Critical Issues in Peripheral Arterial Disease Detection and Management

A Call to Action

Jill J. F. Belch, MD; Eric J. Topol, MD; Giancarlo Agnelli, MD; Michel Bertrand, MD; Robert M. Califf, MD; Denis L. Clement, MD; Mark A. Creager, MD; J. Donald Easton, MD; James R. Gavin III, MD, PhD; Philip Greenland, MD; Graeme Hankey, MD; Peter Hamrath, MD; Alan T. Hirsch, MD; Jürgen Meyer, MD; Sidney C. Smith, MD; Frank Sullivan, PhD; Michael A. Weber, MD; for the Prevention of Atherothrombotic Disease Network

This call-to-action document is an initiative of the Prevention of Atherothrombotic Disease Network, an international, multidisciplinary network, adjoined by the mutual goal of increasing awareness, detection, and treatment rates of peripheral arterial disease (PAD) and increasing awareness of the interrelationship between PAD and the risk of ischemic events. Although the prevalence of PAD in Europe and North America is estimated at approximately 27 million people, PAD remains a largely underdiagnosed and undertreated disease. Several recent epidemiologic studies have revealed PAD detection rates of 20% to 30% when specific at-risk populations were screened. In an effort to guide diagnostic and treatment protocols, the Prevention of Atherothrombotic Disease Network has recommended 5 action items. These are to (1) increase awareness of PAD and its consequences; (2) improve the identification of patients with symptomatic PAD; (3) initiate a screening protocol for patients at high risk for PAD; (4) improve treatment rates among patients who have been diagnosed with symptomatic PAD; and (5) increase the rates of early detection among the asymptomatic population.

INTRODUCTION

Peripheral arterial disease is a distinct atherothrombotic syndrome that is associated with an elevated risk of cardiovascular and cerebrovascular events, including death, myocardial infarction (MI), and stroke. With the prevalence of PAD in Europe and North America estimated at approximately 27 million people, PAD is a critical public health issue.1

The deleterious nature of PAD is compounded by its status as an underdiagnosed and undertreated disease. However, several recent developments suggest that this may be an opportune time to reexamine traditional assumptions regarding methods used to diagnose and manage PAD. These developments include (1) data from recent community surveys of PAD prevalence, treatment, and outcomes, which have shed new light on the magnitude of the burden of PAD and its undertreatment2-4; (2) a large body of epidemiologic evidence supporting the efficacy of the ankle-brachial index (ABI [also known as the ankle-brachial pulse index or the ankle/arm index]) as an effective diagnostic and risk-assessment tool5-8; (3) increasing awareness of the cost-effective benefit associated with the management of cardiovascular risk9; and (4) clinical study results showing that substantial risk reduction can be achieved with pharmacologic intervention in PAD.10-12

This call-to-action document is an initiative of the Prevention of Atherothrombotic Disease Network, an international, independent group comprising specialists in the fields of vascular medicine, neurology, diabetology, nephrology, cardiology, and primary care. The mission of this network is to evaluate current data regarding the prevalence of PAD and thereby to (1) advocate for increased international awareness that PAD is a manifestation of disseminated atherothrombosis and (2) promote effective identification and treatment of patients with PAD to prevent ischemic events. The Prevention of Atherothrombotic Disease Network has achieved consensus that improvement in the detection of symptomatic PAD is of primary importance, since those with symptomatic PAD are at very high risk for an ischemic event and are likely to experience the greatest degree of risk reduction from pharmacologic therapy.

PAD EPIDEMIOLOGY, PREVALENCE, AND RISK FACTORS

Peripheral arterial disease is a progressive condition characterized by arterial stenosis and occlusions in the peripheral arterial bed; it can be symptomatic or asymptomatic. Symptomatic PAD ranges in severity from intermittent claudication to critical limb ischemia. Critical limb ischemia exists in part due to the late recognition of PAD, and if
untreated, can lead to nonhealing wounds, gangrene, and eventual amputation. In the population older than 55 years, PAD is an indicator of diffuse and significant arterial disease.1

Intermittent claudication, a less severe but more common manifestation of symptomatic PAD, presents as reproducible limb discomfort during exercise, which is invariably relieved within minutes by rest. Patients with intermittent claudication often experience a diminishing quality of life due to a reduction in walking distance and speed, which translates into progressively limited mobility and independence; this loss of function may often exceed that observed in patients with other forms of cardiovascular disease (CVD).3-14 Unfortunately, many patients do not alert their physicians to the disease, since they attribute it to the nonspecific musculoskeletal symptoms of aging. Peripher al arterial disease is also associated, in all of its stages, with a profound impact on quality of life, affecting many domains not easily captured by current subjective tools.15

