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ABSTRACT
Robert Charles Bruc&€harge Transport i@rganic and Organometallic Molecules:
Device Design, Fabrication, and Testing
(Under the direction of Wei You)

Molecular electronics (ME) represents a fronf@ electronics. Designing electronic
devices at the single molecule level would lead to extremely high density dewidéise
organic materialsypically used inME can bringswitchableproperties anénableformation of
transistorsat the single motaile level While promising, potential issues arise from
incorporating theserganicbasedmaterialsand their unique properti@sto electronic devices.
Solutions exist to generate electrical devices witanic materials, but understanding the
impacts dthese fabrication processes is necessary for their use in practical application settings.

The focus of this work is studying uniqoeganicand organometallimaterials in
molecular electronic device architectures designed toward use in practicalreteséttings.
Spinactive organometallic complexésa cobalt bis(dioxylene) based valence tautof@e\/T),
and multi[(porphinatymeta] oligomer wiresi are used to build molecular wires and studied in
ME settingsdesigned through se#fssembly approackéNhile the CoVT molecule is shown to
actually lose its valence tautomerism when tethered to a surface, the porphyrin wires show metal
center dependence on charge transport properties, enabling them to bepasedtially
switchableME and spintronic evices.

Alongside this, avarietyof soft lithographic techniques are utilized and the effects of

their fabrication processes on device output analy®edotransfer printing (nTP) is tested with

basic monolayershowing inphenylenedithiolsower tunneihg attenuation than seen through



other electrically identical architectures. We explain the force effects frontonB&a possible
cause and use this as a case studiyghlighting the impact architecture can have on monolayer
propertiesDespite thisporphyrin wires imTP junctions exhibit near identicalectrical
propertiescompared t®ingle moleculeneasuremenis hi ghl i ght i ng the techrt
exhibit the electrical properties of more specialized and complex molecules

Other soft lithogaphic techniques were also highlighted toward designing
macroscopically accessible junctions. Nanoindentation, a kineticaiijrolled transfer printing
(KTP) process, and transfer of graphergepolymer layer are all studieds a whole, these
processekighlight the effects and limitations thate inherent to designing molecular electronic
devices, and we discuss the needs for fabrication processes to enable practical edectronic

spintronicdevices from organibased materials.
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CHAPTER 1:

INTRODUCTION TO MOLECULAR ELECTRONICS AND ORGANIC SPINTRONICS

1.1 Background

The early 21 century has proven to las extraordinarily exciting time for technological
advanceslt is easy to take for granted that the things we may be used to in our day to day lives
such aghe Internet, online communicatioBPS navigatioi s i mp | y presem asiditbetas
twenty or thirty years ago. The rate of technological advancement and innovation is so high that
each new generation experiences a seemingly new world from the last, thinaingw
inventions theprevious generation had to adapii@ normaland there are no indications this
trend will change anytime in the foreseeable future.

One of the most direct points of eviderioethe high rate of technology increasemes
in the form of the computemwenty or thirty years ago it would Isensible to ask if a person
owned a computer; now a more sensible question is how many cometemsvn or even how
many they have with them at any point in time. Such a change in question comes from the
technological advancements that have come in abenpechnology and the scaling down of
computer components to make modern phones just as powerful as desktop consoles from the late
20" century.

Size is actually a relevant quantitative method by which both industry and the lay
audience judges the advamgent of computer technology, and a relationship often cited in this

di scussion i s ki(Fowell)alsh eMdidraev®s wlaasw or i gi nal | vy
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Gordon E. Moore, cdounder of Intel, and was based an empirical observation about the
decreasing size of transistors in computer chipsnply put, transistors drive the processing
capability ofcomputes, and increasing the number of transistors concurrently increases the
ability of the processor arttie devie incorporating them. Moore observed that the density of
transistors thatvere beingabricatedon an intgrated circuit doublapproximately every two
yearsand predicted that this trend would continb@.years latemnany innovation$ such aghe
morerecent implementations @tdimensionatransistor architecture, higielectric constant
materialsike hafniumandzirconium, and multcore processofishave enabled this trend to
extend beyondeveral predictetlindamental limits of silicoibased trasistor technology.
Transistors now are mapsoduced at 22m sizes, with st{i0 nm transistors on the horizon.

