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ABSTRACT 

 

Bryan C. Quach: Computational approaches to studying gene regulation using chromatin 
accessibility and gene expression assays 
(Under the direction of Terrence Furey) 

 

The completion of the Human Genome Project marked the beginning of a new era in 

genomics characterized by significant improvements in high-throughput sequencing technology 

and the development of new sequencing-based assays to study a wide array of functional elements 

and biological properties at the genome-wide scale.  These advancements were accompanied by the 

formation of large, multi -institutional consortia that produced publicly available data sets and 

functional genomic studies that broadened our understanding of the genome. Previously 

uncharacterized genomic regions became recognized as important components of gene regulation, 

but the broader knowledgebase of regulatory elements raised new questions to elucidate the 

growing complexity of gene regulation models. Additionally , quantitative trait loci (QTL) mapping 

approaches began taking advantage of quantitative sequencing data to study the impacts of genetic 

variation on molecular phenotypes such as gene expression at the genome-wide level. The 

popularity of high-throughput methods for studying gene regulation and transcription lead to a 

data deluge that necessitated new statistical methods and bioinformatics solutions for data 

management, processing, analysis, visualization, and interpretation.  Specialized research areas 

emerged to better glean insights from sequencing data leading to new challenges and questions. In 

the following chapters, I present a novel machine learning framework for genomic footprinting, a 

concept focused on identifying transcription factor (TF) binding sites using chromatin accessibility 

sequencing data. I demonstrate that my framework outperforms existing methods for classifying TF 
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binding sites via footprinting. In addition, I investigate characteristics of TF binding sites within 

chromatin accessibility data and assess technical factors that influence footprinting to provide an 

improved understanding of the strengths and limitations of using these data for TF binding site 

prediction. Through a separate study, I investigate the impact of a genotoxic chemical 1,3-butadiene 

on chromatin accessibility and gene expression in a population of genetically diverse mice. I 

perform expression QTL (eQTL) and chromatin accessibility QTL (cQTL) mapping in these mice and 

detect eQTLs and cQTLs in each tissue. In all, the work herein demonstrates multiple computational 

approaches to studying various gene regulatory relationships and provides insight on the efficacy of 

these approaches to inform future studies.  
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CHAPTER I 

Introduction  

 

 The importance of gene regulation in cell development and biological homeostasis of living 

organisms has been well recognized [1ɀ4]. Through the Human Genome Project [5] , technological 

innovations and a broader understanding of genome organization and composition paved way for 

large-scale efforts in the genomics community to better understand functional genomic elements and 

the role of non-coding DNA in transcriptional regulation [6,7]. Although these efforts improved 

understanding of gene regulatory components such as promoters, enhancers, silencers, chromatin 

structure, and transcription factors, they also increased awareness of the complexity of regulatory 

dynamics and the interactions between the various components. Furthermore, follow-up studies to 

quantitative trait loci (QTL) mapping and genome-wide association (GWA) studies that detect trait-

associated genetic variation contributed another layer of regulatory complexity by characterizing 

relationships between genetic variation and regulatory changes as intermediate mechanistic links 

between DNA sequence and phenotype [4,8]. The increasing availability of information, resources, 

methodologies, and technologies for studying gene regulation highlighted a growing opportunity and 

significance in further identifying regulatory elements and studying their roles in condition-specific 

contexts. 

 

IDENTIFYING REGULATORY ELEMENTS GENOME-WIDE WITH HIGH-THROUGHPUT ASSAYS 

Since the advent of Sanger sequencing, DNA sequencing technology continued to improve, 

ÁÎÄ ÔÈÅ ÉÎÔÒÏÄÕÃÔÉÏÎ ÏÆ ÍÁÓÓÉÖÅÌÙ ÐÁÒÁÌÌÅÌ ȰÎÅØÔ-ÇÅÎÅÒÁÔÉÏÎȱ sequencing approaches revolutionized 

biological and biomedical science research by enabling the development of higher-throughput and 
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more cost-effective alternatives to microarrays to assay biological properties such as transcription , 

nucleosome occupancy, chromatin interactions, transcription factor (TF) binding, and histone 

modifications genome-wide [9] . Although multiple different next-generation sequencing platforms 

exist, they share some commonalities in their approach. Each technology first requires the 

preparation of a sequence library through the ligation of oligonucleotide adapters to the ends of the 

DNA fragments to be sequenced. The fragments are then amplified and undergo a platform-specific 

sequencing reaction that allows the classification of each nucleotide. The ability for these reactions 

to occur simultaneously leads to the high-throughput that makes them massively parallel. The 

nucleotide readouts, referred to as reads, generate large quantities of data that then require the 

application of bioinformatics approaches for downstream processing, analysis, and interpretation. 

These next-generation sequencing platforms remain widely used, however newer sequencing 

platforms are being developed such as nanopore sequencing that rely on different sequencing 

chemistry and do not require fragment amplification [10] .  

From a simplified perspective, sequencing platforms all share the goal of accurately 

classifying the nucleotide sequence of the given fragments. The major distinctions in the 

sequencing-based methods for assaying different biological properties occur in isolating the 

relevant DNA or RNA. For example, Chromatin Immunoprecipitation Sequencing (ChIP-seq) aims to 

detect genomic locations of TF occupancy or histone modifications. To do this, binding proteins and 

genomic DNA are cross-linked, then the DNA is fragmented. Immunoprecipitation with a protein-

specific antibody retrieves the protein-bound sequences that are then sequenced. Enrichment of 

reads mapping to a particular genomic location indicates TF occupancy (or histone modification) 

[11] . In DNaseI sequencing (DNase-seq), chromatin accessibility is assayed using the exonuclease 

DNaseI. Exposing genomic DNA to DNaseI results in the enzyme preferentially cutting DNA in more 

accessible, nucleosome-depleted regions. Following DNaseI digestion, size selected DNA fragments 

are sequenced and genomic regions with enrichment of mapped reads are classified as accessible 
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chromatin regions [12] . In both ChIP-seq and DNase-seq, the biomolecule initially being isolated is 

DNA. With RNA sequencing (RNA-seq), RNA transcripts are initially isolated as opposed to DNA. For 

compatibility with sequencing platforms, these transcripts are typically converted to cDNA before 

sequencing, although some direct RNA sequencing approaches exist [13] . The reads from RNA-seq 

are mapped to their originating genes and can be analyzed to deduce estimates of RNA abundance.  

With the three aforementioned methods, the diversity of biological properties related to 

gene regulation that can now be studied genome-wide created new opportunities for 

understanding their interactivity . ChIP-seq, DNase-seq, and RNA-seq among other methods were 

utilized by the Encyclopedia Of DNA Elements (ENCODE) project which sought to characterize all of 

the functional elements in the human genome [7]  and in later stages also included the mouse 

genome [14] . In a 2012 report, the ENCODE project had produced 1,640 data sets in 147 different 

human cell types [15] , and a 2014 mouse ENCODE publication comparing the mouse and human 

functional elements reported over 1,000 data sets in 123 mouse cell types and primary tissues [14] .  

Analyses by the ENCODE consortium found that 80.4% of the human genome is covered by at least 

one functional element. Of this fraction, RNA-associated elements and histone modifications 

comprised a large majority, and 15.2% of the coverage was attributed to DNaseI hypersensitive 

sites [15] . In comparisons with mouse functional elements, chromatin state landscapes and TF 

networks were found to be relatively stable between human and mouse [14] . Additionally, gene 

expression profiles were shown to be more consistent within tissue than within species [16] . To 

build upon the work by the ENCODE project, the more recent Roadmap Epigenomics Project 

constructed a collection of epigenomic profiles for 127 human tissues and cell types from adult and 

embryonic samples [17] . Analyses of these data showed associations between proximal and distal 

regulatory regions, histone marks, DNA methylation, chromatin accessibility, spatial organization, 

and gene expression that play important  roles in cell type identity, development, and disease [17] .  

Taken together, the catalogue of genomic and epigenomic data and integrative analyses from these 
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large-scale projects contributed new insights into the organization and regulation of human and 

mouse genes and the genome and continues to serve as an expansive public resource for biomedical 

research. 

 

GENE EXPRESSION AND CHROMATIN ACCESSIBILITY AS QUANTITATIVE TRAITS 

 A fundamental challenge in genetics research is to understand genetic variation and its 

relationship to phenotypic variability . Efforts such as the International HapMap and 1000 Genomes 

Project extensively characterized common genetic variation across diverse human populations 

[18,19], and GWA studies have leveraged advancements in genotyping technology to link genetic 

variants to human traits  and diseases. Although informative in many regards, these studies do not 

resolve the underlying biological mechanisms of discovered genotype-phenotype associations. For 

functional follow-up, data produced by the ENCODE and Roadmap Epigenomics consortia have 

served as valuable resources to refine lists of candidate GWAS variants and identify putative roles 

of non-coding variants [20] , but these data still do not directly assess the impact of inter-individual 

variation on gene regulation and cellular behavior that results in the observed phenotypes. 

