies were fairly supported (Figure 5) far
outstrips the number who said it was somewhat needed. On the flip side, those who rated the need for the ability to set metadata as required was substantially greater than those who said it was well supported.
Participants were asked to describe any other metadata tool features that are important for their organization and how well they are currently supported. A few indicated that rights control with respect to metadata was desirable. One method mentioned concerned integration with internal systems such as LDAP for granting editing or viewing privileges. This respondent indicated that this is a “must for any tool and is well supported in most systems.” Another desired feature concerns the ability to suggest keywords or subject assignment (using a controlled vocabulary such as LCSH).

Interconnectivity / separation of functionality – one respondent indicated that they wanted to see a certain separation of functionality. They want to “separate the process of managing a shared metadata standards (elements, controlled vocab, etc.) but have different systems own the data.” Another respondent, however, expressed a desire for interconnectivity between different systems to connect authority control files and improve cross referencing capability.

Other desired features (most of which are currently not well supported), include:

- templates
- global change / batch updating
- potential duplicate detection
- integration with documentation
- xml validation with error messages that are understandable by non-programmers
- something that maps MARCXML in and out so they can “easily leverage existing MARC data and transform it into our metadata schema of choice”

1.9 Rules and Requirements for the Metadata Process

There are potentially many different rules employed to govern the metadata process. Participants answered questions on a few rules considered likely to be incorporated in some way. They were asked about the timing of creation and editing of metadata. They were also asked about the inclusion of semantic and syntactic enforcement mechanisms, whether approval was required, and the requirements regarding the presence of elements along with rules regarding the verification of metadata values.

1.9.1 Timing of metadata manipulation

Not only are there many people manipulating metadata and many places to store metadata but there many points in time where metadata can be added or created.
Participants were asked about the creation or editing of metadata for several stages of a digital object’s lifecycle. There were six stages specifically asked about in this survey for both the creation and editing of metadata. Metadata could be created before the content of the digital object has been created – in the case of an anticipated object. Metadata is often manipulated during the process of creating content, before publishing (where publishing means making the object available to its audience); during the process of publishing; after publication; and upon user request. In some cases, creation and editing occur simultaneously. Table 6 lists which stages were asked about during the creation and editing of metadata.

Table 6: Stages asked about

<table>
<thead>
<tr>
<th>Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before content is created (only asked about during creation phase)</td>
</tr>
<tr>
<td>During content creation</td>
</tr>
<tr>
<td>Before publishing</td>
</tr>
<tr>
<td>When publishing</td>
</tr>
<tr>
<td>After publication</td>
</tr>
<tr>
<td>Upon user request (only asked about during editing phase)</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>

As was expected, metadata is generally created or edited for a number of stages. People manipulated an average of 2.76 stages for creating and 2.84 for editing metadata. A majority indicated that there are at least 3 stages where metadata is created and 3 where it is edited.

Three creation and four editing stages have a majority creating and editing metadata. Indeed, all but 1 stage have a majority editing metadata. The proportion of the creation and editing stages participants indicated they used is illustrated in Figure 16 below. Two-thirds work with metadata in 3 or more creation stages, with one-quarter working with it in 4 or more creation stages. Half of the participants work with metadata in 4 or more editing stages.

Thirty-two (32) percent create metadata before creating content. During the creation of content, 68% create metadata and 40% also edit it. Creation and editing both occur most often before publishing – three-quarters during creation and 72% during editing. When publishing content, 46% create metadata while 51% edit it. After
publication of content, over half both create (54%) and edit (58%) metadata. Over half also edit metadata upon user request.

Figure 16: Percentage of those manipulating metadata at various stages

1.9.2 Guidelines

Controlled vocabularies, thesauri and similar semantic tools help ensure that the correct term is used for a metadata field, which can improve consistency. Formatting guidelines help ensure the syntax used for metadata is correct by checking that the metadata values conform to the correct format. This was one of the issues Hutt and Riley explicited in their study of the date element for cultural heritage institutions (2004).

