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ABSTRACT

Bryan C.Quach Computational approaches to studying gene regulation using chromatin
accessibility and gene expression assays
(Under the direction of Terrence Fuey)

The completion of the Human Genome Project marked the beginninfja new era in
genomics characterizedoy significant improvements in high-throughput sequencing technology
and the development of new sequencingpased assays to study a wide array of fational elements
and biological propertiesat the genomewide scale These advancements were accompanied by the
formation of large, multi -institutional consortia that produced publicly available data sets and
functional genomic studies that broadened outnderstanding of the genomePreviously
uncharacterizedgenomic regionsbecame recognized as important components of gene regulation,
but the broader knowledgebase of rgulatory elementsraised new questions to elucidate the
growing complexity of gene reguation models. Additionally, quantitative trait loci (QTL) mapping
approaches began taking advantage of quantitative sequencing data to study the impacts of genetic
variation on molecular phenotypes such as gene expressia the genomewide level. The
popularity of high-throughput methods for studying gene regulation and transcriptionlead toa
data delugethat necessitatednew statistical methods and bioinformatics solutions for data
management, processing, analysis, visualization, and interpretatioispecialized research areas
emergedto better glean insights from sequencinglataleading tonew challenges and questionsin
the following chapters, | present a novel machine learning framework fagenomic footprinting, a
conceptfocused on identifyingtranscription factor (TF) binding sites using chromatin accesibility

sequencing data. | demonstratéhat my framework outperforms existing methods for classifyingTF



binding sites via footprinting. In addition, linvestigate characteristics of TF binding sitesvithin
chromatin accessibility data and assess technical factotisat influence footprinting to provide an
improved understanding of the strengths and limitations of using these data for TF binding site
prediction. Through a separate study, | investigatéhe impact of a genotoxic chemical 1;Butadiene
on chromatin accessibility and gene expression in a population of genetically diverse mite
perform expression QTL €¢QTL and chromatin accessibilityQTL €QTL mapping in these mice and
detect eQTLs andQTLs in each tissue. In all, the work herein demonstrates multiple computational
approaches to studying various gene regulatory relationships and provides insight onelefficacy of

these approaches to infornfuture studies.
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CHAPTER |

Introduction

The importance of gene regulation in celtievelopment and biological homeostasis of living
organisms hasbeenwell recognized[1z4]. Through the Human Genome Projedb], technological
innovations and abroader understanding of genome organization and compositiopaved way for
large-scale efforts in the genomics community to better understand functional genomic elements and
the role of nortcoding DNAIn transcriptional regulation [6,7]. Although these efforts improved
understanding of gene regulatory components such as promoters, enhancers, silencers, chromatin
structure, and transcription factors,they alsoincreased awareness of theomplexity of regulatory
dynamics and the interactions betwea the various components Furthermore, follow-up studies to
guantitative trait loci (QTL) mapping and genomewide association (GWA) studieshat detect trait-
associated genetic variation contributel another layer ofregulatory complexity by characterizing
relationships between genetic variation andregulatory changesas intermediate mechanisticlink s
between DNA sequenceand phenotype[4,8]. The increasing availability ofinformation, resources,
methodologies, and technologies fostudying gene regulation lighlighted a growing opportunity and
significance in further identifying regulatory elements and studying theirroles in condition-specific

contexts.

IDENTIFYING REGULATORY ELEMENTS GENOMEDE WITH HIGH-THROUGHPUT ASSAYS
Since the advent of Sanger sequeimg, DNA sequencing technologgontinued to improve,
AT A OEA ET 001 AGAOET 1 -dAE A O\aagEhCinplhpprodohe®@vibiutionized OT A @0
biological andbiomedical scienceresearch byenabling the development ohigher-throughput and

1



more cog-effective alternatives to microarraysto assaybiological properties such adranscription,
nucleosome occupancy, chromatin interactions, transcription factofTF) binding, and histone
modifications genomewide [9]. Although multiple different next-generation sequencingplatforms
exist,they sharesomecommonalities in their approach. Each technology first requires the
preparation of a sequence library through the ligation of oligonucleotide adapters to the ends of the
DNA fragments to be sequenced. Theafyments are thenamplified and undergo aplatform-specific
sequencing reaction that allows the classification of each nucleotidéhe ability for thesereactions
to occur simultaneously leads to the higtthroughput that makes them massively parallelThe
nucleotide readouts referred to as readsgeneratelarge quantities of data thatthen require the
application of bioinformatics approaches for downstreanprocessing, analysis, and interpretation.
Thesenext-generation sequencing platforms remain widely ued, however newer sequencing
platforms are being developedsuch as nanopore sequencintpat rely on different sequencing
chemistry and do not require fragment amplification[10].

From a simplified perspective sequencing platforms allsharethe goal of acurately
classifyingthe nucleotide sequence of the given fragments. The major distinctions in the
sequencingbased methods for assaying different biological properties occur in isolating the
relevant DNA or RNAFor example,Chromatin Immunoprecipitation Sequencing (ChlFseq)aims to
detectgenomiclocations of TF occupancy or histone modificatios. To do thisbinding proteins and
genomicDNAare crosslinked, then the DNA is fragmented. Immunoprecipitation with a protein
specific antibody retrieves the potein-bound sequences that are then sequenced. Enrichment of
reads mapping to a particular genomic location indicates TF occupancy (or histone modification)
[11].In DNasel sequencing (DNasgseq),chromatin accessibility is assayed using thexonuclease
DNasel.Exposing genomic DNA to DNasel results in the enzyme preferentially cutting DNA in more
accessible, nucleosomelepleted regions. Following DNasel digestion, size selected DNA fragments

are sequenced and genomic regions with enrichment of mappedads are classified asccessible



chromatin regions[12].In both ChiRseq and DNaseseq, the biomolecule initially being isolated is
DNA.With RNA sequencing (RNAeq),RNA transcripts are initially isolated as opposed to DNAor
compatibility with sequencing platforms, these transcripts areypically converted to cDNA before
sequencing, although some direct RNA sequencing approaches elds] . The reads from RNAseq
are mapped to their originating genes and can be analyzed to deduce estimates of RNA abunda
With the three aforementioned methods, lhe diversity of biological properties related to
gene regulationthat can now be studied genomewide creatednew opportunities for
understanding their interactivity . ChIRseq, DNaseseq, and RNAseq among othemethodswere
utilized by the Encyclopedia Of DNA Elements (ENCODE) prdjedich sought to daracterize all of
the functional elements inthe human genomdg7] and in later stages also included the mouse
genome[14].1n a 2012 report, the ENCODE project llgproduced 1,640 data sets in 147 dierent
human cell types[15], and a 2014mouse ENCODRublication comparing the mouse and human
functional elements reportedover 1,000 data sets in 123 mouse cell types and primary tissufi4].
Analyses by the ENCOD&bnsortium found that 80.4% of the human genome is covered by at least
one functional element. Of this fraction, RNAssociated element&nd histone modifications
comprised a large majority, and 15.2%f the coverage was attributed to DNasel hypersensiti/
sites[15]. In comparisons with mouse functional elements, chroatin state landscapesand TF
networks were found to be relatively stablebetween human and mousg14]. Additionally, gene
expression profileswere shownto be more consistent within tissue han within species[16]. To
build upon the work by the ENCODE project, the more recent Roadmap Epigenontesject
constructed a collection of epigenomic profiles for 127 human tissues and cell types from adwhd
embryonic samples[17]. Analysesof thesedata showedassociations between proximal and distal
regulatory regions,histone marks, DNA methylation, chromatin accessibility, spatial organization,
and gene expressionthat play important rolesin cell type identity, development, and diseasgl7].

