FABRICATION AND APPLICATIONS OF DOPAMINE SENSITIVE ELECTRODES

Andre Hermans

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment for the degree of Doctor of Philosophy in the Department of Chemistry

Chapel Hill
2007

Approved by:

Advisor: R. Mark Wightman
Reader: Mark H. Schoenfish
Reader: Royce W. Murray
© 2007
Andre Hermans
ALL RIGHT RESERVED
ABSTRACT

ANDRE HERMANS: Fabrication and Applications of Dopamine Sensitive Electrodes (Under the direction of Dr. R. Mark Wightman)

The neurotransmitter dopamine has shown to be of central importance to difference brain functions, such as movement, reward, and addiction. A biosensor for the detection of dopamine in the brain should have a fast time response to monitor concentration changes which happen on a subsecond time scale. Furthermore, the sensor should have a high sensitivity to dopamine, because the physiological concentrations of dopamine were found to be in the range form nanomolar to lower micromolar. High selectivity is also necessary to distinguish the desired signal from electrochemical interferences in the brain such as ascorbic acid. Fast scan cyclic voltammetry at glass-encased carbon fiber microelectrodes has been shown to fulfill these requirements and is therefore often used for measurements of easily oxidizable neurotransmitters like dopamine. In this dissertation, some drawbacks of the technique and the sensor are addressed and improved.

Chapter 1 contains an overview of electrochemical methods that have been used to detect various neurotransmitters in the brain. Chapter 2 explains a method to increase the sensitivity and selectivity for dopamine of carbon fiber microelectrodes by covalent attachment of a cation-exchange layer to the
electrode surface. A method utilizing tungsten microwires as substrate for the
construction of flexible gold, platinum, and carbon microelectrodes is described in
Chapter 3 and 4. Carbon-coated tungsten microwires have then been examined
for use as in vivo dopamine sensor. The microwires showed the same
electrochemical properties as conventional glass-encased carbon fiber
microelectrodes. In chapters 5 and 6 a novel instrumental method to subtract of
the large background current, which occurs during application of fast scan rates, is
presented. This method has then been used to examine the changes in this
background current and account for these changes. This enabled us to expand
the time course for fast scan voltammetric measurements 20-fold. Furthermore,
the origin of these background changes was examined. In the last chapter
tungsten based microelectrodes were used to evaluate changes in dopamine
concentrations and pH of the extracellular fluid in a primate brain during reward
delivery.
ACKNOWLEDGMENTS

First, I would like to thank my academic advisor Dr. R. Mark Wightman for his support throughout the last 5 years. He has been a great mentor who gave me the opportunity to gain a lot of experience in the field of academic research and science.

I would like to thank my family and friends, especially Cherie Lanyi, for support and help outside the lab environment.

Furthermore, I would like to acknowledge everyone who worked with me over the last five years and help me pursuing my research goals. I thank Andrew Seipel, Justin Kita and Dr. Leslie Sombers for help with in vivo applications, Charlie Miller for slice experiments, Richard Keithley for his help with data analysis, the UNC electronics facility, and Dr. Michael Heien.

The experiments presented in chapter 7 were performed in the laboratories of Wolfram Schultz in Cambridge, England. I would like to thank Dr. Schultz and Dr. Istvan Hernardi for this wonderful collaboration.

This work was funded by NIH.
TABLE OF CONTENTS

LIST OF TABLES ... xiii
LIST OF FIGURES .. xiv
LIST OF ABBREVIATIONS ... xiv

Chapter

I. ELECTROCHEMICAL DETECTION IN THE BRAIN ... 1
 Introduction .. 1
 Direct electrochemical detection of neurotransmitters in group 1 ... 2
 Electrode materials ... 9
 Electrochemical techniques .. 12
 Modified electrodes ... 17
 Reference and auxiliary electrodes ... 19
 Detection of changes in pH in vivo ... 19
 Enzyme electrodes for detection of molecules in group 2 .. 21
 Detection of molecules in group 3 ... 27
 References ... 29

II. CARBON-FIBER MICROELECTRODES MODIFIED WITH 4-SULFOBENZENE HAVE INCREASED SENSITIVITY AND SELECTIVITY FOR CATECHOLAMINES ... 41
Data acquisition and analysis ... 99
Electrically evoked dopamine release in anesthetized rats 99
Single unit recording in freely moving rats ... 100
Results and discussion ... 101
Electrochemical detection of dopamine in vitro 101
Electrochemical detection of other compounds in vitro 103
Electrochemical and electrophysiological measurements in vivo 105
Construction of PPF-microelectrode arrays 107
Summary .. 109
References .. 111

V. MONITORING BRAIN DOPAMINE FLUCTUATIONS WITH
FAST-SCAN CYCLIC VOLTAMMETRY FOR MULTIPLE MINUTES 115
Introduction .. 115
Experimental Section ... 118
Chemicals .. 118
Data acquisition and background correction 118
Flow-injection analysis .. 121
Electrode preparation .. 121
Noise analysis .. 122
In vivo measurements in anesthetized rats 122
In vivo measurements in freely moving rats 123
Histological Verification of Electrode Placement 124
VI. CHANGES IN BACKGROUND SIGNAL AT CARBON MICRO ELECTRODES DURING FAST SCAN CYCLIC VOLTAMMETRY 148

Introduction .. 148
Experimental Section ... 150
Chemicals ... 150
Data acquisition and electrochemical pretreatment............................... 151
Flow-injection analysis .. 151
Electrode preparation .. 152
In vivo measurements in anesthetized rats ... 153
Results and discussion .. 153
Electrochemical activation of pyrolyzed photoresist films.................... 153
Background changes at carbon-fiber microelectrodes in vitro 156
Background changes at carbon fiber microelectrodes in-vivo 160
Dopamine induced background changes .. 163
VII. ELECTROCHEMICAL MEASUREMENT OF PH SHIFTS AND DOPAMINE RELEASE IN PRIMATES DURING REWARD DELIVERY

Introduction ... 173
Experimental section .. 175
Chemicals ... 175
Electrode preparation ... 175
Flow-injection apparatus ... 178
Data acquisition and analysis ... 178
In vivo recordings ... 179
Presentation of free reward .. 180
Presentation of predictable reward ... 180
Results ... 182
Responses to pH changes at carbon fiber microelectrodes 182
pH changes in vivo during delivery of free reward 182
Correlation between pH changes and behavior during delivery of free reward ... 184
pH changes during presentation of predicted reward 186
Correlation between pH changes and behavior during delivery of predicted reward ... 190
Dopamine release during reward delivery ... 190
LIST OF TABLES

Table

1.1. Electrochemical Oxidation of Tyrosine and Tryptophan derivatives .. 3
1.2. Electrochemical reactions of other detectable species in the brain .. 4
2.1. Sensitivity and selectivity of 4-SBD modified electrodes 58
LIST OF FIGURES

Figure

2.1. Modification of carbon electrodes with 4-SBD 50
2.2. Characterization of 4-SBD modified electrodes in pH 7.4 53
2.3. Adsorption characteristics of dopamine at P-55 elliptical electrodes .. 55
2.4. Background-subtracted cyclic voltammograms for various compounds .. 57
2.5. Dopamine detection in mouse brain slices with carbon fiber electrodes .. 61
3.1. SEM images of conical microelectrodes 72
3.2. Cyclic voltammograms at platinum microelectrodes 78
3.3. Cyclic voltammograms at gold microelectrodes 80
3.4. Cyclic voltammograms at carbon microelectrodes 82
4.1. Fabrication process for PPF microelectrodes 94
4.2. SEM micrograph of PPF microelectrodes 95
4.3. Response to dopamine at carbon fibers and PPF electrodes 102
4.4. Background subtracted cyclic voltammograms for various compounds .. 104
4.5. Electrochemical and electrophysiological measurements in-vivo. 106
4.6. Construction of multiwire array ... 108
5.1. Electronic setup for digital background subtraction 120
5.2. Background change .. 127
5.3. Noise characterization ... 129
5.4. Dopamine injections \textit{in vitro} ... 132

5.5. Dopamine stimulations \textit{in vivo}.. 134

5.6. Response to iv cocaine and saline injections 136

5.7. Construction of pure component color plots and RMS traces 140

5.8. Standard-deviation of RMS-current traces 141

6.1. Electrochemical activation of PPF microelectrodes...................... 154

6.2. Changes in background signal at carbon-fiber
 microelectrodes \textit{in vitro} .. 157

6.3. Changes in background signal at carbon fiber
 microelectrodes \textit{in vivo (cortex)}.. 161

6.4. Background changes in caudate/putamen 162

6.5. Dopamine induced background changes \textit{in vitro}................ 164

7.1. SEM image of electrodes for primate recordings 176

7.2. Timing diagram of the behavioral tasks performed by
 monkeys during predicted reward delivery 181

7.3. Cyclic voltammetric response to a basic pH change \textit{in vitro}........ 183

7.4. Delivery of free reward ... 185

7.5. Delivery of predicted reward ... 187

7.6. Delivery and non-delivery of predicted
 reward with 50\% probability ... 189

7.7. Detection of dopamine during free reward 191
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-MT</td>
<td>3–Methoxytyramine</td>
</tr>
<tr>
<td>4-SB</td>
<td>4-Sulfobenzene</td>
</tr>
<tr>
<td>4-SBD</td>
<td>4-Sulbebenzene diazonuim</td>
</tr>
<tr>
<td>AC</td>
<td>Alternating current</td>
</tr>
<tr>
<td>AChE</td>
<td>Acetylcholine esterase</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosine diphosphate</td>
</tr>
<tr>
<td>AP</td>
<td>Anterior / posterior</td>
</tr>
<tr>
<td>ChO</td>
<td>Choline oxidase</td>
</tr>
<tr>
<td>CLS</td>
<td>Classical least squares</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>COMT</td>
<td>catechol-o-methyltransferase</td>
</tr>
<tr>
<td>DC</td>
<td>Direct current</td>
</tr>
<tr>
<td>DOPA</td>
<td>3,4 dihydroxyphenylalanine</td>
</tr>
<tr>
<td>DOPAC</td>
<td>3,4 dihydroxyphenylacetic acid</td>
</tr>
<tr>
<td>DPV</td>
<td>Differential pulse voltammetry</td>
</tr>
<tr>
<td>DV</td>
<td>Dorsal / ventral</td>
</tr>
<tr>
<td>E_{1/2}</td>
<td>Half-wave potential</td>
</tr>
<tr>
<td>F</td>
<td>Faraday’s constant</td>
</tr>
<tr>
<td>FAD</td>
<td>Flavine adenine dinucleotide</td>
</tr>
<tr>
<td>fMRI</td>
<td>Functional magnetic resonance imaging</td>
</tr>
<tr>
<td>FSCV</td>
<td>Fast-scan cyclic voltammetry</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>GABA</td>
<td>Gamma-aminobutyric acid</td>
</tr>
<tr>
<td>GluOx</td>
<td>Glucose oxidase</td>
</tr>
<tr>
<td>H</td>
<td>Aspect ratio of a cone</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>HRP</td>
<td>Horseradish peroxidase</td>
</tr>
<tr>
<td>HVA</td>
<td>Homovanilic acid</td>
</tr>
<tr>
<td>L-Dopa</td>
<td>Levo-dihydroxyphenylalanine</td>
</tr>
<tr>
<td>LOx</td>
<td>Lactate oxidase</td>
</tr>
<tr>
<td>MAO</td>
<td>Monoamine oxidase</td>
</tr>
<tr>
<td>MHPG</td>
<td>3-Methoxy-4-Hydroxy-phenylethleneglycol</td>
</tr>
<tr>
<td>ML</td>
<td>Medial / lateral</td>
</tr>
<tr>
<td>n</td>
<td>Number of electrons</td>
</tr>
<tr>
<td>NADH</td>
<td>Nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>PAN</td>
<td>Polyacrylonitrile</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal component analysis</td>
</tr>
<tr>
<td>PPF</td>
<td>Pyrolyzed photoresist film</td>
</tr>
<tr>
<td>Q</td>
<td>Charge</td>
</tr>
<tr>
<td>RMS</td>
<td>Root-mean-square</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of the mean, scanning electron microscopy</td>
</tr>
<tr>
<td>SSDH</td>
<td>Succinic semialdehyde dehydrogenase</td>
</tr>
<tr>
<td>UA</td>
<td>Uric acid</td>
</tr>
<tr>
<td>VMA</td>
<td>vanillylmandeleic acid</td>
</tr>
<tr>
<td>VTA</td>
<td>ventral tegmental area</td>
</tr>
</tbody>
</table>
CHAPTER 1
ELECTROCHEMICAL DETECTION IN THE BRAIN

Introduction

With respect to electrochemical detection, neurotransmitters can be separated into three different categories. The first group of neurotransmitters is the electrochemically active compounds such as the tyrosine derivatives dopamine, norepinephrine, and epinephrine. Many of their metabolites are also electroactive such as 3,4 dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 3-methoxytyramine, or l-dopa. The neuroactive tryptophan derivatives are also electroactive and include 5-hydroxytryptamine (serotonin) precursors or metabolites like 5-hydroxyindolacetic acid, 5-hydroxyindoletryptophan or melatonin. Other electroactive neurotransmitters are histamine and adenosine. All of these compounds can be directly detected by electrochemical oxidation of the molecule. Furthermore, other electroactive substances in the brain like ascorbic acid, uric acid, nitric oxide, oxygen or hydrogen peroxide are also readily detectable by electrochemical methods.

The second group of neurotransmitters is not inherently electroactive, and thus these compounds cannot be detected by traditional electroanalytical methods. However, those that can be oxidized by an enzymatic reaction can be measured electrochemically by coupling the enzyme reaction with an electrochemical reaction.
Some of the neurotransmitters in this category are amino acid transmitters like glutamate and γ-aminobutyric acid (GABA), but also acetylcholine and its precursor choline have been detected with this approach. Glucose and lactate, compounds important in energy production in the brain, can also be detected with such indirect electrochemical approach.

Neuroactive peptides cannot be detected directly in the brain with electrochemical biosensors. However, neuropeptides with inherently electrochemically active group can be detected off-line electrochemically. Inate redox-active functionalities include tyrosine, tryptophan, methionine and cysteine residues. Neuropeptides and some amino acid neurotransmitters form the third group of neurotransmitters.

Direct electrochemical detection of neurotransmitters in group 1

Catecholamine neurotransmitters are well suited for electrochemical detection because the potential required for their oxidation is well within normal scan ranges for carbon and metal electrodes in physiological buffer (Adams and Marsden, 1982). Catecholamines are derived in the biosynthetic pathway from tyrosine (Cooper et al., 2003). The rate limiting step in the synthesis is the hydroxylation of tyrosine to 3,4-dihydroxyphenylalanine (DOPA) with tyrosine hydroxylase. Dopamine is formed by the decarboxylation of L-DOPA. Norepinephrine is formed after transfer of a hydroxyl group onto the β-position of the side chain via dopamine-β-hydroxylase. The amine of norepinephrine can be methylated by phenylethanolamine-N-methyltransferase to form epinephrine. The major metabolites of dopamine are produced by reaction with
<table>
<thead>
<tr>
<th>Molecule</th>
<th>Redox-Reaction</th>
<th>Approximate oxidation potential in vivo (Adams and Marsden, 1982) (vs Ag/AgCl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyrosine derivatives</td>
<td></td>
<td>+0.7 V</td>
</tr>
<tr>
<td>L-DOPA</td>
<td></td>
<td>+0.4 V</td>
</tr>
<tr>
<td>Dopamine</td>
<td></td>
<td>+0.2 V</td>
</tr>
<tr>
<td>Norepinephrine</td>
<td></td>
<td>+0.2 V</td>
</tr>
<tr>
<td>Epinephrine</td>
<td></td>
<td>+0.2 V</td>
</tr>
<tr>
<td>DOPAC</td>
<td></td>
<td>+0.2 V</td>
</tr>
<tr>
<td>Homovanilic Acid</td>
<td></td>
<td>+0.5 V</td>
</tr>
<tr>
<td>3-Methoxytyramine</td>
<td></td>
<td>+0.5 V</td>
</tr>
<tr>
<td>Tryptophan derivatives</td>
<td></td>
<td>+0.8 V</td>
</tr>
<tr>
<td>Serotonin</td>
<td></td>
<td>+0.35 V</td>
</tr>
<tr>
<td>5-Hydroxyindolacetic acid</td>
<td></td>
<td>+0.35 V</td>
</tr>
</tbody>
</table>

Table 1.1. Electrochemical Oxidation of Tyrosine and Tryptophan derivatives
<table>
<thead>
<tr>
<th>Species</th>
<th>Reaction</th>
<th>Potential (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenosine</td>
<td></td>
<td>+1.2 V</td>
</tr>
<tr>
<td>Ascorbic Acid</td>
<td></td>
<td>+0.2 V</td>
</tr>
<tr>
<td>Uric acid (Ramesh and Sampath, 2004)</td>
<td></td>
<td>+0.3 V</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>H₂O₂ → 4e⁻ → O₂ + 2 H⁺</td>
<td></td>
</tr>
<tr>
<td>Oxygen</td>
<td>½ O₂ + 2H⁺ + 2e⁻ → 2H₂O</td>
<td></td>
</tr>
<tr>
<td>NO (Ciszewski et al., 1998)</td>
<td>NO → e⁻ → NO⁺</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO⁺ + H₂O → HNO₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HNO₂ → NO₂⁻ + H⁺</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO₂⁻ + H₂O − 2e⁻ → NO₃⁻ + 2 H⁺</td>
<td></td>
</tr>
</tbody>
</table>

Table 1.2. Electrochemical reactions of other detectable species in the brain
monoamine oxidase (MAO) and catechol-O-methyltransferase (COMT). These metabolites are dihydroxyphenylacetic acid (DOPAC), homovanilic acid and 3-methoxytyramine (3-MT). The action of MAO on norepinephrine mainly produces vanillylmandeleic acid (VMA) and 3-methoxy-4-hydroxy-phenlethyleneeglycol (MHPG). As can be seen in table 1.1a all of these compounds show similar 2 electron oxidation reactions with similar oxidation potentials. For this reason it is difficult to distinguish different catecholamines and their metabolites with electrochemical methods. However, most of these compounds undergo secondary reactions. The methoxylated derivatives are oxidized at more positive potentials than the catecholamines, however, the oxidation product loses methanol and forms the o-quinone of the corresponding catecholamine. In the case of 3-MT oxidation, dopamine-o-quinone is formed while HVA leads to the formation of the oxidized form of DOPAC.

Another example for a secondary reaction intracyclization reaction of the oxidized hydroquinone form of catecholamines (Hawley et al., 1967; Blank et al., 1976; Zhang and Dryhurst, 1993).

![Chemical structure](image)

\[
\begin{align*}
O & \quad \text{NH}_3^+ \\
\xrightarrow{\text{reaction}} & \\
O & \quad \text{HO} \\
\end{align*}
\]

(1)

\[
\begin{align*}
\text{HO} & \quad \text{HO} \\
\xrightarrow{\text{reaction}} & \\
\text{O} & \quad \text{+ 2e + 2 H}^+ \\
\end{align*}
\]

(2)
The 5-6 dihydroxyindoline product can undergo redox-reactions itself to an aminochrome (reaction (2)). However, in the case of dopamine the rate constant for the formation reaction is very slow, on the order of $k = 0.1 \text{ s}^{-1}$ at physiological pH. The rate of cyclization is faster for epinephrine than for norepinephrine. This has been used to distinguish these compounds electrochemically (Ciolkowski et al., 1992). By using fast scan methods or measuring quickly after a potential step the effect of these reactions can be diminished. The formation of the aminochrome product can be used to distinguish norepinephrine and epinephrine electrochemically since the rate of cyclization is faster for epinephrine (Ciolkowski et al., 1992). In addition to this, the secondary-amine side chain of epinephrine can be oxidized at very positive potentials whereas the primary-amine side chain of norepinephrine cannot (Pihel et al., 1994).

The other important group of electrochemically detectable neurotransmitter and metabolites are the tryptophan derivatives including serotonin. During biosynthesis tryptophan is converted by tryptophan hydroxylase to 5-hydroxytryptophan which then forms serotonin after decarboxylation. Metabolism of serotonin is primarily by MAO followed by an aldehyde dehydrogenase that leads to 5-hydroxyindole acetic acid. A more minor pathway is metabolism of serotonin to form 5-hydroxytryptophenol. Tryptophan derivatives can also be oxidized and electrochemically detected in a two electron process with similar oxidation potential as catecholamines. After oxidation many different secondary reactions have been observed (Wrona and Dryhurst, 1990). The reaction pathway is very complicated.
and involves the dimerization of serotonin, as well as, after addition of water, formation of tryptamine 4-5 dione.

Histamine and adenosine are other oxidizable neurotransmitters but neither has been directly detected with electrochemical methods in the brain yet. Histamine secretion from isolated mast cells has been detected electrochemically (Pihel et al., 1995). Histamine is synthesized from histidine via decarboxylation and has multiple metabolic products such as imidazoleacetaldehyde and imidazolacetic acid. Recent research has shown that adenosine can be detected by fast scan cyclic voltammetry (Abou El-Nour and Brajter-Toth, 2000; Brajter-Toth et al., 2000; Abou El-Nour and Brajter-Toth, 2003; Swamy and Venton, 2007). Adenosine seems to undergo a 3 step oxidation of which the first two steps lead to a distinct voltammogram which can be differentiated from other interferences (see table 1.2).

The main electroactive interference for electrochemical measurements in the extracellular fluid of the brain is ascorbic acid. The ascorbic acid concentrations in the extracellular fluid of the brain are 0.5 mM which is 10^4-10^6 times higher than the concentrations of catecholamines (Mefford et al., 1981; Nagy et al., 1982). Early amperometric measurements showed that the oxidation of ascorbic acid was the main signal recorded in the brain (Kissinger et al., 1973; Mueller, 1986). However, the electron transfer kinetics for the oxidation of ascorbic acid at carbon are very sensitive to the surface conditions. Electrooxidation of carbon at very high potentials (~3.0 V) causes an acceleration of electron transfer rates so that the ascorbate oxidation peak occurs near its thermodynamically anticipated value. Using such treatments, Gonon and coworkers were able to show that ascorbate changed in
concentration following pharmacological treatments expected to affect
catecholamines (Gonon et al., 1980a; Gonon et al., 1981). This established that
brain sensors for dopamine had to be able to distinguish the two molecules. This is
accomplished in fast scan methods because the oxidation of ascorbate shifts to
more positive potentials as a result of slow electron-transfer kinetics, distinguishing
the ascorbate signal from other compounds (Marsden et al., 1988; Millar et al.,
1992). Alternatively, electrode modification with selective membranes can reject
ascorbate from the electrode surface (Nagy et al., 1982; Baur et al., 1988;
Wiedemann et al., 1990).

 Beside direct electrochemical interference ascorbic acid can contribute
indirectly to the measured signal. Ascorbate functions as the major antioxidant in
the body. Thus, even when it is rendered inactive at the electrode surface, it can
play this role during the electrochemical detection. For example, after the oxidation
of dopamine, dopamine-o-quinone is reduced by ascorbate, regenerating dopamine.
This catalytic reaction by ascorbic acid provides more dopamine for electrooxidation
with the net result that the electrochemical current is proportional to both dopamine
and ascorbate (Sternson et al., 1973).

 Recently it has been shown that hydrogen peroxide plays an important role in
brain signaling and neurotransmitter regulation (Chen et al., 2001; Avshalumov et al.,
2007). Hydrogen peroxide can be detected directly by electrochemical methods
such as amperometry (Kulagina and Michael, 2003). Oxygen levels in the brain are
also often determined with microelectrodes (Zimmerman and Wightman, 1991;
Thompson et al., 2003; Venton et al., 2003b; Bolger and Lowry, 2005). For
determination of oxygenation of brain tissue, electrochemical methods are an alternative approach to BOLD-MRI measurements which monitors the oxygen dissociation from hemoglobin (Ogawa et al., 1990). Although electrochemical oxygen measurements have a much better spatial and temporal resolution than fMRI techniques for many studies use fMRI techniques because of the non-invasive nature. Furthermore, amperometric detection of hydrogen peroxide or oxygen is the basis for enzyme based electrodes that are discussed further later.

Nitric oxide (NO) has been shown to act in the central nervous system as secondary messenger and as mediator in cardiovascular system (Schuman and Madison, 1994; Dawson and Dawson, 1996; Cooper et al., 2003). Nitric oxide is synthesized from argenine. When measuring nitric oxide electrochemically, normally electrodes with coatings or membranes that are specific to NO are used. A description of these coating can be found later in this review.

Electrode materials

The developments of microelectrodes several decades ago formed the basis for in vivo applications of electrochemical detection of neurotransmitters. Early microelectrodes for voltammetric recordings in the CNS were constructed from carbon paste (Adams, 1958; Kissinger et al., 1973; O'Neill, 2005). The carbon paste was prepared by mixing carbon powder with either Nujol or silicone oil (O'Neill et al., 1982) and then packed into the end of Teflon insulated metal microwires resulting in disk electrodes with diameters between 100 and 300 µm. Glass capillaries can also be filled with carbon paste. Epoxy resin is often added to the carbon paste following
curing resulting in a more rigid electrode (Conti et al., 1978; Huff and Adams, 1980). Carbon paste electrodes have been reported to be stable over several months for \textit{in vivo} applications. However, the relatively large size of carbon-paste electrodes limits the applications to larger brain regions. Because of the larger size more brain damage occurs in comparison to smaller sized electrodes.

Smaller carbon electrodes can be made from carbon fibers (Gonon et al., 1978; Ponchon et al., 1979). Carbon fibers range from a few micrometers in diameter to 40 µm but the majority of fibers range between 5-15 µm (McCreery, 1996). Carbon fibers are prepared from the pyrolysis of either petroleum pitch or polyacrylonitrile (PAN) and undergo thermal processing similar to glassy carbon. To make an electrode the carbon fiber is inserted into a glass capillary, pulled with a pipette puller, and cut to obtain a cylindrical electrode or polished for disk electrodes. To form a well insulated seal between the carbon fiber and the insulating glass sheath, epoxy resin is allowed to creep between the fiber and the glass and then cured (Kawagoe et al., 1993). Carbon-fiber microelectrodes constructed in this way cause minimal damage to the surrounding tissue (Peters et al., 2004) when inserted into the brain because the dimensions of the whole electrode including the surrounding insulation are in the lower micrometer range.