Controlled vocabularies, formatting guidelines and the like are sometimes incorporated into the software used to create and edit metadata. This makes using the right term and format more seamless (Bruce and Hillmann 2004) – as opposed to requiring users to consult a separate document or rely on their memory while in the process of creating or editing a metadata record. Therefore, participants were asked about the existence of these semantic and syntactic guidelines both outside and within the confines of their software tools. They reported on whether they had guidelines all of the time, some of the time, never, or unknown. It is encouraging that 72% of the respondents
indicated that they have guidelines for the semantics of the metadata values all of the time but disappointing that just under 60% of those had these guidelines incorporated into their metadata tools.

We see a similar pattern with formatting guidelines; 74% have formatting guidelines all of the time for metadata values however, just over half of those with guidelines actually have them all of the time within their tool. Ninety-four percent have formatting guidance at least some of the time while three-quarters had at least some formatting support in the software.

Approximately 20% do not have any semantic or formatting guidelines in their metadata software.

1.9.3 Approval

Another way to reduce incorrect information in metadata is to require approval for metadata creation and editing, thus ensuring that at least one person other than the manipulator verifies the metadata. An example was the process at Intute of emailing the resource administrator for verification of the metadata and approval. In that case, approval was an opt-in activity (i.e., resources were not under the control of Intute so resource administrators were free to simply ignore the email). In other cases, approval is not an optional activity. Therefore, participants were asked if they were required to get approval all of the time, some of the time or not at all. There is no consensus with respect to requiring approval for either creation or editing. Just under a quarter are required to get approval for all created and edited metadata. Two-thirds, however, have approval required at least some of the time for created metadata and 58% for editing.

That still leaves 34% of created and 42% of edited metadata with no approval required.

In general, the frequency of required approval for editing tends to follow those for creating. Only 3 of the 12 participants who said approval is required all of the time did not require it all of the time when editing. Three of the 21 who said it is required some of the time for creation said it is not required while 1 has it required all of the time for edits. Only 2 of 17 who said it was never required for creation of metadata said approval was required some or all of the time for edits.
1.9.4 Checking for presence of required metadata elements

Ninety-four percent of the respondents indicated that they do have elements which are required.

It is possible for software used for metadata creation and editing as well as other software to enforce the existence of certain elements. They can either give warnings to the user or not allow submission of the content and/or metadata until this requirement is satisfied. In addition, people (either the creator themselves or another party) are often responsible for manually checking the existence of required elements.

Participants were asked about different ways that enforce or check for the presence of these required elements. Four methods of checking were asked about: 1) by the creation or editing tool, 2) by another software tool, 3) manually by the person creating or editing, and 4) manually by someone other than the primary actor.

1.9.4.1 During Metadata Creation

As Table 7 below indicates, most participants have at least one method of checking for the required elements, with 84% of the participants indicating that at least some of the time required elements are checked for in the metadata creation tool. Almost half of the respondents (48%) reported that their metadata creation software checks for this all of the time. The creation tool is the only one where the largest number check all of the time. For all other methods, the majority only check some of the time.

When metadata is created, the most common method for checking the existence of required elements was by someone other than the creator.

| Table 7: Tool/Method used to check for required elements during metadata creation |
|---------------------------------|--------|--------|--------|
| | All of the time | Sometimes | Never |
| Metadata creation tool | 48% | 36% | 17% |
| Other software tool | 27% | 50% | 23% |
| Manually by metadata creator | 35% | 58% | 8% |
| manually by someone other than creator | 11% | 74% | 14% |

1.9.4.2 During Metadata Editing

The greatest number where requirement checking occurred all of the time during the editing phase was in the metadata tool – a measly 32%. Only 3 people report using a different tool for checking. As with creation, the majority of those who use the various methods only use them some of the time: 43% of those using the metadata tool, 50% of
those using a different tool, 60% of those where the editor checks and 78% of those where someone other than the editor checks for required elements.