Taken together,the catalogueof genomic and epigenomic data anishtegrative analyses from these



large-scale projectscontributed new insights into the organization and regulation of human and
mousegenes andhe genomeand continues to serve as amxpansivepublic resource for biomedical

research.

GENE EXPRESSION AND CHROMATIN ACCESSIBILITY AS QUANTITATIVE TRAITS

A fundamental challenge in genetics research is to understamggnetic variation and its
relationship to phenotypic variability . Efforts such as he International HapMap and 1000 Genornrse
Project extensively characterized commorgeneticvariation across diverse human populations
[18,19], andGWA studieshave leveraged advancements in genotyping technology to lirgenetic
variants tohumantraits and diseases. Although informative in many regards, these studiesdo not
resolve the underlying biological mechanism®f discovered genotypephenotype associationsFor
functional follow-up, data produced by theeNCODE and Roadmap Epigenomicgnsortia have
served as valuable resources toefine lists of candidate GWAS variants and identifgutative roles
of non-coding variants[20], but these data still do not directly assess the impact of inténdividual
variation on gene regulationand cellular behavior tha results in the observed phenotypes

A related but distinct approach from GWAS isxpression QTL(eQTL)mapping. IneQTL
mapping,gene expression levelsare treated asquantitative trait s and tested for associations with
genetic variants The first reported eQTL studyanalyzed over 1,500 genes and 312 genetic
markers between twostrains of Saccharomyces cerevisidi2l]. Since then, eQTL mapping has been
performed in various contexts usng model organisms and human§2z24]. With RNA-seq(or gene
expresson microarrays) and current genotyping approachesthese analyses can include tens of
thousands of genes, each regardess an independenguantitative molecular phenotype The
GenotypeTissue Expression (GTEX) Projegdilot analysis demonstrated the utility of eQTL
analyses by performing eQTL mapping in 9 human tissues and identifyie@TLs shared and unique

to each Significant eQTLs were compared to GWAS diseasdated single nucleotide



polymorphisms (SNPs) showing wholeblood specific eQTL enrichment foautoimmune-related
GWAS variants [24] This showed that ky directly modeling the relationship between genetic
variation and gene expression, eQTL mappirgerves as a powerful tool to gaimore insight into
gene regulatory changeshat can then be used t@lucidate other genotypephenotype links.

As a complementary approach to eQTL mappind)g genetic underpinning of chromatin
variation havebeen studied usingsequencingbased assaysKasowskiet al.observed variation
between lymphoblastoid cell lines LCLs) from 19 individuals for histone modifications H3K27ac,
H3K4mel, H3K4me3, H3K36me3, and H3K27meB/ork by McVickeret al.further assessed the
genetic relationship to histone modifications by identifyingSNPs significantly associated with
variation of histone mark signals in LCLslerived from 10 unrelated individuals [25] . Similarly,
Degneret al, used DNaseseq to measure chromatin accessibility in 70 LCLs anfbtected8,902
chromatin regions wherechromatin accessibility wassignificantly associatedwith genotype, which
they referred to as DNasel sensitivity QTLs (dsQTLdJhe dsQTLs discovered were found to be pre
dominantly local with enrichments for predicted TF binding sitesSixteen percentof dsQTLswere
alsoclassified aseQTLs and 55% of idetified eQTLswere alsodsQTLsMore recently,another
genomewide chromatin accessibility assay was developed called Assay for Transposaisecessible
Chromatin UsingSequencing (ATAGeq)whichrelie® 11 OEA 47T uv OOACi AT OAQEI T o6
fragment DNA at acessible chromatin regionsand append adapters for sequencinf6] . Using
ATAGCseq and genotype data from 24 European individuals, Kumasakaal.reported 2,707
chromatin accessibility QTLs ¢QTLs) which were also enriched for eQTLs and dsQTI[27]. These
QTL analyses using histone marks and chromatin accessibiliffata as quantitative traits
demonstrate how chromatin assays can contribute to discovering associations between genotype
and gene regulation that can ultimately informphysiologic or diseasghenotype-genotype

associations.



THE COLLABORATIVE CROSS AS A RESOURCE FOR GENETICS STUDIES

In human genetics and genomics studiegertain constraints limit the possible experimental
designs that can be practically realizedAs a proxy,\various species sch asDanio rerio (zebrafish),
Drosophila melanogaste(fruit fly), and mus musculugmouse) have been studied asnodel
organismsto infer aspects othuman biology[28730]. In a2002 review, Threadgrill et al.outlined
propositions made by the Complex Tria Consortium to develop a mouse genetics resource for
effective study of complex traits using QTL approachd81]. The design and implementation of
creating this resource became known as the Collaborative Cro&C)[32]. The CC involved an
international, multi -institutional effort to create a multiparent panel of recombinant inbred mouse
strains derived from five classical inbred strains (A/J, C57BL/6J, 129S1/SvimJ, NOD/ShilLtJ, and
NZO/HILtJ) and three wild-derived strains (CAST/EiJ, PWK/PhJ, and WSB/EdBgnoted as
O£l O1 Bekads2 &8 strains are inbred, they provide an advantage over human studies in that
each strain can produce genetically identical individualsT his reduces thegenotyping burden and
allows for more sophisticated experimental designso study multiple variables within the same
population.

As described in[32], creaing aCC strainrequires a funnelbreeding scheme thabegins
with the mating of the 8 founder strains in pairs. Two pairs from the resulting generation are then
mated, andthis process continues for subsequent generations until a final inbred CC strain is
produced. By permuting the pairs in the initial generations, a large number of strains can be
constructed.In an evaluation of the genome architectureof 350 CC strains,imilar founder
haplotype representation was observed when averaged across the CC linlest deviations from
expected frequencies were noted when focusing on specific genomic regiotunlike many classical
inbred strains, the CC population did not exhibit igh levels of longrangelinkage disequilibrium

(LD). This type of LD has been reported timcreasefalse positives in association mapping studies



[33]. Asaproof-of-concept,Aylor et al.performed eQTL mapping using 156 incipient inbred CC
lines (pre-CC)and detected 7,238iver eQTLs afess thanl megabase §b) resolution. AQTL study
by Keladaet al.used 131 pre-CClines to identify genetic associations with blood cell volume, white
blood cell count, percentage of neutrophils, and monocyte numbgs4]. More recently, 45 CC
strains were used to identifyliver eQTLs and QTLs associated with treatment response to the drug
tolvaptan. The study showed strainrspecific variability in liver toxicity phenotypes and found
several candidate susceptibility genesafr tolvaptan drug-induced liver injury [35]. Each ofthese
studies demonstrates the feasibility and power of the CC as a resource for QTL mapping and
interrogating genetic factors in diseaseand complex traits

The significant advancements irsystems geneics and functional genomicshave made the
intricacies of gene regulation more apparent, fosteringew hypothesesfor how the contributing
components interact[3,36,37]. The development of sequencingpased assays such as those used by
ENCODE and the Roadmadgpigenomics Project made new types of analyses possible, but in doing
soexposednew questions and challenges to addresémong these challengess the developmentof
bioinformatics approachesand statistical methods to manage, process, analyze, and irgest the
vast quantities ofbiological data being generatedFor instance, the development of DNasgeq and
ATAGCseqfor detecting accessible chromatin also led to observations that these methods could
probe TF binding locationsthrough an approach calledootprinting [26,38], butthe strengths and
weaknessef footprinting have not been well characterizedAs previously mentioned, the utility of
the Collaborative Cross for QTL mapping has been demonstrated, e advantagesof the CC can
be further demonstrated by experimental designsand analyseghat interrogate both chromatin
accessibilityand gene expressiorunder varying environmental conditions.