Most cases of PAD are asymptomatic.16 Asymptomatic PAD, similar to symptomatic PAD, is associated with an increased risk of atherothrombotic events, including MI and stroke,17,18 impaired lower extremity functioning,19 and internal carotid artery stenosis.20,21 The Limburg Peripheral Arterial Occlusive Disease (PAOD) study,17 a cross-sectional survey of 3650 patients aged 40 to 78 years, found that patients with asymptomatic PAD had a risk factor and comorbidity profile comparable with that of symptomatic patients.

PAD Prevalence

Based on current epidemiologic projections, 27 million people in Europe and North America (16% of the population 55 years and older) have PAD: an estimated 10.5 million people are symptomatic, and the majority, 16.5 million, are asymptomatic.1 The prevalence of asymptomatic PAD was estimated in one study to be as high as 20% of the adult population.22

Three recent programs—the Prevention of Progression of Arterial Disease and Diabetes (POPADAD), the Minnesota Regional PAD Screening Program, and the PAD Awareness, Risk and Treatment: New Resources for Survival (PARTNERS) program—have demonstrated high PAD detection rates of 20.1%, 26.5%, and 29%, respectively, when specific populations at risk for PAD were screened.

The ongoing POPADAD study evaluated 8000 patients 40 years and older who had type 1 or type 2 diabetes mellitus but no clinical symptoms of arterial disease. In the preliminary recruitment phase, patients were enrolled from 227 primary care facilities and 27 major hospitals throughout Scotland. Of these patients, 20.1% had an ABI value less than 0.95, which is clinically indicative of PAD.4

The Minnesota Regional PAD Screening Program, which evaluated 347 community-derived patients with leg pain or at high risk for PAD based on age and risk factor profile, detected PAD in 26.5% of the screened population.2 The high PAD prevalence, low PAD awareness, and lower than anticipated treatment intensity served as the rationale for a larger subsequent survey in the United States.

The US PARTNERS program was a national survey designed to evaluate the prevalence of PAD and other cardiovascular diseases, assess the rate of physician and patient awareness of PAD diagnosis, and evaluate risk factor profiles and treatment with antiplatelet agents. The survey was performed in a primary care clinical setting. Patients were recruited from 320 primary care practices from across the country, and 6979 at-risk patients (patients older than 70 years or patients older than 50 years if they smoked or had diabetes) were assessed. The PARTNERS program found the prevalence of PAD in the population of patients older than 70 years and/or older than 50 years with comorbidities (eg, smoking and concomitant diabetes) to be 29%. Of the number of cases of PAD detected, as many as 44% were newly diagnosed with use of the ABI technique.23 These studies have illuminated the reality that within the high-risk population, a noteworthy amount of patients with PAD remain underdiagnosed.

Morbidity and Mortality

Peripheral arterial disease is a powerful indicator of systemic atherothrombotic disease. Regardless of whether symptoms are evident, patients with PAD have an increased risk of subsequent MI and stroke and are 6 times more likely to die within 10 years than patients without PAD.23 In addition, the degree of symptom severity has been found to correlate with poor outcome. For example, a study that followed patients with PAD over 10 years found that survival rates decreased with increasing severity of PAD symptoms (Figure 1).23 The association between symptomatic PAD and survival rate over a 15-year period is depicted in Figure 2. Patients with symptomatic PAD have a 15-year accrued survival rate of approximately 22%, compared with a survival rate of 78% in patients without PAD symptoms.24,25

Patients presenting with symptomatic PAD are also at higher risk for developing chronic angina and are more likely to die from CVD.26 Current US disease-based data sets have been used to compare 5-year mortality rates from common malignancies with the rate of PAD, thereby providing a “common sense” yardstick of relative risk. This analysis demonstrated that the patient survival rate for PAD is worse than the outcome for breast cancer and Hodgkin disease (Figure 3).27,28

PAD DETECTION

Data from several surveys have been used to successfully identify and document a clinical profile of the population at risk for PAD, in whom directed screening is beneficial. In a recent study of patients at high risk for PAD,3,4 44% were newly diagnosed with PAD, proving that there is a significant amount of PAD underdiagnosis within high-risk populations.