When metadata is edited, the most common method for checking the existence of required elements was by someone other than the editor.

| Table 8: Tools/Methods used to check for required elements when metadata is edited |
|---------------------------------|-----------------|-----------------|
| | All of the time | Sometimes | Never |
| Metadata editing tool | 32% | 43% | 24% |
| Other software tool | 10% | 50% | 40% |
| Manually by metadata editor | 30% | 60% | 10% |
| Manually by someone other than editor | 3% | 78% | 19% |

1.9.4.3 Comparison of Creation and Editing

As with the approval process, the trend seems to be that what happens at creation also happens during editing: the level of requirement checking for editing mirrors that for creation – 63% who have checking occur all the time in the metadata tool; 92% who sometimes check via the metadata tool during creation do the same when editing. All of the people who indicated that they never have the tool check while creating also never have checking during editing. The same pattern can be seen in both tool types as well as both manual methods.

Most participants indicated that they use multiple methods for checking both during the creation phase and the editing phase. It was most common that all 4 methods were used both in creation – 45% and editing – 56%.

1.9.5 Verifying metadata values

Verification of metadata values concerns itself with the accuracy of the data itself. This can range from checking for spelling or typographical errors to checking for the correct syntax (e.g. date is yyyy-mm-dd instead of mm-dd-yyyy).

1.9.5.1 Verification during metadata creation

Verification of metadata values does not seem to occur as frequently as checking for required elements does – only 21% indicated that the metadata creation tool was used all of the time for verification, as compared to 48% for requirements checking. Just over half of the respondents do not ever use an additional tool to verify metadata values, compared to 40% for requirements checking.
Human involvement, however, seems to be similar for verification as it is for requirement checking during the creation phase – where the checking or verification most often occurred only some of the time. Once again, we see that someone other than the metadata creator is the most frequently used means of verifying metadata, with 91% saying that someone other than the creator verifies their metadata at least some of the time.

Table 9: Tools/Methods used to verify metadata values when metadata is created

<table>
<thead>
<tr>
<th></th>
<th>All of the time</th>
<th>Sometimes</th>
<th>Never</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metadata creation tool</td>
<td>21%</td>
<td>47%</td>
<td>33%</td>
</tr>
<tr>
<td>other software tool</td>
<td>7%</td>
<td>40%</td>
<td>53%</td>
</tr>
<tr>
<td>manually by metadata creator</td>
<td>41%</td>
<td>52%</td>
<td>7%</td>
</tr>
<tr>
<td>manually by someone other than creator</td>
<td>14%</td>
<td>77%</td>
<td>9%</td>
</tr>
</tbody>
</table>

1.9.5.2 Verification during metadata editing

In general, it was most common for verification to occur only some of the time, regardless of the method. The only exception to this is verification via a secondary software tool where over half stated that they never use an additional tool to verify metadata values during the editing phase. Again, people are the more commonly used means to verify metadata edits, with 95% stating that the editor verifies his/her changes at least some of the time and 86% have someone other than the editor verify changes at least some of the time.

Table 10: Tools/Methods used to verify metadata values when metadata is edited

<table>
<thead>
<tr>
<th></th>
<th>All of the time</th>
<th>Sometimes</th>
<th>Never</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metadata editing tool</td>
<td>15%</td>
<td>42%</td>
<td>42%</td>
</tr>
<tr>
<td>Other software tool</td>
<td>10%</td>
<td>37%</td>
<td>53%</td>
</tr>
<tr>
<td>Manually by metadata creator</td>
<td>45%</td>
<td>50%</td>
<td>5%</td>
</tr>
<tr>
<td>Manually by someone other than creator</td>
<td>6%</td>
<td>80%</td>
<td>14%</td>
</tr>
</tbody>
</table>