While the size decreases and subsequent increase in computer capahilityesriable
a few undesired consequences in #lilison-based eldtonicsregime have emergeéor
example some properties such as clock speed and actions/clock have leveled off in recent years
The innovation of multcore processing has increased computational capability, but as observed
by computer architect Gene Amd | i's what has been therelf@drred to
diminishing return to the benefits of multores as more cores are ad@fédurel.2). Different
opinionsexist on thematter, but some estimatiostate that the cost to go beyond 16 céres
both in terms of hardware as well as software proond¢o account for the increasptbcessor
complexityi will outweigh any commercial benefits

The point of this di scus smubiple tines aldng thetlife i mp |
of Moor ebs Leswandtransisior techrmlogy amywhere near stagnating. History
has proven that innovations continue to overcome assumed limits and roadblocks, and the

creativity and innovation behind recent adeementsvill no doubt be extended in one form or
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another. The point of this discussion is al
probl em, h e rsetup.iTaeadity istioathadilicobased technologigbat have
been the staple of late ®@entury/ early 2% century electronickaveenormousamounts of
talent and timenvested in theno continue and push the technology forwétstory has shown
that ifresearchers and industry were to decide to stay in the same regime, no doubt at least for
theforeseeablduture more advances could be made.

The goal of this discussion and subsequent work in this thesisuggest andighlight
an alternative to therpsent patlof silicon-based technology computer technology and the
like, one that involves unique processes but is not orthogonal to present technologies, can be
innovative yet inexpensive in its execution, and bears its own disadvantages and tilwais bu

potentially overcome the pitfalls becoming present in simple scaling of sitiased transistors.

1.2 Organic Materials for Electronic Applications
1.2.1 Recent Interests in Organic Electronics

In 2000, the Nobel Prize in chemistry was awarded to the grbffan Heeger, Alan

SO

MacDi ar mi d, and Hideki Shirakawa for nt he di s

p o | y rfigvhils ibhas been many years since the #ssimplef organics being used in
photovoltaic§¥PVs)and electronics oneof the first reports@mes fromL958 wherDavid
Kearns and Migin Calvin usedmagnesium phthalocyanine disks coated with tetramethyl

phenylenediamine for photovoltaic &li the muchmore recent Nobel Prize highlights the

focus and excitement that has been given to organic materials and their conductive properties. In

fact, recentdiscoveries anddvances have accelerated organic electronics into a variety of

electronicapplicationsOrganic light emitting diodes (OLEDs), motivated by the highly tunable

bandgaps in organic materials, are currently being mass produced in televisions and other visual
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displays® Organic solar cells are experiencing fast paced growth with efficiencies high enough
or near high enough for commercializatidtigure 1.3).” Most relevant to the work to be
presented here, organics have also become an attractive option fistdraansd switch type

applications relevant to computer technology.
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1.2.2 Properties of Organics for Electronic Applications

There are strong advantages to utilizarganic materials itransistos as well as other
electronic applications. Many facile processes have been developed for the deposition of
organics, from the basics of spsasting and solution soaking to more coexpgbatterning
methods Solution procesbility of many organics allowfor mas-producible deposition
methods such afv-coating and inket printing® Taking advantage of the sel§sembly
properties of organics can lead to etsproduce assemblies. For example, pentathiophene
derivatives are found to assemble into micron sized conductive islands when prepared in
LangmuirBlodgett films® Many of these processes can be low cost, accomplished by relatively

basicequipment and requiringtle more than thactive materiaind solvent or surfactant.

A) B)

LB DEPOSITION ON A HYDROPHILIC SURFACE
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Figure 1. Blade coating operation.