Advanced age, smoking, and diabetes are strongly associated with PAD.3,4,25 In one study, 50% of patients with diabetes were found to have PAD.4 Other PAD risk factors include hypertension, hyperlipidemia, male sex,30 homocysteinemia,31 elevated plasma fibrinogen levels, el-
able as this technique remains, will assign value less than 0.9 approaches 95% accuracy, and a thorough physical examination specifically targeted to PAD diagnosis and patient interview to assess walking difficulty yield low rates of detection individually, a thorough physical examination and verbal inquiry are recommended. Patient interviews may yield critical information instantly, and a thorough physical examination may detect commonly associated manifestations such as coronary artery disease, aortic aneurysm, and increased creatinine from bilateral renal stenosis. As noted previously, other diagnostic tools typically used to detect PAD, such as peripheral pulse measurement, have not been found to provide a high degree of accuracy (peripheral pulse measurement has been found to have high false-positive and false-negative rates). Thus, an accurate, widely applicable, objective method to assess peripheral vascular function is clearly valuable.

Ankle-Brachial Index

The ABI is a noninvasive, simple, inexpensive measurement to assess the patency of the lower extremity arterial system. The ABI is measured by having the patient lie in the supine position, with subsequent performance of the ankle and brachial blood pressure measurements using a 5- to 7-MHz handheld Doppler device. Ideally, the posterior tibial and dorsalis pedis artery systolic pressures are both measured and compared with the arm pressure. The ABI value is calculated by dividing the higher of the ankle systolic pressures by the higher of 2 systolic brachial pressures. The ABI takes approximately 10 minutes to perform.

To date, the ABI is the most effective, accurate, and practical method of PAD detection. A diagnosis of PAD is based on the presence of limb symptoms or an ABI measurement less than 0.9. Whereas a resting ABI value of 1.0 is generally considered normal, a resting ABI value less than 0.9 approaches 95% sensitivity in detecting angiogram-positive disease, and it is associated
with the presence of 50% or greater stenosis in 1 or more major vessels. It is almost 100% specific in excluding healthy individuals. Furthermore, an ABI value less than 0.9 is highly predictive of morbidity and mortality from cardiovascular events linked with PAD.3,5,6,36 A comparison of detection rates reveals that the ABI is more sensitive and specific than several standard screening tests (Table 1). Major randomized clinical trials such as the POPADAD4 and Aspirin for Asymptomatic Atherosclerosis (AAA) studies are currently under way to evaluate the potential benefits of antplatelet therapy in patients with a low ABI value.

The ABI allows for PAD detection at all stages of the disease process and can stratify the severity of both asymptomatic and symptomatic disease with a numerical value. In a study to determine the relationship between ABI and morbidity and mortality in patients with PAD, the 5-year cumulative survival rate was 63% for patients with a resting ABI value less than 0.50, 71% for patients with an ABI value between 0.50 and 0.69, and 91% for patients with an ABI value between 0.70 and 0.89.7 Individuals with an ABI value less than 0.90 are twice as likely to have coronary heart disease (CHD) than those with a normal ABI and have an increased risk of fatal and nonfatal MI, stroke, and death from cardiovascular causes, as well as all-cause death (Table 2).8,26 The ABI is a useful tool because it provides the clinician not only with a means of identification of PAD, but also with information regarding the severity of PAD that can assist in guiding a treatment approach (ie, >0.90, normal; 0.71-0.90, mild PAD; 0.41-0.70, moderate PAD; ≤0.40, severe PAD).80

The initial responsibility for the detection of PAD should be with the primary care provider, supported by vascular specialty consultants and public health officials. Identifying the high-risk PAD population by developing and implementing a clinically effective and cost-effective screening protocol will contribute to the rate of disease detection and may have a significant beneficial impact. One of the most important initiatives of the Prevention of Atherothrombotic Disease Network is to improve the diagnosis of PAD by screening high-risk individuals.

Limitations of the ABI

Although the ABI is an effective diagnostic tool, it does not measure the effectiveness of preventive treatment. Some elderly and diabetic patients have calcified arteries that prevent occlusion of blood flow by the blood pressure cuff, which may result in an unusually high ABI reading (>1.50). Patients with high-grade aortoiliac arterial stenoses or occlusions may also occasionally present with a normal ABI at rest due to the presence of a rich collateral arterial network. These patients must be referred for other tests, such as toe pressure measurement, Doppler waveform analysis, pulse volume recording, duplex arterial ultrasound study, or exercise Doppler stress testing.