A related but distinct approach from GWAS is expression QTL (eQTL) mapping. In eQTL 

mapping, gene expression levels are treated as quantitative trait s and tested for associations with 

genetic variants. The first reported eQTL study analyzed over 1,500 genes and 3,312 genetic 

markers between two strains of Saccharomyces cerevisiae [21] . Since then, eQTL mapping has been 

performed in various contexts using model organisms and humans [22ɀ24]. With RNA-seq (or gene 

expression microarrays) and current genotyping approaches, these analyses can include tens of 

thousands of genes, each regarded as an independent quantitative molecular phenotype. The 

Genotype-Tissue Expression (GTEx) Project pilot analysis demonstrated the utility of eQTL 

analyses by performing eQTL mapping in 9 human tissues and identifying eQTLs shared and unique 

to each. Significant eQTLs were compared to GWAS disease-related single nucleotide 
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polymorphisms (SNPs) showing whole-blood specific eQTL enrichment for autoimmune-related 

GWAS variants [24]. This showed that by directly modeling the relationship between genetic 

variation and gene expression, eQTL mapping serves as a powerful tool to gain more insight into 

gene regulatory changes that can then be used to elucidate other genotype-phenotype links. 

As a complementary approach to eQTL mapping, the genetic underpinnings of chromatin 

variation have been studied using sequencing-based assays. Kasowski et al. observed variation 

between lymphoblastoid cell lines (LCLs) from 19 individuals for histone modifications H3K27ac, 

H3K4me1, H3K4me3, H3K36me3, and H3K27me3. Work by McVicker et al. further assessed the 

genetic relationship to histone modifications by identifying SNPs significantly associated with 

variation of histone mark signals in LCLs derived from 10 unrelated individuals [25] . Similarly, 

Degner et al., used DNase-seq to measure chromatin accessibility in 70 LCLs and detected 8,902 

chromatin regions where chromatin accessibility was significantly associated with genotype, which 

they referred to as DNaseI sensitivity QTLs (dsQTLs). The dsQTLs discovered were found to be pre-

dominantly local with enrichments for predicted TF binding sites. Sixteen percent of dsQTLs were 

also classified as eQTLs, and 55% of identified eQTLs were also dsQTLs. More recently, another 

genome-wide chromatin accessibility assay was developed called Assay for Transposase-Accessible 

Chromatin Using Sequencing (ATAC-seq) which relieÓ ÏÎ ÔÈÅ 4Îυ ȰÔÁÇÍÅÎÔÁÔÉÏÎȱ ÐÒÏÃÅÓÓ ÔÏ 

fragment DNA at accessible chromatin regions and append adapters for sequencing [26] . Using 

ATAC-seq and genotype data from 24 European individuals, Kumasaka et al. reported 2,707 

chromatin accessibility QTLs (cQTLs) which were also enriched for eQTLs and dsQTLs [27] . These 

QTL analyses using histone marks and chromatin accessibility data as quantitative traits 

demonstrate how chromatin assays can contribute to discovering associations between genotype 

and gene regulation that can ultimately inform physiologic or disease phenotype-genotype 

associations. 
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THE COLLABORATIVE CROSS AS A RESOURCE FOR GENETICS STUDIES 

 In human genetics and genomics studies, certain constraints limit the possible experimental 

designs that can be practically realized. As a proxy, various species such as Danio rerio (zebrafish), 

Drosophila melanogaster (fruit fly), and mus musculus (mouse) have been studied as model 

organisms to infer aspects of human biology [28ɀ30]. In a 2002 review, Threadgrill et al. outlined 

propositions made by the Complex Trait Consortium to develop a mouse genetics resource for 

effective study of complex traits using QTL approaches [31] . The design and implementation of 

creating this resource became known as the Collaborative Cross (CC) [32] . The CC involved an 

international, multi -institutional effort to create a multiparent panel of recombinant inbred mouse 

strains derived from five classical inbred strains (A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, and 

NZO/HlLtJ) and three wild-derived strains (CAST/EiJ, PWK/PhJ, and WSB/EiJ) denoted as 

ȰÆÏÕÎÄÅÒÓȱȢ Because CC strains are inbred, they provide an advantage over human studies in that 

each strain can produce genetically identical individuals. This reduces the genotyping burden and 

allows for more sophisticated experimental designs to study multiple variables within the same 

population. 

As described in [32] , creating a CC strain requires a funnel breeding scheme that begins 

with the mating of the 8 founder strains in pairs. Two pairs from the resulting generation are then 

mated, and this process continues for subsequent generations until a final inbred CC strain is 

produced. By permuting the pairs in the initial generations, a large number of strains can be 

constructed. In an evaluation of the genome architecture of 350 CC strains, similar  founder 

haplotype representation was observed when averaged across the CC lines, but deviations from 

expected frequencies were noted when focusing on specific genomic regions. Unlike many classical 

inbred strains, the CC population did not exhibit high levels of long-range linkage disequilibrium 

(LD). This type of LD has been reported to increase false positives in association mapping studies 
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[33] . As a proof-of-concept, Aylor et al. performed eQTL mapping using 156 incipient inbred CC 

lines (pre-CC) and detected 7,235 liver eQTLs at less than 1 megabase (Mb) resolution. A QTL study 

by Kelada et al. used 131 pre-CC lines to identify genetic associations with blood cell volume, white 

blood cell count, percentage of neutrophils, and monocyte number [34] . More recently, 45 CC 

strains were used to identify liver eQTLs and QTLs associated with treatment response to the drug 

tolvaptan. The study showed strain-specific variability in liver toxicity phenotypes and found 

several candidate susceptibility genes for tolvaptan drug-induced liver injury  [35] . Each of these 

studies demonstrates the feasibility and power of the CC as a resource for QTL mapping and 

interrogating genetic factors in disease and complex traits. 

The significant advancements in systems genetics and functional genomics have made the 

intricacies of gene regulation more apparent, fostering new hypotheses for how the contributing 

components interact [3,36,37]. The development of sequencing-based assays such as those used by 

ENCODE and the Roadmap Epigenomics Project made new types of analyses possible, but in doing 

so exposed new questions and challenges to address. Among these challenges is the development of 

bioinformatics approaches and statistical methods to manage, process, analyze, and interpret the 

vast quantities of biological data being generated. For instance, the development of DNase-seq and 

ATAC-seq for detecting accessible chromatin also led to observations that these methods could 

probe TF binding locations through an approach called footprinting [26,38], but the strengths and 

weaknesses of footprinting have not been well characterized. As previously mentioned, the utility of 

the Collaborative Cross for QTL mapping has been demonstrated, but the advantages of the CC can 

be further demonstrated by experimental designs and analyses that interrogate both chromatin 

accessibility and gene expression under varying environmental conditions. 

In chapter II, I introduce a novel method for TF binding site prediction, Detecting Footprints 

Containing Motifs (DeFCoM), that integrates DNase-seq or ATAC-seq data with ChIP-seq data and 

TF sequence motifs [39] . I use ENCODE data in conjunction with TF motif predictions to compare 
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DeFCoM to existing approaches and show that it outperforms other methods. I also evaluate 

current assumptions about chromatin accessibility signal characteristics at TF binding sites and 

assess the impact of technical factors on footprinting. In chapter III, I present an unpublished 

analysis that compares lung, liver, and kidney gene expression and chromatin accessibility for a 

control group of CC mice and mice exposed to the chemical 1,3-butadiene. I also characterize eQTLs 

and cQTLs in the three tissues to provide a basis for further studies investigating genetic 

associations with gene expression and chromatin accessibility in the CC population. In chapter IV, I 

discuss how my findings in Chapter II contribute to evaluating footprinting and integrating it into 

gene regulation studies, and I conclude the chapter discussing the significance of how my findings 

in analyzing CC mice contribute to interrogating environmental exposure and gene regulation in 

future CC studies. 
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CHAPTER II 

DeFCoM: analysis and modeling of transcription factor  
binding sites using a motif -centric genomic footprinter 1 

 

OVERVIEW 

Identifying the locations of transcription factor binding sites is critical for understanding 

how gene transcription is regulated across different cell types and conditions. Chromatin 

accessibility experiments such as DNaseI sequencing (DNase-seq) and Assay for Transposase 

Accessible Chromatin sequencing (ATAC-seq) produce genome-wide data that include distinct 

ȰÆÏÏÔÐÒÉÎÔȱ ÐÁÔÔÅÒÎÓ ÁÔ ÂÉÎÄÉÎÇ ÓÉÔÅÓȢ .ÅÁÒÌÙ ÁÌÌ ÅØÉÓÔÉÎÇ ÃÏÍÐÕÔÁÔÉÏÎÁÌ ÍÅÔÈÏÄÓ ÔÏ ÄÅÔÅÃÔ ÆÏÏÔÐÒÉÎÔÓ 

from these data assume that footprint signals are highly homogeneous across footprint sites. 