In chapter Il, lintroduce a novel method forTF binding site prediction, Detecting Footprints
Containing Motifs (DeFCoM)that integrates DNaseseq or ATAGseq datawith ChiP-seq data and

TF sequence motif§39]. luseENCODE data in conjunction with TF motif predictions to compare



DeFCoM teexisting approaches and show that it outperforms other methods.dlso evaluate
current assumptions about chromatin accessibility signatharacteristicsat TF binding sitesand
assesghe impact of technical factors on footprinting In chapter Ill, | presentan unpublished
analysis that comparedung, liver, and kidneygene expression and chromatin accessibilitfor a
control group of CC mice and mice exposed to the chemical -b3tadiene. | alsocharacterize eQTLs
and cQTlLs in the three tissuedo provide a basis for further studies investigating genetic
associations with gene expression and chromatin accessibility in the CC populatidn chapter 1V, |
discuss howmy findings in Chapter Il contribute to evaluating footprinting and integrating itinto
gene regulation studies, and | conclude the chaptéiscussing the sigificance of how my findings

in analyzing CC mice contribute tinterrogating environmental exposure andgene regulation in

future CC studies



CHAPTER Il

DeFCoM: analysis and modeling of transcription factor
binding sites using a motif -centric genomic footprinter *

OVERVIEW

Identifying the locations of transcription factor binding sites is critical for understanding
how gene transcription is regulated across different cell types and conditions. Chromatin
accessibility experiments such as DNasel sequengi (DNaseseq) and Assay for Transposase
Accessible Chromatin sequencing (ATAE2q) produce genomewide data that include distinct
O 1 OPOET 06 DPAOOAOI O AO AET AET ¢ OEOAO8 . AAOI U Al
from these data assumehat footprint signals are highly homogeneous across footprint sites.
Additionally, a comprehensive and systematic comparison of footprinting methods for specifically
identifying which motif sites for a specific factor are bound has not been performed.

Usng DNaseseq data from the ENCODE projedtshow that a large degree of previously
uncharacterized siteto-site variability exists in footprint signal across motif sites for a
transcription factor. To model this heterogeneity in the datal introduce a novel, supervised
learning footprinter called DeFCoM (Detecting Footprints Containing Motifs).compare DeFCoM to

nine existing methods using evaluation sets from four human celines and eighteen transcription

factors and show that DeFCoM outperforms coent methods in determining bound and unbound

1 A version of this work was previously published afuach B, Furey TS. DeFCoM: analysis and
modeling of transcription factor binding sites using a motHcentric genomicfootprinter.
Bioinformatics. 2016;33: btw740.



motif sites.| also analyze the impact of several biological and technical factors on the quality of
footprint predictions to highlight important considerations when conducting footprint analyses and
assessinghe performance of footprint prediction methods. Lastly] show that DeFCoM can detect

footprints using ATAGseq data with similar accuracy as when using DNaseq data.

INTRODUCTION

Chromatin dynamics vay based on developmental stagplO], cell type[41], and
environmental stress[42]. Transcription factors (TFs) bind DNA in regions of accessible chromatin
and play a central role in pretranscriptional gene regulation. Understanding these interactions is
critical in deciphering transcriptional regulation that defines cell identity in different contexts.
DNaseseq[12] and ChIiRseq[43] identify regions of accessible chromatin and TF binding genome
wide, respectively. Notably, Hesselberth et al. observed that DNa€A N D OT ADAAO O &I 1 OPOF
active TF binding sites characterized by a relative depletion of DNas&e(q signal at these sitepi4] .
Thus, a single DNasseq experiment captures highresolution TF binding information for many
TFs. As performing Chifseq for multiple TFs quickly becomes cost prohitive, DNaseseq
footprinting offers an enticing alternative.

Several computational footprint identification methods, whichl will refer to as
OFI 1| OPOET OAOOO6 h [#BAKF8]. TrhdsA footpAnkeds ArhbrageMire of two
philosophies, whichl denote as de novo and motitentric footprinting (see Table 2.1for an
overview of methods). Models generated by de novo footprinters assume that there exist general
data characteristics at footprint sites. These Tagnostic models are used to predict all fo@rint
sites, and then motif databases are queried to determine potential TFs bound in each individual
footprint. In contrast, motif-centric footprinters first generate a set of candidate Tinding sites
(TFBS9 based on a motif, and then predict at whicmotif sites a footprint exists, indicating active

binding. Within each group, current methods exhibit similarities in approach. For instance, the de
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novo footprinters DBFP, HINT, andite HMM-based method described ir}38] model footprints

using probabilistic graphical models with similar state representations. FOS, Wellington, and
DNase2TF are de novo footprinters that search for genomic locations akin to short inverse peaks.
The motif-centric footprinters CENTIPEDE, msCentipede, and FLR utilize tgomponent mixture
models to represent bound and unbound sites. In addition to DNas®q data, some methods allow
for the integration of complementary information such as histone modification status or distance
from the nearest transcription start site. All thesemethods implicitly or explicitly assume there
exists two distinct signal patterns in DNaseseq data that distinguish THbound and unbound sites.
Except for msCentipede, footprinters expect that DNass&eq signal is highly homogeneous in both
the bound and wnbound groups and thus can be represented by a single model. This assumes TFs
bind DNA in the same manner genomwide, but TF binding behavior can vary across TFBE#] .

More recently, Kahara and Lahdesmaki proposed a supervised classification approach,
BinDNase, that learns TFspecific DNasel cleavage patterns from training data to predict footprints
in other data[46]. They show that their supervised approach often produced superior prediction
accuracy over two unsupervised generative models, PIQ and CHREDE. In contrast, Gusmao et al.
conducted a systematic footprinter comparison and found most generative model footprinters
outperformed BinDNase[55]. In their analysis, footprint detection accuracy was evaluated within a
de novo footprinting framework based on overlap with ChiPseq peak annotations. It is not clear
how accurately this evaluates moticentric footprinter performance.

Here,| conducted an irdepth, motif-centered analysis of DNasel digestion signals and
DNaseseq footprinters to provide a more complete understanding of strengths and weaknesses of
current methods. | introduce a novel motifcentered method, Detecting Footprints Containing
Motifs (DeFCoM), that approaches footprint identification using a nonlinear supervised
classification ramework. Importantly, DeFCoM is designed to capture variation in DNasel signal

within active footprints and unbound motif sites to enhance footprint classification accuracy, a
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consideration unaccounted for in previous footprinters.| compared the performance of DeFCoM
against both de novo and moticentric footprinting approaches across eighteen TFs in four cell
lines using data from the Encyclopedia of DNA Elements (ENCODE) Projétiand show that
DeFCoM ouperforms existing approaches overall. In addibn, | analyzed the variability in accuracy
across multiple TFs and the effect of data quality and DNaseq sequencing depth. Lastly,show
DeFCoM can detect footprints in data from Assay for Transposagecessible Chromatin sequencing

(ATAGseq) experiments with similar classification accuracy as with DNasseq data

MATERIALS AND METHODS
Data and software
DNaseseq and ChlPseq data Tables 2.2 and 2.Bwere obtained from the UCSQUJniversity

of California at Santa CruzlENCODE portallfttps://www.genome.ucsc.edu/ENCODE). ATAGseq

data for GM12878[26] was obtained from GE@Gene Expression Omnibus)ising identification
code GSE47753The DAC Blacklisted Regions and Duke Excluded Regions for hgl9ewve
downloaded from the UCSC Genome Database then combined into one set.

DeFCoM utilizes the Python packages PySam v0.9.0 and sdidtrn v0.17[56]. The R
package ROCPE57] was used for computing performance statistics and the ROC curves for the

footprint ers. FSeq[58] was used to call peaks for DNasel hypersensitive sites.