PAD MANAGEMENT

Published PAD treatment guidelines from the United Kingdom recommend aggressive management of risk factors, which includes emphasizing the importance of lifestyle modifications.31,42 To date, no treatment guidelines have been published to guide treatment in the United States. However, it has been universally proposed that clinicians must treat PAD-specific symptoms to decrease functional impairment, improve quality of life, and decrease rates of amputation and underlying systemic atherothrombosis to reduce subsequent cardiovascular ischemic events, especially MI and stroke.3,3

An estimated US $151 billion in direct and indirect costs are attributable to CVD in the United States alone. Cost-effectiveness analysis reveals that the management of risk factors such as smoking, hypertension, and hypercholesterolemia improves clinical outcomes at acceptable cost-effectiveness ratios, typically less than $20000 per year of life saved. From the patient, clinician, and societal perspectives, cost-effectiveness analysis supports the need for aggressive modification of cardiovascular risk factors and aggressive treatment in patients with PAD.9 An economic evaluation by the PAD TransAtlantic Inter-Society Consensus (TASC) Working Group determined that treatment with antplatelet therapy (low-dose aspirin [acetylsalicylic acid] or another approved antplatelet agent, unless contraindicated) was a cost-effective means of reducing cardiovascular and cerebrovascular event risk in patients with symptomatic PAD.24,25

Treatment of Commonly Associated PAD Risk Factors

Smoking Cessation

Smoking is the most preventable cause of cardiovascular morbidity and mortality and is a primary PAD risk factor. Smoking is implicated in one third of all deaths from coronary artery disease, elevates the risk of sudden death, doubles the risk of stroke, and synergistically contributes to the deleterious nature of other risk factors.43,44 It is important to educate, encourage, and assist the PAD patient in quitting smoking. However, successful lifestyle modification among this population is notoriously difficult. A report from the American Lung Association revealed that although 70% of smokers surveyed would like to quit smoking, only 34% attempt to quit per year, and an average of only 2.5% succeed.45 Treatment strategies include smoking cessation programs and nicotine replacement therapy. In the PARTNERS program, smoking cessation interventions were prescribed in only approximately half

Table 1. Effectiveness of the ABI vs Other Common Screening Tests

<table>
<thead>
<tr>
<th>Diagnostic Test</th>
<th>Sensitivity, %</th>
<th>Specificity, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pap smear7</td>
<td>30-87</td>
<td>86-100</td>
</tr>
<tr>
<td>Fecal occult blood test86</td>
<td>37-78</td>
<td>87-98</td>
</tr>
<tr>
<td>Mammography86</td>
<td>75-90</td>
<td>90-95</td>
</tr>
<tr>
<td>ABI3,5,6,36</td>
<td>95</td>
<td>100</td>
</tr>
</tbody>
</table>

Abbreviation: ABI, ankle-brachial index.
Lowered to recommended goals.48,49 Hyperlipidemia, lipid levels should be cardiovascular events associated with hypertension reduces the rate of a large number of cardiovascular end points.51,52 Furthermore, treatment lipid-lowering therapy in patients with hypercholesterolemia.47,48 Because of the high risk of cardiovascular events associated with hypertension, lipid levels should be lowered to recommended goals.48,49 Although there are currently no data documenting the relative efficacy of lipid-lowering therapy in patients with low ABI values and normal cholesterol levels, upcoming clinical trial data are expected to illuminate the potential benefits of lowering lipid levels in this population.

Hyperlipidemia. The association between the reduction of total cholesterol or low-density lipoprotein cholesterol and preventive benefit is well established.53 Primary prevention trials have shown that lipid-lowering agents are effective in reducing cardiovascular events in older persons with hypercholesterolemia.57,58 Because of the high risk of cardiovascular events associated with hyperlipidemia, lipid levels should be lowered to recommended goals.48,49