Additionally, a comprehensive and systematic comparison of footprinting methods for specifically 

identifying which motif sites for a specific factor are bound has not been performed.  

Using DNase-seq data from the ENCODE project, I show that a large degree of previously 

uncharacterized site-to-site variability exists in footprint signal across motif sites for a 

transcription factor. To model this heterogeneity in the data, I introduce a novel, supervised 

learning footprinter called DeFCoM (Detecting Footprints Containing Motifs). I compare DeFCoM to 

nine existing methods using evaluation sets from four human cell-lines and eighteen transcription 

factors and show that DeFCoM outperforms current methods in determining bound and unbound 

                                                           
 

 

1 A version of this work was previously published as Quach B, Furey TS. DeFCoM: analysis and 
modeling of transcription factor binding sites using a motif-centric genomic footprinter. 
Bioinformatics. 2016;33: btw740.  
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motif sites. I also analyze the impact of several biological and technical factors on the quality of 

footprint predictions to highlight important considerations when conducting footprint analyses and 

assessing the performance of footprint prediction methods. Lastly, I show that DeFCoM can detect 

footprints using ATAC-seq data with similar accuracy as when using DNase-seq data. 

 

INTRODUCTION 

Chromatin dynamics vary based on developmental stage [40] , cell type [41], and 

environmental stress [42] . Transcription factors (TFs) bind DNA in regions of accessible chromatin 

and play a central role in pre-transcriptional gene regulation. Understanding these interactions is 

critical in deciphering transcriptional regulation that defines cell identity in different contexts. 

DNase-seq [12]  and ChIP-seq [43]  identify regions of accessible chromatin and TF binding genome-

wide, respectively. Notably, Hesselberth et al. observed that DNase-ÓÅÑ ÐÒÏÄÕÃÅÓ ȰÆÏÏÔÐÒÉÎÔÓȱ ÁÔ 

active TF binding sites characterized by a relative depletion of DNase-seq signal at these sites [44] . 

Thus, a single DNase-seq experiment captures high-resolution TF binding information for many 

TFs. As performing ChIP-seq for multiple TFs quickly becomes cost prohibitive, DNase-seq 

footprinting offers an enticing alternative.  

Several computational footprint identification methods, which I will refer to as 

ȰÆÏÏÔÐÒÉÎÔÅÒÓȱȟ ÈÁÖÅ ÂÅÅÎ ÄÅÖÅÌÏÐÅÄ [38,45ɀ53]. These footprinters embrace one of two 

philosophies, which I denote as de novo and motif-centric footprinting (see Table 2.1 for an 

overview of methods). Models generated by de novo footprinters assume that there exist general 

data characteristics at footprint sites. These TF-agnostic models are used to predict all footprint 

sites, and then motif databases are queried to determine potential TFs bound in each individual 

footprint. In contrast, motif-centric footprinters first generate a set of candidate TF binding sites 

(TFBSs) based on a motif, and then predict at which motif sites a footprint exists, indicating active 

binding. Within each group, current methods exhibit similarities in approach. For instance, the de 
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novo footprinters DBFP, HINT, and the HMM-based method described in [38]  model footprints 

using probabilistic graphical models with similar state representations. FOS, Wellington, and 

DNase2TF are de novo footprinters that search for genomic locations akin to short inverse peaks. 

The motif-centric footprinters CENTIPEDE, msCentipede, and FLR utilize two-component mixture 

models to represent bound and unbound sites. In addition to DNase-seq data, some methods allow 

for the integration of complementary information such as histone modification status or distance 

from the nearest transcription start site. All these methods implicitly or explicitly assume there 

exists two distinct signal patterns in DNase-seq data that distinguish TF-bound and unbound sites. 

Except for msCentipede, footprinters expect that DNase-seq signal is highly homogeneous in both 

the bound and unbound groups and thus can be represented by a single model. This assumes TFs 

bind DNA in the same manner genome-wide, but TF binding behavior can vary across TFBSs [54] . 

More recently, Kahara and Lahdesmaki proposed a supervised classification approach, 

BinDNase, that learns TF-specific DNaseI cleavage patterns from training data to predict footprints 

in other data [46] . They show that their supervised approach often produced superior prediction 

accuracy over two unsupervised generative models, PIQ and CENTIPEDE. In contrast, Gusmao et al. 

conducted a systematic footprinter comparison and found most generative model footprinters 

outperformed BinDNase [55] . In their analysis, footprint detection accuracy was evaluated within a 

de novo footprinting framework based on overlap with ChIP-seq peak annotations. It is not clear 

how accurately this evaluates motif-centric footprinter performance.  

Here, I conducted an in-depth, motif-centered analysis of DNaseI digestion signals and 

DNase-seq footprinters to provide a more complete understanding of strengths and weaknesses of 

current methods. I introduce a novel motif-centered method, Detecting Footprints Containing 

Motifs (DeFCoM), that approaches footprint identification using a nonlinear supervised 

classification framework. Importantly, DeFCoM is designed to capture variation in DNaseI signal 

within active footprints and unbound motif sites to enhance footprint classification accuracy, a 
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consideration unaccounted for in previous footprinters. I compared the performance of DeFCoM 

against both de novo and motif-centric footprinting approaches across eighteen TFs in four cell-

lines using data from the Encyclopedia of DNA Elements (ENCODE) Project [7]  and show that 

DeFCoM outperforms existing approaches overall. In addition, I analyzed the variability in accuracy 

across multiple TFs and the effect of data quality and DNase-seq sequencing depth. Lastly, I show 

DeFCoM can detect footprints in data from Assay for Transposase-Accessible Chromatin sequencing 

(ATAC-seq) experiments with similar classification accuracy as with DNase-seq data 

 

MATERIALS AND METHODS 

Data and software  

DNase-seq and ChIP-seq data (Tables 2.2 and 2.3) were obtained from the UCSC (University 

of California at Santa Cruz) ENCODE portal (https://www.genome.ucsc.edu/ENCODE/). ATAC-seq 

data for GM12878 [26]  was obtained from GEO (Gene Expression Omnibus) using identification 

code GSE47753. The DAC Blacklisted Regions and Duke Excluded Regions for hg19 were 

downloaded from the UCSC Genome Database then combined into one set. 

DeFCoM utilizes the Python packages PySam v0.9.0 and scikit-learn v0.17 [56] . The R 

package ROCR [57]  was used for computing performance statistics and the ROC curves for the 

footprint ers. F-Seq [58]  was used to call peaks for DNaseI hypersensitive sites. 

 

Generating cell-line specific motif sites  

Sets of motifs labeled as active (TF-bound) or inactive (TF-absent) were generated as 

follows: 1) Transcription factor motif position weight matrices were downloaded from 

http://compbio.mit.edu/encode -motifs/  [59] . Motif occurrences were identified across the hg19 

genome using FIMO (MEME v4.9.0) [60]  with a genomic  background nucleotide distribution pre -

ÃÏÍÐÕÔÅÄ ÂÙ &)-/ ÁÎÄ ÔÈÅ ÐÁÒÁÍÅÔÅÒÓ Ȱ--max-strand --max-stored-scores 1000000 --no-ÑÖÁÌÕÅȱȢ 

https://www.genome.ucsc.edu/ENCODE/
http://compbio.mit.edu/encode-motifs/
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2) Predicted motif sites were removed if (i) they fell in ENCODE blacklisted regions, (ii) less than 

10% of bases within a 200 bp window centered on the motif center had DNase-seq digestion data; 

(iii) they were less than 400 bp from chromosome boundaries; or (iv) there were ambiguous 

nucleotide calls within 400 bp of the motif site center. 3) Motif sites were annotated as active if they 

overlapped ChIP-seq peaks for that TF, or else they were labeled inactive. If multiple motif sites 

overlap the same peak region, only the site closest to the annotated point-source of the peak was 

retained. To further ensure inactive sites were not bound, I calculated ChIP-seq and input control 

signal enrichments, defined as sTF - scontrol, where sTF and scontrol are sequencing-depth normalized 

read density values in 200 bp windows centered on the motif. Inactive sites where sTF - scontrol > 0 

were removed. Motif sets were created for 18 TFs (CEBPB, CHD2, CTCF, EP300, GABPA, JUN-D, 

MAFK, MAX, MYC, NRF1, RAD21, REST, RFX5, SRF, SP1, TAF1, TBP, USF2) in 4 human cell-lines 

(GM12878, H1-hESC, HepG2, and K562) except SP1 in K562 (no data). 

 

Computing aggregate DNaseI digestion profiles  

To create TF-specific summary statistics for each class of motif sites, I first generate the 

active and inactive motif site sets as detailed above. If multiple motifs exist for a TF, only one was 

chosen. For each class of motif sites, I constructed a matrix of DNaseI digestion frequencies where 

each row represents a unique motif site in the genome and each column represents a position 

within or flanking a motif site. All the rows were aligned based on the center of the motif site. 