All-inkjet printed
organic inverter

Figure 1.47 Solution Processible Techniques for Large Scale OPV Production.

Representation of several solution processible techniques ferpra@duction of organic photovoltaias)

Formation of LangmuiBlodgett films from a solutioh’ B) Blade coating obrganicPV (OPV)films from

solution* Copyright 2013, Scientific Research Publishi6) Representation of fabrication process and output of
ink-jet printed OP\}2 Copyright ©2013,Wiley-VCH Verlag GmbH & Co. KGaA
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Another advantage is the functionalizability of organic materials. Sometimes simple
chemical reactions and design principles can modify orgaatenmls and dramatically change
their properties. In one study, attaching a tetrathiafulvalene (TTF) moiety onto different positions
along a oligo(phenylene ethynylene) (OPE) backbone significantly alters the bandgap and
conductance of molecular wiréSUsing linear or bent OPE backbones can also change the
delocalization of charges along a &if Controlling tre rotation of phenyl rings synthetically
highlights that conductance can be tuned synthetitallghese represent just a few examples of
the capability shown in organic systems.

Even more impressive than these, the most dynamic organic sysietas functional
groups or configurations that can be switched-ggsthesis. Photochromic compounds can have
conjugation established or broken, which will have large impacts on the conductivity of the
molecular unit® Temperature can be des@ghto switch between polymorphic states in
tetraacetate’ Exposure to specific chemicals (or hydrogen, in the case of pH changes) can also
affect conjugation and thereby conductivifyand magnetic or electric fields can be used to alter
spin states or electric polarizations and thereby conductiigu(e1.5).*° It should be stated
that some silicon systems can be altered, the main way being chemical or physical doping, but
in-situ alteraton of their propertiedike those described here are rare.

Furthermore, organics lend themselves well to biological applications. Organic based
plastics and polymers have long been used to encapsulate inorganic systems in biological
settings”® The biocompatibility of many conductive organics creates the possibility for fully
biodegradable systems for a wide range of Gsesilizing another important property of organic

films and material$ their flexibility i electronics have been designed to conform to the shapes



of various appendages and organs, enabling their use in external limbs and studying diseases and

events such as heart disease and strSkés.
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Figure 1.57 Examples of Post-Synthesis Switchable Propertiesin Organic Systems

Examples of possynthesis switt properties in organic systen#s. Molecular packing in polyacene films at i@,
and visual representation of its polymorphism at different temperaRepsoduced from Ref. 17 with permission
of The Royal Society of ChemistrB) Graphene/NkEIBaTiOy/LSMO samples, measured by piezoresponse force
microscopy, showing the appearance of different electric field polarizatiaiferent biasesThecurrentvoltage
plot underneath shasdifferent resistances can be measured for upward (red) and downwax)dp@llrizations in
the samplé? Reprinted by permission from Macmillan Publishers Ltd: Nature, Ref. 19, Copyright 2014

The largest disadvantagedoganics in these afipations istheir susceptibility to
degradation in ambient conditionhoughthe Kearns and Calvin PV cell that represented the
first of its field required an oxidizedrganicfilm for its function,a large number of organi®Vs

(OPVs)and other organielectronics quickly lose their functionality in oxygéwnany of these



effects areemovedby studying systems in vacuum or inert environment (nitrogen, grgon)
these conditions are difficult to extend to practical &eapsulation methods have been
developed to mitigate these effecssich as depositing inorganic oxitfesr polymer layer$®
Especially with the former, care must be take
penetrate or otherwise impede function of the active layer.