Hypertension and Diabetes. Antihypertensive therapy in patients with CVD has also been shown to provide protective benefits. For example, both diuretics and β-blockers have been proven to decrease rates of stroke, MI, heart failure, renal failure, and death.50 Treating elderly patients with isolated systolic hypertension reduces the rate of a large number of cardiovascular end points.51,52 Furthermore, treatment with angiotensin-converting enzyme (ACE) inhibitors has been shown to decrease blood pressure, reduce mortality in patients with congestive heart failure, and prevent death and congestive heart failure when initiated early after the onset of acute MI. A major contributor to this new evidence is the large, placebo-controlled Heart Outcomes Prevention Evaluation (HOPE) trial, which found that the ACE inhibitor ramipril prevented death, MI, and other ischemic events in patients with a range of cardiovascular risks (including coronary artery disease, stroke, PAD, or diabetes plus 1 additional risk factor). Data from the HOPE trial suggest a greatly expanded role for ACE inhibition in the prevention and management of CVD.55 However, careful follow-up of patients receiving an ACE inhibitor is critical owing to high concomitant rates of renal artery stenosis in patients with PAD. Despite the demonstrated benefits of antihypertensive therapies, few studies have evaluated the benefits of therapy in PAD-specific patient groups.

Two United Kingdom Prospective Diabetes Studies (UKPDS) demonstrated the benefits of blood pressure reduction on microvascular and macrovascular complications in patients with type 2 diabetes mellitus.54,55 The specific benefits of glycemic control have not yet been prospectively defined for the PAD population but have been extrapolated from studies such as UKPDS 38 and 39.

Managing PAD Symptoms

Patients with symptomatic PAD often have a decreased quality of life because of pain during walking and limitations of mobility. The primary symptom, intermittent claudication, results from inadequate blood flow to the musculature. Intermittent claudication is most often characterized by a reproducible, painful aching or cramping in muscle groups of the leg that is caused by walking and relieved by rest.56 Strategies for treating intermittent claudication are aimed at improving symptoms and reducing the progression of atherosclerosis. Positive outcomes have been shown with a treatment regimen that includes risk factor modification, particularly smoking cessation and control of diabetes, exercise, and pharmacotherapy.56,57

Managing Critical and Acute Limb Ischemia

Critical limb ischemia in its most severe form is a threat to the limb and usually signals the need for intervention, such as revascularization or amputation. Hemodynamic parameters that indicate a diagnosis of critical limb ischemia include an ABI value less than 0.4, an ankle systolic pressure less than 50 mm Hg, or a toe systolic pressure less than 30 mm Hg. Patients without prohibitive operative risk should usually undergo an attempt at revascularization (either surgical or endovascular) rather than immediate amputation. Limb preservation by means of revascularization is cost-effective, provides a better quality of life, and is associated with lower preoperative morbidity and mortality than amputation.58

Anticoagulants and antithrombotics have been recommended to treat acute limb ischemia, although revascularization is still considered the “gold standard.”59 In patients with acute embolic occlusion, ret-

Table 2. Risk of a Cardiovascular Event Over a 5-Year Period According to ABI Value at Study Entry*

<table>
<thead>
<tr>
<th>ABI</th>
<th>5-y Incidence</th>
<th>Nonfatal MI (n = 538)</th>
<th>Nonfatal stroke (n = 478)</th>
<th>Fatal MI (n = 278)</th>
<th>Fatal stroke (n = 198)</th>
<th>Death (n = 90)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>1.1-1.01</td>
<td>1.0-0.91</td>
<td>0.90-0.71</td>
<td>≤0.70</td>
<td>P Value</td>
<td></td>
</tr>
<tr>
<td>(n = 538)</td>
<td>(n = 478)</td>
<td>(n = 278)</td>
<td>(n = 198)</td>
<td>(n = 90)</td>
<td>for Trend</td>
<td></td>
</tr>
<tr>
<td>Nonfatal MI</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>.06</td>
</tr>
<tr>
<td>Nonfatal stroke</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>.02</td>
</tr>
<tr>
<td>Fatal MI</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>≤.001</td>
</tr>
<tr>
<td>Fatal stroke</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>.14</td>
</tr>
<tr>
<td>Death</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiovascular causes</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>21</td>
<td>≤.001</td>
</tr>
<tr>
<td>Noncardiovascular causes</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>9</td>
<td>13</td>
<td>.19</td>
</tr>
<tr>
<td>All causes</td>
<td>11</td>
<td>10</td>
<td>11</td>
<td>16</td>
<td>34</td>
<td>≤.001</td>
</tr>
</tbody>
</table>

Abbreviations: ABI, ankle-brachial index; MI, myocardial infarction.