DNaseI cut frequencies are denoted in DNase-ÓÅÑ ÄÁÔÁ ÁÓ ÔÈÅ ÎÕÍÂÅÒ ÏÆ υȭ ÒÅÁÄ ÅÎÄÓ ÁÌÉÇÎÉÎÇ ÁÔ Á 

given genomic position. To remove motif sites with spurious spikes in DNaseI activity, any rows of 

the matrix with a value exceeding 500 were removed. From these matrices all summary statistics 

were computed per column. For the aggregate DNaseI cut profiles, I used calculated mean cut 

frequencies. Likewise, per-column mean and standard deviations were computed to obtain 

coefficients of variation values. 
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DNaseI signal  profil es and correlations  

Aggregate DNaseI signal profiles were calculated for active and inactive motif sites for each 

TF in each cell type. DNaseI signal correlations for NRF1 were performed using only sites 

corresponding to the PWM (position weight matrix)  ȰÄÉÓÃͺρȱȟ ÆÏÒ #($ς ÕÓÉÎÇ ÍÏÔÉÆ ȰÄÉÓÃͺρȱȟ ÁÎÄ ÆÏÒ 

#%"0" ÕÓÉÎÇ ÍÏÔÉÆ ȰËÎÏ×Îͺρȱ ɉ&ÉÇÕÒÅ ςȢρ) to ensure variability was not due to multiple motifs. 

Motif sites were extended 50 bp from the motif center and signal profiles were calculated. To 

remove sites with spurious spikes in DNaseI activity, motif regions with more than 500 DNase-seq 

reads were removed. Profiles were smoothed using 7 bp sliding windows to improve signal quality 

at sites with sparse signal. Aggregate mean DNaseI signal profiles for active and inactive sites were 

created using smoothed individual profiles. Pairwise Pearson correlation coefficients between 

active and inactive motif DNaseI profiles were used for complete-linkage hierarchical clustering 

followed by heatmap visualization.  

 

DeFCoM feature extraction and t raining  

DeFCoM (Detecting Footprints Containing Motifs) is an SVM (support vector machine)-

based [61]  supervised footprinter . Given a set of motif sites labeled as active or inactive for a given 

TF in a cell type/experimental condition, the SVM classifier is trained on features that are derived 

from DNase-seq data from the same cell type for each motif site. The trained model is used to 

predict active and inactive sites in a test set based only on DNase-seq data. 

To train DeFCoM, motif site sets of size m and n, labeled as active or inactive respectively, 

were generated as described above (see Generating cell-line specific motif sitesɊȢ 4ÈÅ υȭ ÅÎÄ ÏÆ ÅÁÃÈ 

DNase-seq read was considered a digestion site. Initial active and inactive motif site DNaseI 

digestion count matrices, DActivems and DInactivens,, were calculated, in which each row corresponded to 
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a scaled DNaseI digestion profile consisting of the square root of the DNaseI digestion frequency at 

each position in an s-sized region centered on a motif site. For all the training and evaluation tests, 

s=200 bp regions were used. To account for spurious spikes in the data, any row in the matrix with 

Á ÖÁÌÕÅ ÇÒÅÁÔÅÒ ÔÈÁÎ Ѝυππ ×ÁÓ ÒÅÍÏÖÅÄȢ 

Intuitively,  I wished to generate DNase digestion features in windows around a motif site, 

with smaller windows used near the motif site where the TF binds to allow for greater resolution, 

and progressively larger windows used at more distant regions. I also wanted to account for sparse 

or noisy DNaseI data.  Given the region size s, I first defined varying-sized, non-overlapping, 

contiguous windows symmetric about the motif site center. Let x {ɴ0,1,2,...,k} index each window 

starting at the motif site center with the windows progressively increasing in size from 0 to k. I 

define f(x), the size of window x, to be 

  (1) 

  (2) 

where the recursive function g(x) equals the sum total size of all windows up to and including 

window x. The total number of windows k that will span a region of size s/2 can be calculated as 

follows: 

  (3) 

In equations 1 and 3, I use s/2 because windows are symmetric about the motif center. For s=200, I 

defined 12 windows (6 on each side of the motif site center) with sizes 45, 21, 14, 9, 6, 5, 5, 6, 9, 14, 

21, and 45. For each window, I computed the mean of the scaled DNaseI digestion counts and the 

slope of these counts across the window using DActive and DInactive.  This generated a feature vector f of 

length 4k. To provide additional global features of the region s, I partitioned a 90 bp segment 

centered on the motif center into 3 windows, computed the mean and slope for these windows (6 
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features total), and calculated the mean cut frequency of a 150 bp region centered on the motif 

center (1 feature). Lastly, maximal absolute value scaling was used to scale each of the 4k + 7 

features to a [-1,1] range. This results in the final feature matrices FActive and FInactive. 

As part of the training process, DeFCoM selects between a linear and radial basis function 

(RBF) kernel SVM to use as the final classifier. To decide between the two SVM models, I 

bootstrapped 1000 samples 100 times from each of FActive and FInactive and applied 5-fold cross 

validation. I used the mean pAUCs (5% FPR) from the cross validations to select a model. 

Training a soft-margin SVM requires the selection of a hyperparameter, which I denote as c, 

that specifies a tolerance threshold for the number of samples from either class that lie on the 

wrong side of the separating hyperplane. The higher the value of c, the more heavily 

misclassification is penalized during model training. Additionally, the RBF kernel contains a 

parameter that I ÄÅÎÏÔÅ ÁÓ ɾȟ ×ÈÉÃÈ ÄÅÔÅÒÍÉÎÅÓ ÔÈÅ ÄÉÓÔÁÎÃÅ ÏÆ ÉÎÆÌÕÅÎÃÅ ÏÆ ÔÈÅ ÃÈÏÓÅÎ ÓÕÐÐÏÒÔ 

ÖÅÃÔÏÒÓȢ (ÉÇÈÅÒ ÖÁÌÕÅÓ ÏÆ ɾ ÓÐÅÃÉÆÙ Á ÓÍÁÌÌÅÒ ÄÉÓÔÁÎÃÅ ÏÆ ÉÎÆÌÕÅÎÃÅȢ &ÏÒ ÂÏÔÈ ÔÈÅ ÃÒÏÓÓ ÖÁÌÉÄÁÔÉÏÎ ÁÎÄ 

cross cell-line tests, DeFCoM performs a grid search to find the best c and ɾȢ 4ÈÅ ÖÁÌÕÅÓ ÕÓÅÄ ÉÎ ÔÈÅ 

grid search were cɴɑπȢπρȟ πȢρȟ ρȟ ρπȟ ρππȟ ρπππȟ ρππππɒ ÁÎÄ ɾ{ɴ0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 

10, 100}. 

For within cell-line tests, the SVM type (linear or RBF kernel) is pre-specified based on the 

analysis being performed. I applied 5-fold nested cross validation using annotated motif sites and 

DNase-seq data for the specified cell-line, and all evaluation statistics were computed for each fold 

then averaged across folds. In the cross cell-line setting, training the final SVM for DeFCoM is a two-

ÓÔÁÇÅ ÐÒÏÃÅÓÓȢ &ÉÒÓÔȟ Á ÌÉÎÅÁÒ ÏÒ 2"& ËÅÒÎÅÌ 36- ÉÓ ÃÈÏÓÅÎ ÁÌÏÎÇ ×ÉÔÈ Ã ÁÎÄȾÏÒ ɾ ÖÁÌÕÅÓȢ  4ÈÅÎȟ Á 

subset of 3000 samples from each class is chosen to train the selected SVM model. Because the 

number of total samples typically is much larger than these subsets, I select the SVM type and the c 

ÁÎÄ ɾ ÖÁÌÕÅÓ ÕÓÉÎÇ Á ÂÏÏÔÓÔÒÁÐÐÉÎÇ ÐÒÏÃÅÄÕÒÅȢ I take 1000 random samples from each motif site 

class 100 times, and for each bootstrap iteration, I apply 5-fold cross validation to both a linear and 
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2"& ËÅÒÎÅÌ 36- ÕÓÉÎÇ ÔÈÅ ÁÆÏÒÅÍÅÎÔÉÏÎÅÄ ÇÒÉÄ ÏÆ Ã ÁÎÄȾÏÒ ɾ ÖÁÌÕÅÓȢ &ÏÌÌÏ×ÉÎÇ ÔÈÅ ÂÏÏÔÓÔÒÁÐÐÉÎÇȟ I 

compare the distributions of pAUCs generated by each SVM type using a two-ÓÉÄÅÄ 3ÔÕÄÅÎÔȭÓ Ô-test. 

I selected the RBF kernel when there was a statistically ÓÉÇÎÉÆÉÃÁÎÔ ÄÉÆÆÅÒÅÎÃÅ ɉɻ Ѕ πȢπρɊ ÁÎÄ ÔÈÅ 

linear SVM otherwise. Following SVM type selection, I ÃÈÏÓÅ ÆÉÎÁÌ Ã ÁÎÄȾÏÒ ɾ ÖÁÌÕÅÓ ÂÁÓÅÄ ÏÎ ×ÈÉÃÈ 

values were selected the most frequently during the bootstrap procedure for the selected SVM type. 