Despite tls disadvantag, constant advancements such as encapsulation gentirpush
organic materials to relevancy in electronics. Especially as we consider the capability to make
devices on the single molecule level as will be described in the next section, a bright future is

evident from applications incorporating these matsr

1.3 Molecular Electronics

Beyond bulk materials and filma,frontier of electronic devices exists at the single
molecule level. Even considering the presumably soon advent-df0suin transistors,
molecular electronic€ME) 1 which isgenerally refered tohere as utilizing organibased
molecules in single or few number of molecule junctions for electronic applicétjpmsnises a
huge jump in transistor density due to devices potentially existing within a single molecule.
Though nore than ths, mokcular electronics an exciting field because of the unique
properties thatanexist in singleor few number ofmolecule junctionsWhen properly executed,
the synthetic control that can be had on organic molecalede used to directly realize
dramaic property changes imolecular eletronic systems.
1.3.1 Synthetic Control of Molecular Electronic Properties

Whereas thick films of materials will typically have a range of #éed intramolecular
charge transport mechanisms occurring simultaneowalgport pathways in ME systems tend

to be easier to understand andnipulate Molecular length in single molecule wires ddirectly

9



control the charge transport through finite regimes such as tunneling and charge ,hrappeen
by controling the numberof repeat units ifDPE chains?® Functional groups can also
significantly modify the charge transport properties of similar length wires. Synthetically
insertingparallel transport ghways through a molecular wire can lead to quantum interference,
either constructive or destructivgjth these effects sometimes being altered with different
functional groups on a common backbdhBue to quantized energy levels presennany
organics, bias dependent currefiéets can be realized. Negative differential resistance and
other similar alterations in the current profile of molecular electronic systammanifest as
transport becomes resonant under certain bid$esaddition, organic systems can be designed
to rectify current based on the direction of inject&ectrons (holes). Often this control comes
from asymmetric systems, created in some casesghnolysical separations oftype and p

type regiong? other times by incorporating asymmetric regions on moleculasiir*
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Figure 1.61 Altering Charge Transport Mechanisms in Molecular Wires

Representation of oligophenyleneimine (OPI) wires, which can be grown to specific eiagitdick chemistry
process, antheir electrical properties when measuveconductiveatomic force microscopy (CAFM). A shift
from tunneling to charge hopping is exhibited in changing resistance trends of shorter OPI wires t&domger.
Ref. 32. Reprinted with permission fromAAS.
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1.3.2 Switchable Properties in Molecular Electronics

Perhaps ¥en more powerful thathe effects already descrihedwide range ofiysteretic
and switchabl@roperties can beealized in molecular electronic devides potential use in
single molecule tmsistors.These properties can start at thmfilm level, such as imetal
organic framework$MOFs) containing 7,7,8,8etracyanoquinodimethane (TCN@atcan
have tunable electrical properties with different TCNQ infiltrafdand G films on silicon
oxide substratethat havehystereticcurrent based on previously applied hiag to remnant

charges at the g silicon oxide interfacé*
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Figure 1.7 7 Conductance Switching in Molecular Wires

A) Anthraquinonebased molecular wires in STBU setup, where oxidizing/reducing the anthraquinone core
correlates with over an order magnitude change icdheductance of the wir&eprinted with permission from Ref.
35. Copyright 2014 American Chemical Soci@y.A TTF derivative in STMBJ setup where oxidation/ reduction
of the wire changes the ratio of the conductance relative to a junction with justl€&ules present (G/G9).

Reprinted with permission from Ref. 36. Copyright 2010 American Chemical Society.
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Because of their simplified transport pathwaysjeaaular wirescan amplify these effects
from switchable eventdJtilizing the oxidation/redu@n of an anthraquinone core, molecular
wires in a scanning tunneling microscopy (STM) setup can exhibit over an order of magnitude
alteration in current® Redox reactions a#tting TTF units in molecular wires were also shown
to affect current and sheet resistance in connewegorks of gold nanoparticl¢Bigure 1.7).%°
Similar to redox switching, controlling the charges on zwitterions attached to a surface is
expected to be able to modulate curf@@rganic fluorescent logic gates wetesignedo be
able to respond to multiple stimiiliglutamate, zinc, and pHand bormmo | ecul ar |1 ogi ¢
gates that influence the fluorescence output basdtie inputs’ Utilizing in-situ chemical
reactionsvia sources such as ultraviolet (UV) light to affect conjugation in molecular wires will
affect coupling of molecular units anderefore the current that can pass through thefin
addition, physical mechanisms can be used to control output through molecular wires.
Mechancally stretching a junction can affect conjugation and affect current through the
junctions®¥ ** Altogether, a host of switches manifesting from control ofptioperties of

organic molecular wires have been realized, highlighting the power and promise of-organic

based molecules in this setup.