Generating cell-line specific motif sites
Sets of motifs labeled as active (FBound) or inactive (TFabsent) were generated as
follows: 1) Transcription factor motif position weight matrices were downloaded from

http://compbio.mit.edu/encode -motifs/ [59]. Motif occurrences were identified across the hgl9

genome using FIMO (MEME v4.9.060] with a genomic background nucleotidelistribution pre -

AT T BDOOAA AU &) -/ Aindkst@rid AmaRdtoed-scdré3 ACD@MO0ONo-NOAT OA G 8
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2) Predicted motif sites were removed if (i) they fell in ENCODE blacklisted regions, (i) less than
10% of bases within a 200 bp window centered o the motif center had DNaseseq digestion data;
(iii) they were less than 400 bp from chromosome boundaries; or (iv) there were ambiguous
nucleotide calls within 400 bp of the motif site center. 3) Motif sites were annotated as active if they
overlapped QilP-seq peaks for that TFor else they were labeled inactive. If multiple motif sites
overlap the same peak region, only the site closest to the annotated posaurce of the peak was
retained. To further ensure inactive sites were not bound,calculatedChIRseq and input control
signal enrichments, defined asrr - Sontrol, Where sreand Scontrol are sequencingdepth normalized
read density values in 200 bp windows centered on the motif. Inactive sites whesgr - Sontrol > 0
were removed. Motif setswere created for 18 TFs (CEBPB, CHD2, CTCF, EP300, GABPA) JUN
MAFK, MAX, MYC, NRF1, RAD21, REST, RFX5, SRF, SP1, TAF1, TBP, USF2) in 4 hlingsn cell

(GM12878, HEhESC, HepG2, and K562) except SP1 in K562 (no data).

Computing aggregate DNasel digestion profiles

To create TFspecific summary statistics for each class of motif sitekfirst generate the
active and inactive maif site sets as detailecabove If multiple motifs exist for a TF, only one was
chosen. For each class of motif sitelsconstructed a matrix of DNasel digestion frequencies where
each row represents a unique motif site in the genome and each column represents a position
within or flanking a motif site. All the rows were aligned based on the center of the motif site.
DNasel cut frguencies are denoted in DNas® AN AAOA AO OEA 1061 AAO T £ vd
given genomic position. To remove motif sites with spurious spikes in DNasel activity, any rows of
the matrix with a value exceeding 500 were removed. From these matriced aummary statistics
were computed per column. For the aggregate DNasel cut profilésised calculated mean cut
frequencies. Likewise, peicolumn mean and standard deviations were computed to obtain

coefficients of variation values.
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DNaselsignal profil es andcorrelations

Aggregate DNasel signal profiles were calculated for active and inactive motif sites for each
TF in each cell type. DNasel signal correlations for NRF1 were performed using only sites
corresponding to the PWM(position weight matrix) OBOA péh A& O #($¢ OOEI C 110
#%" 0" OOEAIQ «11 O£ )@ éhufe VakiabitBvas not due to multiple motifs.
Motif sites were extended 50 bp from the motif center and signal profiles were calculated. To
remove sites with spurious spikes in DNasel activity, motif regions with more than 500 DNasgeq
reads were removed. Profiles were smoothed using 7 bp sliding windows to improve signal quality
at sites with sparse signal. Aggregate mean DNasel signal profiles for active amattive sites were
created using smoothed individual profiles. Pairwise Pearson correlation coefficients between
active and inactive motif DNasel profiles were used for completinkage hierarchical clustering

followed by heatmap visualization.

DeFCoMeature extraction and t raining
DeFCoM Detecting Footprints Cantaining Motifs) is an SVMsupport vector machine)-
based[61] supervised footprinter . Given a set of motif sites labeled as active or inactive for a given
TF in a cell type/experimental conditon, the SVM classifier is trained on features that are derived
from DNaseseq data from the same cell type for each motif site. The trained model is used to
predict active and inactive sites in a test set based only on DNaseq data.
To train DeFCoM, mofisite sets of sizen and n, labeled as active or inactive respectively,
were generated as described aboveseeGenerating ceine specific motifsite§ 8 4 EA v d AT A 1 £

DNaseseq read was considered a digestion site. Initial active and inactive mogite DNasel

digestion count matrices DActive,s and Dinactive,s were calculated, in which each row corresponded to
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a scaled DNasel digestion profile consisting of the square root of the DNasel digestion frequency at
each position in ans-sized region catered on a motif site. For all the training and evaluation tests,
s=200 bp regions were used. To account for spurious spikes in the data, any row in the matrix with
A OA1 OA COAAOAO OEAT Mumnm xAO OAIT OAAS

Intuitively, | wished to generate DNase digestion features in windows around a motif site,
with smaller windows used near the motif site where the TF binds to allow for greater resolution,
and progressively larger windows used at more distant regiong.also wanted to account for sparse
or noisy DNasel data. Given the region sizd first defined varying-sized, norroverlapping,
contiguous windows symmetric about the motif site center. Let~ {0,1,2,...,kindex each window
starting at the motif site center with the windows progressively increasing in size from O t&. |
define f(x), the size of windowx, to be

x%+5, x <k

jIC(x):z(i—y"(x—1))+x2+5, x=k (1)

2

g ={gE T DB =0 g

where the recursive functiong(x) equals thesum total size of all windows up to and including
window x. The total number of windowsk that will span a region of sizes/2 can be calculated as

follows:
argmin (E — g(k)) [ S—gk) =0 (3)
; 2 2

In equations 1 and 3) uses/2 because windows are symmetric about the motif cearr. For s=200, |
defined 12 windows (6 on each side of the motif site center) with sizes 45, 21, 14, 9, 6, 5, 5, 6, 9, 14,
21, and 45. For each window, computed the mean of the scaled DNasel digestion counts and the
slope of these counts across the wirav using DActiveand Dinactive, This generated a feature vectdrof
length 4k. To provide additional global features of the regios,| partitioned a 90 bp segment

centered on the motif center into 3 windows, computed the mean and slope for these windo{&
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features total), and calculated the mean cut frequency of a 150 bp region centered on the motif
center (1 feature). Lastly, maximal absolute value scalingas usedto scale each of the d+ 7
features to a [1,1] range. This results in the final featug matricesFActive gnd Fnactive,
As part of the training process, DeFCoM selects between a linear and radial basis function
(RBF) kernel SVM to use as the final classifier. To decide between the two SVM modiels,
bootstrapped 1000 samples 100 times from &ch ofFActive gnd Fractive and applied 5fold cross
validation. | used the mean pAUCs (5% FPR) from the crogalidations to select a model.
Training a softmargin SVM requires the selection of a hyperparameter, whidrdenote as c,
that specifies a toleance threshold for the number of samples from either class that lie on the
wrong side of the separating hyperplane. The higher the value of ¢, the more heavily
misclassification is penalized during model training. Additionally, the RBF kernel contains a
parameter thatl AAT T OA AO rh xEEAE AAOAOIET AO OEA AEOOAT AA
OAAOT 008 (EGCEAO OAI OGAO T &£ r OPAAEAU A Oi Al1AO AEO
cross celtline tests, DeFCoM performs a grid search to find the bestcand3 4 EA OAl OAO OOAA
grid searchwere¢cam8mnph mn8ph ph pnh{06006170.000% 6.6000, 0.p110Mdt 0 AT A
10, 100}.
For within cell-line tests, the SVM type (linear or RBF kernel) is prepecified based on the
analysis being performed| applied 5-fold nested cross validation using annotated motif sites and
DNaseseq data for the specified celline, and all evaluation statistics were computed for eactofd
then averaged across folddn the cross cellline setting, training the final SVM for DeFCoM is a two
OOACA POl AAOO8 &EOOOh A TETAAO T O 2" & EAOT Al 36-
subset of 3000 samples from each class is chosen to train the selected SVM model. Because the
number of total samples typically is mub larger than these subsetd, select the SVM type and the ¢
AT A r OAlI OAO OOET ¢ Altakd 1000 éxduon sarbpfes fom Bachi mbik ¢t O A 8

class 100 times, and for each bootstrap iteration,apply 5-fold cross validation to both a linear ad
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2" & EAOT Al 36- OOET C OEA AL OAI AT OEITAA CAOQEA 1T £ A
compare the distributions of pAUCs generated by each SVM type using a#@& AAA 3 @BtAAT 08 O
| selected the RBF kernel when there was a statistical@E CT E/AEAAT O AE £ZFAOAT AA | |
linear SVM otherwise. Following SVM type selectohA ET OA A£ET Al A AT ATT O r OAI
values were selected the most frequently during the bootstrap prockire for the selected SVM type.
To improve the @mmputational efficiency of the SVM training phase, the chosen SVM was trained
with 3000 randomly selected samples from each d¥ctiveand Fnactive to produce the final trained
model.