To improve the computational efficiency of the SVM training phase, the chosen SVM was trained 

with 3000 randomly selected samples from each of FActive and FInactive to produce the final trained 

model. 

For ATAC-seq data, the DActive and DInactive matrices were constructed using Tn5 transposase 

tagmentation events as opposed to DNaseI digestion frequencies. Tn5 tagmentation sites are 

ÄÅÎÏÔÅÄ ÁÓ υȭ !4!#-seq read ends offset 5 bp downstream on the positive DNA strand and 4 bp 

upstream on the negative strand. 

 

Footprinter imple mentations for comparative a nalysis 

The footprinters BinDNase, CENTIPEDE, cut density, DNase2TF, HINT, FOS, msCentipede, 

PIQ, and Wellington (Table 2.1) were used to evaluate DeFCoM. These methods were chosen based 

on availability, compatibility with  my evaluation framework, and their broad range of conceptually 

diverse approaches to footprinting. I outline below how these methods were applied in a motif-

centric evaluation framework. Any footprinter not listed was applied with no modifications and 

default settings. 

BinDNase 

Similar to DeFCoM, BinDNase is a supervised footprinter. For the training phase of 

BinDNase, 3000 samples from each class of motif sites were randomly chosen. The remaining 

parameters were the same as described in [46] .   
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CENTIPEDE 

In implementing CENTIPEDE I used the default parameters specified by [50]  with the 

exception that the prior included only PWM scores.  

Cut Density 

#ÕÔ ÄÅÎÓÉÔÙ ÓÅÒÖÅÓ ÁÓ Á ÓÔÒÁÉÇÈÔÆÏÒ×ÁÒÄ ȰÂÁÓÅÌÉÎÅȱ ÍÏÄÅÌ ÆÏÒ ÆÏÏÔÐÒÉÎÔÉÎÇȢ )Ô ÓÉÍÐÌÙ ÓÕÍÓ ÔÈÅ 

number of DNase-seq υȭ ÒÅÁÄ ÅÎÄÓ ÔÈÁÔ ÍÁÐ ×ÉÔÈÉÎ Á ÓÐÅÃÉÆÉÅÄ ÇÅÎÏÍÉÃ ÒÅÇÉÏÎȢ &ÏÒ ÅÁÃÈ ÍÏÔÉÆ ÓÉÔÅ 

in the evaluation sets, cut density was computed for regions spanning 50 bp upstream and 

downstream of the motif site center. 

DNase2TF 

We ran DNase2TF on motif sites that were extended by 100 bp in both directions to obtain 

ÁÎ ÉÎÉÔÉÁÌ ÌÉÓÔ ÏÆ ÆÏÏÔÐÒÉÎÔ ÃÁÌÌÓȢ 4ÈÅ Ȱ&$2Óȱ ÐÁÒÁÍÅÔÅÒ ×ÁÓ ÓÅÔ ÔÏ ρ ×ÉÔÈ ÄÅÆÁÕÌÔ ÖÁÌÕÅÓ ÆÏÒ ÔÈÅ ÏÔÈÅÒ 

parameters. I filtered the footprints to only those that overlapped at least 75% of a motif site. If the 

footprint region is smaller than the motif site, then it was also retained regardless of percent 

overlap. For each motif site, I assigned it the score from the overlapping footprint. If multiple 

footprints correspond to a motif site, I selected the highest score. If no footprint is associated with 

the motif site then it was given the minimum possible score. 

HINT 

We applied HINT similarly to DNase2TF. Using default settings, an initial list of footprints 

was generated by evaluating motif sites that were extended by 100 bp in both directions. These 

were filtered to footprints smaller than their corresponding motif site and footprints overlapping at 

least 75% of a motif site. Motif sites were assigned scores using the same process as for DNase2TF. 

FOS 

FOS computes a score based on a depletion of reads within a central window of length c 

base pairs compared to a left and right flanking window each of length f base pairs. With each motif 
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site, I calculated an FOS score for all combinations of c and f where c is an integer between 6 and z 

and f {ɴ3,4,...,11}. Let m represent the length of a motif, then z=2*(21-m) when m is less than or 

equal to 18 and 6 otherwise. I aligned c to be centered over the motif site. I retained the highest 

score from all the calculations for a motif site. Sites FOS failed to score were given the lowest 

possible score. 

Wellington 

Similar to FOS, Wellington uses a center and flanking region to compute a score and call 

footprints. Wellington searches for footprints in a region using a combination of a 35 bp flank size 

and center sizes 11, 13, 15, 17, 19, 21, 23, and 25. I allowed Wellington to score sites using input 

regions that were 49 bp flanks from the center of the motif site. The maximum of the absolute 

values of scores was used as the footprint score for the associated motif site. 

 

Effective sequencing depth 

Signal-to-noise was measured using FRiP (fraction of reads in peaks) scores [62] . Peaks 

were called using F-Seq with default parameters, then the ratio of DNase-seq reads aligning within 

the top 50,000 peaks (ranked by F-Seq score) to the total aligned reads was calculated. This ratio 

was multiplied by the total aligned reads to obtain the effective sequencing depth. 

 

Subsampled sequencing depth analysis 

4Ï ÃÏÍÐÁÒÅ $Å&#Ï-ȭÓ ÐÅÒÆÏÒÍÁÎÃÅ in two cell-lines with similar effective sequencing 

depths but different signal-to-noise ratios, I applied downsampling to both GM12878 and H1-hESC 

DNase-seq data. In each cell-line I used SAMTools to downsample the data to 25, 50, 75, and 100 

million mapped reads. At each sequencing depth, I converted the labeled motif sites and DNase-seq 

data into feature vectors. I then used these feature vectors for 5-fold nested cross validation of 
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DeFCoM with the RBF kernel SVM. Lastly, the mean pAUCs (5% FPR) from the folds were computed 

for 18 transcription factors.   

 

RESULTS 

Aggregate DNaseI digestion profiles do not capture motif site heterogeneity  

Aggregate mean DNaseI digestion profiles summarize positional DNaseI cleavage 

preferences at TFBSs. These profiles convey a single value at each position, thus they lack 

information regarding the variability in DNaseI activity at a given position across sites. Raj et al. 

showed that variation in DNaseI activity at TF-bound SP1 motif sites exceeded that expected under 

a multinomial model of DNaseI digestion signal [51] . To evaluate this more broadly, I determined 

positional variability in DNaseI digestion signal for multiple TFs (Figures 2.2A and 2.3). I stratified 

motif sites into active and inactive based on presence of corresponding ChIP-seq signal for the 

factor in the same cell type. I used these to evaluate two common assumptions held by several 

footprinting methods: 1) active TFBSs possess a general footprint pattern of local depletion in 

DNaseI digestion relative to flanking regions; and 2) inactive motif sites contain approximately 

uniformly distributed DNaseI digestion signal. For most factors, aggregate profiles for active sites 

clearly produced expected DNaseI digestion patterns, but with relatively large standard deviations. 

An investigation of individual binding sites clearly shows how sites deviate from the aggregate 

pattern (Figures 2.2C and 2.2D).  In some cases, the previously characterized sequence preferences 

for DNaseI digestion [63]  are visually apparent. For a minority of the TFs, the aggregate profile for 

active sites portrays a visually weak footprint or none at all (i.e. SRF, Figure 2.3). Overall, TFs 

exhibit aggregate profiles with consistently high coefficients of variation (Figure 2.4).  

In spite of position-specific variability across motif sites, it is possible that DNaseI signal at 

individual sites resemble the aggregate profile in shape but not scale. To quantify the similarity of 

DNaseI digestion profiles at individual sites to the aggregate mean profiles, I calculated Pearson 
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correlation coefficients between the aggregate profiles and every individual TFBS profile for 

CEBPB, CHD2, and NRF1 (Figure 2.5). Among the 3 TFs, 30-63% of the individual profiles did not 

correlate with the same class aggÒÅÇÁÔÅ ÐÒÏÆÉÌÅ ɉ0ÅÁÒÓÏÎȭÓ Ò Ѓ πȢρɊȢ )ÎÔÅÒÅÓÔÉÎÇÌÙȟ I found that 17-

51% of individual profiles from the active and inactive classes exhibited stronger positive 

correlations with the aggregate profile from the opposite class. 