The electrochemical properties of carbon electrodes depend on the oxidation state of carbon-containing functional groups of the carbon surface. It has been proposed that surface carbonyl- and hydroxyl-groups can catalyze electron transfer for inner-sphere reactions at the electrode surface (Chen and McCreery, 1996). Furthermore, overoxidation of carbon electrode surfaces has been shown to
increase the sensitivity to positively charged analytes (Heien et al., 2003). This is probably due to increased adsorption of cations to the carbon surface. An increase in sensitivity of 5 to 7 has been observed in vitro for dopamine when using fast scan cyclic voltammetry at overoxidized carbon fibers. However, overoxidized electrodes show a slower time response and lower selectivity than electrode which have not been exposed to high oxidative potentials. In early studies overoxidation was accomplished by repetitive excursions + 3 V vs. Ag/AgCl at 70 Hz (Gonon et al., 1980b; Gonon et al., 1981). Electrodes treated this way showed higher sensitivity for catecholamines. However, in addition to increasing the amount of surface oxides, this surface treatment seems to drastically increase the surface area of the electrode (Swain and Kuwana, 1991).

Carbon microelectrodes are well suited for direct electrochemical detection of neurotransmitters of group 1 for various reasons. Beside the relatively easy and cost-effective construction, carbon electrodes show very little bio-fouling during in-vivo applications in contrast to metal electrodes which have to be further coated. Fouling of the electrode surface has a huge impact on electron transfer kinetics on which especially voltammetry techniques depend on. Furthermore, a larger potential range can be applied to carbon electrodes than to metal electrodes which readily undergo electro-oxidation.

Gold and platinum microelectrodes have been used to directly detect catecholamines in vitro (Matos et al., 2000; Vandaveer et al., 2003; Yan et al., 2003; Etienne et al., 2005). However, because of the relatively small potential window compared to carbon electrodes and problems with bio fouling, metal electrodes are
commonly not used for direct electrochemical detection of neurotransmitters of group one. However, platinum and gold electrodes are commonly used for enzyme electrodes to detect molecules of group two \textit{in vivo}. Because of the possibility to micro pattern gold and platinum onto substrates metal microelectrodes are often fabricated in arrays with multiple electrode sites (Burmeister, 2000; Burmeister and Gerhardt, 2001, 2003).

Electrochemical techniques

Different electrochemical techniques are used to directly detect the molecules of group 1. The most common techniques are constant-potential amperometry, chronoamperometry, differential pulse voltammetry and fast-scan cyclic voltammetry.

In constant-potential amperometry the working electrode is held at a DC potential sufficient to oxidize or reduce the compound of interest at the electrode surface. The presence of an electroactive species that undergoes electron transfer at this potential will lead to a current. The integral of the current with respect to time (charge, Q) is directly proportional to the amount (m) of the species electrolyzed at the electrode surface by Faraday’s law ($Q = nFm$ where n is the number of electrons in the redox step, and F is Faraday’s constant). With constant-potential amperometry very high time resolution can be achieved. With a sampling rate in the kHz range constant-potential amperometry can resolve signals on the sub-millisecond time scale. Adsorption of reactants at electrodes is not a concern with constant-potential amperometry because species are electrolyzed immediately when they come in contact with the electrode. For this reason, adsorption processes do
not slow down the response to concentration changes of the analyte as occurs with voltammetric techniques. Collectively, these properties make constant-potential amperometry a useful technique to measure vesicular neurotransmitter release from single cells (Leszczyszyn et al., 1991; Wightman et al., 1991; Cahill and Wightman, 1995; Zhou and Misler, 1995). Studies using amperometry have allowed for the detection of attomole to zeptomole amounts secreted from single cells (Chen et al., 1994; Jaffe et al., 1998; Pothos et al., 1998; Hochstetler et al., 2000).

Although amperometry can be used to determine amounts secreted, it is not particularly useful for determining concentrations. This is because the dimensions and shape of the diffusion layer must be designed to be identical during calibration and at single cells. Despite this, amperometry has also been successfully used to study catecholamine concentrations in the brain and in brain slices (Falkenburger et al., 2001; Troyer et al., 2002). It has been shown that the addition of ascorbic acid provides a way to obtain accurate in calibrations for catecholamine detection (Venton et al., 2002). Recall that the catalytic reaction of ascorbate with dopamine-o-quinone regenerates dopamine. If the reaction occurs at a similar rate in the calibration solution and in the brain preparation, the diffusion layer dimensions will be the same in both environments, and the calibration factor obtained in vitro will be valid in vivo. Despite these advantageous features, constant potential amperometry is inherently non-selective. All electroactive compounds that oxidize or reduce at the holding potential will produce a faradaic current detected at the electrode. Therefore it is important to use independent measures to identify the molecules responsible for the detected currents to confirm amperometric traces.
In chronoamperometry the applied potential is instantaneously stepped from an initial potential at which no electrochemical reaction is occurring to a potential sufficient to oxidize or reduce the molecule of interest. After that the potential is then stepped back to the initial holding potential in a rectangular fashion. The current observed during the initial potential step is proportional to the concentration of the electroactive species present, and it decays with the inverse of the square root of time if the current is governed by diffusion. Traditionally the current is measured at a fixed time into the potential step and this is used to calculate the concentration of the analyte. On the potential step back to the initial potential the species that were originally oxidized will be reduced. From the ratio of the currents measured on the reverse and forward potential step, information about the stability of the oxidized species can be made. This feature provides chronoamperometry with somewhat greater selectivity than constant-potential amperometry. Chronoamperometry has often been used to measure neurotransmitter concentrations especially serotonin (Daws et al., 2005; Perez and Andrews, 2005) and dopamine (Hoffman and Gerhardt, 1998; Miller et al., 2005; Unger et al., 2006) in the extracellular fluid of the brain in real time. However, because of its limited chemical selectivity, it is most often used to measure neurotransmitter dynamics following injection of the authentic substance or an agent that immediately causes release.

An electrochemical method used in many early reports of in vivo neurotransmitter measurements is differential-pulse voltammetry (DPV). DPV is a combination of linear sweep voltammetry with square wave techniques. The applied signal is a small amplitude square wave (~25mV) at a constant frequency.
superimposed on a slow linear potential ramp. The current is measured both shortly before each square wave is applied and again shortly before each pulse ends. The difference between these currents is plotted versus the potential of the linear sweep. The differential currents give a symmetrical voltammetric peak whose amplitude is proportional to the concentration of the analyte. In contrast to amperometric methods, it is possible with DPV to measure simultaneously different analytes as long as the oxidation potentials of these compounds are separated by more than 100 mV (Adams and Marsden, 1982). DPV has been used in the past for in-vivo neurotransmitter detection of catecholamines (Gonon et al., 1980b; Gonon et al., 1984) and serotonin (Crespi et al., 1984) as well as oxygen (Bolger and Lowry, 2005) measurements. However, DPV shows a relatively poor time resolution since one scan takes longer than 30s while neurotransmitter fluctuations occur on a subsecond time scale.

Fast-scan cyclic voltammetry (FSCV) is an electrochemical technique that provides a much higher temporal resolution than DPV but still shows high selectivity (Millar et al., 1985). In an FSCV experiment the potential applied to the electrode is ramped at scan rates larger than 100 V/s in a triangular fashion. The voltage limits are chosen so that the reduction and oxidation of the analyte of interest lies within this potential window. At high scan rates the majority of the current detected at the working electrode is a background current due to charging of the double layer and, depending on the material of the electrode used, redox processes at the electrode surface (Chen and McCreery, 1996; Hsueh et al., 1997). Typically this large background current is subtracted (Howell et al., 1986) so that the smaller changes in
Faradaic currents due to redox processes of electroactive species can be monitored. Because the background current is only stable for a brief time, FSCV is typically only used to observe concentration changes over the time course of a minute. Furthermore, because of the differential nature of the technique it is not possible to measure basal level concentrations of electroactive species. FSCV has been shown to be very useful for the detection of catecholamines in vivo because of the high sensitivity and selectivity (Cahill et al., 1996). Typically with FSCV a time resolution of 100 ms is achieved by applying the waveform for 10 ms and repeating it at 100 ms intervals. Because it involves a potential sweep, FSCV provides the possibility to distinguish analytes with different oxidation potentials by their peak positions for the oxidation and the reduction as well as by their peak shape (Heien et al., 2004).

In the intervals between each scan, where the electrode is typically held at a negative potential the catecholamines have been shown to adsorb to the electrode surface (Bath et al., 2000). This adsorption causes a preconcentration of the catecholamine at the surface before each voltammetric scan. Anionic compounds do not show this preconcentration process, which increases selectivity for the cations. A further increase in selectivity is achieved by the application of high scan rates itself. Compounds with slower electron transfer rates like ascorbate can be distinguished very easily form biogenic amines at high scan rates because the oxidation is drawn out to higher potentials (Marsden et al., 1988; Millar et al., 1992).
Modified electrodes

Different surface coatings have been applied to electrode surfaces to overcome some of the limitations of the electrochemical detection schemes. Surface coatings are widely employed to increase sensitivity and selectivity for certain analytes as well as way to prevent surface fouling. Nafion, a perfluorinated cation-exchange polymer, is a commonly used electrode coating (Baur et al., 1988) for catecholamine detection because the biogenic amines are positively charged at physiological pH. Nafion can be applied by dip coating the electrode in a suspension of 2.5% Nafion in isopropanol and allowing the solvent to evaporate leaving a Nafion film. The considerable hydrophobicity of the Nafion layer minimizes surface fouling while sulfonate groups within the Nafion network promote accumulation of cations while rejecting anions. An alternate approach is the deposition of an overoxidized polypyrrole-film on the electrode surface (Witkowski and Brajtertoth, 1992; Hsueh and Brajtertoth, 1994; Pihel et al., 1996; Wang et al., 1997). These films exhibit similar properties to those described for Nafion films. However, both coatings are noncovalently attached layers that have finite thickness. The thickness means that there is a finite time required for molecules to diffuse through the coating. This increases the response time of the electrode. To remove this component, deconvolution methods have to be used to extract real time response curve at electrodes modified with this way (Kawagoe and Wightman, 1994). Carbon paste electrodes have been modified by mixing stearic acid into the carbon paste (Lyne and Oneill, 1989; Lane and Blaha, 1990; Blaha and Phillips, 1996). These electrodes have been reported to have a high sensitivity and selectivity to
dopamine over other electrochemical interferences present in the brain like ascorbic acid and DOPAC. More recently carbon-fiber microelectrodes have been modified by covalent attachment of molecules via diazonium salt reduction. Most commonly the electrodes are modified with anionic functional groups like carboxyphenyl (Bath et al., 2001), phenylacetate (Downard et al., 1995), or sulfobenzene (Hermans et al., 2006). Electrodes modified this way show a higher sensitivity and selectivity to cationic analytes such as catecolamines over anionic analytes like ascorbic acid without slowing down the time response of the detection.

To create an electrode that is sensitive to nitric oxide different surface coatings have been used to minimize interferences from oxygen and other derivates of nitric oxide such as the main interference NO$_2^-$. Elimination of these interferences is the biggest challenge in creating a nitric oxide sensor. Early nitric oxide sensing electrodes used a Clark-type electrode with chloroprene rubber as NO selective membrane (Shibuki, 1990). Carbon fiber microelectrodes coated with o-phenylenediamine and Nafion (Friedemann et al., 1996) showed also a very high selectivity for nitric oxide. Platinum-iridium electrodes coated with a nitrocellulose/pyroxylin layer were used to measure NO concentrations in various biological applications (Ichimori et al., 1994). Recently NO concentrations have been electrochemically detected in tumor-bearing mice with a Nafion/o-phenyldiamine coating on a platinum-iridium microelectrode (Griveau et al., 2007). Other approaches include electrodes modified with layers of Nafion and Ni tetrasulfonate phthalocyanine tetrascodium salt (Isik et al., 2007) or electrodes coated
with silicone based xerogels which are doped with methoxysilanes (Shin et al., 2005). However, these approaches have not been tested in vivo yet.

Reference and auxiliary electrodes

When using a 3-electrode setup for in-vivo electrochemical measurements the auxiliary electrode is most commonly a stainless steel electrode which is brought in contact with the cortex at a convenient location. When using microelectrodes often a 2-electrode setup is used consisting just of a working electrode and a reference electrode. Two electrode systems are preferred because the currents are sufficiently small that the reference electrode does not get polarized during the course of the experiment. Also, with an extracellular NaCl concentration of ~150mM the electrolyte concentration is high enough to minimize the solution resistance. Reference electrodes are normally a small-diameter silver wire, which has been anodized in hydrochloric acid to form a silver chloride layer on the surface of the wire (Phillips et al., 2003). The wire is directly implanted into the brain tissue.

Detection of changes in pH in vivo

pH changes have been shown to follow electrical stimulation of dopamine neurons and seem to be an indirect measure of blood vessel dilation and oxygenation of the tissue (Venton et al., 2003a). Microelectrodes to measure pH in the brain have been developed with different approaches. One approach for electrodes for in vivo pH-measurements have been construction from double barreled thin wall capillary glass (Chesler and Chan, 1988; Chen and Chesler, 1992;
The pH sensitive barrel is filled with a hydrogen ionophore cocktail to provide a liquid pH sensitive junction. The second barrel is traditionally the reference barrel that is filled with a buffer solution at physiological pH. The electrodes are used in a potentiometric mode with the voltage difference between the two electrodes measured. Electrodes produced in this fashion have shown to be able to resolve at least 0.001 pH units in a millisecond time scale (Chesler and Chan, 1988). A different approach uses metal microelectrodes as micro-pH sensors. Most commonly iridium-oxide has been used electrode as electrode material. Iridium oxide electrodes show a linear sensitivity over a pH range of pH 2 - pH 10 and have low susceptibility to other cationic interferences and seem to function under in-vivo conditions (Marzouk et al., 1998; Bezbaruah and Zhang, 2002). Recent research showed that iridium-oxide pH sensors can be patterned in a microelectrode array to allow simultaneous recording at multiple sites (Johnson et al., 2007). Anhydrous iridium oxides have Nernstian responses to pH changes that originate from the reactions between the +III and the +IV states of iridium:

\[
\text{IrO-OH} \rightarrow \text{IrO}_2 + \text{H}^+ + \text{e}^- \quad (3)
\]

\[
\text{Ir}_2\text{O}_3 + \text{H}_2\text{O} \rightarrow 2 \text{IrO}_2 + 2\text{H}^+ + \text{e}^- \quad (4)
\]

Commonly the measurement is done in a potentiometric measurement versus a silver-silver chloride reference electrode. In-vivo pH changes can also be measured with background subtracted fast-scan cyclic voltammetry at carbon electrodes (Runnels et al., 1999; Venton et al., 2003a; Cheer et al., 2006). Carbon-fiber electrodes respond to pH changes because one of the contributions to the background current is electrolysis of oxide groups on the electrode surface. The
Electrolysis is pH dependent, and a differential signal is formed when the background is subtracted. The amplitude of this change is directly proportional to the amplitude of the pH change.

Enzyme electrodes for detection of molecules in group 2

Considerable research has been conducted over the last couple of decades to design electrochemical sensors for molecules that are not electroactive. These sensors rely on the principle that during the oxidation of an analyte by an enzymatic reaction an electroactive species is formed that can be detected at the electrode surface. With this technique electrochemical sensors that measure glucose and lactate concentrations in the brain have been constructed to study brain metabolism. The design features of those electrodes have been adapted to detect glutamate, choline, acetylcholine, GABA and adenosine (Dale et al., 2000; Llaudet et al., 2003a). Detection with enzyme electrodes is normally used with amperometric detection. This means that is of great importance to construct electrodes with selective membranes to minimize interfering signals (Wilson and Gifford, 2005).

An important driving force for the development of enzyme electrodes was the need for a reliable glucose sensor for blood measurements for diabetic patients. The first enzyme-based glucose sensing electrodes have been developed in the 60’s (Clark and Lyons, 1962; Updike and Hicks, 1967) by immobilizing glucose oxidase embedded in a gel-matrix on Clark-type oxygen electrode. The enzymatic reaction turns glucose into gluconic acid with consumption of oxygen.

\[
glucose + O_2 \xrightarrow{\text{GOx}} \text{gluconic acid} + H_2O_2 \quad (6)
\]
The configuration of the sensor depends on whether reaction (6) is monitored by measuring \(\text{H}_2\text{O}_2 \) or oxygen. When oxygen is measured a low reducing potential is required for amperometric detection which eliminates interferences because only a few endogenous electroactive species undergo electron transfer in this potential region. However, often hydrogen peroxide detection is preferred because of easier construction although the relatively high potential (0.6 V vs. Ag/AgCl) that is applied to the electrode significantly increases the number of interfering species. An alternative approach uses redox mediators which enable the use of lower potentials applied (0V vs Ag/AgCl). These mediators are commonly horseradish peroxidase coupled to an osmium complex or polypyrrole (Gregg and Heller, 1990, 1991; Georganopoulou et al., 2000). An example of a redox-mediated enzyme reaction is shown the reaction schemes 10a to 12a.

Miniaturized glucose sensors based on hydrogen peroxide sensing have been developed for subcutaneous monitoring (Bindra et al., 1991) as well as direct measurements in the brain (Silver and Erecinska, 1994; Hu and Wilson, 1997b) to study brain metabolism (Hu and Wilson, 1997a). Lactate oxidase (Wang and Heller, 1993; Shram et al., 1998; Shram et al., 2002) can also be used as reactive enzyme to obtain further information about brain metabolism

\[
\text{lactate} + \text{O}_2 \xrightarrow{\text{LOX}} \text{pyruvate} + \text{H}_2\text{O}_2 \quad (7)
\]

Often electrochemical glucose and lactate detectors have also been used with microdialysis probes that allow removal of extracellular fluid for on-line detection outside of the brain (Jones et al., 2000; Parkin et al., 2005).
The developments in the field of glucose sensors were exploited to develop electrochemical detectors for other neurotransmitters in the brain. Glutamic acid, or glutamate, is the major excitatory neurotransmitter in the central nervous system. It is synthesized from glutamine in glial cells and then converted by glutaminase into glutamate or synthesized from glucose via the Krebs cycle. Most electrochemical glutamate sensors have been constructed from metal electrodes, most commonly platinum, coated with a thin layer of electropolymerized o-phenylenediamine (Alvarez-Crespo et al., 1997) or Nafion. These surface coated polymers minimize interferences, especially anionic compounds. Glutamate oxidase can be embedded in a cross-linked redox polymer with horseradish peroxidase (Kulagina et al., 1999), or, more commonly in a layer of BSA and glutaraldehyde on top of the Nafion layer (Pan and Arnold, 1996; Burmeister and Gerhardt, 2001; Huettl et al., 2002; Burmeister and Gerhardt, 2003). In a recent research study glucose oxidase was embedded in a hydrogel matrix (Oldenziel et al., 2006). Horseradish peroxidase, and ascorbate oxidase were wired via poly(ethylene glycol) diglycidyl ether to an osmium-containing redox polymer and integrated into the hydrogel to provide high selectivity to glutamate.

All these electrodes follow the basic electrochemical detection scheme for glutamate (8 to 10) as described by Kusakabe (Kusakabe et al., 1983):

\[
\text{O}^- \text{NH}_3^+ + \text{H}_2\text{O} + \text{GluOx/FAD} \rightarrow \text{O}^- \text{C} \text{O} \text{C} \text{O}^- + \text{NH}_3 + \text{GluOx/FADH}_2
\]

(8)

\[
\text{GluOx/FADH}_2 + \text{O}_2 \rightarrow \text{GluOx/FAD} + \text{H}_2\text{O}_2
\]

(9)

\[
\text{H}_2\text{O}_2 - 2\text{e}^- \rightarrow \text{O}_2 + 2 \text{H}^+
\]

(10)
The first 2 steps of this reaction scheme occur in the outer enzyme containing layer. The hydrogen peroxide that is generated in reaction (0) diffuses then through the selective membrane to the electrode surface where it gets oxidized in a 2 electron process (reaction (9)). An alternative detection with an osmium-containing redox-layer is shown in the reaction (10a to 12a). In this case the hydrogen peroxide will be reduced by horseradish peroxidase (HRP) which then will be oxidized itself by Osmium (II) to Osmium (III). At the electrode the reduction of Osmium (III) will then be detected. Glutamate electrodes currently show a limit of detection of around 1 µM and a linear range up to 200 µM for calibrations in vitro (Burmeister and Gerhardt, 2001).

The neurotransmitter acetylcholine is synthesized in vivo from choline by choline acetyltransferase. Electrodes designed for the detection of choline are similar to those described for glutamate detection (Garguilo and Michael, 1993, 1994). Instead of immobilization of glutamate oxidase, choline oxidase is used. The first reaction step is shown in the following reaction scheme:

\[
\text{N}^+\text{OH} + 2 \text{O}_2 + \text{H}_2\text{O} \xrightarrow{\text{ChO}} \text{N}^+\text{O} \text{OH} + 2 \text{H}_2\text{O}_2
\]

(13)

Hydrogen peroxide can then either be detected directly at the electrode (Guerrieri et al., 2006) as shown in reaction (10) or via a redox-polymer as shown in reactions...
(10a) to (12a). To monitor acetylcholine concentrations acetylcholine esterase is added to the electrode surface to convert acetylcholine to choline:

\[
\begin{align*}
\text{N}^+ \text{O} \text{O} \text{N}^+ & \quad \text{O} \text{H}^+ \quad \text{H}_2\text{O} \\
\text{AChE} & \quad \text{Acetic Acid}
\end{align*}
\]

Choline is then oxidized according to reaction (13) which then will lead to the reaction (10) or (10a) to (12a). Because choline is present in the brain as well as being one of the products in the reaction cascade, it is important to have an independent measure of choline. This can be done in a differential manner to subtract out the signal from a choline sensor from the overall signal recorded at the acetylcholine sensitive electrode (Garguilo and Michael, 1996; Guerrieri et al., 2006).

Another neurotransmitter that can be detected electrochemically after an enzymatic reaction is the inhibitory amino acid transmitter γ-aminobutyric acid (GABA). Glutamate is the biochemical precursor for GABA. GABA is formed after α-decarboxylation of glutamate. The bioenzymatic system used for GABA detection is comprised of the enzymes GABA-α-oxoglutarate transaminase (GABA-T) and succinic semialdehyde dehydrogenase (SSDH)(Mazzei et al., 1996):

\[
\begin{align*}
\text{O}^- \text{NH}_3^+ & \quad \text{O}^- \text{O}^- \\
\text{GABA T} & \quad \text{O}^- \text{NH}_3^+ \quad \text{O}^- \text{O}^- + \text{O}^- \text{NH}_3^+ \quad \text{O}^- \text{O}^- + \text{O}^- \text{NH}_3^+
\end{align*}
\]

\[
\begin{align*}
\text{O}^- \text{NH}_3^+ & \quad \text{O}^- \\
\text{SSDH} & \quad \text{O}^- \text{NH}_3^+ + \text{NADP}^+ + \text{H}^+
\end{align*}
\]
2NADPH + O₂ + 2H⁺ $\xrightarrow{\text{HRP}}$ 2NADP⁺ + 2H₂O \hspace{1cm} (17)

The reaction steps for the electrochemical detection of GABA three step process.

The product of the first two enzymatic reactions (15+16) is NADHP, which is formed from NADH⁺ embedded in the enzyme layer. NADHP is then re-oxidized to NADP⁺ after reacting with horseradish peroxidase. The amperometric detection is based on oxygen consumption in reaction (17). However, GABA electrodes are not commonly used today for direct in-vivo applications. Mostly GABA detection is conducted with HPLC detection after microdialysis.

Beside direct electrochemical detection (Swamy and Venton, 2007) purines such as ATP (Llaudet et al., 2005), ADP, and adenosine (Llaudet et al., 2003b) have been detected in vivo with enzyme electrodes (Dale et al., 2005). ATP sensors have been constructed by combining glucose oxidase and hexokinase. The signal recorded for changes in ATP is due to the reduction in the glucose signal via phosphorylation of glucose to glucose 6-phosphate (Compagnone and Guilbault, 1997; Kueng et al., 2004). A different detection scheme relies on the phosphorylation of glycerol (Murphy and Galley, 1994; Llaudet et al., 2005).

\[
\begin{align*}
\text{ATP} + \text{HO-CH(OH)CH(OH)} & \xrightarrow{\text{Glycerol kinase}} \text{ADP} + \text{HO-CH(OH)O}_\text{PO}_{\text{O}}^- \\
\text{HO-CH(OH)O}_\text{PO}_{\text{O}}^- + \text{O}_2 & \xrightarrow{\text{Glycerol-3 phosphate oxidase}} \text{HO-CH(OH)O}_\text{PO}_{\text{O}}^- + \text{H}_2\text{O}_2
\end{align*}
\hspace{1cm} (18)

This detection scheme enables again the amperometric detection of hydrogen peroxide at the electrode.
To further eliminate interferences in the amperometric signal self-referencing electrodes have been developed (Burmeister and Gerhardt, 2001, 2003). With this electrode setup two electrodes are placed within a very close proximity of each other. This can be achieved by the construction of microelectrode via photolithographic etching. Only one of the electrodes sites will be coated with the enzyme containing coating, while the other site will be coated in the same manner just without addition of the enzyme. The non-enzyme containing electrode serves as a reference electrode that can sense all electrochemical signals originating from interfering species. This signal is then subtracted from the signal measured at the enzyme-containing electrode to obtain a signal that is purely due to the analyte of interest. This method can be applied to all enzyme electrode-types described here. However, the prerequisite for this technique is that the chemical environment is identical at each of the two electrode sites.

Detection of molecules in group 3

Some neurotransmitters and neuromodulators cannot be detected directly in the brain with electrochemical biosensors at this time. The most prominent members of this group are some of the amino acid transmitters like glycine as well as the large group of neuroactive peptides. For the detection of these molecules typically microdialysis probes are used. In microdialysis a small probe containing a dialysis membrane is inserted into the target region. A perfusion fluid, the dialysate, is pumped through the probe and the molecules of interest can diffuse though the membrane into the dialysate. The dialysate can then be removed and analyzed by
different independent analytical methods (Watson et al., 2006). Typically HPLC is used to analyze the composition and concentrations of the dialysate. For analysis of neuropeptides, commonly isolated or cultured neurons or whole neuronal tissue is homogenized and then separated with chromatographic techniques. Detection can be done with variety of methods such as UV absorbance, florescence, electrochemical detection or radioactive detection (Sandberg and Weber, 2003). Soft ionization techniques in mass spectrometry are also employed in discovering and analyzing neuropeptides (Hummon et al., 2003; Hummon et al., 2006).
REFERENCES

Pihel K, Schroeder TJ, Wightman RM (1994) Rapid and Selective Cyclic Voltammetric Measurements of Epinephrine and Norepinephrine as a Method

CHAPTER 2

CARBON-FIBER MICROELECTRODES MODIFIED WITH 4-SULFOBENZENE HAVE INCREASED SENSITIVITY AND SELECTIVITY FOR CATECHOLAMINES

Introduction

Voltammetric microelectrodes provide a platform for the construction of sensors of the concentration fluctuations of easily oxidized neurotransmitters in the extracellular fluid of the brain (Kawagoe et al., 1993). The neurotransmitter dopamine can be detected in this way. Dopamine has shown to be of central importance to normal behavior. For example, depletion of dopamine in the striatum is a consequence of Parkinson’s disease, (Cooper et al., 1996) and the symptoms can be alleviated by administration of its biosynthetic precursor, L-DOPA. In addition, dopaminergic neurons are involved in brain circuitry that is important in reward and addiction (Schultz et al., 1993; Waelti et al., 2001).