*Data are percentage of patients unless otherwise specified.
rospective data have found that anti-
coagulant therapy with heparin or an-
other anticoagulant reduces the fre-
cuency of recurrence.60

Risk Reduction With
Pharmacologic Intervention

Preventing the cardiovascular and
 cerebrovascular events associated
 with PAD is crucial to patient sur-
vival. Antiplatelet agents are widely
 recognized for their efficacy in re-
ducing the occurrence of vascular
events in patients with atherothrom-
bolic disease.10,12,24,25

Data suggest that aspirin therapy
 may modify the natural history of
chronic lower extremity insuffi-
ciency and reduce the risk of associ-
cated cardiovascular events.60 Aspirin
therapy is currently recommended by
the American Heart Association for
use in patients with a wide range of
manifestations of CVD.10,14,62 A meta-
analysis of 143 randomized trials that
included more than 100,000 pa-
tients (70,000 “high-risk” patients
with vascular disease or another con-
dition associated with occlusive vas-
cular disease risk compared with
30,000 “low-risk” patients) found that
long-term aspirin therapy significa-
cantly reduced overall vascular mor-
tality as well as nonfatal stroke and
MI. Among high-risk patients, aspi-
rin therapy reduced the risk of non-
fatal MI by one third, nonfatal stroke
by one third, and death from all vas-
cular causes by one sixth. These ben-
efits were observed in patients of all
ages and were unrelated to the pres-
ence of diabetes and hypertension.10
Despite compelling evidence that
treatment with antiplatelet therapy at-
tenuates risk, results from the
PARTNERS study depicted the rate of
antiplatelet therapy undertreatment
in patients with PAD: within the total
study population, fewer than half of
participants received antiplatelet
therapy.3

The adenosine diphosphate re-
ceptor antagonist clopidogrel also
provides protection from the cardio-
vascular and cerebrovascular events
associated with PAD. Clinical trial
data show that clopidogrel is signifi-
cantly more effective than aspirin
therapy in preventing atherothrom-
bolic vascular events.11 In the Clopi-
dogrel vs Aspirin in Patients at Risk
of Ischemic Events (CAPRIE) study,
clopidogrel, 75 mg/d, provided a rela-
tive risk reduction in the composite
end point of ischemic stroke, MI, or
vascular death by 8.7% (P = .04) over
aspirin, 325 mg/d, in patients with re-
cent MI, recent stroke, or estab-
lished PAD and by 23.8% in those en-
rolled based on PAD as the qualifying
condition.11 Based on a meta-
analysis of data from the Antiplate-
let Trials’ Collaboration10 and
CAPRIE, in a population similar to
that studied in CAPRIE, clopidogrel
therapy can be expected to prevent
24 atherothrombotic events per 1000
patients per year, whereas aspirin
therapy can be expected to prevent
19 atherothrombotic events per 1000
patients per year, a relative risk re-
duction of 26%. The potential role of
other antithrombotic agents has not
been prospectively evaluated in PAD
populations.

The dosage of any agent used
in the management of PAD should
be determined by a patient’s global
atherothrombotic risk assessment.
Clinical trial data have not yet clearly
defined the optimal aspirin dosage
for either primary or secondary pre-
vention of atherothrombotic events.
The Antiplatelet Trials’ Collabo-
ration meta-analysis10 suggests that
a dose response exists for safety;
however, there is no evidence to sup-
port that a similar effect exists for ef-
ficacy. Thus, the current recommend-
dation of the Antiplatelet Trials’
Collaboration is to use low-dose as-
pirin (75-150 mg/d).

A number of novel agents to
treat the symptoms associated with
PAD are in various stages of de-
velopment. As our call to action is fo-
cused on increasing PAD awareness
and detection, as well as mitigating
the atherothrombotic risks associ-
ated with this disease, a discussion
of symptomatic relief is beyond its
scope. At least 1 novel class of agents,
the factor Xa inhibitors, is being
evaluated to determine effects on
atherothrombotic risk reduction in PAD,
and consequently deserves special
mention. Inhibition of factor Xa, a
serine protease directly responsible
for thrombin generation, is an attrac-
tive antithrombotic approach. A
number of oral and parenteral fac-
tor Xa inhibitors are in various stages
of development for the treatment of
atherothrombotic disease. These
agents may represent a new treat-
ment approach, though additional in-
formation is required.