1.9.5.3 Comparison of verification between metadata creation and editing

Once again, we see that the trend of behavior during the creation phase predicting behavior during the editing phase continues. Those who relied on tools for verification during creation tended to rely on tools for verification during editing while those who relied on people during creation also relied on them during editing. As with requirements checking, it was most common that all 4 methods are used at least some of the time for creation of metadata (44%) and editing (56%).
1.9.6 Quality Control

Participants were asked in an open-ended question to describe the ways in which metadata is checked for quality and consistency. The responses ran the gamut from “in general, there is no quality check due to lack of time” to substantially more complex systems. Several different manual methods were described. These included:

- metadata by inexperienced personnel such as interns or librarians new to a project was checked manually by the more experienced librarians
- metadata was checked only against specific items (i.e., locate the “original item, where possible on a journal site to validate metadata fields”)
- manually check against “authority files, thesauri and subject specialist review”
- metadata automatically generated by the content management tool is reviewed by the content owner

In a number of cases, the methods of quality control varied depending on department or project, with different projects within an organization using different methods.

A few people indicated that quality control was a very low priority or difficult due to lack of people to do QC. One person mentioned that they have 2 people to check metadata generated (via the content management system) by 700 employees. Because of this bottleneck, they only check one field consistently. Another stated that new project managers have a lower concern for quality than the original project managers, so “quality slips”. In this case, they try to “put more control for metadata editing in the hands of certain classes of users, but they rarely take the time to edit something unless it is really poor or a very important object”.

1.9.7 Documentation

If “rules are abstract constructs that govern the particular activity of computer use” (Wilson 2006, 3), then documentation can be considered one concrete expression for the governance of the metadata process. Along with guidelines on which values and syntax to use for metadata fields (discussed above) more detailed documentation can be written to further explicate the rules. Participants were asked about documentation for three actions which can take place during creation and three which can take place during editing. They were also asked to rate the helpfulness of these sections of documentation as not at all helpful, barely helpful, somewhat helpful, helpful or very helpful.
1.9.7.1 Creation

Participants were asked if they had the following documentation for creating metadata:

- How to create metadata
- Which metadata fields are required
- How to fill out the fields

In all cases, a substantial majority said ‘yes’ – 80% of those surveyed said that they had documentation which explained how to create metadata; 74% on which fields are required and 72% on how to fill out metadata fields. In all three cases, greater than half of those surveyed rated the documentation as helpful or very helpful. Documentation concerning which fields are required received the highest rating of 77%, how to create it 65%, and filling out 56%.

1.9.7.2 Editing

Participants were also asked if they had the following documentation for editing metadata:

- what tool to use to edit metadata
- the way to have edits approved
- how to edit metadata values

They were also asked to rate the helpfulness of the documentation.

Documentation for this phase seems to be less thorough than for the creation phase. Only 55% report having documentation which outlines the tools to use for editing metadata. Less than half report having documentation on how to edit metadata values (48%) or on the way to have edits approved (36%). Approximately two-thirds rated documentation on how to have edits approved as helpful or very helpful while in the other two cases, three-quarters rated the documentation as helpful or very helpful.

When asked about their metadata creation process, a couple of respondents discussed their documentation. One participant said they are “working towards documenting more general best practices”. Another, however, emphasized the poor quality of their documentation and the various components that they lack –

It needs to cover specific scenarios, in which x fields are required and other scenarios in which x fields cannot be required. Value formatting also needs to be included. Manual metadata creation should not be a one-off each time. An
individual needs the capability to aggregate some metadata from a particular source, input to a small app, and load the records as appropriate, rather than create each record manually. Our software is being improved for mass programmatic metadata creation however, but different general standards (not documented exactly so) exist for the metadata created from mass programmatic means versus metadata created as one-off records by individuals - the rules collide.