Several sensor properties are desirable for the detection of dopamine. The sensor should have a fast response time because concentration changes in vivo occur on a sub-second time scale (Pothos et al., 1998). High sensitivity is required because the physiological actions of dopamine at its receptors occur at concentrations in the range from nanomolar to low micromolar (Richfield et al., 1989; Berke and Hyman, 2000). High selectivity is required because other electroactive species are present
in the extracellular fluid of the brain at much higher concentrations than dopamine. Background subtracted, fast-scan cyclic voltammetry at carbon-fiber microelectrodes has been shown to have many of these characteristics so that it is a useful technique for detection of dopamine and other oxidizable neurotransmitters at single biological cells and within intact tissue (Garris and Wightman, 1995; Travis and Wightman, 1998). Recent improvement in instrumentation and computer control allowed this technique to achieve very high sensitivities (Cahill et al., 1996; Michael et al., 1998; Michael et al., 1999). The basis for the high sensitivity of fast-scan cyclic voltammetry for dopamine depends is its accumulation by adsorption at the carbon surface in the time between collection of each cyclic voltammogram. An alternate approach to increase sensitivity and selectivity with carbon-fiber electrodes is to use surface coatings such as Nafion®, a perfluorinated cation-exchange polymer, or overoxidized polypyrrole (Baur et al., 1988; Pihel et al., 1996). These coatings promote dopamine accumulation at the electrode surface while rejecting anions. However, both coatings are noncovalently attached layers that have finite thickness. The time required for molecules to diffuse through the coating increases the response time of the electrode. An alternate approach to achieve high sensitivity is electrochemical overoxidation of the carbon surface (Heien et al., 2003). This appears to increase anionic sites on the surface because it promotes increased adsorption of amines that are protonated at physiological pH such as dopamine. However, overoxidation decreases selectivity and also increases the response time of the electrode to dopamine.
Savéant and coworkers introduced a procedure for covalent attachment to carbon surfaces by grafting aryl radicals produced by electrochemical reduction of diazonium salts (Delamar et al., 1992). Subsequently diazonium salt reduction has been demonstrated to be a versatile method to functionalize carbon-electrode surfaces (Downard and Roddick, 1995; Downard et al., 1995; Liu and McCreery, 1995; Allongue et al., 1997; Delamar et al., 1997; Pinson and Podvorica, 2005). While strong bonding and dense packing of monolayers produced by diazonium reduction were initially established, later studies demonstrated that some aryl diazonium salts tend to form multilayer structures on the electrode surfaces. (Kariuki and McDermott, 1999, 2001; Anariba et al., 2003; D'Amours and Belanger, 2003)

Recent research has shown that reduction of diazonuim salts at metal electrodes also forms surface layers at non-carbon electrodes (Dequaire et al., 1999; Adenier et al., 2001; Chausse et al., 2002; Boukerma et al., 2003; Laforgue et al., 2005).

To create a dopamine sensitive and selective electrode we have modified carbon microelectrodes via reduction of 4-sulfobenzenediazonium tetrafluoroborate (4-SBD). The sulfonate group can provide a cation exchange site similar to Nafion® but with a thinner grafted layer that is covalently attached to the electrode surface. In this study we compare the fast-scan cyclic voltammetric response at modified electrodes and untreated electrodes to several neurochemicals as well as examine the adsorption behavior of dopamine. In addition, the functionality of these electrodes was tested in mouse brain slices.
Laslo: - EXPERIMENTAL SECTION

Chemicals

All chemicals for flow injection analysis were purchased from Sigma-Aldrich (St. Louis, MO) and used as received. Solutions were prepared using doubly distilled water (Megapure system, Corning, New York). Solutions for flow injection analysis were prepared in a TRIS buffer solution, pH 7.4 containing 15 mM TRIS, 140 mM NaCl, 3.25 mM KCl, 1.2 CaCl$_2$, 1.25 mM NaH$_2$PO$_4$, 1.2 mM MgCl$_2$ and 2.0 mM Na$_2$SO$_4$. This buffer mimics the ionic environment present in cerebral spinal fluid. Stock solutions of analyte were prepared in 0.1 M HClO$_4$, and were diluted to the desired concentration with TRIS buffer on the day of use.

Synthesis and characterization of 4-sulfobenzenediazonium tetrafluoroborate (4-SBD)

0.1 mol (17.3 g) of 4-aminobenzenesulphonic acid (Sigma-Aldrich, St. Louis, MO) was dissolved in 0.2 mol (37 g) of tetrafluoroboric acid (48 %) (Fischer Chemicals, Fair lawn, NJ). This solution was cooled in an ice-salt bath to -5°C. Water was added to 0.1 mol (6.9 g) sodium nitrite (Aldrich, Milwaukee, WI) until dissolution was complete and the nitrite solution was added dropwise to 4-aminobenzenesulphonic acid over 30 min while mechanically stirring. The resulting suspension was vacuum filtered and the white salt was washed with an ice cold ether-methanol mixture (4:1), purified by washing with small amounts of ice cold ethanol, and dried over calcium chloride. The compound was stored at 4°C. The
purified compound was characterized by 400 MHz- NMR measurements. (DMSO) δ 7.80 (1H,d), 7.68 (1H,d), 7.29 (1H,d), 7.27 (1H,d) with no proton signal for the amine group. IR analysis showed a strong band at 2300 cm⁻¹ that indicated the presence of the diazonium group. Melting point determination showed decomposition at 127°C – 130°C consistent with the range determined by Kolar(Kolar, 1972) for 4-SBD.

Electrode preparation

The microelectrodes were fabricated as previously described(Kawagoe et al., 1993) with both P-55 and T650 carbon fibers (Thornel, Amoco Corp., Greenville, SC). A single fiber was aspirated into a glass capillary and pulled on a micropipette puller (Narashige, Tokyo, Japan). For elliptical electrodes the fiber was sealed into the capillary with epoxy resin (Epon 828 with 14% m-phenylenediamine by weight, Miller Stephenson Chemical Co., Danbury,CT). After curing the epoxy, the electrodes were polished at a 45° angle on a diamond embedded polishing wheel (Sutter Instruments), resulting in an elliptical surface of approximately 10⁻⁶ cm² for P-55 disks and 4 x 10⁻⁷ cm² for T-650 disks.

The capillaries of the microelectrodes were backfilled with electrolyte solution (4M potassium acetate, 150 mM potassium chloride), and wires were inserted into the capillary for electrical contact. Macroelectrodes were constructed by attaching contact wires to the back of glassy carbon plates (Tokai, between 1 cm² and 2 cm² surface area) with silver epoxy (H2O-PFC, EPO-TEK, Billerica, MA). The epoxy was cured for 5 minutes at 150°C. The glassy carbon plate was sealed with
High Vacuum Torr Seal (Varian Vacuum Technologies) that was cured overnight at room temperature. The carbon surface was exposed by polishing with alumina slurries of 1µm, 0.3µm, and 0.05µm size subsequently. (McCreery, 1996) Before use all electrodes were soaked in isopropanol purified with Norit A activated carbon (ICN, Costa Mesa, CA) for at least 20 minutes. (Bath et al., 2000)

Chemical surface modification

4-sulfobenzene (4-SB) was attached to the carbon surface by electroreduction at a potential of -1.0 V vs Ag/AgCl for 5 minutes (Delamar et al., 1992; Allongue et al., 1997). Electrolysis was done in acetonitrile, dried over alumina before use, containing 1 mM 4-SBD and 0.1 M tetrafluoroboric acid (48 %, Fischer Chemicals, Fair lawn, NJ). Dissolution of 4-SBD was aided by 5 minutes of sonication. Tetrafluoroboric acid was used as electrolyte because it improved dissolution of the diazonium compound. It also provided better reproducibility of the surface layers than with tetrabutylammonium tetrafluoroborate as electrolyte. The small amount of water added with the tetrafluoroboric acid did not adversely effect the formation of the grafted layer because the covalent attachment also occurs following diazonium reduction in aqueous solutions (Delamar et al., 1997). Before electrolysis the solution was deaerated with nitrogen for 10 minutes. For experiments examining formation of the layer cyclic voltammetry was used. The potential was cycled in 4-SBD solutions at a scan rate of 0.2 V/s from 0.5 V to -1 V vs. Ag/AgCl for 30 cycles.
XPS analysis

A Perkin Elmer PHI 5400 ESCA instrument with an Mg X-ray source was used. For survey scans, three scans were averaged: 0.5 eV/step, 50 msec/step with a pass energy of 89.45 eV, and a work function of 4.75 eV. Multiplex scans to determine the percentage composition of the sample surface were done with 0.1 eV/step, 50 msec/step, pass energy 35.75 eV, and a work function of 4.75 eV. For all multiplex scans, nine scans were taken and averaged.

Electrochemical measurements

Cyclic voltammograms were acquired and analyzed using locally constructed hardware and software written in LabVIEW (National Instruments, Austin, TX) that has been described previously (Michael et al., 1999; Heien et al., 2003). The electrochemical cell was placed inside a grounded Faraday cage to minimize electrical noise. For flow–injection analysis the electrode was positioned at the outlet of a 6-port rotary valve. A loop injector was mounted on an actuator (Rheodyne model 5041 valve and 5701 actuator) that was controlled by a 12-V DC solenoid valve kit (Rheodyne, Rohnert Park, CA) and introduced the analyte to the surface of the electrode. Solution was driven with a syringe infusion pump (2 cm/s, Harvard Apparatus Model 22, Holliston, MA) through the valve and the electrochemical cell.

For fast-scan cyclic voltammetry, the rest potential was normally -0.4 V vs. Ag/AgCl. Triangular excursions were to 1.0 V at a scan rate of 300 V/s. The waveform was repeated at a frequency of 10 Hz.
Measurements in brain slices

Coronal brain slices, 300 µm thick, from C57 black mice were prepared using a Lancer Vibratome (Technical Products International Inc., St.Louis, MO, USA) (Alger et al., 1984; Kennedy et al., 1992). The slices were placed in a recording chamber and superfused for 45 min with a preheated (34ºC) Krebs buffer before recordings were made. The buffer consisted of 126 mM NaCl, 2.5 mM KCl, 1.2 mM NaH2PO4, 2.4 mM CaCl2, 25 mM NaHCO3, 11 mM dextrose and 20 mM HEPES. The buffer was adjusted to pH 7.4 and saturated with 95% O2 and 5% CO2. Stimulating and working electrodes were inserted 75 µm below the surface in the dorsal lateral caudate-putamen. The placement was made with the aid of a stereomicroscope and a stereotaxic atlas (Paxinos and Watson, 1998). Local electrical stimulation was accomplished with a bipolar tungsten electrode and consisted of a single bipolar (2 ms each phase), constant current pulse with an amplitude of 350 µA. Data was acquired and collected with the same equipment as for flow injection analysis except that an Axopatch 200B served as the potentiostat (Axon Instruments, Molecular Devices Cooperation, Chicago, Illinois). The cyclic voltammetry parameters were the same as used for flow-injection analysis.

RESULTS AND DISCUSSION

Growth of sulfobenzene layers

Figure 2.1 shows a cyclic voltammogram at 200 mV/s for the reduction of 4-SBD at P-55 elliptical electrodes. During the first cycle the reduction current
approached the expected limiting current and then declined, peaking at ~ -0.65V vs Ag/AgCl. This wave was absent in subsequent cycles, a behavior observed at all types of electrodes. The peaked shape of the initial cyclic voltammogram and the diminished current on the second scan both indicate surface passivation following 4-SB attachment. The amount of the diazonium reduced was calculated by integrating the current under the voltammetric wave during the first cycle. The amounts obtained for different geometries of microelectrodes and a normal sized glassy carbon electrode are shown in figure 2.1b. P-55 elliptical electrodes showed the highest surface coverage of 57.5 nmol/cm² whereas P-55 cylindrical microelectrodes fabricated from the same fiber only showed 9 nmol/cm². Cylinders and ellipses fabricated from T-650 carbon fibers, on the other hand, showed no significant difference in amount reduced (21.5 ± 5.3 and 23.7 ± 4.0 for T-650 disks and cylinders respectively), with an amount reduced that is about 2.5 times smaller than observed at P-55 disks. T-650 carbon fibers have a polyacrylonitrile (PAN) precursor, and the structure is thought to consist of mostly disordered regions of basal and edge planes (McCreery, 1996). Thus, the surfaces at T-650 disks and T-650 cylinders are expected to have similar reactivities. In contrast, P-55 carbon fibers are produced from a pitch precursor with the basal planes ordered in concentric layers around the core. This should give a higher fraction of edge sites at the fiber end than on the cylindrical surface. Thus, the elliptical area should be more reactive than the shaft of the P-55 cylinder, consistent with the higher amounts of 4-SBD reduced.
Figure 2.1. Modification of carbon electrodes with 4-SBD. (a) Cyclic voltammograms for the reduction of 1 mM 4-SBD at P-55 disk electrode in acetonitrile containing 0.1M HBF4. Solid line: first cycle; Dashed line: second cycle. (Peak potential for reduction -0.65V vs Ag/AgCl) (b) Surface coverage at different geometries after one cycle (n=6 electrodes each) Error bars represent standard error of the mean.
With dense packing a monolayer coverage would equal about 1 nmol/cm². Thus, during the first cycle a multilayer is formed at all geometries and types of electrodes examined, assuming that all the reduced 4-SBD grafts to the electrode. Multilayer formation with diazonium modification has been frequently observed. The proposed mechanism involves the intermediate radical species reacting not only with the electrode surface, but, following diffusion, reaction with molecules already attached to the electrode. (Kariuki and McDermott, 1999, 2001) This mechanism is favored for 4-SB grafting because, after depositing the initial monolayer on the surface, a negative charge originating in the sulfo group accumulates on the electrode. This layer can attract and orient the positively charged diazonium group.

The surface coverage determined from the reduction of 4-SDB likely overestimates the surface coverage because radical recombinations compete with surface attachment. Furthermore, oligomeric structures may also be formed, which do not graft to the surface. However, the amount of 4-SBD reduced can be taken as relative measurement of the surface concentration of 4-SB assuming a similar yield of the side reactions at each type of electrode. The attachment of sulfobenzene was confirmed with XPS measurements at glassy carbon electrodes treated with the same cathodic potential. Survey scans showed a sulfur S2p peak at 169 eV which was absent in blank samples. The sulfur to carbon ratio was increased 1.8-fold in a sample electrolyzed for 5 minutes compared to a one cycle reduction suggesting further layer growth after the first cycle as described previously. (Solak et al., 2002) In subsequent experiments, all electrodes were therefore electrolyzed for 5 minutes at -1.0 V vs Ag/AgCl in 4-SDB solution. Modified in this way, electrodes can be
stored in air at room temperature for up to a month without alteration of their electrochemical properties.

Fast-scan cyclic voltammetry at electrodes with grafted 4-sulfobenzene

Figure 2.2 compares the fast-scan cyclic voltammetric results at bare electrodes and electrodes with grafted 4-SB. The background current, arising from double layer charging and oxidation of surface functional groups is larger after modification. This is attributed to an increased electrode capacitance due to the grafted layer. The current for the oxidation of 5 µM dopamine at P-55 elliptical electrodes grafted with 4-SB have a peak current which is 5.3 ± 2 greater than at an unmodified surface. The covalently attached multilayer on the electrode surface serves as cation exchange membrane thus providing an opportunity for positively charged analytes to accumulate. However, the response time of 0.6 s, measured as the time required to increase from 10 to 90% of the maximum response in the flow-injection apparatus, did not change with surface modification. This indicates that diffusional transport through the layer is not significantly retarded.

The peak current for dopamine oxidation is linear with concentration from 500 nM to 5 µM. However, as shown in figure 2.2 d, the increase in peak current for dopamine at T-650 cylindrical electrodes with grafted 4-SB is 2.5 ± 0.5, only half of the increase seen at P-55 ellipses. This reduced sensitivity correlates well with the lower amounts of 4-SBD reduced seen at cylindrical T-650 electrodes (figure 1). The increased sensitivity was stable even after cycling the potential at 50 Hz repetition rates for several hours.
Figure 2.2. Characterization of 4SBD modified electrodes in pH 7.4 Tris buffer. (a-c): The response at bare electrodes is shown in dashes lines, while the response at modified electrodes is shown in solid lines. (a): Background cyclic voltammogram at 300 V/s form -0.4 V to 1.0V at a repletion rate of 10 Hz. (b): Background-subtracted cyclic voltammogram for 5 µM dopamine (c) Peak oxidation current for dopamine measured following a bolus injection of dopamine. (d) Calibration curve for dopamine at untreated electrodes (▼) and at 4SBD modified P-55 ellipses (■) and modified T-650 cylinders (□) (n=5 electrodes each). Due to variations between electrodes the peak oxidation current for dopamine was normalized to the current obtained at bare electrodes for 5 µM dopamine injection. Error bars represent SEM.
Dopamine adsorption at electrodes grafted with 4-sulfobenzene

The high sensitivity for dopamine at untreated carbon fiber electrodes is the result of adsorption of dopamine to the electrode in between each scan. To compare adsorption at untreated and modified P-55 elliptical electrodes, adsorption isotherms for dopamine were constructed. The peak current at various concentrations of dopamine from 0.5 µM to 500 µM were measured at each type of electrode. The peak current measured has two essential contributors: adsorption and diffusion. The expected current due to diffusion control was computed with DigiSim® and subtracted from the total peak current to obtain the current due to adsorbed dopamine. By integration of this current over time it is possible to calculate the surface coverage. At unmodified electrodes, dopamine adsorption to carbon-fiber electrodes follows the equation for a Langmuir isotherm (Bath et al., 2000):

\[
\frac{\Gamma_{DA}}{\Gamma_s - \Gamma_{DA}} = \beta [DA]
\]

where \(\Gamma_{DA}\) is the surface concentration of dopamine, \(\Gamma_s\) is the saturation coverage, and \(\beta\) is the equilibrium constant for adsorption. Consistent with prior work, the isotherm for bare P-55 elliptical electrodes fits well to equation 1 with a limiting coverage of \(\Gamma_s = 10^{-10}\) mol/cm\(^2\) and \(\beta = 2.8 \times 10^{-5}\) cm\(^3\)/pmol (Bath et al., 2000; Solak et al., 2002; Heien et al., 2003). The adsorption isotherm for 4-SBD modified electrodes shown in figure 2.3a does not follow equation (1). A more complex model is needed to describe the adsorption. With the arbitrary addition of a linear component with a slope of \(3.5 \times 10^{-3}\) cm to equation 1 an isotherm with \(\Gamma_s\) of
Figure 2.3. Adsorption characteristics of dopamine at P-55 elliptical electrodes. (a) Fit of the experimentally obtained surface coverage (■) to an adsorption isotherm (solid line). The isotherm is a summation of a regular Langmuir-isotherm (dotted line) and a linear component (dashed line). (b) The effect of rest potential on the peak current for dopamine. Values are normalized to the current obtained with a holding potential of -0.4V. Open bars show the response for bare P-55 disk electrodes and filled bars for 4SBD modified P-55 ellipses (n=5 electrodes). Error bars represent SEM.
\(10^9\) mol/cm\(^2\) and an equilibrium constant of \(2.3 \times 10^{-5}\) cm\(^3\)/pmol does fit to the data. Thus the data indicates a 10-fold increase in saturation coverage at the modified electrode lead to the higher sensitivity.

Dopamine adsorption at untreated electrodes increases with more negative rest potentials at which the electrode is held between scans.(Heien et al., 2003) This effect is attributed to the greater negative charge on the surface at more negative potentials. At 4-SBD electrodes this effect is removed (Figure 3.3 b). This further indicates that the increased dopamine adsorption at 4-SB electrodes is due to the added sulfo group that predominates over the effect of the applied potential.

Voltammetric response to other compounds

The selectivity for dopamine detection with modified electrodes was examined by comparing its background-subtracted cyclic voltammogram to those for a variety of other neurochemical species. The analytes studied included the metabolites of dopamine (dihydroxy phenyl acid (DOPAC), homovanillic acid (HVA) and 3-methoxytyramine (3-MT)), other neurotransmitters like norepinephrine (NE) and serotonin (5-HT) and its metabolite 5-hydroxyindole acetic acid (5-HIAA), as well as other easily oxidized substances such as uric acid (UA) and ascorbic acid (AA). The response to pH was also examined. Untreated carbon-fiber electrodes respond to pH changes because one of the contributors to the background is electrolysis of oxide groups on the carbon surface.(Runnels et al., 1999) A pH change therefore causes a background shift that is enhanced by the background subtraction process. In vivo, pH changes have been measured following electrical stimulation of
Figure 2.4. Background-subtracted cyclic voltammograms for various compounds. Response at bare P-55 elliptical electrodes is shown with dashed lines while the response at 4-SBD modified electrode is shown with solid lines. The cyclic voltammograms were recorded in a flow injection cell 300 ms following injection of the analyte.
<table>
<thead>
<tr>
<th></th>
<th>DOPAC</th>
<th>3-MT</th>
<th>HVA</th>
<th>5-HT</th>
<th>5-HIAA</th>
<th>NE</th>
<th>AA</th>
<th>UA</th>
<th>Acidic pH</th>
<th>Basic pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase in signal</td>
<td>0.78 ± 0.36</td>
<td>5.83 ± 2.53</td>
<td>0.91 ± 0.63</td>
<td>4.27 ± 1.70</td>
<td>1.28 ± 0.43</td>
<td>2.14 ± 1.00</td>
<td>1.08 ± 0.34</td>
<td>0.83 ± 0.28</td>
<td>2.73 ± 1.24</td>
<td>2.45 ± 1.28</td>
</tr>
<tr>
<td>R bare electrode</td>
<td>0.57 ± 0.10</td>
<td>0.66 ± 0.06</td>
<td>0.47 ± 0.09</td>
<td>0.81 ± 0.05</td>
<td>0.68 ± 0.07</td>
<td>0.87 ± 0.03</td>
<td>0.42 ± 0.10</td>
<td>0.45 ± 0.08</td>
<td>0.59 ± 0.11</td>
<td>-0.61 ± 0.11</td>
</tr>
<tr>
<td>R modified electrode</td>
<td>0.51 ± 0.06</td>
<td>0.79 ± 0.09</td>
<td>0.40 ± 0.08</td>
<td>0.73 ± 0.02</td>
<td>0.62 ± 0.05</td>
<td>0.91 ± 0.06</td>
<td>0.31 ± 0.10</td>
<td>0.32 ± 0.13</td>
<td>0.37 ± 0.10</td>
<td>-0.49 ± 0.11</td>
</tr>
</tbody>
</table>

Table 2.1. Sensitivity and selectivity of 4-SBD modified electrodes; First row: Maximal amplitude of the peak current at modified electrodes relative to that at unmodified electrodes for various analytes. Second/Third row: Correlation coefficient r between the cyclic voltammogram for dopamine and for the various other neurochemical for bare P-55 elliptical electrodes and for 4SBD modified P-55 disk electrodes (n= 7 electrodes). Values are given with standard deviations.
Representative cyclic voltammograms at polished disks and modified electrodes for several of the substances tested are shown in figure 2.4. At pH 7.4 the protonated amines, dopamine, norepinephrine, serotonin, and 3-MT, all show increased amplitudes at modified electrodes indicating accumulation in the grafted layer. The amplitudes of the cyclic voltammograms for the compounds that are anions at physiological pH are not significantly different from the responses at polished elliptical electrodes indicating that they are unaffected by the layer. This observation, coupled with the unaltered response time of the modified electrodes, indicates that the grafted layer is quite permeable. Given the branch-like structure that evolves from multilayer formation, this result is not surprising but in contrast to blocking effects that have been observed at electrodes after reduction of other aryl-diazonium compounds that lead to monolayer formation (Saby et al., 1997). It is likely that 4-SBD under the conditions presented in this study forms a different structured layer than the 4-nitro analogue. The modification seems to increase the sensitivity for pH changes by a factor of about 2.

The shapes of the cyclic voltammograms are used to identify substances detected in vivo. To evaluate quantitatively the similarities in the shapes of the voltammograms, a correlation coefficient (Table 2.1) was computed for each cyclic voltammogram with that for dopamine (Troyer et al., 2002; Venton and Wightman, 2003). The correlation coefficients are computed by recording a template cyclic voltammogram for dopamine at each electrode and comparing the set of other
analytes to it. To do this the oxidation peak is normalized to the amplitude of the oxidation peak in the dopamine template. Then the mean square error is calculated for each cyclic voltammogram versus the template. The more similar the cyclic voltammogram is to that of dopamine, the closer to unity the correlation coefficient will be. Before modification, the cyclic voltammograms for all of the analytes except NE show a correlation coefficient of less than 0.85 when compared to dopamine, and the correlation coefficient decreases for the majority of compounds after modification. The structure of norepinephrine is very similar to that of dopamine, differing only by a hydroxyl group on the side chain. Thus, 4-SB modified electrodes not only show higher sensitivity but also have higher selectivity for dopamine then polished carbon fiber electrodes.

Use in brain slices

To evaluate the performance of 4-SB modified electrodes in a neurochemical application, they were used in a mouse brain slices containing the caudate-putamen, a region with multiple dopamine terminals. Dopamine release was evoked by local depolarization of the nerve terminals with a bipolar stimulating electrode. The carbon-fiber microelectrode was placed adjacent to the stimulating electrode to monitor the release. Fast-scan cyclic voltammetry responses at bare and modified P-55 ellipses were compared (n =4 for each electrode type, example responses in Figure 2.5). In all cases, the 4-SB modified electrode showed larger signals. Based on the signal-to-noise ratios in brain slices, a detection limit of 30 nM dopamine was
Figure 2.5. Dopamine detection in mouse brain slices with carbon fiber electrodes. Response at bare P-55 elliptical electrodes is shown with dashed lines while the response at 4-SBD modified electrode is shown with solid lines. a) Background subtracted cyclic voltammograms measured following a single pulse, 350 µA stimulation. b) Temporal response to the same stimulations shown in figure 5a) obtained for the oxidation current of dopamine.
calculated. This is a factor of 5 more sensitive than the detection limit at bare elliptical electrodes. As shown in figure 2.5b the time response is the same at 4-SB modified electrode compared to bare electrodes. The modified electrode maintained its sensitivity for dopamine over the time course of the experiment.