Role of Exercise Rehabilitation
in the Treatment of PAD

Exercise rehabilitation has also been
used as an alternative to pharma-
co logic therapies in the treatment of
PAD and may serve as a primary
symptom-relieving intervention.
This treatment consists of an ex-
tended exercise-training program
that relies on treadmill or track-
based training performed 3 times per
week for a minimum of 12 weeks.
Programs with these characteristics
have proven effective at increasing
pain-free and maximal treadmill walk-
ing distance among patients
who had experienced exercise-limiting
claudication due to PAD. In a re-
cent meta-analysis of random-
ized trials, it was found that exer-
cise training increased maximal
 treadmill walking distance by 179 m.
There are, however, limitations to
exercise rehabilitation treatment.
The best results require a moti-
vated patient in a supervised set-
ting. These supervised sessions
are not typically covered by medical
insurance. Despite the documented ef-
ficacy of structured exercise pro-
grams for claudication, few have
historically been available because
of limited reimbursement by health
care payers.63 The recent publica-
tion in the United States of an Ameri-
can Medical Association Current
Procedural Terminology Code
(93668) for PAD rehabilitation is ex-
pected to accelerate the availability
of such programs in the future.64

CALL TO ACTION

The presence of PAD significantly
increases the risk for atherothrom-
botic ischemic events such as MI and
stroke. This call to action by the Pre-
vention of Atherothrombotic Dis-
ease Network was initiated to con-
solidate the current international
data that documents that the pre-
ence of PAD is clear evidence of dis-
seminated atherothrombotic dis-
case and that the diagnosis and
treatment of PAD are critical for pa-
tient survival. Despite the well-
documented clinical impact of PAD, a vast unmet need exists with respect to diagnosis and treatment. To that end, the Network recommends focusing on 5 action items, which are summarized below.

Item 1: Increase Awareness of PAD and Its Consequences

An educational initiative is necessary to inform both clinicians and patients regarding the ischemic burden associated with PAD. The clinical “definition” of PAD (i.e., the presence of an ABI value <0.9, with or without classic leg symptoms) needs to be clearly disseminated. Peripheral arterial disease is not just a disease of the legs, but rather evidence of disseminated arterial disease that is highly predictive of cardiovascular and cerebrovascular morbidity and mortality. The emergence of new data underscoring the deleterious nature of PAD has led to the recent formation of vascular disease foundations and networks to promote educational programs that focus on improving disease awareness.

Item 2: Improve the Identification of Patients With Symptomatic PAD

A public awareness campaign to improve the rate of diagnosis of patients with PAD will be most efficient if initially directed at the identification of patients with symptomatic disease. Approximately one third of symptomatic patients do not report symptoms to their medical care providers, and, therefore, do not receive treatment (J.J.F.B., oral presentation, 2001). Patient and physician education is needed to address this problem.

Item 3: Initiate a Screening Protocol for Patients at High Risk for PAD

Identifying the high-risk PAD population with a clinically effective and cost-effective screening protocol will greatly contribute to the rate of disease detection. The existence of 1 or more traditional PAD risk factors (e.g., diabetes, hypertension, and smoking) is a strong indication of possible arterial disease, warranting more comprehensive assessment, including performing an ABI assessment.

Item 4: Improve Treatment Rates Among Patients Who Have Been Diagnosed With Symptomatic PAD

While it is presumed that all patients with PAD merit intensive risk reduction interventions, a stepwise approach to such a large international population provides the greatest efficacy. Patients with leg symptoms are more likely to be identified and will benefit from greater risk reduction than those with asymptomatic disease. Despite the known protective benefits, a significant percentage (approximately 30%-40%) of patients with diagnosed, symptomatic PAD do not receive antiplatelet agents (J.J.F.B., oral presentation, 2001). It is essential to increase physician awareness, through a variety of pathways, of the risk reduction associated with antiplatelet agent therapy and global risk reduction therapies in patients with symptomatic PAD.

Item 5: Increase the Rates of Early Detection Among the Asymptomatic Population

The Prevention of Atherothrombotic Disease Network calls for an increase in detection rates among the asymptomatic population, which comprises most patients with PAD. Several clinical trials have found that the ischemic risk associated with asymptomatic PAD is comparable with that of symptomatic PAD. Owing to the limited amount of clinical evidence associated with pharmacologic therapy of asymptomatic PAD, the Network recommends waiting for further evidence before unequivocally recommending pharmacotherapy in this population. The Network recommends treating risk factors commonly associated with PAD, such as hyperlipidemia and hypertension.

SUMMARY

Peripheral arterial disease is a powerful indicator of systemic atherothrombotic disease and a critical public health issue affecting an estimated 27 million people. It is imperative to increase the awareness of PAD as a distinct atherothrombotic syndrome that predicts stroke, MI, and death, and to publicize the protective benefits of early diagnosis and treatment.