For ATAGseq data, theDActive gnd Dinactive matrices were constructedusing Tn5 transposase
tagmentation events as opposed to DNasel digestion frequencies. Tn5 tagmentation sites are
AAT T OAA Aséqrend endssffsét 5 bp downstream on the positive DNA strand and 4 bp

upstream on the negative strand.

Footprinter imple mentations for comparative a nalysis

The footprinters BinDNase, CENTIPEDE, cut density, DNase2TF, HINT, FOS, msCentipede,
PIQ, and Wllington (Table 2.1) were used to evaluate DeFCoM. These methods were chosen based
on availability, compatibility with my evaluation framework, and their broad range of conceptually
diverse approaches to footprinting | outline below how these methods were applied in a motif
centric evaluation framework. Any footprinter not listed was applied with no modifications and
default settings.
BinDNase

Similar to DeFCoM, BinDNase is a supervised footprinter. For the training phase of
BinDNase, 3000 samples from each class of motif sites were randomly chosen. The remaining

parameters were the same as describeid [46] .
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CENTIPEDE
In implementing CENTIPEDEused the default parameters spediéd by [50] with the
exception that the prior included only PWM scores.
Cut Density
#00 AAT OEOU OAOOGAO AO A OOOAECEOA&AI OxAOA OAAOAI
number of DNasesequ 8 OAAA AT A0 OEAO I AP xEOEET A OPAAEZEEARZ
in the evaluation sets, cut density was computed for regions spanning 50 bp upstream and
downstream of the motif site center.
DNase2TF
We ran DNase2TF on motif sites that were éanded by 100 bp in both directions to obtain
Al ETEOEAI 1EOO 1T &£ £ 1 O0OPOET O AAI1 08 4EA 0&$206 DPA
parameters.| filtered the footprints to only those that overlapped at least 75% of a motif site. If the
footprint region is smaller than the motif site, then it was also retained regardless of percent
overlap. For each motikite, | assigned it the score from the overlapping footprint. If multiple
footprints correspond to a motif site,l selected the highesscore. If no footprint is associated with
the motif site then it was given the minimum possible score.
HINT
We applied HINT similarly to DNase2TF. Using default settings, an initial list of footprints
was generated by evaluating motif sites that were extated by 100 bp in both directions. These
were filtered to footprints smaller than their corresponding motif site and footprints overlapping at
least 75% of a motif site. Motif sites were assigned scores using the same process as for DNase2TF.
FOS
FOS computs a score based on a depletion of reads within a central window of length

base pairs compared to a left and right flanking window each of length f base pairs. With each motif

18



site, | calculated an FOS score for all combinations oaind f where cis aninteger between 6 andz
andfv {3,4,...,11}. Lemrepresent the length of a motif, there=2*(21-m) when mis less than or
equal to 18 and 6 otherwisel aligned cto be centered over the motif sitel retained the highest
score from all the calculations fo a motif site. Sites FOS failed to score were given the lowest
possible score.
Wellington

Similar to FOS, Wellington uses a center and flanking region to compute a score and call
footprints. Wellington searches for footprints in a region using a combinabin of a 35 bp flank size
and center sizes 11, 13, 15, 17, 19, 21, 23, and Rallowed Wellington to score sites using input
regions that were 49 bp flanks from the center of the motif site. The maximum of the absolute

values of scores was used as the fprint score for the associated motif site.

Effective sequencing depth

Signatto-noise was measured using FRIP (fraction of reads in peaks) scofég]. Peaks
were called using FSeq with default parameters, then the ratio of DNasgeq reads aligning within
the top 50,000 peaks (ranked by FSeq score) to the total aligned reads was calculated. This ratio

was multiplied by the total aligned reads to obtain the effective sequencing depth.

Subsampled sequencing cepth analysis

47 AT 1 DAOA $A&#TintgolelldnkOmEi sinilah dffdctve sequencing
depths but different signalto-noise ratios,| applied downsampling to both GM12878 and HhESC
DNaseseq data. In each celine | used SAMTools to downsample the data to 25, 50, 75, and 100
million mapped reads. At each sequencimdepth, | converted the labeled motif sites and DNasseq

data into feature vectors.| then used these feature vectors for Bold nested cross validation of
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DeFCoM with the RBF kernel SVM. Lastly, the mean pAUCs (5% FPR) frafdlds were computed

for 18 transcription factors.

RESULTS

Aggregate DNasel digestion profiles do not capture motif site heterogeneity

Aggregate mean DNasel digestion profiles summarize positional DNasel cleavage
preferences at TFBSs. These profilesteey a single value at each position, thus they lack
information regarding the variability in DNasel activity at a given position across sites. Rej al.
showed that variation in DNasel activity at THhound SP1 motif sites exceeded that expected under
a multinomial model of DNasel digestion signa]51]. To evaluate this more broadlyl determined
positional variability in DNasel digestion signal for multiple TFs (Figure 2.2A and 2.3). | stratified
motif sites into active and inactive based on presence obrresponding ChiRseq signal for the
factor in the same cell typel used these to evaluate two common assumptions held by several
footprinting methods: 1) active TFBSs possess a general footprint pattern of local depletion in
DNasel digestion relative tdflanking regions; and 2) inactive motif sites contain approximately
uniformly distributed DNasel digestion signal. For most factors, aggregate profiles for active sites
clearly produced expected DNasel digestion patterns, but with relatively large standadeviations.
An investigation of individual binding sites clearly shows how sites deviate from the aggregate
pattern (Figures 2.2C and 2.R). In some cases, the previously characterized sequence preferences
for DNasel digestion[63] are visually apparent For a minority of the TFs, the aggregate profile for
active sites portrays a visually weak footprint or none at all (i.e. SRFigure 2.3. Overall, TFs
exhibit aggregate profiles with consistently high coefficients of variationKigure 2.4).

In spite of position-specific variability across motif sites, it is possible that DNasel signal at
individual sites resemble the aggregate profile in shape but not scale. To quantify the similarity of

DNasel digestion profiles at individual sites to the aggregate raa profiles,| calculated Pearson
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correlation coefficients between the aggregate profiles and every individual TFBS profile for

CEBPB, CHD2nd NRFL1 (Figure 2.5 Among the 3 TFs, 3®3% of the individual profiles did not

correlate with the same classaggACAOA DOT £ET A j 0AAOOBUhGGLt1ID T m8pds8

51% of individual profiles from the active and inactive classes exhibited stronger positive
correlations with the aggregate profile from the opposite class.