Summary

The results show that electrochemical reduction of 4-SBD forms a covalently attached cation-exchange multilayer on carbon-electrode surfaces. 4-SB modified electrodes are an alternative to Nafion-coated (Baur et al., 1988) and to overoxidized (Heien et al., 2003) electrodes to achieve improved detection of dopamine. With this layer attached, adsorption of dopamine to carbon fibers is increased in a manner that is potential independent. The highest reactivity to 4-SBD was found for P-55 elliptical electrodes, and they showed the greatest increase in dopamine signal. Increased adsorption led to an increase in sensitivity for dopamine by a factor of 5 with a concomitant increase in selectivity. This increase is in the same range of what can be achieved with overoxidation and much higher than the current increase seen at Nafion-coatings which is reported to be 1.5 (Baur et al., 1988). However, in contrast to Nafion, the 4-SB layer does not exclude negatively charged compounds. Furthermore the time response of the electrode is unaffected by 4-SBD modification which makes it advantageous over the other two method which both slow down response time. This indicates that the grafted layer has a very open structure as expected for a multilayer graft following diazonium salt reduction.
REFERENCES

CHAPTER 3

CONICAL TUNGSTEN TIPS AS SUBSTRATES FOR THE PREPARATION OF ULTRAMICROELECTRODES

Introduction

Ultramicroelectrodes have clearly demonstrated advantages in a variety of applications. They can be used to probe chemistry in small volumes, to examine chemistry that occurs on a submicrosecond time scale, and to examine electrochemical reactions in solutions of very high resistance (Wightman and Wipf, 1989). These properties have made microelectrodes particularly useful for applications in biological systems, (Wightman, 2006) but also in other applications such as chromatography scanning-probe microscopy (Holder et al., 2005; Walsh et al., 2005), and photoelectrochemical processes (Fan, 2004). The most common substrates for voltammetric ultramicroelectrodes are platinum, gold, and carbon. Microscopic platinum and gold wires and carbon fibers are all commercially available, and have been used to prepare ultramicroelectrodes. Typically, these materials are sealed into sealed soft glass capillaries (Zoski, 2002) leaving a disk or cylindrical section of the conductor exposed. Epoxy-resin can be used to seal any cracks between the fiber and the glass insulation (Zoski, 2002). Diamond microelectrodes have been constructed by growing the diamond layer on etched
stainless steel or tungsten microwires and insulating the shaft of the electrode (Cvacka et al., 2003; Park et al., 2005) to form a conical microelectrode. Predating voltammetric microelectrodes are microelectrodes used by electrophysiologists for voltage sensing. For example, conical microelectrodes formed from tungsten wires with an etched tip and with lacquer (Hubel, 1957) or glass (Levivk, 1971) insulation can measure the electrical activity of a single neuron. They are commercially available as tungsten electrodes insulated with paralene (Loeb et al., 1977) or epoxy resin (Freeman, 1969; Ciancone and Rebec, 1989; Verhagen et al., 2003), with an exposed tip formed by removing the insulation with a laser. These electrodes are unsuitable for voltammetric measurement because of the corrosion properties (Lillard et al., 1998) of tungsten. The oxides produce large background currents that interfere with faradaic currents from species in solution. However, they have several useful physical attributes. Tungsten microelectrodes have a higher rigidity than glass insulated microelectrodes but can be bent without damaging the insulation. The rigidity of a material can be quantified by the tensile modulus, which is the quotient of the tensile stress over the tensile strain. With a tensile modulus of 411 GPa compared to 170 gPa for platinum and 78.5 GPa (Goodfellow-Cambridge-Limited) for gold, small tungsten wires are sufficiently stiff that they can be used without further support. Furthermore, tungsten wires are less brittle than carbon and glass rods of similar dimensions. Thus, in addition to small a sensing area, the overall diameter of tungsten-based electrodes coated with an insulator can be much smaller than microelectrodes that use glass tubes as the insulating material.
In this work we describe electrodes that have the physical properties of tungsten microwires and voltammetric properties of the commonly used electrode materials platinum, gold, and carbon. The electrodes were prepared by coating the conical tip of 125 µm-diameter tungsten microwires with the desired electrode material. To prepare gold and platinum electrodes, commercial electrophysiological electrodes, insulated tungsten wires with an exposed conical tip, were electroplated with the desired metal. For carbon tips, a technique developed by McCreery and coworkers was adapted which involves coating a substrate with photoresist followed by pyrolysis (Ranganathan et al., 2000; Ranganathan and McCreery, 2001). The pyrolyzed photoresist film (PPF) has similar electrochemical properties to glassy carbon. Electrodes produced this way open a new range of applications because of their simultaneous flexibility and rigidity. They are freely bendable and have micrometer dimensions (125 µm) over the whole length of the electrode.

EXPERIMENTAL SECTION

Preparation of conical tungsten tips

For the preparation of gold and platinum electrodes, the substrate was an epoxy-insulated tungsten microelectrode (AM-systems, 0.005”, 5 Ω, 8 degree). The exposed tips were cleaned for 10 seconds in hydrofluoric acid (48%, Sigma-Aldrich, St. Louis, MO) then electrolyzed for 30 sec at 50 °C in electrocleaning solution (Electrocleaner, Shor Int., Mt. Vernon, NY) at -5 V vs. a platinum or gold counter electrode.
Because the carbon deposition employs pyrolysis, the substrate for these microelectrodes was an uninsulated tungsten wire (99.95 %, diameter 0.125mm, length 75mm, Advent Research Material, Eynsham, England). A conical tip was prepared by etching in a saturated sodium nitrite solution containing 1M NaOH at an AC potential of 10V (60Hz). The counter electrode was a stainless steel coil. The wires were lowered slowly into the etching solution until gas evolution was observed and raised again when the gas evolution stopped. After etching, the tungsten wires were cleaned with hydrofluoric acid and electrocleaning solution as described above.

Electrodeposition of platinum and gold

After the tungsten tip was cleaned, the electrode was rinsed with doubly distilled water (Megapure system, Corning, NY) and transferred into a plating solution. For platinum it was Platinum TP PTU, 240451GL (Technic Inc, Cranston, RI). Platinum was plated for 5 sec at -0.5 V vs a platinum counter electrode at 50 °C. After plating, the electrode was rinsed with double distilled water and then used or stored in ethanol.

Gold microelectrodes were formed similarly as described for platinum microelectrodes. For the cleaning and plating processes a gold counter electrode was used instead of platinum to minimize contamination. The plating was done at in gold plating solution (Gold plating solution 24k Royale, Shor Int., Mt. Vernon, NY) for 30 sec at -1V vs a gold counter electrode. The electrodes were also stored in ethanol.
Carbon deposition

Multiple (up to 15) cleaned and etched tungsten wires were dipped 3 times into photoresist (AZ P4330-RS, Clariant, Sommerville, NJ) in 5 min intervals with a Burleigh micromanipulator (Burleigh Inchworm, CE-1000, fishers, NY). The electrodes were pulled out of the photoresist at a speed of 2 mm/min. The electrodes were then transferred into a furnace oven (Lindberg Blue, TF55035A-1) fitted with a quartz tube. Forming gas (95% nitrogen, 5% hydrogen, National Specialty Gases) flowed though the tube furnace at an approximate rate of 100 ml/min. The tube was purged for 20 min at room temperature and then the temperature was increased linearly for 100 min to 1000 °C, held at 1000 °C for 2 hours, and then cooled to room temperature. To insulate the electrodes, the tip was masked with paraffin wax (mp 53-57, Sigma-Aldrich). Paraffin wax was melted in a heating coil that was positioned under a stereoscope. The electrode was then carefully inserted into the wax with a micromanipulator to cover the desired surface area, and then the electrode was pulled back leaving a wax layer at the tip. The masked wires were then dipped 3 times into Epoxylite insulation (#6001, Altanta Varnish compounds, St. Louis, MO) in 5 min intervals with a Burleigh micromanipulator at a speed of 2 mm/min. The electrodes were cured standing with the tip up at 200 °C for 30 min. Excess wax was removed with turpentine (Klean Strip, W.M. Barr & Co Inc, Memphis, TN). Before use the electrodes were soaked in 2-propanol purified with Norit A activated carbon (ICN, Costa Mesa, CA) for at least 20 min (Bath et al., 2000).
Figure 3.1. SEM images of conical microelectrodes: (a) Platinum plated electrode (b) Gold plated electrode (c) Etched tungsten wire coated with PPF (d) PPF electrode insulated with Epoxylite
Glass encased microelectrodes

For comparison, conventional microelectrodes were prepared. A short length (2 cm) platinum or gold wire (99.99%, 25 µm diameter, Goodfellow Cambridge Limited, England) was mounted on a wire with silver epoxy (H2O-PFC, EPO-TEK, Billerica, MA) and inserted into a soft glass capillary so that the tip of the microwire extended beyond the capillary. The hookup wire was attached to the back of the capillary with Torr Seal (Varian Vacuum Technologies). The tip of the electrode was then melted with a heating coil, which yielded a tight glass seal around the gold wire. The electrode was polished subsequently with alumina slurries of 1 µm, 0.3 µm and 0.05 µm size. Before each experiment the polishing step with 0.05 µm alumina slurry was repeated and the electrode was rinsed with doubly distilled water (Megapure system, Corning, NY).

Carbon-fiber microelectrodes were fabricated as previously described (Kawagoe et al., 1993) with P-55 carbon fibers (Thornel, Amoco Corp., Greenville, SC). A single fiber was aspirated into a glass capillary and pulled on a micropipette puller (Narashige, Tokyo, Japan). The fiber was sealed into the capillary with epoxy resin (Epon 828 with 14% m-phenylenediamine by weight, Miller Stephenson Chemical Co., Danbury, CT). After curing the epoxy, the electrodes were polished at a 45° angle on a diamond embedded polishing wheel (Sutter Instruments), resulting in an elliptical surface of approximately 10^{-6} cm. The capillaries of the microelectrodes were backfilled with electrolyte solution (4 M potassium acetate, 150 mM potassium chloride), and wires were inserted into the capillary for electrical
contact. Before use electrodes were soaked in isopropanol purified with Norit A activated carbon (ICN, Costa Mesa, CA) for at least 20 minutes.

Voltammetric characterization

Cyclic voltammograms were acquired with the EI-400 potentiostat (Ensman Instrumentation, Bloomington, IN), locally constructed hardware, and software written in LabVIEW (National Instruments, Austin, TX) that has been described previously (Michael et al., 1999). The electrochemical cell was placed inside a grounded Faraday cage to minimize electrical noise. For background-subtracted cyclic voltammograms the electrode was positioned at the outlet of a 6-port rotary valve. The loop injector was mounted on an actuator (Rheodyne model 5041 valve and 5701 actuator) that was controlled by a 12-V DC solenoid valve kit (Rheodyne, Rohnert Park, CA). This introduced the analyte to the electrode surface. Solution was driven with a syringe infusion pump (2 cm/s, Harvard Apparatus Model 22, Holliston, MA) through the valve and the electrochemical cell. For all experiments a Ag-AgCl reference electrode (Bioanalytical Systems, West Lafayette, ID) was used. Fast-scan cyclic voltammograms were low-pass filtered in the software at 5 kHz, slow scan measurements were filtered with a built-in second order low-pass hardware filter at 1 Hz. Steady state currents obtained from slow scan measurements were used to calculate the electroactive area of the electrodes.
Chemicals

Aqueous solutions employed doubly distilled water (Megapure system, Corning, NY). Solutions were degassed for 15 min with nitrogen before use. All chemicals for electrochemical analysis were purchased from Sigma-Aldrich (St. Louis, MO) and used as received. Solutions of potassium hexacyanoferrate(III) were prepared in 1M potassium chloride. Solutions of ferrocenecarboxylic acid were prepared in 0.01M phosphate buffer (pH 7.0) with the addition of 1M potassium chloride. Background scans were performed in 0.5 M sulfuric acid, 0.1 M perchloric acid and in TRIS buffer solution which was adjusted to pH 7.4 containing 15 mM TRIS, 140 mM NaCl, 3.25 mM KCl, 1.2 CaCl₂, 1.25 mM NaH₂PO₄, 1.2 mM MgCl₂ and 2.0 mM Na₂SO₄.

RESULTS AND DISCUSSION

Fabrication Considerations

In the fabrication process, three aspects are central to obtain a functional microelectrode. The first issue is the resistance between the tungsten substrate and the deposited metal or carbon layer. Tungsten metal forms a passivated oxide layer when exposed to oxygen (Lillard et al., 1998), and tungsten oxide is formed during the electrochemical etching procedure. It has been shown that this oxide layer causes instabilities in the tunneling current when used as an STM tip (Hockett and Creager, 1993). In our case the oxide layer will add to the resistance between the tungsten and the deposited surface. However, concentrated hydrofluoric acid
dissolves surface tungsten oxides (Hockett and Creager, 1993; Paparazzo et al., 1999; Ottaviano et al., 2003) and thus minimizes the resistance.

Secondly it is important to achieve a relatively smooth, complete, and durable deposition of the electrode surface. The noble-metal plating solutions used in this study include complexing agents that buffer the free concentration of metal ions and promote formation of a smooth surface. However, plating variables such as temperature, plating time, and plating potential have to be carefully optimized. Otherwise dendritic growth or incomplete surface covering will occur. The conditions described here lead to a smooth platinum surface as can be seen in figure 1a. However, the gold layer is considerably rougher with the conditions employed (figure 3.1b). The deposition conditions selected for gold were a compromise. At higher plating potentials even rougher surface were formed due to dendritic growth while at a lower potential plating was often incomplete. Dip-coating with photoresist, the carbon precursor, required removal at a constant but slow speed to achieve complete coverage. The pyrolyzed photoresist films have been reported to have very smooth surfaces on silicon wafers (Ranganathan and McCreery, 2001). SEM images of photoresist-coated tungsten wires indicate a similar morphology on the etched tungsten (Figure 3.1c).

The final requirement for a functional microelectrode is an intact insulation layer. Both types of electrode insulation (the commercially available electrodes and Epoxylite insulated electrodes) are stable when used in aqueous solution over the time course of several days. Exposure to alcohols or non oxidizing concentrated acids for several hours did not affect the insulation quality measured by AC
impedance of the electrode. According to the specifications (The PD George Company) the Epoxylite insulation is stable in alkali as well as many organic solvents, however, these conditions were not tested in this study. Both types of insulation were sufficiently flexible to remain intact during vibration of the tungsten wire. Direct physical impact, especially close to the exposed tip, or permanently bending the wire can damage the insulation. As can be seen in figure 1d the Epoxylite insulation forms a slight bulge on the shaft of the electrode. This originates from excess Epoxylite that accumulated around the wax mask. During curing the insulation flows back and hardens to function as a reinforcement of the insulation close to the electrode tip. The size of the exposed area at the PPF electrodes varies according to the size of the wax mask applied to the electrode tip.

Electrochemical behavior of platinum plated electrodes

To test the electrochemical performance of the conical ultramicroelectrodes we compared cyclic voltammetric responses of the plated electrodes with the responses at analogous glass encased electrodes. For the platinum, gold and carbon electrodes cyclic voltammograms in background solution were taken to compare oxidation and reduction of the electrode material as well to observe hydrogen and oxygen adsorption and evolution. To characterize faradaic reactions, the reduction of ferricyanide and the oxidation of the water soluble ferrocene compound, ferrocenecarboxylic acid, were used. For these analytes both background subtracted fast-scan cyclic voltammograms as well as slow scan voltammograms were recorded.
Figure 3.2. Cyclic voltammograms at platinum microelectrodes; left panel: Glass encased platinum disk electrodes, right panel: Platinum plated tungsten electrodes (a,b) 0.5 M sulfuric acid at 10 V/s (c,d) Background subtracted cyclic voltammogram at 100 V/s for injection of 1 mM ferricyanide in 1M KCl; insets: cyclic voltammogram for 1mM ferricyanide in 1M KCl at 10 mV/sec, c) $\Delta E_p = 73$ mV, $E_{1/2} = 0.254$ V vs. Ag/AgCl, d) $\Delta E_p = 83$ mV, $E_{1/2} = 0.265$ V vs. Ag/AgCl (e,f) Background subtracted cyclic voltammogram at 100 V/s for injection of 1 mM ferrocenedicarboxylic acid in 0.01 M phosphate buffer with 1M KCl; insets: cyclic voltammogram for 1mm ferrocenedicarboxylic acid in 0.01 M phosphate buffer with 1M KCl at 10 mV/sec, e) $\Delta E_p = 84$ mV, $E_{1/2} = 0.317$ V vs. Ag/AgCl, f) $\Delta E_p = 89$ mV, $E_{1/2} = 0.323$ V vs. Ag/AgCl
Figure 3.2b shows the cyclic voltammogram of a platinum-plated electrode in 0.5 M sulfuric acid recorded at 10 V/s. This background response is identical with a cyclic voltammogram recorded at a microelectrode prepared from a platinum wire (figure 3.2a) and those reported in the literature (Bard and Faulkner, 2001). The peaks in the hydrogen region are well developed (Tu et al., 1998). The presence of clearly distinct peaks for adsorption and desorption of hydrogen shows that the surface of the plated electrode is relatively clean and useful for electroanalysis (Suzuki et al., 1999). Both ferricyanide and ferrocenecarboxylic acid show similar voltammetric responses at slow and fast scan rates at the two platinum surfaces. The peak separation (ΔE_p) for both analytes indicates similar electron transfer kinetics. Slow scan cyclic voltammograms show the expected sigmoidal shape and have a similar half-wave potential, $E_{1/2}$. During this study, 30 electrodes were plated with platinum, and approximately 90% showed well behaved electrochemistry similar to that shown in Figure 3.2. For the remaining 10% the slow scan voltammograms exhibited resistive effects characterized by a severely ramping current. This was attributed to incomplete metal coverage of the underlying tungsten or a defect in the insulation. In these cases, replating often led to improved performance. The electrodes were used in several experiments and were cleaned between experiments by cycling to positive potentials (Manica et al., 2003).

Electrochemical behavior of gold plated electrodes

The cyclic voltammogram obtained at gold plated electrodes in perchloric acid shows clearly defined oxidation and reduction peaks that are comparable to the
Figure 3.3. Cyclic voltammograms at gold microelectrodes; left panel: glass encased platinum disk electrodes, right panel: gold plated tungsten electrodes (a,b) 0.1 M perchloric acid at 0.1V/s (c,d) Background subtracted cyclic voltammogram at 100 V/s for injection of 1mM ferricyanide in 1M KCl; insets: cyclic voltammogram for 1mM ferricyanide in 1M KCl at 10 mV/sec, c) $\Delta E_p = 120$ mV, $E_{1/2} = 0.277$ V vs. Ag/AgCl, d) $\Delta E_p = 114$ mV, $E_{1/2} = 0.259$ V vs. Ag/AgCl (e,f) Background subtracted cyclic voltammogram at 100 V/s for injection of 1 mM ferrocenecarboxylic acid in 0.01 M phosphate buffer with 1M KCl; insets: cyclic voltammogram for 1 mM ferrocenecarboxylic acid in 0.01 M phosphate buffer with 1 M KCl at 10 mV/sec, e) $\Delta E_p = 80$ mV, $E_{1/2} = 0.316$ V vs. Ag/AgCl, f) $\Delta E_p = 89$ mV, $E_{1/2} = 0.319$ V vs. Ag/AgCl
cyclic voltammograms obtained at glass encased gold microelectrodes (figure 3.3a). The responses to the analytes shown in figure 3.3 c-f are similar to the observation made at platinum electrodes regarding electron transfer, diffusion, and surface coverage as can be seen in similar ΔE_p values for fast-scan measurements and similar $E_{1/2}$ values at for slow-scans. However, cleanliness and complete surface coverage is a harder to achieve by gold plating compared to platinum plating as indicated by the rougher coating in figure 3.1c. Alternative procedures like vacuum deposition or sputtering of gold layers may result in smoother surfaces, but the electroplating does not require expensive equipment or clean room facilities. Twenty electrodes were plated with gold layer in this study. The success rate for gold electrodes was around 70%, lower than for platinum plating. As with platinum, gold plated electrodes could be recycled by stripping of the gold layer followed by replating. Successfully plated electrodes can be used over the course of several experiments.

Electrochemical behavior of pyrolyzed photoresist film (PPF) electrodes

For large electrodes prepared from pyrolyzed photoresist films (PPF), the electrochemical properties are similar to glassy carbon. The electrochemical properties of PPF films have been described in the literature (Ranganathan et al., 2000; Ranganathan and McCreery, 2001). The first panel in figure 4 a,b shows fast scan background voltammograms in physiological TRIS Buffer (pH 7.4) as reported earlier (Hermans et al., 2006) and slow-scan cyclic voltammograms recorded in sulfuric acid. The slow-scan cyclic voltammograms show no significant oxidation or
Figure 3.4. Cyclic voltammograms at carbon microelectrodes; left panel: glass encased carbon-fiber disk electrodes, right panel: PPF microelectrodes (a,b) TRIS buffer (pH 7.4); insets: sulfuric acid at 0.1 V/s (c,d), c) $\Delta E_p = 712$ mV, $E_{1/2} = 0.219$ V vs. Ag/AgCl, d) $\Delta E_p = 745$ mV, $E_{1/2} = 0.205$ V vs. Ag/AgCl Background subtracted cyclic voltammogram at 100 V/s for injection of 1mM ferricyanide in 1 M KCl; insets: cyclic voltammogram for 1 mM ferricyanide in 1 M KCl at 40 mV/sec (e,f) Background subtracted cyclic voltammogram at 100 V/s for injection of 1 mM ferrocenecarboxylic acid in 0.01 M phosphate buffer with 1 M KCl; insets: cyclic voltammogram for 1mM ferrocenecarboxylic acid in 0.01 M phosphate buffer with 1 M KCl at 10 mV/sec, e) $\Delta E_p = 106$ mV, $E_{1/2} = 0.334$ V vs. Ag/AgCl, f) $\Delta E_p = 110$ mV, $E_{1/2} = 0.327$ V vs. Ag/AgCl.
reduction features except for oxygen formation as expected. At neutral pH and fast-scan rates, carbon-fiber microelectrodes exhibit features in the cyclic voltammogram due to change in oxidation state of oxygen-containing functional groups on the surface. These can be observed on the anodic scan around 0.2V vs Ag/AgCl and on the cathodic scan at -0.2V vs Ag/AgCl. Both the glass encased carbon-fiber microelectrode as well as the PPF- microelectrode show these waves.

The shape of the voltammogram for ferricyanide at the PPF-electrode is similar to that obtained at carbon-fiber electrodes. Electron transfer at carbon electrodes for ferricyanide has been shown to be relatively slow (Deakin et al., 1985; Cline et al., 1994) at untreated carbon electrodes. Studies have shown that these slow kinetics might be due to surface contaminants (Kiema et al., 2003), the microstructure of carbon, or surface oxidation (Ji et al., 2006). Overall the responses for the analytes ferricyanide and ferrocenecarboxlylic acid at PPF electrodes and carbon fiber microelectrodes show similar peak separation and half-wave potentials indicating similar electron transfer kinetics. Twenty-five carbon-deposited electrodes were examined in this study. All electrodes with a full coverage of pyrolyzed photoresist as observed under a stereoscope resulted in functional electrodes. However, about 35% of the tungsten wires did not show complete coverage of the tungsten rod, especially at the tip, and these exhibited highly resistive behavior or were not functional.
Surface area of conical electrodes

The electrode area was determined from the limiting current obtained from the slow-scan cyclic voltammograms in figure 2.2 – 2.4 d and f. For a disk electrode the steady-state current can be calculated as (Bard and Faulkner, 2001):

$$i_{\text{disk}}^{\text{ss}} = 4nFDcr$$ \hspace{1cm} (1)

where n is the number of electron transferred, F is Faraday's constant, D is the diffusion coefficient of the analyte, c is the bulk concentration of the analyte, and r is the radius of the disk. The steady-state current at finite conical microelectrodes can be approximated by (Zoski and Mirkin, 2002):

$$i_{\text{cone}}^{\text{ss}} = i_{\text{disk}}^{\text{ss}} \left[A + B(RG - C)^D \right]$$ \hspace{1cm} (2)

where $i_{\text{disk}}^{\text{ss}}$ is the steady state current of a disk electrode of equivalent radius (r), RG is the ratio of the radius of the base of the insulating sheath over the radius of the cone, A, B, C, and D are numerical constants which depend on the aspect ratio, H, of the cone. H is defined as the height of the cone divided by the radius. Equation (2) can be rewritten to yield the radius of the cone.

$$r = \frac{i_{\text{cone}}^{\text{ss}}}{4nFDc\left(A + B(RG - C)^D \right)}$$ \hspace{1cm} (3)

The insulating sheath is very thin, so the value for RG was taken as 1.1.

The area for all the platinum- and gold-plated electrodes was quite similar because it was primarily determined by the amount of uninsulated tungsten on the commercially obtained electrode substrates. H for these electrodes was determined to be 4 (figure 3.1a), however values for A, B, C, and D for aspect ratios higher than 3 have not been reported. Therefore, for platinum and gold electrodes the base
radius was calculated with the term in brackets in equation (3) extrapolated from theoretical working curves (Zoski and Mirkin, 2002) to be equal to 3.25 for H = 4 and RG = 1.1. With the corresponding height calculated from the aspect ratio H, the surface area were calculated. For platinum conical electrodes the area was 1.2 ± 0.4 × 10^{-6} \text{ cm}^2 and for gold the area was 1.4 ± 0.4 × 10^{-6} \text{ cm}^2 (errors given as standard deviations). The geometrical area, estimated from figure 1a, is 1×10^{-6} \text{ cm}^2 in reasonable agreement with the electrochemical data. The gold-surface area was also estimated by calculating the amount of charge consumed by reduction of the gold oxide layer in perchloric acid (figure 3.3b) using a reported value of 400\mu\text{C/cm}^2 (El-Deab et al., 2003). This method led to surface areas almost twice as large, presumably reflecting the surface roughness.