1.10 Process in action

Participants were encouraged to write about their metadata process in an open-ended question. It quickly becomes apparent in the comments that complexity is the order of their (work)day. A few examples:

The following describes the process for creating item-level descriptive metadata records for collections that do not have pre-existing catalog records (those are simply edited in the catalog and exported as marc files to be indexed by programming): The project team creates/compiles/transcribes descriptive metadata using an Access database (or an initial spreadsheet that is later migrated into a database). Values from this are exported and used during the scanning/digitization process for file naming and embedded metadata. After QA, the records are exported from the database and transformed into an xml dataset using a perl script, validated against a schema, reviewed in xml spy, and uploaded to the server (this process is for newer collections; old collections still just export text files from the database that are indexed by the programming dept.)

Each project varies, both in type of metadata, tools used, and workflow. When it gets to me, I translate it into the forms we need for delivery (writing homegrown perl scripts). While this is not particularly scalable, the continual change of delivery software and metadata schemes, as well as the differing demands of each project, preclude a more stable workflow.

Most metadata related search/management tools are a separate layer from the document storage repositor(ies) which makes creating metadata a secondary step beyond saving/uploading which can be a burden for users and cause them to put less concern on proper metadata input.

These stories clearly indicate the large variability of means used for managing metadata. Twelve of the 24 respondents indicated they saw their systems as complex, complaining that there were a large number of tools involved, that different projects had different (and often not well documented) procedures for creating and managing metadata, or that the projects used differing standards.
Discussion

The amount of human involvement is strikingly different for creators and editors of metadata. All seven categories of roles involved with metadata creation saw a decrease between creating and editing, ranging from 6-30%. This suggests a potential bottleneck in the metadata process as there are more people generating metadata than verifying it. Another possible outcome would be poorer metadata quality due to a higher percentage of metadata that is never verified. The case where 700 people generate metadata and 2 verify illustrates both of these points. Due to the huge discrepancy, they only check one field!

Most institutions have several different types of digital objects with metadata (text, audio, video, etc). As one participant states, “we have disparate systems that need to use various kinds of metadata.” The metadata that is gathered for these different types of objects potentially differs enough that trying to centralize or consolidate metadata into one metadata schema or tool quite possibly would provide little benefit at great cost. If several tools are used to interact with metadata, is it worth the time to construct one storing house for metadata? Of course, using several different tools and methods for creating and editing metadata leads to a greater number of potential points of failure and increased likelihood of confusion of those manipulating metadata. It would also likely lead to inconsistent metadata or difficulty in integration of that metadata into an access system for users. If centralizing / consolidating metadata does not make sense but organizations want the integration of metadata from these different file types (coming from different tools), is creating some sort of middleware that connects this metadata feasible or beneficial? Can (and should) you create a means to connect the tools involved on the metadata level (as Adobe’s XMP allows for ‘participating’ vendors such as Documentum)?

There is also a sense that current commercial tools are inadequate. The most important and necessary features in a tool – controlled vocabulary and the ability to require metadata – were both judged to be poorly supported. As one participant states, overall they “haven’t been overly impressed with the way they function.” Another said they use “proprietary software to accomplish our tasks because there isn’t commercial or open source tools available” to do the job. A third stated that while “there are challenges
with ILS tools…they’re far more sophisticated than metadata tools and we seem to be reinventing the wheel, one spoke at a time.”

Quality control is definitely an area for improvement. The following quality control components were asked about:

- inclusion of guidelines for semantics and syntax of metadata
- level of approval required
- verification of metadata values