To further assess within and beveen class heterogeneityl computed Pearson correlations
between the top 2000 individual DNasel digestion profiles, ranked based on the number of DNase
seq reads in a 100 bp window centered on the motif site, in the active and inactive classes for all
three factors.l observed small clusters of highly correlated sites, implying possible subgroupings
for DNasel cleavage profiles within each claskalso found 3453% of motif sites within each class
exhibited negative or no correlation to each other (Peardod O O [ s22Q arjd &.6 O
4-opb T £ AT OOAT AGETT O AAOxAAT OEOAO AEOI i 1 BBl OEOA
variability in DNasel digestion signal strongly indicate that aggregate mean profiles do not
sufficiently capture the heterogeneity in DNasel activity across motif sites.

We hypothesized that high correlations between sites from one class to the aggregate
profile of the opposite class may be partially attributed to similarities in binding preferences for
multiple TFs.Therefore, a motif site deemed inactive for a specific TF based on Clsiy data could
be active for another TF with a similar motifl assessed this by determining how many inactive
motif sites overlapped ChiPseq peaks for at least one other TF for eacth 18 TFs in the K562 cell
line. | found that this was the case for 8.85% of all inactive site§igure 2.7). For most TFs, the
number of inactive motif sites was significantly larger than the number of ante sites (Table 2.4.
Thus, while the number ofinactive sites overlapping another ChiFseq peak was relatively small,
these represented 0.41 to 32.21 times the total number of active motif sites for a TF. Footprint
patterns at inactive sites that resemble active sites due to the binding of another facthighlights

an important consideration and caveat when conducting motitentric footprinting and evaluating
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the accuracy of footprint predictions. This also applies to de novo footprinting as it becomes an
issue when annotating called footprints using mtifs. A potential solution would be to exclude all
motif sites overlapping ChIRseq peaks for multiple TFs. However, this would remove 66900% of
active sites for a TF. Additionally, this would require conducting a multitude of Chifeq

experiments and dsregards the fact that nany TFs have binding partners.

Modeling data heterogeneity for footprinting

To account for the high variance in DNasel activity at motif sitebgdevised a novel
supervised learning based footprint prediction framework called DeF@M (Detecting Footprints
Containing Motifs). DeFCoM trains an SVM using extracted features from DNasel digestion profiles
of motif sites labeled as active or inactive. In the training phase, DeFCoM applies a model selection
procedure to choose between atiear kernel and nonlinear RBF kernel (Figure 8; seeMaterials &
Methods). This allows DeFCoM to capture the complexity of the data when necessary with the RBF
kernel, while avoiding overfitting, a common problem in supervised learning, by choosing the
linear kernel when that complexity is lacking. Once trained, the SVM uses features from DNasel
digestion profiles for new, unlabeled motif sites to determine which are active and inactive in
another cell type/condition.

47 AOOAOO $Ag&#l -corady,lAirkt pei@riedt-BId r@sidd trosdvAlidation
on 71 evaluation sets comprised of data from 18 transcription factors in the human cdihes
GM12878, HXthESC, HepG2, and K562 generated by the ENCODE project. Secdndsted
$A&#1 - 8 O glnrilizetaddds c@litypes by training models using data from one cell type
and testing on an independent cell typd.also wanted to know whether using the RBF kernel
increased accuracy given the demonstrated heterogeneity in these data. Therefore, lfoth sets of
experiments,| used a linear and an RBF SVM and compared their classification performanosill

refer to these models as DeFColihear and DeFCoMRBF respectivelyl calculated receiver
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operating characteristic (ROC) Area Under the Curve (XC) values using all the data and also partial
AUC (pAUC) values corresponding to partial ROC curves at a 5% false positive rate (FPR) cutoff.

When applied to the 71 data sets, DeFCeRBF performed better than a random lassifier in
all cases (Figure 2.8). Notably,| observed a wide distribution of pAUC scores ranging from 0.096
to 0.981, but there was less variability in the full AUC scores (0.7431998). For the cross celline
experiments, | expected that additional variability across the twodata ses would decrease
performance compared to the within cellline cross validation tests. Indeed| witnessed overall
lower scores from the former but by a marginal amount (median pAUC decrease of 0.021)
indicating there exist consistent footprint signals acros cell types.

To determine whether using the nonlinear RBF kernel to model heterogeneity was
warranted, | repeated the above experiments using the linear kernel. Overall, DeFCH\BF
improved classification accuracy for all cellines in both experimentalsetups except for the cross
cell-line case where the test set was derived from daia the K562 cell line (Figure 2.8). 1 saw that
the pAUC increased as much as 0.141 when using DeFCRBF. However, the pAUC was essentially
the same in 31% of cross validéon tests and 41% of cross celline tests. This demonstrates that
the RBF kernel can provide large gains in accuracy, but some factorgata ses may not possess
enough DNasel signal heterogeneity to benefit from more complex footprint modeling.

Interestingly, DeFCoMinear performed substantially better on cross ceHline tests when
training with GM12878 and evaluating with K562 data. This demonstrated the need for flexibility in
model complexity. Therefore| incorporated a model selection step duringoeFCoM training to
automatically determine the most appropriate kernel for a given test (se®laterials & Methods).|
found that with the exception of CTCHny model selection procedure identified the better model in
all cases in which there was a measurébdifference between kernels pAUC difference > 0.05;

Figure 2.10. | also evaluated alternative methods for addressing cross cédihe applications of
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DeFCoM and found the aforementioned approach produced the best resulidevertheless, |

describe the aternative proceduresin the following section.

Variations for DeFCoM training in cross cell -line applications

To address the decrease in classification accuracy of DeFCoM when training in one-load
and testing in another,| initially explored two methods in addition to the SVM model selection
procedure.

Mitigating Data setShift

Given the variety of factors involved in generating DNaseeq and ATAGeq data as well as
biological variability in the samples processed for sequencingconsidered the pasibility that the
DNaseseq and ATAGeq data used for training DeFCoM may differ enough from the data being
used during the classification phase of cross cdlhe analyses to negatively impact classification
performance. More formally,| hypothesized that the joint distribution between inputs into
$A&#1-60 2" & EAOTAI 36- AT A OEA TO0ODPOOO DPOI AGAAA
testing stage. This phenomena is more generally referred to in machine leamng literature as data
setshift [64].

To account for the possibility ofdata setshift, | trained a logistic regression model with data
from GM12878 and K562 to obtain for each sample the probability that the sample was derived
from GM12878, P(GM12878), and the probability that it was deriveftom K562, P(K562). If more
than 25,000 motif sites existed in the active and inactive motif site sets for both cdihes, |
randomly selected 25,000 samples from each of the active and inactive motif site sets, totaling to
100,000 sites. These samples we converted into feature vectors, and assigned the class label
O -pcyxwd 10 O+vepco8 4EA | AAAI AA AEhdy@died OAAOI 00
logistic regression model. The regression model was then applied to feature vector representations

of all the samples in both ceHines to obtain P(GM12878) and P(K562) for each sample. The
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filtered motif sites were then used to train an RBF kernel SVM usingfdld cross validation. Sample
weights were included for the SVM training such that training samples more similar to the K562
test samples would receive a greater weight.defined the weight to be P(K562)/RGM12878).
Table 2.5provides the results of applyingdata setshift correction to DeFCoM for 17 transcription
factors.
Sequencing Depth Matching

Another consideration related to cross celline analyses is the difference in sequencing
depth between the training and testing set affecting DeFCoM performand&hen the training data
setcomes from DNaseseg/ATAGseq data with a lower sequencing depth than the test data, the
dynamic range of DNasel digestion frequencies at motif sites has the potential to be greater in the
test set. Arguably, this could creatersther scenario wheredata setshift is a concern. AlthougH
incorporate a square root transformation of the DNasel digestion frequencies into the DeFCoM
framework to mitigate dynamic range issuesl, also tested if matching the sequencing depths
betweentt A OOAET ET ¢ AT A OAOOET ¢ AAOA x1 OI A EI BDOT OA