A diagnosis of PAD mandates aggressive risk factor management and pharmacologic therapy, including antiplatelet agents. Risk factor management is similar to that for other cardiovascular or cerebrovascular conditions, such as CHD, and includes addressing lifestyle factors, such as smoking cessation, treating associated conditions (eg, diabetes and hypertension), lowering lipids to an acceptable level, and preventing ischemic events with aggressive antiplatelet therapy.

Although the Prevention of Atherothrombotic Disease Network recommends improving diagnosis of PAD in the asymptomatic population, it advocates waiting for further evidence before unequivocally recommending treatment owing to limited clinical evidence in this population. The results of 2 upcoming trials will help elucidate the potential benefits of antiplatelet agents in the asymptomatic population. The POPADAD study, which has completed its initial recruitment and thus providing data on PAD diagnostic rates, includes patients with diabetes who have no clinical manifestation of vascular disease. The AAA trial includes high-risk patients with asymptomatic disease. The POPADAD study and AAA trial have enrolled patients based on the singular criterion of decreased ABI; results are expected in 3½ years and 4 years, respectively.

In the interim, the Network recommends focusing on improving the treatment of patients with diagnosed, symptomatic PAD, since they have the highest clinical risk for ischemic events.

Accepted for publication July 11, 2002.

From the Prevention of Atherothrombotic Disease Network Executive Committee Contributors, who include Jill J. F. Belch, MD, Chair, Peripheral Vascular Disease Research Unit, Department of Medicine, Ninewells Hospitals and Medical School, Ninewells, Scotland; Eric...
J. Topol, MD, Department of Cardiovascular Medicine, The Cleveland Clinic Foundation, Cleveland, Ohio; Giancarlo Agnelli, MD, Sezione di Medicina Interna e Cardiovascolare, Dipartimento di Medicina Interna, Universita' di Perugia, Perugia, Italy; Michel Bertrand, MD, Cardiologie B, CHRU Lille, Lille, France; Robert M. Califf, MD, Duke University Medical Center, Durham, NC; Denis L. Clement, MD, Department of Cardiovascular Diseases, Ghent University Hospital, University of Ghent Medical School, Ghent, Belgium; Mark A. Creager, MD, Harvard Medical School, Vascular Center, Brigham and Women's Hospital, Boston, Mass; J. Donald Easton, MD, Department of Clinical Neuroscience, Brown Medical School, Providence, RI; James R. Gavin III, MD, PhD, Howard Hughes Medical Institute, Chevy Chase, Md; Philip Greenland, MD, Department of Preventive Medicine, Northwestern University Medical School, Chicago, Ill; Graeme Hankey, MD, Stroke Unit, Royal Perth Hospital and University of Western Australia, Department of Neurology, Perth; Peter Hanrahan, MD, Medical Clinic, Universitatsklinikum Aachen, Aachen, Germany; Alan T. Hirsch, MD, Minnesota Vascular Diseases Center, University of Minnesota Medical School, Minneapolis; Jurgen Meyer, MD, Medizinische Klinik und Poliklinik, Johannes Gutenberg Universitat, Mainz, Germany; Sidney C. Smith, MD, Division of Cardiology, Chapel Hill, NC; Frank Sullivan, PhD, Tayside Centre for General Practice (TCGP), Dundee, Scotland; and Michael A. Weber, MD, State University of New York Downstate College of Medicine, Brooklyn. Dr Creager or his laboratory have recently received honoraria, educational or research gifts or grants, or has consulted for Bristol Myers Squibb/Sanofi-Synthelabo Partnership. Pfizer Inc, Otsuka America Pharmaceuticals Inc, ENOS Pharmaceuticals, and Eli Lilly and Company. Dr Hirsch has a financial relationship with Bristol Myers Squibb/Sanofi-Synthelabo Partnership, whereby he is a recipient of research grants and a member of the Speakers' Bureau.

The Prevention of Atherothrombotic Disease Network serves as a panel of international experts who assess the current status of peripheral arterial disease detection and treatment. The Network receives funding from Bristol Myers Squibb/Sanofi-Synthelabo Partnership.

Corresponding author and reprints: Jill J. F. Belch, MD, Department of Medicine, Ninewells Hospital and Medical School, Dundee DD1 9SY, Scotland (e-mail: j.j.fbelch@dundee.ac.uk).

REFERENCES