The current amplitudes from the PPF electrodes varied more than those of the platinum and gold electrodes, because the exposed area depends on the wax mask applied to the tip, an imprecise procedure. To calculate the electrochemical area, an H of 3 (figure 3.1c) was used and the values for the constants A, B, C, and D were taken from the literature (Zoski and Mirkin, 2002). Areas of these electrodes varied from 1×10^{-6} \text{ cm}^2 to 10×10^{-6} \text{ cm}^2, with the majority in the range of 4×10^{-6} \text{ cm}^2 to 6×10^{-6} \text{ cm}^2.

Summary

Intact films of platinum, gold and carbon were deposited onto tungsten mirowires to obtain microelectrodes that are functional for voltammetric studies. These microelectrodes show similar electrochemical responses for the reduction of
ferricyanide as well as for the oxidation of ferrocenecarboxylic acid as ultramicroelectrodes formed from pure metals. The formation and reduction of surface oxides for the deposited materials are also similar to the glass encased analogues. The microwires retain the flexibility and rigidity of tungsten microelectrodes with the electrochemical properties of platinum gold and carbon. The micrometer dimensions of the electroactive areas offer the possibility to arrange the electrodes in closely spaced arrays which is not possible with glass encased electrodes.
REFERENCES

The PD George Company AVC Technical Bulletin, Epoxylite Insulator #6001.

CHAPTER 4
CARBON COATED TUNGSTEN MICROELECTRODES FOR DOPAMINE DETECTION IN VITRO AND IN VIVO

Introduction

In a previous study we demonstrated that tungsten microelectrodes can be used as a substrate for different electrode materials (Hermans and Wightman, 2006). We were able to produce functional gold and platinum microelectrodes via electroplating and carbon microelectrodes by deposition of pyrolzed photoresist films (PPF) on tungsten electrodes. Electrodes produced in this way showed identical electrochemical properties to glass-insulated microelectrodes fabricated from gold and platinum microwires or carbon fibers. Microelectrodes made from carbon fibers have been shown to have ideal properties for biological electrochemical recordings of catecholamines (Cahill et al., 1996). These electrodes are small in size and therefore cause minimal damage in biological tissues (Peters et al., 2004).

Traditionally carbon fiber microelectrodes are produced by heat-pulling a glass capillary around the fiber (Kawagoe et al., 1993). While this approach yields functional electrodes, they are easily broken and unsuitable for chronic implantation. However, tungsten microelectrodes have several useful physical properties that make them advantageous over glass-encased electrodes such as a high rigidity, long life times, a small conical sensing area and a thin insulating layer which enables
the fabrication of electrodes that have a much smaller diameter over the whole length of the electrode. These properties make tungsten electrodes an ideal electrode for in-vivo applications. Indeed, tungsten electrodes have been used for decades by electrophysiologists for voltage sensing (Hubel, 1957; Levivk, 1971). Because of the high mechanical stability, tungsten electrodes are often chronically implanted for electrophysiological recordings (Loeb et al., 1977; Venkatachalam et al., 1999).

To conduct simultaneous electrophysiological recordings in more than one location, micro fabricated arrays with multiple electrophysiological recording sites on silicon (Blum et al., 1991) or ceramic (Moxon et al., 2004) substrates are widely used. This approach has been adapted for electrochemical in-vivo applications (Burmeister, 2000; Burmeister and Gerhardt, 2001, 2003). In these studies gold or platinum is usually used as electrode material. The electrode sites are coated with an enzyme layer to detect molecules such as glutamate. An alternative approach is to use metal microwire electrodes to construct a multiwire array (Nicolelis et al., 1997; Nicolelis and Ribeiro, 2002; Polikov et al., 2005). Early microwire arrays were constructed from two wires as stereotrode (Mcnaughton et al., 1983) and later from 4 wires as tetrode (Wilson and Mcnaughton, 1993; Gray et al., 1995). For these arrays, Teflon insulated microwires were twisted together and cut to the desired length for recordings. Arrays with a higher numbers of recordings sites were constructed by aligning microwires in rows containing either 8 or 16 microwires staggered at different lengths(Nicolelis et al., 1997). With this approach arrays with up to 128 microwires could be constructed (Nicolelis et al., 2003). Different methods
have been used to align the microwires: polystyrene chips with laser-induced grooves (Takahashi et al., 2005), grated wires (Williams et al., 1999), wooden sticks (Tsai et al., 1997) and, most commonly, microfabricated spacers (Bai et al., 2000; Kipke et al., 2003). Alternatively, the Utah Intracortical Electrode Array (UIEA), a micro-machined and acid-etched electrode array made from silicon chips, is also used for single unit recordings (Jones et al., 1992; Normann et al., 1997; Rousche and Normann, 1997, 1998).

An array of carbon fibers for electrochemical sensing has been fabricated by Adrian Michael and coworkers (Dressman et al., 2002). They encased one carbon fiber into each barrel of a 2- or 4-barrel glass capillary and pulled it into a fine tip. These sensors were able to detect dopamine during in vivo applications. This method, however, produced a fixed position of the electrodes relative to one another. Multiple microwires on the other hand can used with microdrives, where each electrode is independently and driven into place (Sato et al., 2007) which enable recordings in multiple locations.

In this study we examine the capabilities of PFF tungsten microwire electrodes for dopamine detection in vitro and in vivo in comparison to traditionally used carbon-fiber microelectrodes. Furthermore, we propose a method to pattern these microwires in an array for electrochemical measurements in multiple brain locations simultaneously.
Chemicals

All chemicals for flow injection analysis were purchased from Sigma-Aldrich (St. Louis, MO) and used as received. Solutions were prepared using doubly distilled water (Megapure system, Corning, New York). Solutions for flow injection analysis were prepared in a TRIS buffer solution, pH 7.4 containing 15 mM TRIS, 140 mM NaCl, 3.25 mM KCl, 1.2 CaCl₂, 1.25 mM NaH₂PO₄, 1.2 mM MgCl₂ and 2.0 mM Na₂SO₄. This buffer mimics the ionic environment present in cerebral spinal fluid. Stock solutions of analyte were prepared in 0.1 M HClO₄, and were diluted to the desired concentration with TRIS buffer on the day of use.

PPF microelectrodes

PPF-microelectrodes were constructed similarly to the previous description (Hermans and Wightman, 2006). The fabrication process for PPF microelectrodes is outlined in figure 4.1. The substrate for the microelectrodes was an uninsulated tungsten wire (99.95 %, diameter 0.125mm, length 75mm, Advent Research Material, Eynsham, England). A conical tip was prepared by etching in a saturated sodium nitrite solution containing 1M NaOH at an AC potential of 12V (60Hz). The counter electrode was a stainless steel coil. The wires were lowered slowly into the etching solution until gas evolution was observed and raised again when the gas evolution stopped. After etching, the tungsten wires were cleaned for 10 seconds in hydrofluoric acid (48%, Sigma-Aldrich, St. Louis, MO) then electrolyzed for 30 sec at
Figure 4.1. Fabrication process for PPF microelectrodes
Figure 4.2. SEM micrograph of PPF microelectrodes. Top panel. Low magnification image showing the etched tip of the electrode. Bottom panel. Higher magnification image of the tip of the PPF microelectrode indicating the insulation/PPF interface.
50 °C in electrocleaning solution (Electrocleaner, Shor Int., Mt. Vernon, NY) at -5 V vs. a platinum or gold counter electrode. Multiple (up to 15) cleaned and etched tungsten wires were dipped 3 times into photoresist (AZ P4330-RS, Clariant, Sommerville, NJ) in 5 min intervals with a Burleigh micromanipulator (Burleigh Inchworm, CE-1000, fishers, NY). The electrodes were pulled out of the photoresist at a speed of 2mm/min. The electrodes were then transferred into a furnace oven (Lindberg Blue, TF55035A-1) fitted with a quartz tube. Forming gas (95% nitrogen, 5% hydrogen, National Specialty Gases) flowed though the tube furnace at an approximate rate of 100 ml/min. The tube was purged for 20 min at room temperature and then the temperature was increased linearly for 100 min to 1000 °C, held at 1000 °C for 2 hours, and then cooled to room temperature.

To insulate the electrodes, the tip was masked with paraffin wax (mp 53-57, Sigma-Aldrich). Paraffin wax was melted in a heating coil that was positioned under a stereoscope. The electrode was then carefully inserted into the wax with a micromanipulator to cover the desired surface area, and then the electrode was pulled back leaving a wax layer at the tip. As insulation material an anodic electrophoretic paint (ZQ-84-3225, PPG Industries, Milford, OH, USA) was used. Insulation of the working electrode was conducted by application of a +2 V DC potential in a 1:1 dilution of the electrophoretic paint while simultaneously monitoring the current. A stainless steel coil, surrounding the working electrode, was used as counter electrode. The electrode was removed from the solution one minute after no further change in current flow could be observed. The electrodes were cured at 200°C for 5 minutes. The paraffin wax evaporates during the curing process leaving
a non insulated electroactive area at the electrode tip behind. Figure 4.2 shows an SEM image of a PPF microelectrode. The electroactive area is directly determined by the area, which was covered by the wax mask. With the wax coating procedure presented here, the mask could be applied with an accuracy of approximately 10 μm on the tip of the electrode. With an aspect ratio, which is defined as height divided by the radius of the conical tip, of 4, we are able to produce electrodes with a geometrical area as small as $7.2 \times 10^{-7} \text{ cm}^2$ with 10 μm wax coverage up to $13 \times 10^{-6} \text{ cm}^2$ with a wax coverage of 40 μm.

Before use, the electrodes were soaked in 2-propanol purified with Norit A activated carbon (ICN, Costa Mesa, CA) for at least 20 min (Bath et al., 2000). Electrodes were electrochemically activated by triangular excursions from -0.4V to 1.3V vs. Ag/AgCl at a repetition frequency of 60Hz for 15 minutes followed by excursions from -0.4V to 1.3V vs. Ag/AgCl at a repetition frequency of 10Hz for 15 minutes before measurements were taken.

Construction of multiwire arrays

V-groove Microchips were purchase from OE/Land (Saint-Laurent, Quebec, Canada, 4 channels, 250 μm spacing, 12 x 2.25 mm). Insulated PPF microelectrodes were set in each channel of the microchip and aligned under a stereoscope. Electrodes were held in place by application of superglue to the microchip (Krazy Glue, Elmer’s Products Inc, Columbus, OH, USA) and electrical contact was made directly to the insulated end of each single electrode.
Glass encased carbon fiber microelectrodes

For comparison, carbon fiber microelectrodes were fabricated as previously described (Kawagoe et al., 1993) with T-650 carbon fibers (Thornel, Amoco Corp., Greenville, SC, 5 µm diameter). A single fiber was aspirated into a glass capillary and pulled on a micropipette puller (Narashige, Tokyo, Japan). The carbon fiber was cut so that approximately 50 µm protruded from the glass seal. The microelectrodes were backfilled with electrolyte solution (4 M potassium acetate, 150 mM potassium chloride), and wires were inserted into the capillary for electrical contact. Before use, electrodes were soaked in isopropanol purified with Norit A activated carbon (ICN, Costa Mesa, CA) for at least 20 minutes (Bath et al., 2000). Electrodes were electrochemically activated by triangular excursions from -0.4V to 1.3V vs. Ag/AgCl at a repetition frequency of 60Hz for 15 minutes followed by excursions from -0.4V to 1.3V vs. Ag/AgCl at a repetition frequency of 10Hz for 15 minutes before measurements were taken.

For all experiments a Ag-AgCl reference electrode (Bioanalytical Systems, West Lafayette, ID) was used.

Flow cell measurements

For background-subtracted cyclic voltammograms the electrode was positioned at the outlet of a 6-port rotary valve. The loop injector was mounted on an actuator (Rheodyne model 5041 valve and 5701 actuator) that was controlled by a 12-V DC solenoid valve kit (Rheodyne, Rohnert Park, CA). This introduced the analyte to the electrode surface. Solution was driven with a syringe infusion pump
(2 cm/s, Harvard Apparatus Model 22, Holliston, MA) through the valve and the electrochemical cell.

Data acquisition and analysis

Cyclic voltammograms were acquired and analyzed using locally constructed hardware and software written in LabVIEW (National Instruments, Austin, TX) that has been described previously (Michael et al., 1999; Heien et al., 2003) All cyclic voltammograms presented in this study were low-pass filtered in the software at 2 kHz.

Units recorded were amplified (x1,000) and bandpass-filtered (300-3,000 Hz) and digitized with commercially available software (DIGITIZER, Plexon, Dallas).

Electrically evoked dopamine release in anesthetized rats

Male Sparague-Dawley rats (250g-400g; Charles River Laboratories, Wilmington, MA) were anesthetized with 50% w/w urethane in saline solution (0.3 mL per 100 g rat weight) and placed in a stereotaxic frame (Kopf Instruments, Tujunga, CA). After holes were drilled into the skull, a twisted bipolar stimulating electrode (Plastic One, Wallingford, CT) was lowered into the substantia niagra/ventral tegmental area: AP -5.2 mm, ML +1.0 mm, and DV -7.5 mm. The working electrode was placed into the caudate-putamen region striatum: anterior/posterior (AP) +1.2 mm, medial/lateral (ML) +2.0 mm, and dorsal/ventral (DV) -4.5 mm. To maintain the body temperature at 37°C a heating pad (Braintree, Braintree, MA) was used.
A Ag/AgCl reference electrode was positioned in the contralateral hemisphere. Dopamine release was evoked by constant current stimulation pulses through the stimulation electrode. To avoid electrical crosstalk, the stimulation occurred during the rest period between each cycle of the voltammogram. 60 biphasic stimulation pulses (+/- 125 µA, 2ms per phase) at a frequency of 60 Hz were used for all in vivo experiments. Between the end of the stimulus and the beginning of the next cyclic voltammogram, a 2 ms delay was inserted.

Single unit recording in freely moving rats

Male Sprague-Dawley rats implanted with a jugular vein catheter (300-450 g, Charles River Laboratories, Wilmington, MA) were housed individually on a 12:12 hour light cycle with ad libitum access to food and water. Procedures were as described previously (Phillips et al., 2003). Rats were anesthetized with ketamine hydrochloride (100 mg/kg i.p.) and xylazine hydrochloride (20 mg/kg i.m.) and placed in a stereotaxic frame for implantation surgery. A Ag/AgCl reference electrode was chronically implanted in the forebrain, and secured in place. A guide cannula (Bioanalytical Systems, West Lafayette, IN) was positioned above the substantia niagra/ventral tegmental area (AP -5.3 mm, ML +0.8 mm, and DV -7.5 mm relative to bregma).

Following surgery, rats were allowed to recover for 48 hours during which time they received acetaminophen administered orally every 12 hours. Experiments were performed within one week of the implantation surgery. The electrodes were
connected to a light weight amplifier that is connected to a swivel linked to the remaining electronics. Rats were acclimated to the recording chamber for 1 h.

RESULTS AND DISCUSSION

Electrochemical detection of dopamine in vitro

Previous research indicated that PPF films initially form hydrogen terminated carbon surfaces. The surface can be activated by excursions to positive potentials (Ranganathan and McCreery, 2001). In a recent study (chapter 5) we have shown that a background signal at PPF microelectrodes obtained at high scan rates in buffer with no analyte present only showed a capacitive charging current. Figure 4.3a indicates that after electrochemical activation the background cyclic voltammogram for carbon fiber microelectrode and PPF microelectrodes are identical as observed previously (Hermans and Wightman, 2006). Both background signal show a broad peak around 0.2 V vs. Ag/AgCl which can be attributed to redox processes at the surface of the electrode (Chen and McCreery, 1996). The bigger signal at the PPF electrodes presented in the figures in this study arises from a bigger surface area of the PPF electrode compared to the carbon fiber electrode. The difference in surface area also explains the larger peak current observed in the background subtracted cyclic voltammogram for dopamine at PPF microelectrodes. Beside the difference in amplitude, the responses to dopamine are exactly identical with regard to peak separation and response time to a bolus injection of the analyte (figure 4.3c).
Figure 4.3. Response to dopamine at carbon fibers and PPF electrodes. Responses at PPF electrodes are represented with a solid line, Cylindrical carbon fiber microelectrodes are shown with a dashed line. Panel a. Background signal obtained in TRIS buffer at a scan rate of 400 V/s Panel b. Background subtracted voltammogram for 5µM dopamine Panel c. Peak oxidation current for dopamine for a bolus injection of 5µM dopamine
Electrochemical detection of other compounds \textit{in vitro}

The cyclic voltammetric response at PPF microelectrodes to other electroactive species that are present in the brain and that might interfere with the detection of dopamine was examined. Dopamine and norepinephrine are both neurotransmitter that are derived from tyrosine. When dopamine is metabolized by monoamine oxidase (MAO), 3,4 dihydroxy phenyl acetic acid (DOPAC) is formed. Metabolism of dopamine by catecholamine-o-methyl transferase (COMT) leads to formation of 3-methoxytyramine (3MT). DOPAC can also be metabolized by COMT to homovanilic acid (HVA). All of these dopamine metabolites are electroactive and can be detected electrochemically. The electrochemical responses to serotonin, a neurotransmitter derived from tryptophan, and to the serotonin metabolite, 5-hydroxy indole acetic acid (5 HIAA), were also examined. Voltammograms for ascorbic acid and uric acid, electroactive compounds that are present in the brain but are not neurotransmitters, were also examined. Ascorbic acid concentrations in the extracellular fluid of the brain are 0.5 mM which is 10^4-10^6 times higher than the concentrations of catecholamines (Mefford et al., 1981; Nagy et al., 1982). However, as it can be seen in figure 4.4, the electron transfer kinetics for the oxidation of ascorbic acid are relatively slow at carbon electrodes so that it can be distinguished at high scan rates from other compounds, such as dopamine. In summary all electroactive interferences that we tested show identical voltammetric responses at carbon fibers and PPF microelectrodes. The background voltammogram obtained at fast scan rates on carbon fiber microelectrodes varies with pH (Runnels et al., 1999). This way it is possible to measure pH changes when
Figure 4.4. Background subtracted cyclic voltammograms for various compounds. Responses at PPF electrodes are represented with a solid line, Cylindrical carbon fiber microelectrodes are shown with a dashed line. The cyclic voltammograms were recorded in a flow injection cell 300 ms following the injection of the analyte.
using background subtracted voltammograms. The resulting voltammograms for pH changes at PPF electrodes also mimics the signals seen at conventional carbon fiber electrodes, which enables pH measurements at PPF microelectrodes when using fast scan cyclic voltammetry.

Electrochemical and electrophysiological measurements in vivo

The electrochemical performance of PPF microelectrodes in-vivo was tested. The working electrode was lowered into the caudate-putamen, a region where dopamine terminals are located. Dopamine release in from nerve terminals was evoked by biphasic electrical stimulations of the cell bodies of the corresponding dopaminergic neurons located in the ventral tegmental area (VTA). With all PPF microelectrodes tested (n = 4 electrodes) it was possible to obtain voltammograms associated with electrically evoked dopamine release. A representative voltammogram is shown in figure 4.5.

In addition, the capability of PPF electrodes for sensing extracellular voltage measurements was tested. For these unit recordings the electrode was lowered into the VTA of a freely moving rat and connected to a voltage follower. The signals detected had an average interspike interval of 0.25 s resulting in an average mean firing rate of 4Hz which is in very good agreement with literature reports for midbrain dopamine neurons (Hyland et al., 2002). However the shape of the waveform recorded differs between recordings with carbon fiber electrodes and PPF microelectrodes. Carbon fiber electrodes showed a triphasic signal with the first phase negative going (figure 4.5b) while PPF electrodes recorded a
Figure 4.5. Electrochemical and electrophysiological measurements in-vivo. Panel a. Background subtracted cyclic voltammogram measured in the caudate-putamen following 60 biphasic stimulation pulses (+/- 125 µA, 2ms per phase) at a frequency of 60 Hz in the ventral tegmental area (VTA); Panel b. Extracellular action potential waveforms recorded in the VTA at carbon fiber microelectrodes; Panel c. Extracellular action potential waveforms recorded in the VTA at PPF microelectrodes.
response where the first phase initially went positive (figure 4.5c). The waveform detected with PPF electrodes, however, is identical in shape and length to signals recorded with metal microelectrode arrays (Hyland et al., 2002). The difference in signal between these two electrode types is most likely due to different electrode resistances. The resistance of the cylindrical carbon fiber microelectrodes for unit recordings has been reported to be 500 kΩ at 1 kHz, which is relatively low impedance compared to metal electrodes that are traditionally used for eletrophysiological recordings. Commercially available electrodes for extracellular recordings have resistances ranging from 0.5 to 12 MΩ. The PPF electrodes used for single unit recordings in this study were therefore constructed with small surface areas, using a small amount of wax during the construction process. This probably resulted in electrodes with higher impedance, which might be the reason for the different shape of the waveforms recorded. Further reasons for the differences in signals might include the shape of the voltage sensor. PPF microelectrodes seem preferable over carbon fiber microelectrodes for unit recordings because the signals are better comparable to conventional metal microelectrode recordings.

Construction of PPF-microelectrode arrays

V-groove chips were used as a method to align the tungsten electrodes and produce a multiwire array. V-groove chips are commercially produced for use in different applications in telecommunication, data transmission, and switching. They are also used for diode pumped lasers and other general fiber
Figure 4.6. Construction of multiwire array. Panel a complete assembly of v-groove chip with 4 PPF electrodes; Panel b. Cross section of V-groove chip used in this study; Panel c. Light micrograph of tips of the multiwire array
optic instrumentation (Fiberguide-Industries, July 2007). V-groove chips are formed from silicon substrates with multiple parallel channels, V-shaped in cross section, along the chip. Figure 4.6b shows a cross section of the silicon used in this study to align the 4 microwires. As can be seen in figure 6a the microwires are parallel to each other over their whole length. Because the v-groove chip is constructed from silicon and therefore conductive, it is of high importance that each single wire is completely insulated with electro paint at the area of contact with the chip to minimize crosstalk between each individual channel. Indeed, _in-vitro_ experiments with this array had no cross talk. V-groove chips are commercially mass produced. This makes the method presented here an easy, inexpensive and accurate procedure to fabricate multiwire arrays.

Summary

Here, we show that PPF microelectrodes can be used as an alternative to carbon fiber microelectrodes for biological measurements of catecholamines, such as dopamine, with fast scan cyclic voltammetry. The electrochemical response to all analytes tested in this study is identical at the two types of electrode. It was possible to detect dopamine release _in-vivo_ with PPF microelectrodes. Furthermore, PPF microelectrodes could be used for external unit recordings, resulting in signals that are more comparable to conventional electrophysiological measurements in the literature than signals recorded with carbon fibers. Finally, a simple and inexpensive method to fabricate microwire
arrays from PPF microelectrodes and commercially available v-groove microchips is presented.
REFERENCES

CHAPTER 5

MONITORING BRAIN DOPAMINE FLUCTUATIONS WITH FAST-SCAN CYCLIC VOLTAMMETRY FOR MULTIPLE MINUTES

Introduction

Fast-scan cyclic voltammetry (FSCV) is a useful tool to follow rapid chemical changes (Howell and Wightman, 1984). FSCV has been used in a variety of applications including the study of rapid electron-transfer kinetics (Wightman and Wipf, 1990; Mirkin et al., 1993; Clegg et al., 2004), monitoring evaporation of microdroplets (Neugebauer et al., 2004), and chromatographic detection (Soucaze Guillous et al., 1993; Song et al., 2004). The method has been particularly useful for the monitoring of secretion neurotransmitters in vitro (Sulzer and Pothos, 2000; Swamy and Venton, 2007) and in-vivo (Millar et al., 1985; Robinson et al., 2003; Venton and Wightman, 2003). In all of these applications, ultramicroelectrodes are employed because small currents are generated even at high scan rates, and this minimizes distortion of the cyclic voltammograms by ohmic drop. Except for experiments on the nanosecond time domain, (Amatore and Lefrou, 1990; Amatore and Maisonneuve, 2005) the instrumentation can be quite simple.

A shortcoming of FSCV is the large size of the background current. The current required to charge the double layer and arising from surface attached redox
reactions is proportional to scan rate (Bard and Faulkner, 2001). In contrast, for a diffusion controlled electrochemical reaction, the faradaic current is proportional to the square root of the scan rate. Thus, optimum ratios of the faradaic to background current are not achieved with FSCV. Several methods have been used to minimize the contribution of the background. Early experiments used two separate, but identical electrochemical cells, one cell containing only the background solution and the other containing background solution and sample, and the signals were subtracted by analog means (Wang and Dewald, 1984). Data digitizers simplified this procedure allowing recordings in background solution to be subtracted from recordings with the electroactive species present, both recorded in the same electrochemical cell (Howell et al., 1986). This digital subtraction procedure is the one used by most investigators in this field. More recently, Yoo and Park (Yoo and Park, 2005) described a method to subtract background signals electronically during a fast scan potential sweep by customizing the applied waveform. The waveform was chosen so that it generated a flat background current. The current was then converted into a voltage and subtracted by a voltage limiter. This method enabled amplification of the background-subtracted current so that an improved dynamic range from the current to voltage converter could be achieved, minimizing quantization noise. This procedure led to improved detection limits for the catecholamine neurotransmitter, dopamine. However, information was only obtained on the anodic sweep and the cathodic current was discarded.

In this work we present an improved background subtraction approach and demonstrate its utility to follow the concentration of dopamine in the brain of a
behaving animal. The procedure involves analog removal of the background signal before it is digitized. This is accomplished by first recording a background cyclic voltammogram, and then playing it back from a digital-to-analog convertor into the current-to-voltage transducer. In this way, the inverted, digitized version is added to the electrode current at the transducer input, in the analog domain, an approach that is analogous to the procedure used in noise cancellation headphones. It has two advantages for monitoring low concentrations of dopamine. First, the input gain of the analog-to-digital converter can be increased, diminishing quantization noise. Second, the removal of the majority of background current allowed the components that remain, which drift, to be digitized and removed with principal component analysis (PCA). Background-currents at carbon-fiber microelectrodes during FSCV are documented to drift over time-scales of minutes (Hsueh et al., 1997; Hayes et al., 1998), limiting the time over which digital background subtraction is useful. Even after a conditioning period of several minutes, background drift is sufficient that subtraction fails to yield a recognizable voltammetric signal for voltammograms separated by more than 90 s (Heien et al., 2005). With the subtraction of the signal before digitization, and extraction of the drift components with principal component analysis, stable signals were monitored for 30 minutes, a 20-fold increase over existing methods.
EXPERIMENTAL SECTION

Chemicals

All chemicals for flow injection analysis were purchased from Sigma-Aldrich (St. Louis, MO) and used as received. Solutions were prepared using doubly distilled water (Megapure system, Corning, New York). Flow injection analysis was done in a TRIS buffer solution, pH 7.4 containing 15 mM TRIS, 140 mM NaCl, 3.25 mM KCl, 1.2 CaCl₂, 1.25 mM NaH₂PO₄, 1.2 mM MgCl₂ and 2.0 mM Na₂SO₄. This buffer mimics the ionic environment present in cerebral spinal fluid. Stock solutions of dopamine were prepared in 0.1 M HClO₄, and were diluted to the desired concentration with TRIS buffer on the day of use.