To further assess within and between class heterogeneity, I computed Pearson correlations 

between the top 2000 individual DNaseI digestion profiles, ranked based on the number of DNase-

seq reads in a 100 bp window centered on the motif site, in the active and inactive classes for all 

three factors. I observed small clusters of highly correlated sites, implying possible subgroupings 

for DNaseI cleavage profiles within each class. I also found 34-53% of motif sites within each class 

exhibited negative or no correlation to each other (PearsoÎȭÓ Ò Ѓ πɊ ɉ&ÉÇÕÒÅs 2.2D and 2.6). Notably, 

4-φϷ ÏÆ ÃÏÒÒÅÌÁÔÉÏÎÓ ÂÅÔ×ÅÅÎ ÓÉÔÅÓ ÆÒÏÍ ÏÐÐÏÓÉÔÅ ÃÌÁÓÓÅÓ ÈÁÄ 0ÅÁÒÓÏÎȭÓ Ò Є πȢυȢ 4ÈÅÓÅ ÁÎÁÌÙÓÅÓ ÏÆ 

variability in DNaseI digestion signal strongly indicate that aggregate mean profiles do not 

sufficiently capture the heterogeneity in DNaseI activity across motif sites. 

We hypothesized that high correlations between sites from one class to the aggregate 

profile of the opposite class may be partially attributed to similarities in binding preferences for 

multiple TFs. Therefore, a motif site deemed inactive for a specific TF based on ChIP-seq data could 

be active for another TF with a similar motif. I assessed this by determining how many inactive 

motif sites overlapped ChIP-seq peaks for at least one other TF for each of 18 TFs in the K562 cell 

line. I found that this was the case for 8.85% of all inactive sites (Figure 2.7). For most TFs, the 

number of inactive motif sites was significantly larger than the number of active sites (Table 2.4). 

Thus, while the number of inactive sites overlapping another ChIP-seq peak was relatively small, 

these represented 0.41 to 32.21 times the total number of active motif sites for a TF. Footprint 

patterns at inactive sites that resemble active sites due to the binding of another factor highlights 

an important consideration and caveat when conducting motif-centric footprinting and evaluating 
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the accuracy of footprint predictions. This also applies to de novo footprinting as it becomes an 

issue when annotating called footprints using motifs. A potential solution would be to exclude all 

motif sites overlapping ChIP-seq peaks for multiple TFs. However, this would remove 66%-100% of 

active sites for a TF. Additionally, this would require conducting a multitude of ChIP-seq 

experiments and disregards the fact that many TFs have binding partners.  

 

Modeling data heterogeneity for footprinting  

To account for the high variance in DNaseI activity at motif sites, I devised a novel 

supervised learning based footprint prediction framework called DeFCoM (Detecting Footprints 

Containing Motifs). DeFCoM trains an SVM using extracted features from DNaseI digestion profiles 

of motif sites labeled as active or inactive. In the training phase, DeFCoM applies a model selection 

procedure to choose between a linear kernel and nonlinear RBF kernel (Figure 2.8; see Materials & 

Methods). This allows DeFCoM to capture the complexity of the data when necessary with the RBF 

kernel, while avoiding over-fitting, a common problem in supervised learning, by choosing the 

linear kernel when that complexity is lacking. Once trained, the SVM uses features from DNaseI 

digestion profiles for new, unlabeled motif sites to determine which are active and inactive in 

another cell type/condition.  

4Ï ÁÓÓÅÓÓ $Å&#Ï-ȭÓ ÃÌÁÓÓÉÆÉÃÁÔÉÏÎ ÁÃcuracy, I first performed 5-fold nested cross validation 

on 71 evaluation sets comprised of data from 18 transcription factors in the human cell-lines 

GM12878, H1-hESC, HepG2, and K562 generated by the ENCODE project. Secondly, I tested 

$Å&#Ï-ȭÓ ÁÂÉÌÉÔÙ ÔÏ generalize across cell types by training models using data from one cell type 

and testing on an independent cell type. I also wanted to know whether using the RBF kernel 

increased accuracy given the demonstrated heterogeneity in these data. Therefore, for both sets of 

experiments, I used a linear and an RBF SVM and compared their classification performance. I will 

refer to these models as DeFCoM-linear and DeFCoM-RBF respectively. I calculated receiver 
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operating characteristic (ROC) Area Under the Curve (AUC) values using all the data and also partial 

AUC (pAUC) values corresponding to partial ROC curves at a 5% false positive rate (FPR) cutoff.  

When applied to the 71 data sets, DeFCoM-RBF performed better than a random classifier in 

all cases (Figure 2.9A). Notably, I observed a wide distribution of pAUC scores ranging from 0.096 

to 0.981, but there was less variability in the full AUC scores (0.714-0.998). For the cross cell-line 

experiments, I expected that additional variability across the two data sets would decrease 

performance compared to the within cell-line cross validation tests. Indeed, I witnessed overall 

lower scores from the former but by a marginal amount (median pAUC decrease of 0.021) 

indicating there exist consistent footprint signals across cell types.  

To determine whether using the nonlinear RBF kernel to model heterogeneity was 

warranted, I repeated the above experiments using the linear kernel. Overall, DeFCoM-RBF 

improved classification accuracy for all cell-lines in both experimental setups except for the cross 

cell-line case where the test set was derived from data in the K562 cell line (Figure 2.9B). I saw that 

the pAUC increased as much as 0.141 when using DeFCoM-RBF. However, the pAUC was essentially 

the same in 31% of cross validation tests and 41% of cross cell-line tests. This demonstrates that 

the RBF kernel can provide large gains in accuracy, but some factors or data sets may not possess 

enough DNaseI signal heterogeneity to benefit from more complex footprint modeling. 

Interestingly, DeFCoM-linear performed substantially better on cross cell-line tests when 

training with GM12878 and evaluating with K562 data. This demonstrated the need for flexibility in 

model complexity. Therefore, I incorporated a model selection step during DeFCoM training to 

automatically determine the most appropriate kernel for a given test (see Materials & Methods). I 

found that with the exception of CTCF, my model selection procedure identified the better model in 

all cases in which there was a measurable difference between kernels (pAUC difference > 0.05; 

Figure 2.10). I also evaluated alternative methods for addressing cross cell-line applications of 
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DeFCoM and found the aforementioned approach produced the best results. Nevertheless, I 

describe the alternative procedures in the following section.  

 

Variations for DeFCoM training in cross cell -line applications  

To address the decrease in classification accuracy of DeFCoM when training in one cell-line 

and testing in another, I initially explored two methods in addition to the SVM model selection 

procedure. 

Mitigating Data set Shift 

Given the variety of factors involved in generating DNase-seq and ATAC-seq data as well as 

biological variability in the samples processed for sequencing, I considered the possibility that the 

DNase-seq and ATAC-seq data used for training DeFCoM may differ enough from the data being 

used during the classification phase of cross cell-line analyses to negatively impact classification 

performance. More formally, I hypothesized that the joint distribution between inputs into 

$Å&#Ï-ȭÓ 2"& ËÅÒÎÅÌ 36- ÁÎÄ ÔÈÅ ÏÕÔÐÕÔÓ ÐÒÏÄÕÃÅÄ ÂÙ ÔÈÉÓ 36- ÄÉÆÆÅÒÅÄ ÂÅÔ×ÅÅÎ ÔÈÅ ÔÒÁÉÎÉÎÇ ÁÎÄ 

testing stage. This phenomena is more generally referred to in machine learning literature as data 

set shift [64] . 

To account for the possibility of data set shift, I trained a logistic regression model with data 

from GM12878 and K562 to obtain for each sample the probability that the sample was derived 

from GM12878, P(GM12878), and the probability that it was derived from K562, P(K562). If more 

than 25,000 motif sites existed in the active and inactive motif site sets for both cell-lines, I 

randomly selected 25,000 samples from each of the active and inactive motif site sets, totaling to 

100,000 sites. These samples were converted into feature vectors, and assigned the class label 

Ȱ'-ρςψχψȱ ÏÒ Ȱ+υφςȱȢ 4ÈÅ ÌÁÂÅÌÅÄ ÆÅÁÔÕÒÅ ÖÅÃÔÏÒÓ ×ÅÒÅ ÔÈÅÎ ÕÓÅÄ ÔÏ ÔÒÁÉÎ ÁÎ ,ς-regularized 

logistic regression model. The regression model was then applied to feature vector representations 

of all the samples in both cell-lines to obtain P(GM12878) and P(K562) for each sample. The 
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'-ρςψχψ ÍÏÔÉÆ ÓÉÔÅÓ ×ÅÒÅ ÔÈÅÎ ÆÉÌÔÅÒÅÄ ÔÏ ÉÎÃÌÕÄÅ ÏÎÌÙ ÔÈÏÓÅ ÆÏÒ ×ÈÉÃÈ 0ɉ+υφςɊ І πȢτȢ 4ÈÅÓÅ 

filtered motif sites were then used to train an RBF kernel SVM using 5-fold cross validation. Sample 

weights were included for the SVM training such that training samples more similar to the K562 

test samples would receive a greater weight. I defined the weight to be P(K562)/P(GM12878). 

Table 2.5 provides the results of applying data set shift correction to DeFCoM for 17 transcription 

factors.  