Using the subsampling feature in SAMTools (Li et al., 2009)Jown-sampled the K562
DNaseseq data to match the GM12878 DNass=q data sequencing deptH.then used the GM12878
and K562 data to generate the training and test set feature vegtrespectively. With the GM12878
feature vectorsl used 5fold cross validation to train the RBF kernel SVM of DeFCoM, drapplied
the trained model to the feature vector representations ofhe down-sampled K562 samplesTable
2.5 provides the results of this evaluation for 17 transcription factorsCompared to the model
selection procedure both the data set shift correction and dowrsampling approaches produced

worse classification performance.
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Multiple variables impact motif -centric footprinting
In addition to addressing the heterogeneity of DNasel signal at motif sita®y analyses
provide insights into some variables that may affect motitentered footprinting performance,
though thisis certainly not an exhaustive list of contributing factorsMy observations suggest that
OEA O&I 1 OPOET OAAEI EOUG E8A8h QadsetN dfdncterood 1 £ £ 1 Ob
several characteristicsl noted that features of the data frorma particular cell-line and the specific
TF being considered can contribute to footprintability. For instance, the pAUC is 0.36 higher on
average in K562 compared to HepG2 for all crosslidation experiments (Figure 2.9, suggesting
that footprint signals in K562 are better overall. Within GM12878, the cross validation pAUC scores
across TFs range from 0.210 to 0.915, highlighting the variability in footprintability across TFs.
Lastly, pAUCs for CHD2 are higher than CEBPB in all cell typeigigre 2.11), suggesting active
footprints for some factors are in general easier to discriminate than for others.
It is important to note that the four cell linesl use span a wide range of sequentj depths
(Table 2.6. 1 wondered how closely footprintability was assaiated with total sequencing depth.
Since the signal quality acrosdata ses can widely vary| AT OT xT1 1T AAOAA xEAOEAO OE!/
sequencing depth, based on the number of reads in DNasel hypersensitive sites, was more
important than simply the raw secquencing deptht OOAA 1 AAT D! 5# OAI OAOG AOT I ¢
cross validation experiments for each TF across all cell lines to compare footprintability based on
total and effective sequencingdepth. Overall,| found that for most factors, accuracy increased
nonlinearly with respect to total sequencing depth, but not effective sequencing deptlfrigure
2.12).
To better understand the tradeoff between sequencing depth and signal quality focused
on data from GM12878 and H-ESC since they possess very difent signatto-noise ratios (0.19
versus 0.43 FRIP score).performed 5-fold nested cross validation using DeFCoM and data from

each cell line subsampled to 25, 50, 75, and 100 million aligned reads and calculated pAUCs for
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each. The effect of raw sequering depth versus signal quality became more apparent whdn
assessed changes in pAUC at a fixed 5% FPR under ttamework (Figure 2.13). As expected, the
changes in pAUC vary by TF, but performance in the HHESC celline was less affected by
increasedsequencing depth. This suggests that for data with better signtd-noise, informative
DNasel signals are present at lower sequencing depths, resulting in smaller improvements in
footprintability with increased sequencing depth.l see the opposite in theaGM12878 celtline where
increased sequencing depth substantially improves accuracy. When looking across sequencing
depths at the number of HthESC active motif sites that are in the evaluation setsjotice that more
active sites meet the coverage filterig thresholds as sequencing depth increases. This shows that
although much of the DNasel signals may be present at lower sequencing depths, a higher
sequencing depth can provide gains in sensitivity. The improvements in sensitivity will vary by TF,
as evicenced by large increases for CTCF and RAD21 but significantly smaller increases for other
TFs Figure 2.14).

Interestingly, active footprints for some TFs were more accurately identified in GM12878
than H1-hESC at equivalent sequencing depths despite theduced signalto-noise. This may be due
to the FRIP score serving as a global signal quality measure rather than at the level of individual
TFs. To investigate this further] analyzed the ratio of active motif sites to inactive sites for several
TFs and dund that many decreased drastically in GM12878 data with increasing sequencing depth
compared to the same ratios in H-hESC data (Figur@.15A). For instance, in GM12878 for SP1 this
ratio was 16.8 at a sequencing depth of 25 million reads but decreaseml@.55 at 100 million reads.
In H1-hESC]| observed a much smaller ratio change from 0.48 to 0.10 for the sarfaetor (Figure
2.15B). The large changes in active to inactive site ratios in GM12878 suggest that in data with
lower signal-to-noise, the numberof inactive sites is more affected by sequencing depth, at least
based onmy criteria. Across all 18 TFs in GM12878,witnessed a-0.71 Pearson correlation on

average between the active to inactive site ratios and pAUCs for a TF. InlHESC the mean
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correlation was-0.89. Overallmy results suggest that increasing sequencing depth to improve
accuracy will primarily benefit noisy data ses, and that signal quality in data will affect accuracy by
varying the number of inactive motif sites that are considexd compared to the number of active

motif sites.

DeFCoM outperforms other footprinters

To provide a comprehensive study of footprinting from a motHcentric perspective,l
compared DeFCoM with nine competing footprinters: BinDNase, CENTIPEDE, cut density
DNase2TF, HINT, FOS, msCentiped&)Pand Wellington (Table 2.1 All methods were assessed
based on their ability to correctly classify the same sets of motif sites for 18 TFs as active or inactive
in the given celtline. Partial AUCs (5% FPR) were aallated to compare the methods. For the
supervised learning footprinters (DeFCoM and BinDNase), training was performed using data from
K562 for test sets in GM12878, HhESC, and Hepg2, and in GM12878 for test sets in K562. To
summarize performance acrosll data ses, | ranked each method by pAUC for each of the 71 tests
and calculated their mearrank across all tests (Figure 2.16 DeFCoM ranked first in 25 of the 71
evaluation sets (34.7%) and second in an additional 29 test sets (40.3%}%ee even beker
performance by DeFCoM when using pAUCs from within cdithe cross validation for the two
supervised methods. DeFCoM ranked first 39 times (54.9%) and second 23 tin{82.4%) (Figure
2.17). DeFCoM had the best mean rank for results from both the crosall-line and cross validation
tests followed by BinDNase and msCentipede. Interestinglgut density, which simply predicts
footprints based on the number of DNasseq reads, had the 4th best mean rank despite not using
any information about adual footprint signals (Figures 2.16B and 2.8). Previous studies witnessed

similarly reasonable performance for this simple method63,65], but Gusmao et al. showed that cut
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had the 5th best mean rank using pAUCs atl& FPR (Figure 2.19 still outperforming 5 other
footprinters.

The improved classification accuracy of both DeFCoM and BinDNase over the unsupervised
approaches highlights the utility of learning a disriminative model for motif-centric footprinting.
Because DeFCoM defaults to a linear SVM model unless more complex modeling is required,
expect it to perform at least as well as BinDNase, which uses another type of linear model, logistic
regression. Al®, including the nonlinear RBF kernel enables DeFCoM to outperform BinDNase by as
much as 0.0835 pAUC, thoughnote that the two footprinters have essentially the same accuracy
for 59 of the 71data ses (pAUC difference < 0.025). This increases to 65the 71 data sesk using
pPAUC difference< 0.05 (Figure 2.20. BinDNase includes a computationally expensive greedy
backward search to determine optimal features. Impressively, this shows that DeFCoM can achieve
a similar or better accuracy than BinDNase usg a set of predefined features that can be computed
more efficiently. The greater overall performance of msCentipede relative to the other
unsupervised footprinters indicates that modeling heterogeneity with an unsupervised method can
produce comparable esults to DeFCoM in some cases, thoupbhote that for the factor TBP in
HepG2, a model could not be learned in reasonable time (model training terminated after 60 days).
For 48 of the 71 test sets, DeFCoM and msCentipede perform similarly (pAUC differerd®05), but
using supervised learning affords DeFCoM better performance in 16 of thata ses (pAUC > 0.05),

including a pAUC difference of 0.25 for the RAD21 test sets.