Data acquisition and background correction

Cyclic voltammograms were acquired and analyzed using locally constructed hardware and software written in LabVIEW (National Instruments, Austin, TX) that has been described previously (Michael et al., 1999; Heien et al., 2003). Data was acquired with a digital to analog converter interface (PCI-6052, 16 bit, National instruments, Austin TX) with a personal home computer. For fast-scan cyclic voltammetric measurements, the rest potential was held at -0.4 V vs. Ag/AgCl. Triangular excursions were made to 1.3 V at a scan rate of 400 V/s and repeated at a frequency of 10 Hz. The measurements were conducted inside a grounded Faraday cage to minimize electrical noise.
Figure 5.1 shows a simplified schematic of the current-to voltage transducer used in this work. The triangular waveform (E_{in}) is applied to the non-inverting input of the operational amplifier. The working electrode is connected to the inverting input and the reference electrode is held at ground. This arrangement is advantageous because it can be used with multiple electronic devices (ion-selective electrodes, single unit recording electrodes, etc.) while all are biased against the same reference electrode. The inverting input of the amplifier is also connected to a resistor (R_1, impedance equal to R_f, the feedback resistor) into which the background signal, collected and digitized from previous scans, E_1, can be input. The output of the amplifier, E_3, is given by:

$$E_3 = E_{in} - \left(\frac{E_1}{R_1} + I\right)R_f \quad (1)$$

where I is the working electrode current.

The background correction process consists of two steps. First, the background signal is recorded while the digitized background signal input is held at ground ($E_1 = 0 \, V$). The digitized signal measured is solely due to the background signal and the applied voltage:

$$E_3 = E_{in} - (IR_f) \quad (2)$$

Next this signal is applied as E_1. Due to the inverting property of the input, the output has both the applied voltage and background signal removed yielding a flat line. If the background alters from the value stored in E_1, it will cause the output to deviate from the flat line behavior.
Figure 5.1. Electronic setup for digital background subtraction. The background is subtracted in a 2 step process: 1st Step: Acquisition of background signal: The waveform is applied to E_{in} and driven to the electrode through the operational amplifier while second the input (E_1) is held at ground. 2nd step: Subtraction of background signal. The waveform is applied to E_{in} and driven to the electrode through the operational amplifier while the background signal which was recorded during the 1st step is applied to input (E_1). The current obtained at the working electrode (I_2) is cancelled out at the summing point resulting in a flat signal at the output (E_3).
To provide appropriate removal of the background, the triangular waveform and the digitized background must be applied synchronously. However, digital-to-analog converters, typically have a time delay when switching between two output channels. This time delay can cause spurious results in the form of sharp spikes, particularly at the beginning and switching potentials where the rate of background change is the greatest. To account for the time delay the digitized background signal was time-shifted with software until the current spikes were minimized.

Flow-injection analysis

For flow–injection analysis the electrode was positioned at the outlet of a six-port rotary valve. A loop injector mounted on an actuator (Rheodyne model 5041 valve and 5701 actuator) and controlled by a 12-V DC solenoid valve kit (Rheodyne, Rohnert Park, CA) was used to introduce a bolus of analyte to the electrode. The flow rate was controlled by a syringe infusion pump (2 ml/min, Harvard Apparatus Model 22, Holliston, MA).

Electrode preparation

The microelectrodes were fabricated as previously described (Kawagoe et al., 1993) with T-650 carbon fibers (Thornel, Amoco Corp., Greenville, SC, 5 µm diameter). A single fiber was aspirated into a glass capillary and pulled on a micropipette puller (Narashige, Tokyo, Japan). The carbon fiber was cut so that approximately 50 µm protruded from the glass seal. The microelectrodes were backfilled with electrolyte solution (4 M potassium acetate, 150 mM potassium acetate).
chloride), and wires were inserted into the capillary for electrical contact. Before use, electrodes were soaked in isopropanol purified with Norit A activated carbon (ICN, Costa Mesa, CA) for at least 20 minutes. Before recording electrodes were cycled at a repetition rate of 60 Hz for 15 minutes from -0.4V to 1.3 V for 15 minutes following 30 minutes of cycling at 10 Hz with the same scan parameters.

For all measurements Ag/AgCl reference electrodes were used.

Noise analysis

To evaluate quantization noise, a triangular waveform at 400 V/s from -0.4V to 1.3V was applied to an equivalent electrochemical cell consisting of a resistor (1 MΩ) and capacitor (400 pF) in series. The values for resistance and capacitance mimic the response of the microelectrodes used in this work. After the background signal was removed, the input range of the analog-to-digital converter was increased and the noise level in three different systems was measured as a standard deviation. The noise values were then normalized to the original noise obtained with the lowest gain.

In vivo measurements in anesthetized rats

Male Sprague-Dawley rats (225-350g; Charles River, Wilmington, MA) were anesthetized with urethane (1.5 g/kg, i.p.) and placed in a stereotaxic frame (Kopf, Tujunga, CA). A heating pad (Harvard Apparatus, Holliston, MA) maintained body temperature at 37°C. Holes were drilled in the skull for the working, reference, and
stimulating electrodes using coordinates (relative to bregma) from the brain atlas of Paxinos and Watson (Paxinos and Watson, 1998). The carbon-fiber microelectrode was placed in the striatum: anterior/posterior (AP) +1.2 mm, medial/lateral (ML) +2.0 mm, and dorsal/ventral (DV) -4.5 mm. The stimulating electrode was placed in the substantia nigra: AP -5.2 mm, ML +1.0 mm, and DV -7.5 mm. A Ag/AgCl reference electrode was inserted in the opposite hemisphere. The DV position of both the stimulating and working electrodes was adjusted to find sites that supported maximal dopamine release. The stimulation consisted of 40 biphasic pulses delivered at 60 Hz frequency (± 125 µA, 2 ms per phase).

In vivo measurements in freely moving rats

Male Sprague-Dawley rats implanted with a jugular vein catheter (300-450 g, Charles River Laboratories, Wilmington, MA) were housed individually on a 12:12 hour light cycle with ad libitum access to food and water. Procedures were as described previously (Phillips et al., 2003a). Rats were anesthetized with ketamine hydrochloride (100 mg/kg i.p.) and xylazine hydrochloride (20 mg/kg i.m.) and placed in a stereotaxic frame for implantation surgery. A Ag/AgCl reference electrode was chronically implanted in the forebrain, and secured in place. A guide cannula (Bioanalytical Systems, West Lafayette, IN) was positioned above the contralateral NAc (1.7 mm AP, 0.8 mm ML, -2.5 mm DV relative to bregma). A bipolar stimulating electrode was lowered toward the VTA (-5.4 mm AP, 1.0 mm ML, -8.0 mm DV relative to bregma). All items were affixed to the skull with machine screws and cranioplastic cement, and secured in place.
Following surgery, rats were allowed to recover for 48 hours during which time they received acetaminophen administered orally every 12 hours. Experiments were performed within one week of the implantation surgery. Experiments were conducted in an operant box containing an infusion pump for drug delivery through the jugular catheter. The electrodes were connected to a light weight amplifier that is connected to a swivel linked to the remaining electronics. Rats were acclimated to the recording chamber for 1 h. Once baseline voltammetric recordings were made, the rats were given a 6 sec infusion of either saline or cocaine (3 mg/kg).

Histological Verification of Electrode Placement

The tip of the carbon-fiber is too small (5 µm diameter) to be seen histologically. Therefore, following experiments each rat was deeply anesthetized with urethane and a constant current was applied to an electrode to lesion the area. The animal was then perfused transcardially with phosphate buffered saline, followed by a 4% formalin solution. The brain was extracted and stored in a 4% formalin solution. The fixed tissue was finally frozen and sliced on a cryostat at 40 µm sections. Placement of the electrode tip was verified by microscopic inspection of the section.

Data analysis

Data analysis was performed with local software written in NI LabVIEW and MathWorks MATLAB. Principal component analysis (PCA) analysis was conducted as described previously. (Heien et al., 2004) Malinowski’s F-test was used ($p = $
0.05) to determine the number of relevant eigenvectors. (Malinowski, 1988, 1990)

For analysis of flow cell injections, calibration sets for dopamine were constructed with varying concentrations ranging from 0.5 µM to 2 µM. For in vivo experiments calibration sets for dopamine were constructed from electrically evoked stimulations with varying number of stimulation pulses. Calibrations for pH changes during in-vivo experiments were also obtained from pH shifts following electrical stimulation (Venton et al., 2003). The calibration set for background drift was constructed from the cyclic voltammograms obtained for the background drift 10 minutes before and for 10 minutes after each of the recordings.

Quantitative comparison between components

To quantitatively compare the signals for each of the components, an RMS current value was calculated for each. To obtain the RMS currents classical-least squares (CLS) was used (Kramer, 1998). CLS can be expressed in matrix representation as

\[A = KC \] \hspace{1cm} (4)

where \(A \) is a matrix of measurement values, \(C \) is a matrix of concentration values, and \(K \) is a matrix containing pure component spectra. In this study, \(A \) is an \(n \times m \) matrix containing cyclic voltammograms measured at \(n \) potentials and \(m \) time points, \(C \) is an \(l \times m \) concentration matrix of \(l \) components, and \(K \) is an \(n \times l \) matrix containing pure component cyclic voltammograms for each component.

\(K \) is calculated using cyclic voltammograms and concentrations from calibration sets according to
where the superscript T represents transposed matrices. Concentration traces for each component and cyclic voltammograms at m time points were constructed using only the relevant eigenvectors. The eigenvectors were determined from principal component regression and were used as the training set to calculate K as shown in equation (5). Once pure component cyclic voltammograms have been ascertained, cyclic voltammograms at m time points for the j^{th} component (A_j) were generated according to

$$A_j = k_j c_j \quad (6)$$

where k_j and c_j are the pure component cyclic voltammograms and concentration traces for the j^{th} component, respectively. With equation (6) it is possible to separate each data set into its pure components.

The RMS current value (I_{RMS}) for each component at each time point was determined by summing across each cyclic voltammogram according to

$$I_{RMS} = \left[\frac{1}{T} \sum_{t=0}^{T} i(t)^2 \right]^{1/2} \quad (7)$$

where $i(t)$ is the current at each potential and T is the length of time of the potential sweep.(Simpson, 1987) The RMS current traces give precise information of how much each of the compounds contributes to the total current measured.
Figure 5.2. Background change. Panel a. Background signal obtained after conditioning of continuous cycling from -0.4V to 1.3V vs. Ag/AgCl with a repetition frequency of 60 Hz for 15 minutes following cycling at a frequency of 10 Hz for 30 minutes (solid line) or for 60 minutes (dashed line); Panel b. Cyclic voltammograms obtained for changes in background current. Background current was subtracted after conditioning for 15 minutes from -0.4V to 1.3V vs. Ag/AgCl with a repetition frequency of 60 Hz following cycling at a frequency of 10 Hz for 30 minutes. The cyclic voltammograms were obtained 10 minutes (dotted line), 20 minutes (dashed line) and 30 minutes (solid line) after digital background subtraction occurred.
RESULTS AND DISCUSSION

Noise reduction

The current to voltage transducer has to be used with a relatively low gain so that the background current remains on scale. For example the background shown in Figure 5.2a requires an input range of ± 350 nA. In contrast, the sensitivity for dopamine is ~ 7 nA/µM, and biologically meaningful concentrations of dopamine monitored during behavior are ~50 nM (Phillips et al., 2003b), yielding 350 pA excursions. When the uncorrected background signal is digitized with a 16 bit analog-to-digital convertor, the minimum resolvable current will be \((700/2^{16})\) nA or 10.7 pA. Because each value of the analog-to-digital converter is separated by this magnitude, this results in what is termed quantization noise. A reduction in the background amplitude allows the gain to be increased, lowering the noise. This is shown by the dashed line in Figure 5.3 that is taken from the specifications of the interface board. With a smaller input range, corresponding to a larger gain, the quantization noise decreases.

The analog background subtraction technique described here allows removal of this noise source. As illustrated in Figure 5.2b, the amplitude of the background signal is dramatically diminished following analog subtraction, and it can be observed using a ± 15 nA range. This 24-fold increase in gain reduces the quantization noise proportionately. As shown in figure 5.3, the measured noise levels off at around 35% of the original noise at the highest gain settings. At these settings other noise sources predominate over quantization noise.
Figure 5.3. **Noise characterization.** Plot of noise measured at different input ranges of the analog-to-digital converter. The data is normalized for the noise level measured at the highest input range. Solid line: Noise level measured in the system, Dashed line: quantization noise of analog-to-digital converter according to specifications (National-Instruments-Corporation, 2005). Insets indicate a typical cyclic voltammogram recorded to determine the noise levels at the highest input range and the lowest input range.
Effect of drift of the background

During FSCV the background at carbon-fiber microelectrodes changes with time. Indeed, at the start of use, the electrode is usually cycled with the triangular wave to obtain a stable background. The initial changes in the background current are large, but become smaller as the cycling is continued. However, even after 1.5 hours of continuous triangular wave application the background signal does not fully stabilize (Hsueh et al., 1997). With the waveform used in this work, the background current continued to increase, which we attribute to an ongoing oxidation of the carbon surface. This drift is a significant problem for measurements with FSCV because it sets the time limit over which changes can be monitored. In measurements for dopamine in vivo, we have had to restricted measurement times to less than 90 s to minimize distortion of cyclic voltammetric signals by the drift.

In this work, electrodes were cycled for 15 min with a triangular waveform from -0.4 V to 1.3 V and back vs. Ag/AgCl at a repetition rate of 60 Hz. The repetition rate subsequently was lowered to 10 Hz for 30 min prior to recordings. In figure 5.2a a background cyclic voltammogram recorded immediately after pretreatment is compared to one recorded 30 minutes later. When viewed on an expanded scale, differences between these two background signals are evident indicating the drift is continuing.

The analog background subtraction approach allows the changes in the background to be examined more closely. Following preconditioning, analog background subtraction was initiated. Cyclic voltammograms recorded at 10 minute intervals following the initiation of the analog subtraction reveal the extent and nature
of the drift (Figure 5.2b). These data show that the change in background current is potential dependent. An oxidation peak around 0.2V vs. Ag/AgCl emerges that appears surface associated. In addition, there is a current spike at the anodic switching potential that is distorted by the filtering employed. Thus, even after 45 minutes of preconditioning, the current at the carbon-fiber electrode has not reached an equilibrium condition. In prior work, compensation for background drift has been achieved by subtracting current at a potential where the analyte is not electroactive from the current at a potential where the analyte is electroactive (Borland and Michael, 2004). The present results show that this is an inappropriate method because of the potential dependence of the background changes.

PCA has been used to remove the background from cyclic voltammograms (Reich et al., 1990). However, this approach did not succeed in our application because the background signal is much larger than the faradaic signals (Heien et al., 2004). The analog background subtraction approach diminishes the amplitude of the recorded background so that only the drift remains. A calibration set for this component can be obtained from cyclic voltammograms that were recorded before and after the data collection in the interval of interest. This approach was evaluated in a flow-injection analysis experiment with the electrode continuously cycling for 15 minute. At 1 min intervals, 2 µM dopamine was injected for 5 s into the system. Figure 5.4a shows the current from successive voltammograms recorded at the dopamine oxidation potential. Upward drift is clearly apparent as are the superimposed rapid changes arising from the dopamine injections. This set of cyclic voltammograms was evaluated by PCA with a training set for dopamine and another
Figure 5.4. Dopamine injections *in vitro*. 2 µM of dopamine was injected for 5 seconds every minute in a flow cell experiment. Panel a. Current vs. time trace at the dopamine oxidation potential; Panel b. Concentration vs. time trace for dopamine obtained after correction for background drift with principal component regression. Panel c. Extracted component of background drift; Panel d. Residual data is within the 95% confidence interval as indicated by the dashed line.
set for the drift. This procedure separates the voltammograms into two different components (figure 5.4b,c) and the residual (Figure 5.4d). The baseline for the dopamine concentration is essentially flat (figure 5.4b), while the drift is placed in the background (figure 5.4c). The residual (figure 5.4d) shows a spike at the beginning of every dopamine injection. This arises from a slight changes in shape of the dopamine signal as it adsorbs compared to the training set (Heien et al., 2004). However, this error is never higher than 5% of the total signal measured throughout the whole data collection. The dashed line in figure 5.4d represents the 95% confidence limit, and the residual is clearly below that limit. Indeed, dopamine could be monitored for longer than 1 hour before the residual value crossed the 95% confidence interval.

Monitoring dopamine concentrations in vivo

To test the method in vivo, the electrode was implanted in the caudate-putamen of an anesthetized rat, and stimulations of cell bodies of dopaminergic neurons were repeated every 2 minutes. The results were quite similar to those obtained in the flow-injection analysis system. When the current was monitored in successive analog subtracted, cyclic voltammograms at the potential for dopamine oxidation there was an increase in oxidation current at each stimulation, and these changes were superimposed on an upward drift. With suitable training sets, PCA could resolve the background drift from the dopamine concentration (figure 5.5a,b), and the residual remained low over the 20 minute interval. Recall, with the
Figure 5.5. Dopamine stimulations in vivo A stimulation of 40 biphasic pulses at 60 Hz frequency (± 125 µA, 2ms per phase) every 2 minutes was used to evoke dopamine release. Panel a. Current vs. time trace at the dopamine oxidation potential; Panel b. Concentration vs. time trace for dopamine obtained after correction for background drift with principal component regression. Panel c. Extracted component of background drift; Panel d. Residual data is within the 95% confidence interval as indicated by the dashed line.
traditional digital subtraction of the background, signals could only be monitored for 90 s.

As a second test of the analog subtraction procedure, we measured changes in the brain following an intravenous dose of cocaine administered to an ambulatory rat. Cocaine is a dopamine uptake blocker and increases extracellular dopamine concentration in the striatum. While early microdialysis studies suggested that dopamine levels are elevated for hours (Bradberry and Roth, 1989; Pettit et al., 1990), recent results have shown that the dopamine concentrations in the nucleus accumbens are elevated for around 20 minutes (Shou et al., 2006) and closely follow the time course of elevated cocaine levels in the brain. (Pan et al., 1991) In prior cyclic voltammetric recordings using digital background correction we were only able to capture the maximum dopamine change before the 90 s window caused by drift precluded further analysis (Heien et al., 2005).

Analog subtracted cyclic voltammograms were collected for 30 min with cocaine administered at 12 min. PCA was conducted on these data similarly to the flow-injection and stimulation experiments, except that the responses to pH changes were also included in the calibration set. The resulting concentration trace for dopamine (figure 5.6a) shows a long term concentration change occurring within 1 minute after the cocaine injection. The time course observed matches well recent microdialysis recordings (Shou et al., 2006) as well as with the pharmacokinetic model (Pan et al., 1991) for cocaine concentrations (dashed line, figure 5.6a). Also time-locked with dopamine administration, the pH of the brain region changes to more basic values and then returns to near starting levels. Shifts in pH correlate
Figure 5.6. Response to iv cocaine and saline injections. Left panels show time traces obtained with principal component regression for cocaine injection at approximately 11 minutes (indicated by arrow); Right panels show time traces obtained with principal component regression for saline control injection at approximately 11 minutes (indicated by arrow); Insets show a representative cyclic voltammogram that was used for the calibration set; Panel a,e. Concentration / RMS current vs. time trace for dopamine, in panel a the concentration trace for
dopamine is overlaid with concentration trace for cocaine in the brain (dashed line) obtained after pharmacokinetic modeling (Pan et al., 1991); Panel b,f. pH change / RMS current vs time; Panel c,g. Background drift / RMS current vs time; Panel d,h. Residual data is within the 95% confidence interval as indicated by the dashed line.
with the local oxygen level and are caused in part by dilation of blood vessels (Venton et al., 2003). The residual increases after the cocaine injection, although it does not cross the 5% uncertainty value. The changing residual might be due to other chemical substances, not included in the training set, that change in response to cocaine. Alternatively, the presence of increase dopamine may have altered the background, causing the shift. A definitive conclusion requires further experimentation. Responses following saline injections were also examined. As apparent in figure 5.6 (right panel) with saline injection no significant change in dopamine concentration or pH shifts could be observed. However, background drift was still observed and could be accounted for.

Both saline and cocaine experiments were replicated in 5 animals. All showed similar traces to those shown in figure 5.6. However the amplitude and length of the of the long term dopamine concentration change showed differences between each experiment. The maximal change in dopamine concentration after cocaine administration ranged from 100 nM to 600 nM and the dopamine concentration remained elevated for between 10 and 20 minutes. These shorter time traces do not agree with microdialysis measurements. This discrepancy could be explained with the different size of the microelectrode compared to the microdialysis probe. The microelectrode samples a much smaller area than the microdialysis probe which gives more importance to the heterogeneity of the brain. A recording closer to a release site would result in a different concentration profile then a sample taken further away from a release site. Furthermore, it has been reported that because of the relatively large size of microdialysis probes a trauma
layer forms around the probe (Clapp-Lilly et al., 1999; Khan and Michael, 2003) which might explain differences between voltammetric recordings and microdialysis recordings (Bungay et al., 2003; Borland et al., 2005). All traces shown in figure 5.6 are collected at a 10 Hz sampling rate. Accordingly all traces presented here have a resolution of 100ms and the time-traces of figure 5.6 consist of a total of 18000 points. For microdialysis the fastest sampling rates have reported to be on the order of 1-2 minutes (Jenkins and Becker, 2003; Bradberry and Rubino, 2004; Shou et al., 2006) resulting in around 20 sampling points per 30 minute trace.

Investigation of chemical fluctuations

The dopamine trace exhibits an increase in fluctuations immediately after cocaine administration (figure 5.6a), a change that is not so apparent in the pH, background, or residual responses. These cocaine induced concentration transients have been reported before, and appear to arise because of cocaine’s unique actions on dopamine neurons (Heien et al., 2005; Stuber et al., 2005). To characterize further the cocaine induced fluctuations in each channel, we used the CLS method to unravel the set of cyclic voltammogram for dopamine, pH, and background. An example is shown for a one minute segment in Figure 5.7. The color plot in the top panel of figure 5.7 shows the current after the unused eigenvectors have been discarded. This can be broken down into a set of distinct cyclic voltammograms for each component that are shown as color plots for each component (Figure 5.7, lower panels). These plots are a representation of the A_T matrices of the current values. The root mean square of each reconstructed cyclic voltammogram was
Figure 5.7. Construction of pure component color plots and RMS traces. This figure shows representative data obtained 2 minutes after cocaine administration. For all color representations the current is shown in false color, time on x-axis, potential on the y-axis. Top panel: Color representation of the recorded data after discarding the non-important principal components. Middle panel: Color representations of pure component spectra. Bottom panel: RMS traces for each of the components.
Figure 5.8: Standard-deviation of RMS-current traces. Standard deviations are shown for the RMS current traces for dopamine (DA), pH change (pH), and background change (BG). Data was collected for 3 minutes pre-drug, for 3 minutes after drug injection and for 3 minutes 20 minutes after drug administration. All values are normalized to the standard deviation of background current pre-drug. (n=3 animals, error bars: SEM)
taken as the relevant value for comparison between channels. When time varying
data contains information about the process of interest can be viewed as a
fluctuation but it is better termed “noise” when the measured data decreases the
probability to obtain useful information (Bezegh and Janata, 1987).

The variation in these signals was evaluated as a standard deviation for each
trace over the time of interest, normalized to the standard deviation for the
background. The temporal variations measurements were in 3 minute intervals.
The times selected were before cocaine administration, immediately after cocaine
administration, and 20 minutes after cocaine administration. Before cocaine
administration the standard deviation for the dopamine signal and the pH signal are
slightly elevated in comparison to the signal for background change, indicating that
chemical fluctuations might be present in these two traces. After cocaine
administration the fluctuations drastically increase in the dopamine signal while they
are unchanged for the pH and background signals. Thus, even though a pH change
occurs following cocaine administration, unlike dopamine, an increase in pH
fluctuations does not occur. The fluctuations in the dopamine trace 20 minutes after
cocaine are still elevated, but are approaching pre-cocaine levels.

Summary

In this study we have demonstrated an analog method to subtract the
background currents that occur during cyclic voltammetric scans at high scan rates.
This subtraction enables the use of higher gains before the analog-to-digital
conversion, lowering quantization noise. Furthermore, by monitoring the drift and
compensation of these background changes with PCA, FSCV measurements can be made for longer time scales. This enabled dopamine and pH concentrations to be monitored over time windows that previously have been accessible only to microdialysis but with a time resolution that is 600-times greater. With this high time resolution we were able to monitor short term fluctuations in concentrations. The data indicates that an increase in fluctuations in dopamine concentrations accompany the slow concentration changes in dopamine after administration of cocaine.
REFERENCES

derivatives in nonaqueous solvents using the high-speed channel electrode. Journal of the American Chemical Society 126:6185-6192.

CHAPTER 6

CHANGES IN BACKGROUND SIGNAL AT CARBON MICROELECTRODES DURING FAST SCAN CYCLIC VOLTAMMETRY

Introduction

Fast scan cyclic voltammetry with carbon fiber microelectrodes can be used for electrochemical detection of easily oxidized neurotransmitters such as dopamine and serotonin in the brain (Cragg et al., 2000; Robinson et al., 2003; Venton and Wightman, 2003; Wightman, 2006). Carbon-fiber microelectrodes are suitable for in vivo application because they are sufficiently small that tissue damage is minimized (Khan and Michael, 2003; Peters et al., 2004). The small size also means that the chemical events that are recorded arise from a local microenvironment with dimensions in the micrometer range. To increase sensitivity and selectivity for the neurotransmitters of interest, surface coatings are often applied to the electrode. Nafion, a perfluorinated cation-exchange polymer, can be coated on the electrode surface to increase the dopamine signal and minimize interfering signal, such as ascorbic acid (Gerhardt et al., 1984; Cahill et al., 1996). Similar effects have been shown with coating of overoxidized polypyrrole (Witkowski and Brajter-Toth, 1992; Pihel et al., 1996).