The availability of guidelines for both the semantics and syntax of metadata, in general, was well presented – approximately three-quarters had them all of the time. But the support for these in the software tools was somewhat lacking as only half had the support in the tools. Several methods are employed by a majority of participants to check for the presence of required elements. Both human involvement and tools share roughly the same amount of responsibility for this. Verifying metadata values via software tools, however, is not as common as it is for checking required elements. Whereas checking for required elements was done all of the time by half of the respondents, only 21% verify all of the time via the software tool. Human involvement, though, was somewhat similar in the numbers of those who have these functions except that the frequency was lower for verification. A majority indicated that verification only occurred some of the time while checking occurred most frequently all of the time. Could this be because checking that something is there is much easier than checking that something is right? It was initially somewhat surprising that only half checked for the presence of required elements in the metadata creation tool as this would, on the surface, seem relatively easy to include. When you consider, however, that content creation tools were the most commonly used commercial tools, this low number makes more sense. Because the primary function of these tools is creating content, the inclusion of any metadata functionality will have a lower priority. Even if a tool has metadata capabilities (as Microsoft Word does), it is likely that enforcement will not be included.

A number of respondents believe quality control of metadata is weak. In many instances, the process (if it exists) is a manual one. This is liable to lead to inconsistency both in how thoroughly metadata is verified as well as in the accuracy of the metadata. While some of the process could be incorporated into software tools, the likelihood is
small unless the tool in question is specifically a metadata tool. This is probably why so many institutions rely on home-grown software or procedures. Clearly, for organizations looking to implement a metadata process, they cannot rely solely on software tools but must decide not only on what metadata they wish to capture but also on how to capture metadata. In addition, with metadata-bearing content coming from a good number of software applications and the high number of times metadata is manipulated, it would behoove an organization to map both the flow of content and include the flow of associated metadata.

Limitations and Areas for future research

Due to the complex nature of the metadata process, case studies might have been a better method for studying this process. There is a considerably wide variability in the types of people involved, tools, procedures and rules. In addition, the person who completed the survey has but one piece of the metadata process puzzle – they likely are not (or need to be) fully informed on the actors and tools that make up the system. A series of case studies would be able to find all actors, tools, and methods and how they connect together.

Aside from the complexity concern, two key components were not addressed in this survey. Firstly, the context of the metadata process was not addressed. Context – the type of industry, legal requirements, etc. – will have a huge impact on all aspects of a metadata process. Drive in large part by context, the goals of an organization’s metadata process were also not addressed in this survey. The needs of a nuclear testing lab are vastly different from the needs of an academic library.

Conclusion

This study examined four key components of the metadata process: the people involved with the manipulation of metadata, the type of metadata used, the tools and methods with which metadata is created and edited, and the rules which guide the metadata process. As part of understanding the needs of organizations with respect to software tools, participants were asked to rate the importance, necessity, and support levels of ten software features. The results of this study suggest that metadata process is
quite complex with substantial variability in all components. A large variety of software applications are used for manipulating of metadata. This result and the fact that in-house developed tools were most common suggest there is no single turn-key solution for the metadata process.

There are a number of implications for the software industry. Of the currently available software which affects metadata, the most prevalent types of tools were content creation and content management systems. One can draw two possible conclusions from this: 1) software companies which produce content creation and management systems could further develop their metadata functionality and potentially increase their value to organizations which need better information management or 2) that there exists an opportunity for someone to create a tool which could link the various content creation and management systems on a metadata layer (as Adobe purports to have done with its suite and a few other participating vendors). Particular improvements strongly desired by participants concerned better implementation of controlled vocabularies within software and having the ability to require metadata as part of the creation and editing of metadata.

For organizations wishing to implement or improve their metadata process, the results of this study suggest that developing a map of the digital objects with their associated metadata as FAILTE did (Chumbe 2000) would be a wise, time-saving step. By carefully considering the metadata functionality of applications used in their existing processes of creating and managing information, an organization would be better able to decide if they need to develop their own tools for managing metadata or give them a firm set of requirements to seek in a commercial solution.
Bibliography

Lagoze, Carl, Dean Krafft, Tim Cornwell, Naomi Dushay, Dean Eckstrom, and John Saylor. 2006. Metadata aggregation and "automated digital libraries": a retrospective on the NSDL experience.

Proc. ACM/IEEE-CS Joint Conference on Digital Libraries