Sequencing Depth Matching 

Another consideration related to cross cell-line analyses is the difference in sequencing 

depth between the training and testing set affecting DeFCoM performance. When the training data 

set comes from DNase-seq/ATAC-seq data with a lower sequencing depth than the test data, the 

dynamic range of DNaseI digestion frequencies at motif sites has the potential to be greater in the 

test set. Arguably, this could create another scenario where data set shift is a concern. Although I 

incorporate a square root transformation of the DNaseI digestion frequencies into the DeFCoM 

framework to mitigate dynamic range issues, I also tested if matching the sequencing depths 

between tÈÅ ÔÒÁÉÎÉÎÇ ÁÎÄ ÔÅÓÔÉÎÇ ÄÁÔÁ ×ÏÕÌÄ ÉÍÐÒÏÖÅ $Å&#Ï-ȭÓ ÃÌÁÓÓÉÆÉÃÁÔÉÏÎ ÁÃÃÕÒÁÃÙȢ 

Using the subsampling feature in SAMTools (Li et al., 2009), I down-sampled the K562 

DNase-seq data to match the GM12878 DNase-seq data sequencing depth. I then used the GM12878 

and K562 data to generate the training and test set feature vectors respectively. With the GM12878 

feature vectors I used 5-fold cross validation to train the RBF kernel SVM of DeFCoM, and I applied 

the trained model to the feature vector representations of the down-sampled K562 samples. Table 

2.5 provides the results of this evaluation for 17 transcription factors. Compared to the model 

selection procedure, both the data set shift correction and down-sampling approaches produced 

worse classification performance.  
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Multiple variables impact motif -centric footprinting  

In addition to addressing the heterogeneity of DNaseI signal at motif sites, my analyses 

provide insights into some variables that may affect motif-centered footprinting performance, 

though this is certainly not an exhaustive list of contributing factors. My observations suggest that 

ÔÈÅ ȰÆÏÏÔÐÒÉÎÔÁÂÉÌÉÔÙȱ ÉȢÅȢȟ ÔÈÅ ÑÕÁÌÉÔÙ ÏÆ ÆÏÏÔÐÒÉÎÔÉÎÇȟ ÏÆ ÁÎÙ ÐÁÒÔÉÃÕÌÁÒ data set is a function of 

several characteristics. I noted that features of the data from a particular cell-line and the specific 

TF being considered can contribute to footprintability. For instance, the pAUC is 0.36 higher on 

average in K562 compared to HepG2 for all cross validation experiments (Figure 2.9), suggesting 

that footprint signals in K562 are better overall. Within GM12878, the cross validation pAUC scores 

across TFs range from 0.210 to 0.915, highlighting the variability in footprintability across TFs. 

Lastly, pAUCs for CHD2 are higher than CEBPB in all cell types (Figure 2.11), suggesting active 

footprints for some factors are in general easier to discriminate than for others.  

It is important to note that the four cell lines I use span a wide range of sequencing depths 

(Table 2.6). I wondered how closely footprintability was associated with total sequencing depth. 

Since the signal quality across data sets can widely vary, I ÁÌÓÏ ×ÏÎÄÅÒÅÄ ×ÈÅÔÈÅÒ ÔÈÅ ȰÅÆÆÅÃÔÉÖÅȱ 

sequencing depth, based on the number of reads in DNaseI hypersensitive sites, was more 

important than simply the raw sequencing depth. I ÕÓÅÄ ÍÅÁÎ Ð!5# ÖÁÌÕÅÓ ÆÒÏÍ $Å&#Ï-ȭÓ ÎÅÓÔÅÄ 

cross validation experiments for each TF across all cell lines to compare footprintability based on 

total and effective sequencing-depth. Overall, I found that for most factors, accuracy increased 

nonlinearly with respect to total sequencing depth, but not effective sequencing depth (Figure 

2.12).   

To better understand the trade-off between sequencing depth and signal quality, I focused 

on data from GM12878 and H1-hESC since they possess very different signal-to-noise ratios (0.19 

versus 0.43 FRiP score). I performed 5-fold nested cross validation using DeFCoM and data from 

each cell line subsampled to 25, 50, 75, and 100 million aligned reads and calculated pAUCs for 
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each. The effect of raw sequencing depth versus signal quality became more apparent when I 

assessed changes in pAUC at a fixed 5% FPR under this framework (Figure 2.13). As expected, the 

changes in pAUC vary by TF, but performance in the H1-hESC cell-line was less affected by 

increased sequencing depth. This suggests that for data with better signal-to-noise, informative 

DNaseI signals are present at lower sequencing depths, resulting in smaller improvements in 

footprintability with increased sequencing depth. I see the opposite in the GM12878 cell-line where 

increased sequencing depth substantially improves accuracy. When looking across sequencing 

depths at the number of H1-hESC active motif sites that are in the evaluation sets, I notice that more 

active sites meet the coverage filtering thresholds as sequencing depth increases. This shows that 

although much of the DNaseI signals may be present at lower sequencing depths, a higher 

sequencing depth can provide gains in sensitivity. The improvements in sensitivity will vary by TF, 

as evidenced by large increases for CTCF and RAD21 but significantly smaller increases for other 

TFs (Figure 2.14). 

Interestingly, active footprints for some TFs were more accurately identified in GM12878 

than H1-hESC at equivalent sequencing depths despite the reduced signal-to-noise. This may be due 

to the FRiP score serving as a global signal quality measure rather than at the level of individual 

TFs. To investigate this further, I analyzed the ratio of active motif sites to inactive sites for several 

TFs and found that many decreased drastically in GM12878 data with increasing sequencing depth 

compared to the same ratios in H1-hESC data (Figure 2.15A). For instance, in GM12878 for SP1 this 

ratio was 16.8 at a sequencing depth of 25 million reads but decreased to 0.55 at 100 million reads. 

In H1-hESC, I observed a much smaller ratio change from 0.48 to 0.10 for the same factor (Figure 

2.15B). The large changes in active to inactive site ratios in GM12878 suggest that in data with 

lower signal-to-noise, the number of inactive sites is more affected by sequencing depth, at least 

based on my criteria. Across all 18 TFs in GM12878, I witnessed a -0.71 Pearson correlation on 

average between the active to inactive site ratios and pAUCs for a TF. In H1-hESC the mean 
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correlation was -0.89. Overall, my results suggest that increasing sequencing depth to improve 

accuracy will primarily benefit noisy data sets, and that signal quality in data will affect accuracy by 

varying the number of inactive motif sites that are considered compared to the number of active 

motif sites.  

 

DeFCoM outperforms other footprinters  

To provide a comprehensive study of footprinting from a motif-centric perspective, I 

compared DeFCoM with nine competing footprinters: BinDNase, CENTIPEDE, cut density, 

DNase2TF, HINT, FOS, msCentipede, PIQ, and Wellington (Table 2.1). All methods were assessed 

based on their ability to correctly classify the same sets of motif sites for 18 TFs as active or inactive 

in the given cell-line. Partial AUCs (5% FPR) were calculated to compare the methods. For the 

supervised learning footprinters (DeFCoM and BinDNase), training was performed using data from 

K562 for test sets in GM12878, H1-hESC, and Hepg2, and in GM12878 for test sets in K562. To 

summarize performance across all data sets, I ranked each method by pAUC for each of the 71 tests 

and calculated their mean rank across all tests (Figure 2.16). DeFCoM ranked first in 25 of the 71 

evaluation sets (34.7%) and second in an additional 29 test sets (40.3%). I see even better 

performance by DeFCoM when using pAUCs from within cell-line cross validation for the two 

supervised methods. DeFCoM ranked first 39 times (54.9%) and second 23 times (32.4%) (Figure 

2.17). DeFCoM had the best mean rank for results from both the cross cell-line and cross validation 

tests followed by BinDNase and msCentipede. Interestingly, cut density, which simply predicts 

footprints based on the number of DNase-seq reads, had the 4th best mean rank despite not using 

any information about actual footpr int signals (Figures 2.16B and 2.18). Previous studies witnessed 

similarly reasonable performance for this simple method [63,65], but Gusmao et al. showed that cut 

ÄÅÎÓÉÔÙȭÓ ÁÃÃÕÒÁÃÙ ÒÅÌÁÔÉÖÅ ÔÏ ÏÔÈÅÒ ÆÏÏÔÐÒÉÎÔÅÒÓ ÓÕÆÆÅÒÓ ÁÔ Á ρϷ &02 [66] . In my study, cut density 
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had the 5th best mean rank using pAUCs at a 1% FPR (Figure 2.19), still outperforming 5 other 

footprinters.  

The improved classification accuracy of both DeFCoM and BinDNase over the unsupervised 

approaches highlights the utility of learning a discriminative model for motif-centric footprinting. 