1.4 Organic Spintron ics

Much effort has been placed on using electrons and modulating their output for switch
type properties in molecular electronics. However, manipulating a particular property of
electrons their angular momentumr spini can be equally as powerflduchmanipulation
leads to a discussion gfintronicsi the utilization of spin as a degree of freedom in electronic

devices.
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1.4.1 Basics of Spintronics - Spin Valve

A)

L R

B)

Figure 1.871 Spin Valve

Pictoiial representativof a spin valve, with a tunneling spacer separating two magnetic electrodes (represented by
6L6 and 6RO f oA) Eletttodes with paalieldnaghetizatiph, tedding to matching of spin DOS in this
system at Fermi leveEf) and high currenthrough the devicd3) Electrodes with arparallel magnetization,

leading to mismatch of spin DOS in this syster&zand low current through the device

The basic premisef spintronics involves manipulatinge density of states (DOS) in
molecules to allow or disallow transport of electrdi@sed on their spin stati@ the most basic
execution, the spin DO& an injector electrodavhich is symmetribetween electron spims
many systems in absence of a magnetic field, is manipulated by field to be made
asymmetric. This change results in @bectron spirbecoming a majority spin and a net non
zero spirbeing injected into the spintronic systehime spintronic device will have a receptor
molecule or electrode that preferentiallipers transport of a particular spiaften due to its own

asymmetric spin DOSepending on the injected spins and receptor spin DOS, two outcomes

13



are possiblelf the majority spintransported through the devisealso the majoritypOS in the
acceptora large number oflectronsare allowedo be transported through the junction,
signifying the low resistance/ high current state of the device. Mismatolajofity spinand
receptor spin DOS will result in the inability of electrons to transport thrchegbevice.
Electrons will be scattered at the receptor interface, and a high resistance/ low current state will
ensue.

Theideas presented in this basic picture are the functioning principles behind the spin
valve (Figurel1.8). The spin valve has three paiiso metals, typically from a class of metal
known as a ferromagnet which, up to its Curie temperéttinetemperature at which its loses
its ability to sustain a remnant magnetism upon removal of the mad@eét i maintainsspin
DOS after it has been manipulatgd magnetic field; and an insulatifgon-magnetic)tunnel
barrier. The two metals are influenced by a magnetic field to change their spin state, ideally
having different coercive fields to manigate their spin states independently of the other metal.
As magnetic field switches the magnetizations of the electrodes, the resistance of the overall
junction will changeas the electrodes have parallel or-atiallel magnetization&lectrons
tunneling through the tunnel barrier will maintain their spin state, allowing for the electrodes and
their magnetic properties to be the only comparison that influences the resistametect of
magnetic field due tehange in resistan@es a function of maggtic field is represented by the
magnetoresistance (MRS the device

YO Y
o (1_1)
LY —~

In the case of tunneling throughanmagneticspacemwhere only the electrodes impact the
resistaice properties, the MR is referred to as tunneling magnetoresistance (TMR). MR in

general can be a positive or negative value, and the same is trueMigthT the case of TMR,
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the sign can be either duette® properties (specifically the DOS) of the aletusedWhile the
magretizations of the metaisill always be aligned if gargeenough magnetic field is applied

due to the nature of tunneling, the electrons at the Fermi lEx)elll be the highest energy

electrons and have the largest probabdityransporting through a tunnel junction.
Magnetization doesndot &d so# g possble to hagesvpoonatals wi t h
that have aligned magnetic states but either aligned or mismatched DOS. Because of this, it is

possible to havpositive or negativd MR in a spin valveKnowing the DOSf the metals