Another way to achieve increased sensitivity and selectivity is to use electrochemical pretreatments that promote oxidation of the carbon surface. In
early studies overoxidation was conducted by repetitive excursions to +3 V vs. Ag/AgCl at 70 Hz (Gonon et al., 1980; Gonon et al., 1981). Electrodes treated in this way showed much higher sensitivity for catecholamines than untreated electrodes. However, besides increasing the amount of surface oxides, this surface treatment drastically increased the surface area of the electrode (Swain and Kuwana, 1991). A more recent study showed that electrodes that are oxidized at a potential of 1.4 V vs. Ag/AgCl exhibit higher sensitivity to positively charged analytes (Heien et al., 2003). This is due to an increased adsorption of cations to the carbon surface. A five-fold increase in sensitivity has been reported for dopamine \textit{in vitro} when using FSCV at these overoxidized carbon fibers. However, the overoxidized electrodes show a slower time response and lower selectivity than electrodes that have not been exposed to high oxidizing potentials. Interestingly, the signal during \textit{in-vivo} applications following carbon surface oxidation was increased almost twice as much as in vitro with a nine-fold increase in sensitivity when compared to the pre-oxidized surface. This finding suggests further electrode activation in biological tissue. Indeed, carbon-paste electrodes have been reported to exhibit faster electron-transfer kinetics for ferrocyanide (Ormonde and Oneill, 1989) and dopamine (Blaha and Jung, 1991) following contact with brain tissue. Those studies, however, do not provide an explanation for this observation beside non-specific adsorption of biomolecules.

In fast scan voltammetric measurements a large background current is produced. This background current is composed of the current required to charge the double layer and the current arising from redox reactions of surface
groups (Chen and McCreery, 1996; Bard and Faulkner, 2001). Electrochemical activation as well as a biological activation happens on a long time scale of minutes, much longer than the length of one voltammetric sweep at fast scan rates. Changes in the electrochemical response caused by activation processes, such as a change in capacitance or surface oxidation, would not be observable in a background subtracted voltammogram but should be observable as a change in the background current. In this study, a novel method of background subtraction (Chapter 5) is used to reveal changes in the background current that occur over a time scale of minutes during electrochemical and biological activation.

EXPERIMENTAL SECTION

Chemicals

All chemicals for flow injection analysis were purchased from Sigma-Aldrich (St. Louis, MO) and used as received. Solutions were prepared using doubly distilled water. Flow injection analysis was done in a TRIS buffer solution, pH 7.4 containing 15 mM TRIS, 140 mM NaCl, 3.25 mM KCl, 1.2 CaCl2, 1.25 mM NaH2PO4, 1.2 mM MgCl2 and 2.0 mM Na2SO4. This buffer mimics the ionic environment present in cerebral spinal fluid. Stock solutions of dopamine were prepared in 0.1 M HClO4, and were diluted to the desired concentration with TRIS buffer on the day of use.
Data acquisition and electrochemical pretreatment

Cyclic voltammograms were acquired and analyzed using locally constructed hardware and software written in LabVIEW (National Instruments, Austin, TX) that has been described previously (Michael et al., 1999; Heien et al., 2003). Data was acquired with a digital to analog converter interface (PCI-6052, 16 bit, National instruments, Austin TX) with a personal home computer. A modified current to voltage transducer (Chapter 5) was used to enable the possibility to examine changes in background current. All fast scan voltammetric data was filtered with a software-lowpass filter at 2kHz.

For electrochemical pretreatments, the rest potential was held at -0.4 V vs. Ag/AgCl. Triangular excursions were made to 1.3 V at a scan rate of 400 V/s and repeated for the first 15 minutes at a frequency of 60 Hz following triangular excursions at a repetition frequency of 10Hz for 30 minutes. The measurements were conducted inside a grounded Faraday cage to minimize electrical noise.

Flow-injection analysis

For flow–injection analysis the electrode was positioned at the outlet of a six-port rotary valve. A loop injector mounted on an actuator (Rheodyne model 5041 valve and 5701 actuator) and controlled by a 12-V DC solenoid valve kit (Rheodyne, Rohnert Park, CA) was used to introduce a bolus of analyte to the electrode. The flow rate was controlled by a syringe infusion pump (2 ml/min, Harvard Apparatus Model 22, Holliston, MA).
Electrode preparation

Carbon fiber microelectrodes were fabricated as previously described (Kawagoe et al., 1993) with T-650 carbon fibers (Thornel, Amoco Corp., Greenville, SC, 5 µm diameter). A single fiber was aspirated into a glass capillary and pulled on a micropipette puller (Narashige, Tokyo, Japan). The carbon fiber was cut so that approximately 50 µm protruded from the glass seal. The microelectrodes were backfilled with electrolyte solution (4 M potassium acetate, 150 mM potassium chloride), and wires were inserted into the capillary for electrical contact. Before use, electrodes were soaked in isopropanol purified with Norit A activated carbon (ICN, Costa Mesa, CA) for at least 20 minutes. (Bath et al., 2000)

PPF-microelectrodes were constructed as previously described (Hermans and Wightman, 2006). As insulation material a cathodic electrophoretic paint (ZQ-84-3225, PPG Industries, Milford, OH, USA) was used instead of epoxylite. Insulation of the working electrode was conducted by application of a +2V DC potential in a 1:1 dilution of the electrophoretic paint while simultaneously monitoring the current. A stainless steel coil, surrounding the working electrode, was used as counter electrode. The electrode was removed from the solution 1 minute after no further change in current flow could be observed. The electrodes were cured at 200°C for 5 minutes and used immediately.

For all measurements Ag/AgCl reference electrodes were used (Bioanalytical systems, West Lafayette, IN, USA).
In vivo measurements in anesthetized rats

Male Sprague-Dawley rats (225-350g; Charles River, Wilmington, MA) were anesthetized with urethane (1.5 g/kg, i.p.) and placed in a stereotaxic frame (Kopf, Tujunga, CA). A heating pad (Harvard Apparatus, Holliston, MA) maintained body temperature at 37°C. Holes were drilled in the skull for the working, reference, and stimulating electrodes using coordinates (relative to bregma) from the brain atlas (Paxinos and Watson, 1998). The carbon-fiber microelectrode was placed in the striatum: anterior/posterior (AP) +1.2 mm, medial/lateral (ML) +2.0 mm, and dorsal/ventral (DV) -4.5 mm. A Ag/AgCl reference electrode was inserted in the opposite hemisphere. For recordings in the cortex, the carbon-fiber microelectrode was placed anterior/posterior (AP) +1.2 mm, medial/lateral (ML) +2.0 mm, and dorsal/ventral (DV) -0.5 mm.

RESULTS AND DISCUSSION

Electrochemical activation of pyrolyzed photoresist films

Pyrolyzed photoresist films (PPF) have been shown to have a carbonaceous surface that has similar properties to glassy carbon electrodes (Ranganathan et al., 2000) and carbon fibers (Hermans and Wightman, 2006). PPF films are formed under a reducing hydrogen atmosphere, a condition that forms a carbon surface that is almost completely hydrogen terminated. Before any electrochemical treatment the oxygen/carbon ratio at the surface of PPF
Figure 6.1. Electrochemical activation of PPF microelectrodes. Panel a. Background cyclic voltammogram at untreated PPF microelectrode in Tris-buffer; Panel b. Background subtracted cyclic voltammogram for 1 µM dopamine at an untreated PPF microelectrode; Panel c. Background cyclic voltammogram at PPF microelectrode in Tris-buffer after 15 minutes of voltammetric cycling at a repetition frequency of 60 Hz; Panel d. Background subtracted cyclic voltammogram for 1 µM dopamine at PPF microelectrode in Tris-buffer after 15 minutes of voltammetric cycling at a repetition frequency of 60 Hz
films has been reported to be less than 2% (Ranganathan and McCreery, 2001). 6.1a shows the initial non-subtracted cyclic voltammetric response of a PPF microelectrode. The cyclic voltammogram has the rectangular shape expected for charging of the electric double layer (Bard and Faulkner, 2001), without other pronounced features except at the switching potential (1.3 V) where hysteresis caused by filtering is apparent. After repetitive cycling for 15 minutes at a repetition frequency of 60 Hz, an increase in oxidative current around 0.2 V vs. Ag/AgCl can be observed (Figure 6.1c). This surface wave is thought to be due to the growth of surface functional groups on the electrode surface such as quinones (Fagan et al., 1985; Chen and McCreery, 1996; Runnels et al., 1999) that are formed by the oxidation of the carbon electrode.

Electrochemical activation has been shown to increase electron-transfer kinetics at glassy carbon electrodes (Chen and McCreery, 1996), carbon-fiber microelectrodes (Runnels et al., 1999; Strein et al., 1999), and large size PPF electrodes (Ranganathan and McCreery, 2001). Here, we report similar effects at PPF microelectrodes. As seen in the right panel of figure 6.1, the background subtracted cyclic voltammogram for dopamine at untreated PPF microelectrodes has a broad separation of the anodic and cathodic peaks indicative of slow electron-transfer kinetics. However, after electrochemical activation the background-subtracted cyclic voltammogram for dopamine is similar with regards to the kinetics and shape of the voltammogram to that obtained with carbon-fiber microelectrodes treated in the same way (Baur et al., 1988). It has been shown that dopamine absorbs to carbon-fiber microelectrodes (Bath et al., 2000). The
oxide groups on the carbon surface are thought to function as adsorption sites for dopamine. Indeed, it has been shown that electrochemical oxidation of carbon fibers to high positive potentials increases adsorption of dopamine (Heien et al., 2003). The symmetrical shape of the oxidative and reductive peaks in figure 6.1d are a consequence of dopamine adsorption that causes the increase in sensitivity.

Background changes at carbon-fiber microelectrodes in vitro

Carbon fibers inherently have a larger amount of surface oxides than untreated PPF films. Nevertheless, in many voltammetric applications, carbon-fiber microelectrodes undergo electrochemical pretreatment until a relatively stable background signal is obtained (Borland et al., 2005; Swamy and Venton, 2007). Previous studies (Hsueh et al., 1997) have shown that the background current at carbon fibers which were continuously cycled from -0.8V to 1.2V vs. SCE at a rate of 100 V/s significantly change during the first 30 minutes. An apparent increase in capacitance as well as the formation of an oxidative peak at 0.2 V, similar to the peak observed in figure 6.1, was observed. Further cycling showed stabilization of the background signal – only a little drift was observed.

To examine the changes in background current at carbon fibers more closely we used analog background subtraction during the electrochemical pretreatment (Chapter 5). This approach allowed subtraction of the background
Figure 6.2. Changes in background signal at carbon-fiber microelectrodes in vitro. Top panel. Carbon-fiber microelectrodes were cycled for 15 minutes at a repetition frequency of 60 Hz and a scan rate of 400 V/s. The change in background current with time at 0.2 V and 0.6 V vs. Ag/AgCl on the anodic sweep were normalized to the current at each respective potential at the end of the experiment (average response n=4 electrodes). Representative cyclic voltammograms for background change are shown at different time points. Bottom panel. Following conditioning for 15 minutes at a repetition frequency of 60Hz electrodes the current was rezeroed. Then the changes in background current were followed during cycling for 30 minutes at a repetition of 10 Hz and a scan rate of 400 V/s.
at the beginning of the experiment, removing the large capacitive contribution. Subsequent observations of the remaining background current allowed its changes to be followed. The current at two potentials on the anodic excursion was monitored: the current at 0.2 V vs. Ag/AgCl, the voltage where the surface wave grows in, and at 0.6V vs. Ag/AgCl, the potential where dopamine oxidation occurs.

The cyclic voltammograms in figure 6.2, upper panel, show the change in background signal measured in a pH 7.4 Tris buffer during the first 15 minutes while cycling at 400 V/s from -0.4 V to 1.3 V vs. Ag/AgCl with a repetition frequency of 60 Hz. This waveform is a commonly used electrochemical pretreatment before data collection for *in vivo* applications (Cheer et al., 2005) to achieve a stable background signal. Interestingly, the background does not change uniformly during the 15 minute interval as can be seen in the different shape of voltammogram taken 1 minute and 14 minutes after the cycling started. The current at 0.2V increases with time in an exponential manner, while the current at 0.6 V decreases initially and then increases after approximately 1.5 minutes of cycling. The main feature, that can be observed during the first 15 minutes is an increase in oxidative current around a potential of 0V vs. Ag/AgCl. This potential change is probably due to oxidation of surface oxide groups. However, only a small change in background current was observed at all other potentials. The finding that the currents at 0.6V and for 0.2V change in quite different ways demonstrates the electrochemical oxidation of the electrode results in potential dependent changes, an expected result for a permanent
chemical alteration of the surface. In addition, this result demonstrates that a linear compensation for the initial background drift is inappropriate.

After the initial cycling at 60 Hz to achieve electrochemical conditioning, the triangular potential was applied at a repetition frequency of 10 Hz while the electrode was held at the cathodic limit between scans (Cheer et al., 2005). This waveform is used for dopamine detection. In the time between scans dopamine adsorbs to the electrode surface and pre-concentrates resulting in the high sensitivity (Bath et al., 2000). In contrast to the initial conditioning at 60Hz, the change in background signal during 10 Hz cycling is more uniform over the 30 minute observation period. The relative changes in the currents at 0.2 V and at 0.6 V are superimposable. After a steep initial increase when the 10 Hz repetition frequency is initiated, the drift at both potential levels off to a linear increase with a slope of 1.5% signal change per minute. Therefore, we suggest waiting for 15 minutes until the linear region of the background change is reached before data is collected.

During this conditioning period the main change in the background is an increase in anodic current around the potential of 0.4V vs. Ag/AgCl. Additionally, both anodic and cathodic currents decrease at around -0.2V vs. Ag/AgCl. Overall, however, the changes in background are more modest than during the 60 Hz cycling period. These differences in background changes observed at the two repetition frequencies correlate with the difference in the average potential applied to the electrode with varying repetition rates of the -0.4 V to 1.3 V triangular wave at 400 V/s. When this waveform is repeated at 60 Hz, the
average potential applied to the electrode is 33 mV vs. Ag/AgCl, while the average potential for a 10 Hz repetition frequency is -328 mV vs. Ag/AgCl. Thus, on average, the electrode is held at a much more positive potential with the 60 Hz repetition rate allowing for greater formation of surface oxide groups. At the less frequent repetition rate less oxidation of the electrode occurs so the background becomes more stable.

Background changes at carbon fiber microelectrodes *in-vivo*

The experiment in figure 6.2 was repeated *in vivo* in the cortex of anesthetized rats to examine whether brain tissue could affect the background changes. During the initial application of the triangular waveform at a repetition frequency of 60 Hz the background changes were similar to those *in vitro* (compare Figure 6.3, top panel, with Figure 6.2, top panel). The shape of the cyclic voltammograms that arise from the background changes during this conditioning period are virtually identical *in vivo* and *in vitro*, although the time course of the background changes seems slightly slower *in vivo*. In the second conditioning interval with cycling at 10 Hz, the changes in background current obtained *in vivo* differ significantly from those obtained *in vitro*. A decrease in the oxidative current around 0.2V occurs indicating diminished surface oxides. The differences in background changes obtained *in vivo* and *in vitro* application are likely due to the different chemical environments. The buffer used for *in vitro* experiments mimics the ionic environment of the cerebral spinal fluids but does not include any of the electroactive substances present in the
Figure 6.3. Changes in background signal at carbon fiber microelectrodes in vivo (cortex). Top panel. Carbon fiber microelectrodes were cycled for 15 minutes at a repetition frequency of 60 Hz. Bottom panel. Following conditioning for 15 minutes at a repetition frequency of 60 Hz electrodes were cycled for 30 minutes at a repetition of 10 Hz. The background signal was subtracted before measurements were taken. The current for background change at 0.2 V vs. Ag/AgCl and 0.6 V vs. Ag/AgCl at the anodic sweep were normalized to the current at each respective potential at the end of the experiment and plotted vs. time. (average response n=4 electrodes) Representative cyclic voltammograms for background change are shown at different time points.
Figure 6.4. Background changes in caudate/putamen. Carbon fiber microelectrodes were cycled for 15 minutes at a repetition frequency of 60 Hz before conditioning for 30 minutes at a repetition of 10 Hz in the cortex. The background signal was subtracted and the electrode was lowered into the caudate/putamen. The current for background change at 0.2 V vs. Ag/AgCl and 0.6 V vs. Ag/AgCl at the anodic sweep were normalized to the current at each respective potential at the end of the experiment and plotted vs. time (average response n=4 electrodes). Representative cyclic voltammograms for background change after lowering the electrodes are shown at different time points.
brain such as ascorbic acid or glutathione that could react with surface functional
groups. In addition, the *in vitro* experiment does not include proteins that can
absorb to the electrode surface, changing the background signal. Furthermore,
the oxygen level of the *in vitro* buffer and the extracellular fluid of the brain differ.

The time course in figure 6.3, lower panel, shows that the changes in
background current are relatively stable during the last 15 minutes of cycling at
10 Hz. The current changes linearly with a slope of 1.1% signal change per
minute at 0.2 V and 2.8% signal change per minute at 0.6 V during the during the
last 5 minutes. At the end of this equilibration period in the cortex, the
background signal was subtracted again and the electrode was lowered into the
caudate/putamen of the rat. Lowering the electrode into the caudate-putamen
caused a dramatic increase in the background (Figure 6.4). There was a large
increase in the oxidation current at about 0.2 V that resembled the background
changes observed during the initial 60 Hz cycling. Additionally an overall
increase in capacitance of the electrode as well as the emergence of a small
oxidative current peak at 0.6 V was observed. The latter feature occurs where
dopamine adsorbs suggesting that the presence of dopamine in the caudate-
putamen may be responsible for altering the background response.

Dopamine induced background changes

To investigate whether extracellular dopamine in the caudate/putamen
could affect the background, experiments were conducted in physiological buffer
into which small concentrations of dopamine were purposely added. First,
Figure 6.5. Dopamine induced background changes \textit{in vitro}. Carbon fiber microelectrodes were cycled for 15 minutes at a repetition frequency of 60 Hz before conditioning for 30 minutes at a repetition of 10 Hz. The background signal was subtracted and the electrode was 100 nM dopamine was introduced into the background solution. The current for background change at 0.2 V vs. Ag/AgCl and 0.6 V vs. Ag/AgCl at the anodic sweep were normalized to the current at each respective potential at the end of the experiment and plotted vs. time (average response n=3 electrodes) Panel a,b. Background change 2 and 15 minutes after introduction of dopamine; Panel c. response to injection of 1 µM dopamine before (dashed line) and after (solid line) conditioning in 100 nM dopamine solution for 15 minutes; Panel d. Cyclic voltammogram at glassy carbon electrode for 1 mM dopamine at a scan rate of 100 mV/s (first cycle: solid line, second cycle: dashed line)
electrodes were cycled for 15 minutes in physiological buffer at a repetition frequency of 60 Hz following by 30 minute cycling at 10 Hz analogous to the experiment in figures 6.2 and 6.3. We then wished to add dopamine to the physiological buffer at a concentration that mimicked the basal concentrations of dopamine in the rat caudate-putamen. However, this value is not well established. While early studies with microdialysis sampling reported 1-2 µM concentrations of basal dopamine (Lindentors et al., 1989; Benviste and Huttemeier, 1990), later studies estimated basal level concentrations of around 25 nM (Shou et al., 2006). In the present work we used 100 nM.

After the preconditioning the background signal was subtracted again and 100 nM dopamine was introduced. The oxidative current at about 0 V increased following exposure to dopamine and there was a smaller increase in oxidation current at 0.6 V occurred. The current at 0.6 V is due to dopamine oxidation. Overall, the background changes observed 15 minutes after addition of dopamine (figure 6.5b) are similar to the signal observed in the caudate/putamen (figure 6.4, middle panel). To examine if these dopamine-induced background changes influence the sensitivity of the electrode, cyclic voltammograms for 1 µM dopamine were taken before dopamine was introduced into the buffer. This response was compared with the voltammogram obtained for 1µM dopamine after 15 minutes of cycling (figure 6.5c). The average response for dopamine showed a 35% ± 15% increase in peak current after the dopamine treatment.
Polymerization of dopamine

After electrochemical oxidation catecholamines such as dopamine undergo secondary reactions (Adams, 1969; Lane and Hubbard, 1976). The most important secondary reaction is the intracyclization of the orthoquinone to the 5-6 dihydroxyindoline. A slow scan cyclic voltammogram of dopamine, which shows the formation of 5-6 dihydroxyindoline, is shown in figure 6.5d. The 5-6 dihydroxyindoline is more easily oxidized than dopamine to produce an aminochrome, which is known to readily polymerize to melanin-like products as shown in previous research (Lane and Hubbard, 1976). These early studies reported a poisoning of the electrode surface by formation of the melanin layer at platinum electrodes. Polymer films created by dopamine polymerization on gold electrodes have been used for capacitive sensing of dopamine via molecular imprinting within the film (Liu et al., 2006). However, recent research showed that melanin layers on glassy carbon electrodes formed from L-dopa (Rubianes and Rivas, 2001; Gonzalez et al., 2004) or directly from dopamine (Chang et al., 2006) via electrochemical polymerization increase sensitivity and selectivity for dopamine. Polymerization of dopamine on gold electrodes showed similar effects (Li et al., 2006) of cationic selectivity within the polymer film. In all of these studies (Rubianes and Rivas, 2001; Gonzalez et al., 2004; Chang et al., 2006; Li et al., 2006) the melanin layer was found to exclude ascorbic acid while retaining or increasing the electrochemical activity for dopamine. These layers have been created using millimolar concentration of the monoamine monomer.
The formation of a melanin like polymer on the electrode surface is most likely responsible for the background changes and the increased sensitivity to dopamine seen in both *in-vitro* and *in-vivo* experiments in this present study. Melanin is naturally formed within the human brain causing the dark coloring of the substantia nigra. It has been reported that 95% of the neurons in this brain region contain melanin-like species (Gibb, 1992). Although QCM measurements of the formation of melanin from dopamine at gold electrodes reported that no mass change was detected at monomer concentrations below (Li et al., 2006), this study showed visible effects with dopamine concentration in the nanomolar range.

Even though the formation of 5-6 dihydroxyindoline is kinetically slow and therefore not directly observed in the cyclic voltammogram for dopamine when fast scan rates are applied (figure 6.1d), it is plausible that 5-6 dihydroxyindoline slowly forms from dopamine orthoquinone on the electrode surface over time. One indication for the presence of 5-6 dihydroxyindoline is the voltammogram obtained 2 minutes after introduction of dopamine into the background buffer (figure 6.5a). This voltammogram shows peaks in the negative potential region that can be attributed to the redox reaction of 5-6 dihydroxyindoline to the aminochrome. Formation of a melanin like polymer is also in agreement with the increase in capacitance of the electrode (figure 5.5 and 6.5b). Although the results in this study do not provide a direct proof of polymerization of dopamine at the electrode surface at high scan rates, the cyclic voltammograms of the background changes give strong evidence for the formation of a melanin type
structure on the electrode surface. Because of the similarities to the results between the *in-vitro* and *in-vivo* experiments we can assume that a similar process also occurs when the electrode is lowered into the caudate/putamen.

Summary

In this study we demonstrate that carbon microelectrodes used with fast scan cyclic voltammetry can undergo two different types of activation: Electrochemical activation and activation in brain tissue. These activations were monitored by measuring the changes in the background signals obtained with fast-scan cyclic voltammetry. Triangular excursions to 1.3V vs. Ag/AgCl caused an increase in oxidative current around the potential region between 0 V and 0.2V vs. Ag/AgCl resulting from formation of surface oxide groups. This electrochemical activation was necessary for hydrogen terminated PPF electrodes in order to detect dopamine. Electrochemical activation of carbon fibers was conducted in the cortex resulting in similar changes for the background current compared to changes *in-vitro*. Lowering electrodes after electrochemical activation into the caudate/putamen caused large background drift. These drifts were mimicked *in-vitro* by addition of dopamine to the background solution. We hypothesize that the background drift is caused by polymerization of dopamine to a melanin like structure. The presence of this layer also enhances sensitivity to dopamine and could explain previous observations which reported activation of electrodes after treatment with brain tissue.
REFERENCES

CHAPTER 7
ELECTROCHEMICAL MEASUREMENT OF PH SHIFTS AND DOPAMINE
RELEASE IN PRIMATES DURING REWARD DELIVERY

Introduction

In recent years many studies have been conducted to examine neurophysiological and neurochemical phenomena during prediction and delivery of reward. The most common techniques to examine brain activity during reward delivery are electrophysiological studies, fMRI measurements, and electrochemical recordings. While electrophysiological data can give direct information about the neuronal activity, the biological meaning of the signal obtained with fMRI has been discussed greatly. Changes in cerebral blood flow are at the heart of brain imaging signals (Raichle and Mintun, 2006). With blood oxygen dependent (BOLD) fMRI it is possible to directly monitor the oxygen dissociation from hemoglobin (Ogawa et al., 1990). Electrochemical recordings are able to give information about changes in neurotransmitter concentrations (Cahill et al., 1996) as well as local changes in oxygen concentrations (Venton et al., 2003a) and pH (Runnels et al., 1999). Electrophysiological and electrochemical recordings both use implanted microelectrodes so they are invasive techniques. However, they provide micrometer spatial and subsecond temporal resolution. Neuroimaging techniques such as fMRI
are advantageous because they are noninvasive and can be used in humans. However, voxel sizes for fMRI techniques are normally on the order of 1 mm3 (Hyde et al., 2001) with time resolutions of a few seconds (Kim et al., 1997).

Electrophysiological studies in primates have shown that midbrain dopamine neurons in the ventral tegmental area (VTA) and their projections to the ventral striatum burst fire during reward delivery (Schultz, 2002). After reward-based classical conditioning VTA dopamine neurons fire in response to cues that predict reward (Schultz, 1998) and during anticipation of reward (Fiorillo et al., 2003). The actual value of a reward is influenced by its magnitude, probability, and timing (immediate or delayed). VTA dopaminergic neurons have the ability to encode for the probably of the reward as well as for the value of the reward delivered (Tobler et al., 2005). Similar observations have been made with fMRI measurements that have shown activation of the nucleus accumbens of humans with different reward magnitudes (Knutson et al., 2001a; Knutson et al., 2001b). Electrochemical studies with fast-scan cyclic voltammetry in rats have detected phasic increases in dopamine concentration during operant responding for drugs of addiction (Phillips et al., 2003) like cocaine as well as for natural rewards (Roitman et al., 2004).