ATAGCseq is comparable to DNaseseq for footprinting

Like DNaseseq, ATAGseq asays for accessible chromatin and can generate visible
footprints in aggregate accessibility profiles for active motif sites. Its low biological sample material
requirement relative to DNaseseq makes it an appealing alternative when this is a limiting féar. |

evaluated DeFCoM using GM12878 ATA€q data to determine its utility for motif-centric
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supervised footprinting. | applied 5-fold nested cross validation with the ATA&eq data to train and
test DeFCoM models for 18 TFs. The pAUC at 5% FPR andMUIC were average@cross the 5 folds
from the crossvalidation. | then repeated the nested cross validation with DNasseq data on the
same set of active ad inactive sites(Figure 2.21). Despite the differences in sequencing depth of
the DNaseseq (245 milion reads) and ATAGseq data (93 million reads), the pAUC and full AUC
values are generally similar, with DeFCoM performing slightly better when using DNaseq (mean
pPAUC difference = 0.072, mean AUC difference = 0.043). Overall this supports the fekisilof

extending DeFCoM to experiments that use ATAgeq.

DeFCoM as an opersource software package

Poor implementation and usability hinder the adoption of otherwise practical tools in the
scientific community. With this in mind, | implemented DeFCoMa be an easyto-use software
package with a codebase that follows good software design principles. For both endsers and
developers,| makemy code freely accessible via a code repository
(https://bitbucket.org/bryancquach/defcom) with extensive API docu mentation and a user guide.
DeFCoM is the only supervised learning footprinter supported by thorough documentation to
improve ease of usel also include wellcommented scripts to handle common data processing
tasks for footprint analysis. DeFCoM is impleented in the Python programming language within
an objectoriented framework that enhances modularity of the code for easy debugging,
modification, and extension. Furthermore, because DeFCoM is a datgensive method,| make use
of scalable programming tehniques such as batch processing and parallel computing to ensure
feasibility for use on a modern desktop machine. As an opeource software package, encourage

the community to modify and adaptmy code for further advancements in footprinting research
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DISCUSSION

Our study provides novel insights into variables that affect identification of DNasel
footprints, and for the assessment of footprinter performance. Aggregate DNasel digestion profiles
do not represent well the footprint patterns seen at indvidual sites, thus footprinters that use
models based on aggregate or general footprint signal patterns may suffer. Inactive motif sites for
one TF may be bound by a TF that creates a footprint and thus be misclassified, at least for the
original TF. Thisis a general challenge in the assessment of meténtric approaches, but this does
not necessarily reflect a weakness in these footprinters. The motifentric footprinter is correctly
identifying a footprint, though it mistakenly attributes it to the wrong factor. Arguably, this is better
than spuriously identifying a footprint at a location where no factor is bound. This serves as an
important consideration for both interpreting footprint predictions and assessing footprinters in a
motif-based framework.

Heterogeneity in DNasel digestion signals at motif sites exists, ahdhow thatmy DeFCoM
footprinter benefits from being aware of this heterogeneity. At the same timé also show that
incorporating the flexibility to use more or less complicated modelslepending on the particular TF,
cell line, anddata setis important as well. DNaseseq and ATAGeq footprint signals will vary
based on biological and technical factors that influence the data. Footprinters that can model
footprints well across this range of variability will obviously be more robust. Supporting this,
msCentipede also models heterogeneity and was the best performing method that did not use
supervised learning, thoughl found this method may be limited by unreasonable training times for
specific data ses.

We show that determining appropriate sequencing depth for footprinting is not easy and is
affected by many variablesl observed sequencing depth affected footprinter accuracy less when
the DNaseseq data had a better signalo-noise ratio, butl also witnessed variation in TFspecific

footprintability at equivalent sequencing depths between cellines. Sunget al. provided evidence
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that DNA residence time plays a role in the clarity of a footprint sign§b3] . Likewise, greater
sequencingdepth generally increased the number of sites where footprints were identified, but the
benefit to individual factors varies. Biological variables such as these need to be further assessed on
a per-TF basis in conjunction with technical factors to bettere&alize which of these most strongly
contribute to footprintability. This knowledge would help determine how to appropriately design
footprinting experiments.

For footprinters such as DeFCoM that use supervised learning, the concordance between
features ofthe training and test sets become important. Although this introduces added complexity,
it can be leveraged to achieve more targeted results. For instance, higbnfidence footprints in
DNasel hypersensitive sites could be identified by tailoring the traing set to include only sites in
areas of high DNasel activity. Doing so would make the model more representative of these
stronger footprint signals, though at the expense of generalizability to low signal regions. Potential
variability between training and test sets should be minimal for situations in which data is
generated from the same cell type for both but possibly under different experimental conditions.

A comprehensive evaluation of footprinting was reported irf66]. Though more rigorous
than previous comparative analyses, their evaluation strategy was more informative for
understanding footprinters in ade novdfootprinting context. | provide a complementary
footprinter evaluation from a motif-centric perspective. Inmy work, | focused on resultsat a 5%

FPR to provide more practical insight on footprint detection accuracy at acceptable error rates. The
ability of both DeFCoM and BinDNase to consistently outperform unsupervised footprinters, with
the possible exception of msCentipede, further sugpts supervised learningbased methods! note
that my results contradict accuracy levels found in the previous evaluation for several footprinters.
This demonstrates that evaluation methods can largely influence reported performance. The

novofootprint ers DNase2TF and FOS performed poorly my tests, because they failed to report a
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score for many of the motif sites in the test seMy results in conjunction with previous studies
highlight the importance of evaluating a footprinter in the context for wich it was designed.
ATAGCseq is quickly being adopted as it requires less biological starting material, ahghow
DeFCoM performs comparably with these data. Asearn more about the nuances of footprinting in
both DNase and ATAGseq,| expect footprinters will adapt accordingly. In light of this,my
implementation of DeFCoM in an opeisource, modularized and objecbriented framework makes
it conducive to modification and improvement. As sucH,welcome and encourage collaborative
efforts with others in the scientific community to address the needs of researchers as the field

evolves.
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Figure 2.1. Motif logos for NRF1, CHD2, and CEBPB Sequence logo representations of position

weight matrices used to evaluate DNasel signal profile heterogeity.
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Figure 2.2 Within and between class variability in DNasel digestion signal at motif sites.  A)
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active (+) and inactive €) in K562. B) K562 DNaseeqand ChlRseq signal at an NRF1 motif site
(Chr1:16,175,92316,176,022) from the active class and C) two neighboring NRF1 inactive sites
(Chr22:38,966,291-38,966,390). D) Pairwise Pearson correlations between the top 2000 NRF1

motif sites from the active and inactive class ranked by DNasel digestion signal.
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Figure 2.3. K562 DNasel signal profiles. + v 9 ¢ ACCOACAOA 1T AAT j AQ AT A OO/
DNasel digestion profiles for the active (+) and inactive-Y motif site classes of 17 transcription

factors.



Figure 2.4. Coefficients of variation for K562 DNasel digestion profiles.  Coefficients of
variation derived from K562 DNasel digestion profiles for the active (+) and inactive motif site
classes of 17 transcription factors. The dashed horizontgray line denotes a coefficient of variation

of 1. Values above this signify that the standard deviation exceeds the mean
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