allows us to estimata TMR valueviaJ ul | i er*26s model
O O 0V
YO 'Y - < o (1_2)
© p LU
éM éﬁ ‘EM \Eﬁ
6 N ] 6 ﬁ (1-3)
£ £ £

where G, the conductance of either the paralleiagnetizatiortondition or the antparallel
(V) magnetization condition can be described by the spin polarization (P) of the two metal
electrodesd-( | abel ed here as o0L6 for left electrode
polarization is determinedathe DCB atEri s det er mi ned by t he%)ratio
to the spin 5)dTohwan6dee£liegcntartoimsn (onf 6upd and O6dow
referring simply to two angular momenta with no distinct directionality (other than the fact that
they are opposite to one another). The common
majority carriers, and t he OGeduats(B2)and(Extr ons a
above are valid regardless of these denotations.

This basic spin valve hasguen to be extremely useful and, to a certain degree, is still
the basis of magnetic memoBven largeMR effects than expectadaJ ul | i er eés TMR n

can be obtained in unique systebased on the spin valv&he most classic example of this is
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known as giant magnetoresistance (GMR), which was first seen in layered stacks of chromium
and iron?® Other effects, such as colossal magnetoresistance (GMR)en larger MR effect
than GMRwhenperovskite cellsare used as a spachave been seen as wélIThis highlights
the fact thatmany possibilities that can be built off this basic spin valve picnodecan lead to
many unique effects
1.4.2 Basics of Organic Sp intronics

The field of organic spintronics mostly focuses on creating unique effects in spintronic
devices by replacing thennelingspacer from the spin valve with an organic layer. At its core,
this modification allows foone large advantagerganicsand organigbased materials typically
have higher spin delocalization lengths than their inorganic counterppim=orbit coupling
interactionghat would lead to spiflipping events occur more frequently with larger atomic
mass, scaling by a factor af. The low atomic mass from carbon instantly reduces these effects,
increasing spin diffusion length from the order of AMin typical metals to as high asimin
organic material§® Spin-orbit coupling wil still ultimately reduce MR décts in longer organic
systemg”® but modifying the structure of device architectures, such as taking rubrene thin films
andrestricting them into nanowirg$ have been able to further the spin diffusion length
improvements in certain systenisis allows for injection ad transport of electron spin for
finite lengths through organic neatals, allowing for the spacer in the spin valve picture to
become an active component in the spintronic device.
1.4.3 Organic Magnetoresistance

Simply injecting and transporting spins throwan active layer bears unique
consequences on the MR properties of a spintronic deMmeeeffects of transporting electron
spin through films ohon-magneticorganic materials has been studied and expressed through an
effect known as organic magnetostance (OMAR)In this setup, the injected spins can interact
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with one another, leading formation andspin interaction o$inglet/ triplet polarongjaired
polarons bipolarons and singlet/triplet excitorf§ Due to thes effects, ultimately the observed
MR effect is no longer dependent solely on the DOS of the m@M#AR is not a fully
understood effecpossessing positive or negative signs depending on the propedies
compositionof the active layeas well as theonditions under which it is measuréahe

particular interesting study showedthuning the composition of@lymerfullerene blend can
alter the presence of excitons, free charge carriers, and polarons, which thereby affects the shape
and sign of th©OMAR effed.*® Some experiments have shown that hyperfine coupling plays a
role in the effegtwhere films of Gowithout hydrogen groups do not exhibit OMAR h616]-
phenyl C61 butyric acid methyl esterdBM) moleculeswith hydrogen dd° The

aforementiond bipolaron formation in OMAR has been used to create models that, thus far,

have yielded some of the best models of OMAR in the literature.

Figure 1.91 Organic Magnetoresistance (OMAR) in PEDOT/C  4/Al devices
Different temperatures and biases for OMAR measurement lead to different magnitudes as well as different signs

and trends of MR behavioReproduced from Ref. 51 with permission of the Royal Society of Chemistry.
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