Successful voltammetric recordings in primate brain tissue have only been reported from brain slices (Cragg et al., 2000; Cragg, 2003). In this study we used specially designed carbon fiber microelectrodes to record pH-shifts and changes in dopamine concentration in behaving primates with fast-scan cyclic voltammetry. Recordings were conducted during delivery of an unpredicted free reward and
during the delivery of reward following a reward-predicting cue which was associated with 3 different reward probabilities.

EXPERIMENTAL SECTION

Chemicals

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO) and used as received. Solutions were prepared using doubly distilled water (Megapure system, Corning, New York). For flow injection experiments phosphate buffered saline (150 nM NaCl, 10 mM Na₂HPO₄, 1.2 mM CaCl₂) was used. Stock solutions of dopamine were prepared in 0.1 M HCl, and were diluted to the desired concentration with PBS-buffer on the day of use. 4-sulfobenzenediazonium tetrafluoroborate was synthesized as previously described (Hermans et al., 2006).

Electrode preparation

The carbon-fiber microelectrodes were fabricated from two different types of carbon fibers: 12 µm diameter carbon fibers (Thornel P55, Amoco, Greenville, SC) and 33 µm diameter carbon fibers (Textron Systems Division, Wilmington, MA). The carbon fibers were supported on tungsten wires. The tips of tungsten wires (125 µm diameter, 15 cm length, Advent research Materials, Oxford, England) were etched to a conical tip in a 1.0 M NaOH solution that was saturated with NaSO₂. The etched tips were cleaned, using electrocleaning solution (Grobet USA, Carlstadt, NJ) (Hermans and Wightman, 2006). Carbon-fibers were attached along the whole length of the tungsten wire with conductive silver epoxy (Epo-tek, Billerica, MA)
Figure 7.1. SEM image of electrodes for primate recordings. SEM image of a 33 µm carbon fiber attached to an etched tungsten wire encased in a glass capillary. The arrow indicates the joint between tungsten wire and the carbon fibers.
extending from the tip of the tungsten wire. After the epoxy was cured, the assembly was inserted into a glass capillary and pulled in a horizontal electrode puller (Narishige, East Meadow, NY). During the pulling the end of the capillary that contained the etched tungsten was mounted in a stationary holder while the other end was attached to a movable holder. After the heating element reached a temperature sufficient to soften the glass, the movable end was slowly pulled resulting in a very thin (~5µm) flexible glass-insulating layer over the whole length of the tungsten wire with attached carbon fiber. After inspection under a microscope to ensure a smooth transition of the glass over the tip of the tungsten wire and the carbon fiber, the carbon fiber and the glass were cut with a scalpel blade approximately 250 µm from the end of the tungsten tip. The electrode was then further insulated by dipping it into epoxylite insulation (The Epoxylite Corporation, St. Louis) at 40°C for 1 minute (Verhagen et al., 2003) and then slowly withdrawn. The electrodes were cured for 8 hours at 80°C.

Following curing, the electrodes were polished at a 25° angle on a micropipette beveller (Sutter instrument, Novato, CA). The electrodes were then cycled in PBS buffer from -0.4V to 1.3 V vs. Ag/AgCl for several minutes and the background current was examined to ensure that the electrodes were well insulated. In addition, this pretreatment activates the electrode (Heien et al., 2003).

Following the electrochemical pretreatment, P-55 microelectrodes were coated with 4-sulfobenzene following procedures described elsewhere (Hermans et al., 2006). A potential of -1V Vs Ag/AgCl was applied to the electrode for 5 minutes in a 3 mM solution of 4-sulfobenzenediazonium tetrafluoroborate dissolved in 0.1 M
HCl. Electrodes manufactured from 33 µm diameter fiber did not undergo this treatment. Both electrode types were then dip-coated with Nafion as described previously (Kawagoe et al., 1993). An example SEM image of the electrode polished at a 90° angle is displayed in figure 7.1.

Flow-injection apparatus

Before use in the brain, the response for each electrode to dopamine was tested in a flow cell experiment. For flow–injection analysis the electrode was positioned at the outlet of a 6-port rotary valve (Rheodyne model 5041 valve). The solution flow rate was approximately 2 ml/s and was driven by gravity. The analyte was loaded into an injection loop and pushed to the surface of the electrode following manual switching of the 6-pot valve.

Data acquisition and analysis

Fast-scan cyclic voltammograms were acquired and analyzed using locally constructed hardware and software written in LabVIEW (National Instruments, Austin, TX) that has been described previously (Michael et al., 1999; Heien et al., 2003). The rest potential was -0.6V or -0.4 V vs. Ag/AgCl. Triangular excursions were to values between 1.0 V and 1.4V at a scan rate of 400 V/s. The waveform was repeated at a frequency of 10 Hz. The recorded signal was filtered at 10 kHz before being digitized. The behavior was synchronized to the voltammetric recordings by measuring TTL pulses at the onset of each event in the behavioral sequence.
Color representations were used to visualize the data (Michael et al., 1998) with the applied potential as ordinate and time as abscissa. The current is represented on a non-linear color scale to visualize the changes in current. Cyclic voltammograms were sorted according to specific recording locations and then background subtraction and signal averaging was performed.

In vivo recordings

In vivo experiments were performed in collaboration with Wolfram Schultz and coworkers in Cambridge, England. The basic experimental design and the individual animals in this are similar to experiments reported previously (Tobler et al., 2003; Tobler et al., 2005). Recordings were made in two Macaca mulatta monkeys that were mildly fluid deprived. The reward was a sweetened liquid delivered by a computer controlled liquid valve through a spout at the animal’s mouth in fixed quantities of around 0.2 ml. Licking behavior was monitored by tongue interruptions of an infrared photobeam 4 mm below the spout. Licking histograms were constructed by aligning the data around the time of the reward presentation. The DIO outputs for each file were then added to obtain the histogram. Data was collected from 2 animals. Recordings were conducted in 67 striatal regions in animal 1 and in 46 striatal locations in animal 2. The recording locations were confirmed by histological examination of stereotaxically oriented coronal brain sections for animal 1. Therefore, we mainly focussed the analysis in this study on this animal 1. In each location approximately 90 single trials were performed, resulting in around 30 trials for each given probability. Given this number for each
location only 1 or 2 rewarded 5% trials and 1 or 2 non-rewarded 95% trials were recorded.

Presentation of free reward

Unpredicted reward was delivered in a set of 15 consecutive trials. The time between each reward delivery was variable but averaged 9 s, and consisted of 4 seconds plus an exponentially distributed interval with a mean of 5 s. The time between each set of trials was at least 30 minutes. The free reward trial was performed at all of the 113 recording locations after successful completion of the 90 predicted reward trials. Each session consisted of 15 free rewards per recording location. For later analysis, the 15 responses at each location were averaged around the time of reward delivery.

Presentation of predictable reward

In a second type of experiment the animals were trained in a pavlovian training procedure to distinguish different visual stimuli that coded the probability of subsequent reward delivery. Three different visual cues encoded for a 5%, 50% or 95% probability. The temporal sequence for the behavioral task is outlined in figure 7.2. At the beginning of the trial a center-fixation spot was shown on the computer screen. The monkey had been trained to focus on the center of the video screen in response to this cue. His eye movement to this cue was monitored by a separate camera. At the appearance of the center-fixation spot the monkey was supposed to initiate movement of its hand towards a keytouch within 500 ms. The cue indicating
Figure 7.2. Timing diagram of the behavioral tasks performed by monkeys during predicted reward delivery. The center-fixation spot marks the beginning of each trial and indicates that the monkey should touch a key touch within the next 500 ms. If the key touch is not performed the trial is aborted. After a variable interval a cue is presented which encodes three different reward probabilities (5%, 50% and 95%). 1.5 seconds later the color of the center fixation spot changes initiation the release of the key touch. If the trial is a rewarded trial, the reward is given to the monkey. The next trial is initiated 3.5 ± 0.5 s after completion of a trial. Times on the diagram are in s.
the probability of reward appeared between 1.5 and 2 s after the keytouch. Another 1.5 s later the color of the center fixation spot changed, prompting the monkey to release the key touch. The reward delivery was initiated 1 s after the key was released. The screen was turned blank 500 ms after the reward was delivered and the next trial was initiated 3.5 ± 0.5 s later. This procedure was continued for 90 trials.

RESULTS

Responses to pH changes at carbon fiber microelectrodes

Background subtracted fast-scan cyclic voltammetry is responsive to changes in pH (Runnels et al., 1999). A representative signal for a basic pH-changes recorded in vitro at the electrodes used for these studies can be seen in figure 7.3. This cyclic voltammogram is similar to the voltammograms reported previously for pH changes with the same scan parameters (Heien et al., 2003). Similar signals for pH changes have been measured in vivo following electrical stimulation of dopamine neurons (Venton et al., 2003a) and after drug administration (Heien et al., 2005).

pH changes in vivo during delivery of free reward

Figure 7.4a shows a representative color plot that is the average of 15 trials obtained during free reward presentation at animal 1. The response is centered on the reward presentation that occurs at the 0 s time stamp. The background signal was taken from averaged scans 1.5 to 0.5 s before the reward was presented. The
Figure 7.3. Cyclic voltammetric response to a basic pH change *in vitro*. Background subtracted cyclic voltammogram for an approximate 2 pH unit change in the basic direction obtained in a flow cell experiment.
pH trace shown in figure 7.4b represents relative pH changes. Absolute values could not be determined, because a post-calibration for the electrodes was not conducted. Reward delivery is preceded by a basic pH shift in the extracellular fluid and it is followed by an acidic pH shift shortly thereafter. This shift lasts for about 5 s. Figure 7.4c shows an averaged cyclic voltammogram obtained at the maximum basic pH shift. This shape of this cyclic voltammogram agrees with one recorded during an authentic basic pH shift measured \textit{in vitro} (Hermans et al., 2006, figure3) and in prior \textit{in vivo} measurements (Heien et al., 2005). This pattern of pH changes was observed in \sim85% percent of the recordings in animal 1 during free reward in striatal brain regions. The other 15% did not show any significant pH changes associated with reward presentation. The pH traces measured in animal 2 showed similar pattern to the traces observed in animal 1 with an acidic shift after delivery of the reward in 43% of the recordings. However, in 26 locations (57% of the recordings) the voltammetric recordings could not be assigned to a pH shift. There was no correlation of the pH shifts with the spatial position of the recording electrode within the striatum. Also, a larger time delay between reward delivery and the start of the acidic pH shifts was observed in the traces recorded in animal 2 compared to animal 1.

Correlation between pH changes and behavior during delivery of free reward

To find whether there was a correlation between pH changes measured during free reward and the animals' behavior, the licking pattern was analyzed. The licking pattern can serve as an indicator of behavioral reactions and learning (Rolls
Figure 7.4. Delivery of free reward. The panels show averaged responses from 15 consecutive trials in the same location. The time between rewards averaged 9 s. Thus, the beginning and end of the recordings contain activity from the previous and subsequent trials, respectively. Panels a to d show data obtained from animal 1; Panel e shows data obtained from animal 2; a. All voltammograms shown in the form of a color plot. The horizontal line indicates the current that was used for construction of pH traces in panel b; b. Time trace for relative pH changes during delivery of free reward; c. Average cyclic voltammogram for basic pH shift obtained in vivo; d, e. Licking behavior of the monkey during delivery of free reward, pH trace is shown as red line (representative data from animal 1 is shown in panel d, data from animal 2 is shown in panel e)
et al., 1993; Aosaki et al., 1994). The licking histogram for animal 1 associated with the chemical changes in Figure 7.4a is shown in Figure 7.4d. The rate of licking begins to increase 3.5 s before reward delivery at which time it decreases. Immediately before the reward the licking level is approximately 30%, which means that the infrared light beam is broken 30% of the time. Licking starts to increase again relative to pre-reward levels at the beginning of the next trial. The time course of licking correlates well with the observed pH shifts. These trends in pH and licking behavior were present in 91% of all recording locations in animal 1. The remaining 9% of the files did not show a specific licking behavior time-locked to the reward.

However, licking behavior recorded for animal 2 showed a completely different pattern as indicated in figure 7.4e with an increase in licking after the reward was given. This pattern was observed in all free reward trials for this animal. As figure 7.4e indicates, licking was evoked about one second after delivery of the reward. These behavioral differences might result from a different length of behavioral training between the two animals.

pH changes during presentation of predicted reward

In contrast to free reward delivery, data obtained from animals 1 and 2 show identical trends in behavior and electrochemical recordings during the tasks involving a predicted reward. The representative data shown in study was recorded with animal 1. To examine pH changes at different times during the predicted-reward task (Figure 7.2), the voltammetric data were averaged around each of the
Figure 7.5. Delivery of predicted reward. Panels a and b show an averaged response from ~90 consecutive trials at a single location. The following trial was initiated 4 ± 0.5 s after reward delivery. In a, b, and d panels the center-fixation spot occurs at the 0 s time stamp. a. Voltammetric data in the form of a color plot. The horizontal line indicates the current that was used for construction of pH traces in panel b, c, and d. b. Time trace for relative pH changes around presentation of center fixation spot. c. Averaged time trace for relative pH changes during presentation of reward predicting cue. The time of cue presentation is at the 0 second time stamp. The traces are shown according to the probability of the reward indicated by the cue (dashed line 95%, dotted line 50%, solid line 5%, 15 trials each). d. Licking histogram centered around presentation of center fixation spot (90 trials total), red line represents the pH changes.
distinct events (appearance of the color fixation spot, presentation of the reward-predicting cue, color change of the center fixation spot, and time of reward delivery) at a single location. In addition, data from each location were sorted according to the reward probability indicated by the cue and according to the occurrence (or lack) of reward delivery.

An average color plot centered on the presentation of the center-fixation spot is shown in figure 7.5a. This plot consists of 90 trials and includes all probability trials. The center-fixation spot initiates a new trial and, because of the experimental design, indicates a probability of 50% reward delivery. The current at the potential where pH changes can be detected is shown in Figure 7.5b. A basic pH change is initiated with the presentation of the center fixation spot. This response was seen in all 113 recording locations in both animals.

Next the same pH data were separated into the reward probability of that trial and each of these 30 trials were averaged using the presentation of the reward predicting cue as the center point. For all three probabilities, the presentation of the cue occurs as the pH is shifting to basic values. However, for the 5% probability there is a sharp increase in alkalization followed by an acidification following the reward predicting cue. This trend was observed in around 35% of recording sites (39 = locations for both animals); in the remainder the pH continued to increase gradually. In the 95% trials there was a further increase in alkalization observed after the reward that was followed by an acidification.

The pH appears to remain constant in the 50% trials around reward delivery. However, to evaluate this further the trials following the presentation of the 50% cue
Figure 7.6. Delivery and non-delivery of predicted reward with 50% probability. Panel a. Averaged time trace for relative pH changes during time of reward delivery after presentation of 50% indicating cue. The time of reward is at the 0 second time stamp. The traces are shown according to the occurrence or non-occurrence of the reward (dashed line: rewarded trials, solid line: non-rewarded trials, 15 trials each) Panel b. Licking histogram for rewarded trials centered around presentation of reward of (15 trials total). Panel c. Licking histogram for non-rewarded trials centered around time where the reward would have been presented (15 trials total). pH traces are shown as red line
were separated into rewarded and unrewarded trials and the presentation of the reward was used as the center point for averaging (Figure 7.6a). For the rewarded trials the average shows an alkalization following reward delivery. For the unrewarded trials, an acidification occurred at the time when reward was anticipated. Very similar trends were seen in licking behavior.

Correlation between pH changes and behavior during delivery of predicted reward

Similar to the observation made during the free reward presentation, pH changes seem to correlate very well with the licking behavior of both animals. As seen during free reward delivery, basic pH shifts seem to coincide with an increase in licking. This licking increase is highly time locked to the presentation of the occurrence of the center-fixation spot (Figure 7.6d). The frequency of licks is then elevated until the time when the reward is delivered or the delivery is denied (figure 7.6 b, c). When no reward was delivered the monkey stop licking instantaneously (figure 7.6b) while in the cases when reward was given more licking occurred about one second after the delivery of the reward. These results also correlate well with the observation made at the pH changes where a further basic pH shift occurred after reward delivery.

Dopamine release during reward delivery

The large pH changes observed during both behavioral tasks are the main interfering signal for the observation of dopamine changes in all locations. In 14% of
Figure 7.7. Detection of dopamine during free reward. Upper left panel. Raw color plot obtained during free reward delivery; Upper right panel. Color plot after removal of pH signal; Lower left panel. Cyclic voltammogram obtained after free reward delivery; Lower right panel. Current vs. time trace for the dopamine oxidation point.
the locations a dopamine-like signal has been observed immediately after delivery of a free unpredicted reward. However, the dopamine responses were all masked by a change in pH overlapping with the signal for dopamine (top left panel figure 7.7). Principal component regression (PCR) was used to resolve the dopamine signal from the pH signal. PCR was conducted analogous to the method reported previously (Heien et al., 2004). The signal obtained for the pH shift was used as first and only principal component to perform PCR. Following PCR all non-used principal components were used to reconstruct cyclic voltammograms. A color representation of these cyclic voltammograms is shown in the top right panel of Figure 7.7. This plot contains the signals from which the first principal component, the pH signal, was removed. An oxidative current around the oxidation potential for dopamine occurs right after delivery of the unpredicted reward. The cyclic voltammogram resembles that for dopamine at carbon-fiber electrodes (Venton and Wightman, 2003). The current at the dopamine oxidation potential shows that it exhibits a transient change immediately after reward delivery (Figure 7.7 bottom panel). The interference of pH shifts with the dopamine signal is most likely the reason that dopamine could only be observed in the minority of the recording locations. Comments about the absolute values of concentration changes are not possible, because post-calibrations of the electrodes were not conducted.

Dopamine release during delivery of predicted reward

Electrophysiological data shows that burst firing of dopaminergic neurons shifts from the time of reward presentation to the conditioned stimulus (Schultz,
When the stimulus is associated with a reward probability, neuronal firing also occurs during the anticipation period following cues associated with high uncertainty (Fiorillo et al., 2003). Based on these results, dopamine release was expected after presentation of the cue indicating 95% reward probability and it was expected to gradually after presentation of the cue indicating a 50% reward probability. However, even after removal of the pH signal, changes in dopamine concentration were not observed. As figure 7.5 shows, the presentation of the reward predicting cue occurs while a steep pH-shift occurs, and this is likely to mask any underlying dopamine change. In about 10% of the trials a change in dopamine concentration was recorded at the time of delivery of an unpredicted reward (during 5% reward probability trials).

DISCUSSION

Previous studies have shown neuronal activation of dopaminergic neurons during administration of rewards with both electrophysiological measurements (Schultz, 2002) and human fMRI imaging (Berns et al., 2001). In the present study at the terminal regions of dopaminergic neurons, dopamine changes are seen in a few locations. However, the data are dominated by an acidic shift that is observed within one second after delivery of the reward, both for expected and unexpected rewards. The time traces of activity in the caudate nucleus obtained with fMRI imaging during reward delivery show an increase in signal intensity at the beginning of a trial and the presentation of a reward-predicting cue (Delgado et al., 2000; Zink...
et al., 2004). This increased signal decreases again 1 to 3 s after reward presentation. The total time course for the fMRI signals lasts approximately 9 to 12 s before returning back to baseline levels. These time courses correlate well with the pH shifts seen in this study. The increased fMRI signals seem to overlap with basic pH shifts here, while a decrease in BOLD signal correlates well with the acidic pH shifts measured. Similar to this study, the start of the anticipation period has been observed to be the start activation in fMRI studies (Ernst et al., 2004).

The correlation between increased dopamine firing and metabolic signals has been established in prior work. When dopamine neurons are forced to fire, this firing is accompanied by a slightly delayed increase in oxygen level coupled to a simultaneous increase in pH (Venton et al., 2003b). The increase in oxygen is in turn correlated with an increase in local blood flow (Lowry et al., 1997). The pH change arises because extracellular pH in the brain is governed by the H$_2$CO$_3$/HCO$_3^-$ buffering system. Because the main enzyme responsible for the formation of carbonic acid is carbonic anhydrase that catalyzes the hydration of CO$_2$, the local pH is critically linked to this gas. An increase in local blood flow carries CO$_2$ from the brain, thus raising the local pH. This process is balance by local metabolic activity that generates CO$_2$ and thus lowers the extracellular pH. Consistent with these concepts, long term acidic shifts following a short basic shift have been observed after neuronal activity in vivo (Kraig et al., 1983; Somjen, 1984). A similar time delay of alkaline pH shift has been observed after dopamine release due to administration of natural rewards (Roitman et al., 2004). Thus, like oxygen
levels, pH shifts are a measure of the balance between metabolism and cerebral blood flow.

Thus, based on this prior work, the pH changes observed here appear to reflect increased neuronal activity within the striatum. However, establishing the relationship between the observed time course of pH changes and that for the neuronal activity is not straightforward. Measurements with oxygen microelectrodes (Thompson et al., 2003) have established that an increase in neuronal activity is accompanied by an overall increase in local oxygen concentrations. Similarly, BOLD fMRI (Kim et al., 2000), that responds to levels of oxygenation levels of hemoglobin, also changes with neural activity. However, in both of these experiments there is an initial dip in response that is thought to correspond to the immediate use of oxygen because of the increased neural activity. This is followed in 2-3 s by a delayed increase in signal arising from increased blood flow. The “initial dip” is thought to be a better direct indicator for neuronal activity than the observed subsequent increases in cerebral blood flow (Ances, 2004). Some studies connect the “initial dip” with the depletion of mitochondrial oxygen buffers caused by increased neuronal activity (Aubert and Costalat, 2002). In either case, the observed pH changes reflect local neural activity in a similar manner to fMRI measurements. However, it is possible that the fast time-locked responses seen in this study might be directly linked to neural activity as is the “initial dip”.

In trials where the reward probability was indicated by reward-predicting cues, two features have been observed in the pH traces beside the alkalization at the beginning of the trial and the acidification after presentation of the reward. First,
alkalization after presentation of the reward-probability predicting cue was smallest for the cue predicted the highest reward probability. After presentation of the cue associated with a low reward probability (5%) a steep basic pH shift was observed. Electrophysiological studies (Fiorillo et al., 2003) and FMRI studies (Abler et al., 2006) both have shown that neuronal activity in the striatum increased linearly with reward probability. Assuming that increased neuronal activity causes acidifications, the observations here are in agreement with this data. However, other fMRI studies also reported no activity changes with different reward probabilities (Knutson et al., 2005; Dreher et al., 2006) or even showed an increase response to negative feedback serving as measure for prediction error (Aron et al., 2004). Differences between the electrophysiological responses and the fMRI results were attributed to the fact that the differential BOLD signals respond to afferent inputs and local neural activity rather than responding to direct dopaminergic neuronal activity. Similar arguments also apply to the pH measurements in this study. Even though a microenvironment is sampled, all neuronal and metabolic activities as well as local changes in blood flow in the surroundings of the electrode can influence the pH signal that is obtained, while the electrophysiological recordings only obtain firing information from one specific neuron.

A second unique feature is the delay of acidification that occurs after the reward on trials where the cue predicts a 50% probability of reward (figure 7.6). This response is in accordance with fMRI studies that report decrease in signal after a predicted reward is not delivered, but an increase is reported after delivery of an uncertain reward (Knutson et al., 2005).
In this study a close correlation between the licking behavior and the pH shifts has been observed in the trials with predicted reward. It has been shown that licking behavior differs with different reward predictions (Watanabe et al., 2001) and can serve as an indicator for the difference between “wanting” and “liking” a reward (Wilson et al., 2006). Therefore licking can serve well as a measure of the animal’s behavior during reward delivery trials. Both experimental trials presented in this study, the free reward delivery and the delivery of a predicted reward, show similar behavioral activation as can be observed on the licking patterns. For animal 1 licks increased during the anticipation period and to the reward as it has been observed previously (Hassani et al., 2001). This behavioral activation preceding the reward has been shown to accompany increased firing of striatal neurons. No significant differences between trials that involve movement and trials that do not involve movement have been seen in either the neuronal or the behavioral responses. Analogous observations have been made in this study, where the behavioral licking patterns of the free reward trial which did not involve movements are similar to the conditioned reward trial which did involve movement. Furthermore, it has been shown that the anticipatory neuronal activations were not due to differences in anticipatory licking (Hollerman et al., 1998; Hassani et al., 2001; Cromwell and Schultz, 2003). The difference in licking behavior of animal 2 during the delivery of free reward is most likely due to different training conditions between the two animals. However, licking behavior and pH shifts are identical for both animals during the predicted reward trials. During the delivery of free reward the licking pattern differ between both animals, but in 43% of the locations the pH shifts are
identical. This indicates that the pH shifts observed in this study are not directly caused by licking. The licking pattern shown here are rather an indication for behavioral activation.

Beside pH shifts it was possible to measure dopamine changes in some of the recording locations during delivery of an unpredicted reward. The burst firing of dopaminergic neurons during reward delivery (Schultz, 2002) is expected to cause phasic increases in dopamine concentrations in the terminal regions (Wightman and Robinson, 2002). When observed, the dopamine levels observed in this study are elevated for approximately one second, similar to that for naturally occurring dopamine release observed in rats (Robinson et al., 2003), but faster than dopamine release observed in rats during delivery of natural rewards (Roitman et al., 2004). The dopamine uptake rates measured in the striatum of primate brain slices exhibited a V_{max} that was twice as large as the V_{max} measured in rodents (Cragg et al., 2000, 2002). The higher dopamine uptake rate explains the shorter time course measured in this study, and may explain why it is more difficult to measure dopamine transients in primates when compared to rats. The observed dopamine release with reward delivery in low probability trials (5%) is also expected according to electrophysiological responses and the theory of prediction error (Schultz and Dickinson, 2000; Fiorillo et al., 2003). Unexpected rewards show stronger neuronal firing that rewards with higher probabilities. Indeed, no dopamine release was observed to the delivery of rewards which were predicted with a higher probability.
Summary

In this study we used fast-scan voltammetric measurements at microelectrodes to measure chemical changes in striatal regions of behaving primates. During delivery of free, unpredicted reward we observed pH shifts centered around the delivery of reward that resemble data obtained with fMRI during neuronal activation. At the time of reward in a minority of the locations dopamine release could be measured directly after reward delivery. pH changes recorded during delivery of a predicted reward are similar to traces recorded during unpredicted reward. In a majority of the locations the pH traces also coded for the different probabilities. Furthermore, rewarded trails show a further pH shift after reward delivery which was absent in non-reward trials. The behavior closely mimics the pH changes. Thus, this study shows that it is possible to obtain important chemical information with fast-scan voltammetric recordings in primate brains.