Because DeFCoM defaults to a linear SVM model unless more complex modeling is required, I 

expect it to perform at least as well as BinDNase, which uses another type of linear model, logistic 

regression. Also, including the nonlinear RBF kernel enables DeFCoM to outperform BinDNase by as 

much as 0.0835 pAUC, though I note that the two footprinters have essentially the same accuracy 

for 59 of the 71 data sets (pAUC difference < 0.025). This increases to 65 of the 71 data sets using 

pAUC difference < 0.05 (Figure 2.20). BinDNase includes a computationally expensive greedy 

backward search to determine optimal features. Impressively, this shows that DeFCoM can achieve 

a similar or better accuracy than BinDNase using a set of predefined features that can be computed 

more efficiently. The greater overall performance of msCentipede relative to the other 

unsupervised footprinters indicates that modeling heterogeneity with an unsupervised method can 

produce comparable results to DeFCoM in some cases, though I note that for the factor TBP in 

HepG2, a model could not be learned in reasonable time (model training terminated after 60 days). 

For 48 of the 71 test sets, DeFCoM and msCentipede perform similarly (pAUC difference < 0.05), but 

using supervised learning affords DeFCoM better performance in 16 of the data sets (pAUC > 0.05), 

including a pAUC difference of 0.25 for the RAD21 test sets.   

 

ATAC-seq is comparable to DNase-seq for footprinting  

Like DNase-seq, ATAC-seq assays for accessible chromatin and can generate visible 

footprints in aggregate accessibility profiles for active motif sites. Its low biological sample material 

requirement relative to DNase-seq makes it an appealing alternative when this is a limiting factor. I 

evaluated DeFCoM using GM12878 ATAC-seq data to determine its utility for motif-centric 
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supervised footprinting. I applied 5-fold nested cross validation with the ATAC-seq data to train and 

test DeFCoM models for 18 TFs. The pAUC at 5% FPR and full AUC were averaged across the 5 folds 

from the cross-validation. I then repeated the nested cross validation with DNase-seq data on the 

same set of active and inactive sites (Figure 2.21). Despite the differences in sequencing depth of 

the DNase-seq (245 million reads) and ATAC-seq data (93 million reads), the pAUC and full AUC 

values are generally similar, with DeFCoM performing slightly better when using DNase-seq (mean 

pAUC difference = 0.072, mean AUC difference = 0.043). Overall this supports the feasibility of 

extending DeFCoM to experiments that use ATAC-seq. 

 

DeFCoM as an open-source software package 

Poor implementation and usability hinder the adoption of otherwise practical tools in the 

scientific community. With this in mind, I implemented DeFCoM to be an easy-to-use software 

package with a code-base that follows good software design principles. For both end-users and 

developers, I make my code freely accessible via a code repository 

(https://bitbucket.org/bryancquach/defcom) with extensive API docu mentation and a user guide. 

DeFCoM is the only supervised learning footprinter supported by thorough documentation to 

improve ease of use. I also include well-commented scripts to handle common data processing 

tasks for footprint analysis. DeFCoM is implemented in the Python programming language within 

an object-oriented framework that enhances modularity of the code for easy debugging, 

modification, and extension. Furthermore, because DeFCoM is a data-intensive method, I make use 

of scalable programming techniques such as batch processing and parallel computing to ensure 

feasibility for use on a modern desktop machine. As an open-source software package, I encourage 

the community to modify and adapt my code for further advancements in footprinting research  
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DISCUSSION 

Our study provides novel insights into variables that affect identification of DNaseI 

footprints, and for the assessment of footprinter performance. Aggregate DNaseI digestion profiles 

do not represent well the footprint patterns seen at individual sites, thus footprinters that use 

models based on aggregate or general footprint signal patterns may suffer. Inactive motif sites for 

one TF may be bound by a TF that creates a footprint and thus be misclassified, at least for the 

original TF. This is a general challenge in the assessment of motif-centric approaches, but this does 

not necessarily reflect a weakness in these footprinters. The motif-centric footprinter is correctly 

identifying a footprint, though it mistakenly attributes it to the wrong factor. Arguably, this is better 

than spuriously identifying a footprint at a location where no factor is bound. This serves as an 

important consideration for both interpreting footprint predictions and assessing footprinters in a 

motif -based framework. 

Heterogeneity in DNaseI digestion signals at motif sites exists, and I show that my DeFCoM 

footprinter benefits from being aware of this heterogeneity. At the same time, I also show that 

incorporating the flexibility to use more or less complicated models depending on the particular TF, 

cell line, and data set is important as well. DNase-seq and ATAC-seq footprint signals will vary 

based on biological and technical factors that influence the data. Footprinters that can model 

footprints well across this range of variability will obviously be more robust. Supporting this, 

msCentipede also models heterogeneity and was the best performing method that did not use 

supervised learning, though I found this method may be limited by unreasonable training times for 

specific data sets. 

We show that determining appropriate sequencing depth for footprinting is not easy and is 

affected by many variables. I observed sequencing depth affected footprinter accuracy less when 

the DNase-seq data had a better signal-to-noise ratio, but I also witnessed variation in TF-specific 

footprintability at equivalent sequencing depths between cell-lines. Sung et al. provided evidence 
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that DNA residence time plays a role in the clarity of a footprint signal [53] . Likewise, greater 

sequencing depth generally increased the number of sites where footprints were identified, but the 

benefit to individual factors varies. Biological variables such as these need to be further assessed on 

a per-TF basis in conjunction with technical factors to better realize which of these most strongly 

contribute to footprintability. This knowledge would help determine how to appropriately design 

footprinting experiments.  

For footprinters such as DeFCoM that use supervised learning, the concordance between 

features of the training and test sets become important. Although this introduces added complexity, 

it can be leveraged to achieve more targeted results. For instance, high-confidence footprints in 

DNaseI hypersensitive sites could be identified by tailoring the training set to include only sites in 

areas of high DNaseI activity. Doing so would make the model more representative of these 

stronger footprint signals, though at the expense of generalizability to low signal regions. Potential 

variability between training and test sets should be minimal for situations in which data is 

generated from the same cell type for both but possibly under different experimental conditions.  

A comprehensive evaluation of footprinting was reported in [66] . Though more rigorous 

than previous comparative analyses, their evaluation strategy was more informative for 

understanding footprinters in a de novo footprinting context. I provide a complementary 

footprinter evaluation from a motif-centric perspective. In my work, I focused on results at a 5% 

FPR to provide more practical insight on footprint detection accuracy at acceptable error rates. The 

ability of both DeFCoM and BinDNase to consistently outperform unsupervised footprinters, with 

the possible exception of msCentipede, further supports supervised learning-based methods. I note 

that my results contradict accuracy levels found in the previous evaluation for several footprinters. 

This demonstrates that evaluation methods can largely influence reported performance. The de 

novo footprint ers DNase2TF and FOS performed poorly in my tests, because they failed to report a 
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score for many of the motif sites in the test set. My results in conjunction with previous studies 

highlight the importance of evaluating a footprinter in the context for which it was designed.  

ATAC-seq is quickly being adopted as it requires less biological starting material, and I show 

DeFCoM performs comparably with these data. As I learn more about the nuances of footprinting in 

both DNase- and ATAC-seq, I expect footprinters will adapt accordingly. In light of this, my 

implementation of DeFCoM in an open-source, modularized and object-oriented framework makes 

it conducive to modification and improvement. As such, I welcome and encourage collaborative 

efforts with others in the scientific community to address the needs of researchers as the field 

evolves. 
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Figure 2.1.   Motif logos for NRF1, CHD2, and CEBPB.  Sequence logo representations of position 

weight matrices used to evaluate DNaseI signal profile heterogeneity. 
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Figure 2.2  Within and between class variability in DNaseI digestion signal at motif sites.  A) 

0ÅÒ ÂÁÓÅ ÍÅÁÎÓ ɉАɊ ÁÎÄ ÓÔÁÎÄÁÒÄ ÄÅÖÉÁÔÉÏÎÓ ɉʎɊ ÏÆ $.ÁÓÅ) ÓÉÇÎÁÌ ÁÇÇÒÅÇÁÔÅÄ ÆÏÒ .2&ρ ÍÏÔÉÆ ÓÉÔÅÓ 

active (+) and inactive (-) in K562. B) K562 DNase-seq and ChIP-seq signal at an NRF1 motif site 

(Chr1:16,175,923-16,176,022) from the active class and C) two neighboring NRF1 inactive sites 

(Chr22:38,966,291-38,966,390). D) Pairwise Pearson correlations between the top 2000 NRF1 

motif sites from the active and inactive class ranked by DNaseI digestion signal. 
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Figure 2.3.   K562 DNaseI signal profiles. +υφς ÁÇÇÒÅÇÁÔÅ ÍÅÁÎ ɉАɊ ÁÎÄ ÓÔÁÎÄÁÒÄ ÄÅÖÉÁÔÉÏÎ ɉʎɊ 

DNaseI digestion profiles for the active (+) and inactive (-) motif site classes of 17 transcription 

factors.
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Figure 2.4.   Coefficients of variation for K562 DNaseI digestion profiles. Coefficients of 

variation derived from K562 DNaseI digestion profiles for the active (+) and inactive (-) motif site 

classes of 17 transcription factors. The dashed horizontal gray line denotes a coefficient of variation 

of 1. Values above this signify that the standard deviation exceeds the mean


